
Hardware Compute Partitioning on NVIDIA GPUs1

for Composable Systems2

Joshua Bakita # �3

University of North Carolina at Chapel Hill, USA4

James H. Anderson # �5

University of North Carolina at Chapel Hill, USA6

Abstract7

As GPU-using tasks become more common in embedded, safety-critical systems, efficiency demands8

necessitate sharing a single GPU among multiple tasks. Unfortunately, existing ways to schedule9

multiple tasks onto a GPU often either result in a loss of ability to meet deadlines, or a loss of10

efficiency. In this work, we develop a system-level spatial compute partitioning mechanism for11

NVIDIA GPUs and demonstrate that it can be used to execute tasks efficiently without compromising12

timing predictability. Our mechanism supports composable systems by not requiring task, driver, or13

hardware modifications. In our evaluation, we demonstrate sub-1-µs overheads, stronger partition14

enforcement, and finer-granularity partitioning when using our mechanism instead of NVIDIA’s15

Multi-Process Service (MPS) or Multi-instance GPU (MiG) features.16

2012 ACM Subject Classification Computer systems organization → Heterogeneous (hybrid)17

systems; Computer systems organization → Real-time systems; Software and its engineering →18

Scheduling; Software and its engineering → Concurrency control; Computing methodologies →19

Graphics processors; Computing methodologies → Concurrent computing methodologies20

Keywords and phrases Real-time systems, composable systems, graphics processing units, CUDA21

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2025.1822

Funding Work supported by NSF grants CPS 2038960, CPS 2038855, CNS 2151829, CPS 2333120,23

and ONR contract N0001424C1127.24

1 Introduction25

Rapid developments in artificial intelligence (AI)—especially deep neural networks (DNNs)26

running on GPUs [18]—have led to new cyber-physical systems, from intelligent assistants27

to self-driving cars. Real-world safety or usability concerns impose practical response-time28

deadlines on these systems, which may also need to run multiple AI tasks—such as one29

DNN for a conversational interface alongside others for object detection or planning in a30

self-driving car. However, this raises a problem–how to schedule GPU-using tasks onto a31

GPU efficiently while reliably meeting deadlines? When scheduling a GPU, generally either32

competitive sharing [42, 27, 45]—tasks run concurrently and fight for resources—or mutual33

exclusion [12, 11, 3]—one task runs at a time—are recommended.34

Unfortunately, competitive sharing increases efficiency at the cost of timing predictability35

[11, 35, 2, 41, 7, 40], whereas mutual exclusion gives up efficiency for predictability. Without36

timing predictability, one cannot guarantee met deadlines. This tension puts embedded37

system designers in a difficult position. The easy option—trading off predictability for38

efficiency—is dangerous for safety-critical systems like self-driving cars.39

This problem is exacerbated by the issue of composability. Each GPU-using task may40

be developed by different groups, may not be modifiable by the scheduler, and may change41

out-of-step with other tasks during a device’s lifetime. This puts further burden on the42

scheduling system, as it must guarantee efficient and predictable execution for each task,43

even as tasks change opaquely.44

© Joshua Bakita and James H. Anderson;
licensed under Creative Commons License CC-BY 4.0

37th Euromicro Conference on Real-Time Systems (ECRTS 2025).
Editor: Renato Mancuso; Article No. 18; pp. 18:1–18:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jbakita@cs.unc.edu
https://orcid.org/0009-0007-2856-5774
mailto:anderson@cs.unc.edu
https://orcid.org/0009-0004-0572-200X
https://doi.org/10.4230/LIPIcs.ECRTS.2025.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

Table 1 Comparison of spatial GPU compute partitioning mechanisms.

Mechanism Po
rta

bl
e

Lo
gic

al
Iso

l.
Tr

an
sp

ar
en

t
Lo

w-
ov

er
he

ad
Ha

rd
wa

re
En

f.
Dy

na
m

ic
Gr

an
ul

ar

Software [13, 39, 15, 37, 43] ✓ ✕ ✕ ✕ ✕ ✓ ✓

libsmctrl [4] ✓ ✕ ✕ ✓ ✓ ✓ ✓

NVIDIA MiG [29] ✕ ✓ ✓ ✓ ✓ ✕ ✕

NVIDIA MPS [27] ✓ ∼ ∼ ✓ ∼ ✕ ✓

nvsplit (ours) ✓ ∼ ✓ ✓ ✓ ✓ ✓

In this work, we demonstrate that spatial partitioning of GPU compute cores is an45

effective path to resolving this problem. To show this, we uncover and repurpose hardware46

capabilities in all NVIDIA GPUs to build a new system-level spatial partitioning mechanism.47

Spatial partitioning—a way to run tasks concurrently on mutually exclusive sets of cores—48

allows concurrent task execution for efficiency, while minimizing shared-resource interference49

between tasks to protect timing predictability. Our work builds on two key insights: GPUs are50

architecturally well-suited to spatial partitioning, and all NVIDIA GPUs contain hardware51

capabilities that can be leveraged to implement spatial partitioning.52

While our work is motivated by the computational needs of DNNs, it is not constrained53

to DNNs—we consider arbitrary unmodified CUDA-using GPU tasks. We focus on NVIDIA54

GPUs for their market-leading technology and adoption, and on CUDA-using tasks because55

of an intermediate-software limitation—we believe that the hardware capabilities we unveil56

and leverage could be applied to spatially partition any NVIDIA GPU workload in the future.57

Prior work. Prior work on the spatial partitioning of NVIDIA GPU cores is limited. Table 158

(returned to with rigorous definitions in Sec. 2.5 and Sec. 3) classifies key works. Most prior59

work (“Software” in Table 1) modifies tasks to cooperatively yield unallocated compute60

cores [39, 15, 37, 43, 13, 46]—these approaches suffer the inability to enforce partitions61

on misbehaving tasks. libsmctrl by Bakita and Anderson [4] addresses this enforcement62

problem, but requires task modification and a shared address space among all tasks. Multi-63

instance GPU (MiG) from NVIDIA [29] can hardware-enforce partitions without these64

compromises, but its partitions are static, less fine-grained, and only available on data-center65

GPUs. The only NVIDIA-provided option for all their GPUs, the Execution Resource66

Provisioning feature of the Multi-Process Service (MPS), does not enforce robust partition67

boundaries. We revisit these mechanisms at length in Sec. 3.68

Contributions. In this work, we:69

1. Reverse-engineer NVIDIA MPS (current state-of-the-art), unveiling previously-unknown70

hardware capabilities and quantifying its real-time safety.71

2. Discover and mitigate efficiency and predictability pitfalls of NVIDIA MPS, including72

how it may assign two partitions of 50% to the same 50% of the GPU.73

3. Develop a new system-level spatial-partitioning mechanism for NVIDIA GPUs—nvsplit—74

built on principles from libsmctrl and NVIDIA MPS.75

4. Show that nvsplit supports unmodified tasks without measurable overheads or portability76

limitations.77

J. Bakita and J. H. Anderson 18:3

5. Demonstrate that nvsplit has more efficient and granular partition enforcement than78

NVIDIA MiG and MPS, and equivalent or better timing predictability.79

6. Reveal that NVIDIA MiG has a serious and undocumented cost to compute performance.80

Organization. We introduce our system model, overview GPU architecture, and discuss81

spatial partitioning in Sec. 2. We review prior work in Sec. 3. In Sec. 4, we elucidate the82

implementation and pitfalls of NVIDIA MPS, and then in Sec. 5 apply the hardware83

capabilities used by MPS to develop nvsplit. We evaluate the overheads, partition84

enforcement, and granularity of nvsplit in Sec. 6, and conclude in Sec. 7.85

2 Background86

In this section, we summarize necessary background on the GPU (from [4, 5]), and discuss87

why spatial partitioning enables efficiency and timing predictability.88

2.1 System Model89

We assume an x86_64 or aarch64 platform containing at least one embedded or discrete90

NVIDIA GPU of the Volta (2018) generation or newer.91

Tasks are assumed to be closed-source, unmodifiable, CUDA-using Linux processes.92

Non-CUDA GPU-using tasks may coexist, but may not use spatial partitioning.93

We focus on embedded, real-time systems, where resources are limited but execution-time94

deadlines must be met.95

2.2 GPU Usage Model96

Each task executing on a GPU has an associated GPU context. This context includes97

per-GPU-task state, such as an on-GPU virtual address space. Unless explicitly stated98

otherwise, we assume a one-to-one mapping of GPU-context to CPU-task.99

Work is dispatched into a context via one or more compute kernels. A kernel is launched100

by passing a GPU-executable binary, and a number of GPU threads, to a GPU-usage library101

such as CUDA or OpenCL. The library will then compose and pass a Task Metadata102

Descriptor (TMD) to the GPU for execution. Each GPU thread concurrently executes the103

same instructions, but operates at a different data offset. For example, a kernel for an104

element-wise array addition could replace a for loop over every index value with a GPU105

thread per value. The threads would then execute the loop body over all index values in106

parallel, rather than having to iterate.107

Threads are organized into groups known as blocks, and all threads within a single block108

execute on the same SM (Streaming Multiprocessor; a group of compute cores). A series of109

kernel executions may be serialized via first-in-first-out command queues known as streams in110

CUDA. Only kernel executions in the same stream are serialized; kernels in separate streams111

are permitted to execute concurrently.112

2.3 GPU Architecture113

In Fig. 1 we illustrate the typical architecture of an NVIDIA GPU chip, using the Ada-114

generation AD102 as an exemplar (used in the RTX 4090 and RTX 6000 Ada GPU models).115

NVIDIA GPUs are subdivided into several independent engines, with the most significant116

being the Compute/Graphics Engine. Smaller engines handle special functions such as bulk117

ECRTS 2025

18:4 Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

TPC

SM

SM

General
Processing

Cluster

TPC

SM

SM

TPC

SM

SM

TPC

SM

SM

TPC

SM

SM

TPC

SM

SM

TPC

SM

SM

General
Processing

Cluster

TPC

SM

SM

TPC

SM

SM

TPC

SM

SM

TPC

SM

SM

TPC

SM

SM

Video

Decode

Video

Encode

GPU

DRAMs

L2 Slices

GPU

DRAMs

L2 Slices

GPU

DRAMs

L2 Slices
R

e
st

 o
f
S

ys
te

m
(C

P
U

s,
 D

R
A

M
s,

 s
to

ra
g
e
,
e
tc

)

PCIe Bus

JPEG

Decode CopyCopy
Optical

Flow

C
o
m

p
u
te

/G
ra

p
h
ic

s
 E

n
g
in

e

Memory Crossbar

Figure 1 NVIDIA Ada Lovelace discrete GPU (AD102).

2012 2014 2016 2018 2020 2022
Release Year

0K

5K

10K

15K

20K

N
um

be
r o

f C
U

D
A

 C
or

es

 AD102

 GA100

 GV100
 GK110

Figure 2 Number of CUDA cores in NVIDIA’s top-end GPUs; 2011 to 2023. (Select points
annotated with chip IDs.)

data movement (the Copy Engines) and video processing. Each engine may have a different118

context active on it at a time [5].119

The Compute/Graphics Engine is subdivided into General Processing Clusters (GPCs).120

Each GPC is independently connected to each DRAM controller and the co-located last-level,121

level-two (L2) cache slices. The GPCs subdivide into Thread Processing Clusters (TPCs) of122

two Streaming Multiprocessors (SMs) each. Each SM contains dozens of compute cores (128123

each on the AD102) and a level-one (L1) cache. The AD102 contains 18,432 compute cores124

total; Fig. 2 illustrates how core counts have increased in recent years.125

We next discuss how GPU contexts are scheduled onto hardware engines.126

2.4 GPU Scheduling127

We present the scheduling pipeline from CPU task to GPU compute cores in Fig. 3. CPU128

tasks insert kernel launch commands (represented as TMDs) into CUDA streams, and those129

CUDA streams are mapped onto a smaller or equivalent number of GPU channels.1 Which130

GPU channel(s) may access the Compute/Graphics Engine at a time is dictated by the131

runlist, making the runlist the central arbitrator.132

GPU runlists (typically one for each GPU engine [5]) are composed of time-slice groups133

1 Strictly, channels contain a queue called a pushbuffer. The channel count is important—using more
streams than channels causes blocking [5].

J. Bakita and J. H. Anderson 18:5

GPU-Using
Task 1

Streams Channels Runlist

GPU-Using
Task 2

Compute Engine

On-CPU On-GPU

Cores

Figure 3 The scheduling pipeline for two tasks using the GPU Compute/Graphics Engine—the
runlist arbitrates which task uses the engine at a time. (Dashed boxes at right represent intra-engine
scheduling stages we skip—see [4].)

Header Channel 0 Channel 1 Header Channel 2 Channel 3 Header Channel 4 Channel 5

0 32 64 96 128
Offset (bytes)

[queue state

pointer]

Timeslice: 2ms

Channels: 2

Time-Slice Group 0

Task 1's Runlist Entries;

Time-Slice Group 1

Task 2's Runlist Entries;

Time-Slice Group 2

Task 3's Runlist Entries;

[queue state

pointer]

Timeslice: 2ms

Channels: 2

Timeslice: 2ms

Channels: 2
[queue state

pointer]

[queue state

pointer]

[queue state

pointer]

[queue state

pointer]

Figure 4 Example Compute/Graphics Engine runlist of three tasks.

(TSGs) of channels. TSGs are executed in a work-conserving, preemptive round-robin order134

by default. While a TSG is active, commands from all its contained channels are pulled135

and executed on the runlist-associated engine. Each TSG has an associated time-slice; upon136

expiration of this timeslice the runlist scheduler preempts any in-progress commands and137

switches to the next TSG. Such a switch is also triggered by the exhaustion of commands138

from all the TSG’s channels. Note that all a TSG’s channels must be from the same context.2139

We show a runlist for three tasks in Fig. 4, following the in-memory layout. In this140

example, TSG 0 would be executed for 2 ms, and during that time, commands from channels141

0 and 1 would be received and executed by the Compute/Graphics Engine. After 2 ms, any142

active commands from channels 0 and 1 would be preempted, and the GPU would move on143

to commands from the channels of TSG 1 for 2 ms. This process repeats for TSG 2, then144

loops back to TSG 0. The time-slice can be set differently for each TSG.145

Figure 5 GPU utilization over one inference of the YoloV2 DNN in Darknet on the 4,352-core
NVIDIA RTX 2080 Ti.

This GPU scheduling algorithm ensures that the Compute/Graphics Engine has only one146

context active at a time. This can lead to significant under-utilization, as many GPU-using147

tasks are unable to saturate all GPU compute cores on their own [42, 27, 45]. We demonstrate148

this for one inference of the YOLOv2 image-detection network in Fig. 5. At no point is the149

network able to utilize the entire GPU—it utilizes only 40% of the GPU’s SMs on average.150

2 See line 293 in manuals/ampere/ga100/dev_ram.ref.txt [30].

ECRTS 2025

18:6 Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

Increasing GPU core counts (Fig. 2) have only worsened this problem.151

To efficiently use the GPU, idle compute capacity must be reclaimed for other tasks.152

Unfortunately, concurrently running multiple tasks on the GPU (e.g., by sharing a single153

context) leads to a new set of problems.154

2.5 Interference and Spatial Partitioning155

When multiple tasks execute concurrently on a GPU, shared-resource interference can occur.156

This is where contention for shared hardware resources such as caches or compute cores157

creates slowdowns between tasks. Such interference creates unpredictability, as knowing158

when and how tasks will interfere on what shared resource is an unresolved area of study.159

Thus, to ensure timing predictability, few hardware resources should be shared.160

Prior work has avoided such interference on the GPU by only allowing one task to access161

the GPU at a time [12, 11, 3]. This can lead to underutilization—concurrently running162

multiple tasks would allow for more efficient use of GPU hardware.163

Spatial partitioning allows for concurrency without interference. It prevents hardware164

resources from being shared between tasks by partitioning them into mutually exclusive165

subsets, and assigning each subset to a concurrently running task. Without shared resources,166

interference is prevented, and execution times remain predictable.167

In designing a spatial partitioning mechanism, it should satisfy the following properties:168

Portable: The mechanism should work on a wide set of GPU models.169

Logically Isolated: The mechanism should preserve logical isolation between tasks, e.g.,170

virtual address space isolation and independent exception handling.171

Transparent: The mechanism should not require changes to tasks, e.g., recompilation.172

Low-overhead: The mechanism should add negligible overhead to critical-path operations,173

e.g., a kernel launch.174

Hardware-enforced: Partitions should be enforced by hardware to protect from malicious or175

misbehaving tasks.176

Dynamic: Partitions should be reconfigurable without restarting a task.177

Granular: Partitions should be defined in granular units, e.g., a TPC for compute partitioning.178

The first four properties are desirable for any software system, but the last three are179

partitioning-specific. We now discuss prior work in light of these requirements.180

3 Related Work181

Efficiently using a GPU in a real-time system requires concurrently running tasks on the182

GPU Compute/Graphics Engine, with partitioning of shared hardware resources. Prior work183

has identified the GPU DRAMs (with co-located L2 cache slices) and SMs (with co-located184

L1 caches) as needing to be partitioned [40, 4, 15]. This section covers prior work on and185

towards such partitioning.186

3.1 DRAM Partitioning187

The history of DRAM partitioning is extensive ([19, 20, 44] are exemplars), but we are aware188

of only one work that has extended CPU-centric approaches to the GPU: Fractional GPUs by189

Jain et al. [15]. This work uses a memory-organization approach known as page-coloring [19]190

to force each task onto prescribed GPU DRAM and L2 units. Such memory reorganization191

requires difficult-to-obtain model-specific hashing functions, but the principle is generally192

J. Bakita and J. H. Anderson 18:7

applicable to any GPU. NVIDIA has since developed a proprietary alternative, but this is193

not available on most GPUs and cannot be enabled independently of MiG [29, 9].194

The DRAM partitioning technique of Fractional GPUs satisfies all desired spatial isolation195

properties stated in Sec. 2.5, so we assume the application of such an approach and focus on196

the remaining problem: compute partitioning.197

3.2 Compute Partitioning198

Prior work on spatial partitioning for GPU compute cores can be divided into academic-199

provided and NVIDIA-provided solutions. We summarize these works in Table 1.200

Academic-provided solutions. Third-party solutions for spatial partitioning on NVIDIA201

GPUs have been limited to cooperation-based software mechanisms until recently. One202

system [39], which has been recently improved [15, 37], is commonly used in papers that203

claim to partition NVIDIA GPUs. This approach depends on kernels launching blocks on all204

SMs, and on each block aborting if it finds itself executing on an SM outside of its partition.205

This approach is vulnerable to a full loss of partitioning if any block misbehaves and does not206

cooperatively yield an unassigned SM. Another cooperation-based variant known as persistent207

threads [43, 13], still used in recent work [46], is similarly vulnerable to misbehaving tasks.208

Given the inability of these works to enforce partitioning, they are vulnerable to a loss of209

isolation. We group these works under the “Software” heading in Table 1, as they implement210

partitioning via task modification rather than via hardware features.211

libsmctrl by Bakita and Anderson [4] addresses the enforcement problem by leveraging212

undocumented hardware capabilities to enforce partitions of TPCs. Unfortunately, like213

earlier mechanisms, libsmctrl requires merging tasks into the same context to concurrently214

execute them, compromising logical isolation and transparency.215

NVIDIA-provided solutions. Partitioning solutions from NVIDIA are able to enforce216

partitioning at a hardware level, but were not designed with the needs of an embedded real-217

time system in mind. The two principal options provided by NVIDIA are the Multi-instance218

GPU (MiG) feature, and the Multi-Process Service (MPS).219

NVIDIA MiG [29] allows multiple contexts to concurrently run on the GPU by splitting220

the GPU into static, fixed-size partitions. Each partition may then concurrently run a221

different task. Partition options are highly limited, with at best four possible partition sizes,222

and the smallest partition size is 14 SMs. MiG is implemented by duplicating every part223

of the hardware scheduling pipeline for every GPC [9], and is only available on NVIDIA’s224

highest-end datacenter GPUs. This approach cannot provide fine-granularity partitioning,225

and requires hardware modifications that NVIDIA has shown no intent to make widely226

available. This leads us to classify MiG as non-granular and non-portable in Table 1.227

Conversely, NVIDIA MPS [27] is available on any recent discrete NVIDIA GPU. MPS228

(since the Volta architecture),3 enables the Compute/Graphics Engine to concurrently execute229

multiple tasks, but does not control which SMs each task is assigned to. This may result in230

two tasks sharing an SM [27], which can cause as much as a 100x performance degradation [40].231

Due to this limitation, we classify MPS in Table 1 as only partially providing granular,232

3 Pre-Volta-generation MPS works differently, providing little-to-no isolation between co-running tasks.
When we refer to MPS in this paper, we refer to the Volta-generation-and-newer version.

ECRTS 2025

18:8 Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

hardware-enforced partitioning. Other properties of MPS are undocumented, and we derive233

those later in this work.234

3.3 Barriers to Better Compute Partitioning235

Unfortunately, devising better solutions for spatial partitioning of GPU compute has been236

stymied by the scarce details released about NVIDIA GPU architecture and capabilities—237

even instruction encodings are secret [14, 17, 16]. Many years of investigation have begun to238

contravene this limitation.239

Otterness et al. [34] and Amert et al. [2] elucidated the scheduling of CUDA kernels240

via black-box experiments and introduced the cuda_scheduling_examiner tool, which we241

use. Olmedo et al. [32] and Bakita and Anderson [4] used these results and other sources242

to construct a model of how the underlying GPU kernel dispatch hardware works. Parallel243

work by Capodieci et al. [6], Spliet and Mullins [38], and Bakita and Anderson [5] clarified244

the preemption and high-level scheduling capabilities of NVIDIA GPUs. This last work [5]245

also introduced two tools we use: the nvdebug tool for directly extracting GPU state, and246

the gpu-microbench suite for examining scheduling behavior. Outside of the academic247

community, the Nouveau [24] and Mesa [23] reverse-engineered NVIDIA GPU driver projects248

have documented GPU hardware capabilities and CPU-to-GPU interfaces. We lean heavily249

on all these prior works throughout our paper.250

4 How Does MPS Work?251

In search for a better spatial partitioning mechanism for real-time embedded systems, we252

begin by investigating the only portable mechanism for co-running unmodified tasks on253

NVIDIA GPUs—MPS. What hardware capabilities does MPS leverage, and how MPS fall254

short of the properties we desire in a spatial partitioning mechanism? Given the absence of255

prior work, we investigate these questions experimentally. This is relevant both to our work,256

and to the safety of other works which propose using MPS in embedded systems.257

4.1 Methodology258

To determine how MPS interacts with the GPU scheduling pipeline, we applied the nvdebug259

tool [5], gpu-microbench suite [5], and cuda_scheduling_examiner toolkit [34] to test and260

observe GPU state and behavior with and without MPS. Adding MPS changed more aspects261

of GPU state than nvdebug was able to display, so we extended it on Ada (2022) and older262

GPUs, drawing layout information from open-source NVIDIA code [30, 26, 28] and the263

nouveau driver [24]. Our improved version of nvdebug is available.4264

To understand the semantic meaning of this newly accessible GPU state, we leveraged265

context and definitions from NVIDIA patents touching on the runlist scheduler [10], kernel266

scheduling pipeline [36, 1], MPS [8] and MiG [9]. Unfortunately, patents may describe267

infeasible or impossible devices, and so we only tenuously relied on them, verifying described268

behavior with experiments.269

4 Available at http://rtsrv.cs.unc.edu/cgit/cgit.cgi/nvdebug.git and within our artifact.

http://rtsrv.cs.unc.edu/cgit/cgit.cgi/nvdebug.git

J. Bakita and J. H. Anderson 18:9

Header Channel 0 Channel 1 Header Channel 2 Channel 3 Header Channel 4 Channel 5

0 32 64 96 128
Offset (bytes)

Time-Slice Group 0

Task 1's Runlist Entries;

Time-Slice Group 1

Task 2's Runlist Entries;

Time-Slice Group 2

Task 3's Runlist Entries;

63

Channel 2
Instance Block

[PT2]

63

Channel 3
Instance Block

[PT2]

63

Channel 4
Instance Block

[PT3]

63

Channel 5
Instance Block

[PT3]

63

Channel 0
Instance Block

[PT1]

Abbreviations:
Subcontext: SC
Page Table: PT

63

Channel 1
Instance Block

[PT1]

Subcontext ID:

Non-Compute Page Table:

Subcontext Table: SC 63: [PT1] SC 63: [PT1] SC 63: [PT2] SC 63: [PT2] SC 63: [PT3] SC 63: [PT3]

Figure 6 Compute/Graphics Engine runlist of three tasks; reillustrated from Fig. 4 with detail.

Header Channel 0 Channel 1 Header Channel 2 Channel 3 Channel 4 Channel 5 Channel 6

0 32 64 96 128
Offset (bytes)

Time-Slice Group 0

Task 1's Runlist Entries;

Time-Slice Group 1

MPS's Runlist Entries; Task 2's Entries in MPS

63

Channel 0
Instance Block

[PT1]

Abbreviations:
Subcontext: SC
Page Table: PT

63

Channel 1
Instance Block

[PT1]

63

Channel 2
Instance Block

[MPS PT]

62

Channel 3
Instance Block

[PT2]

61

Channel 5
Instance Block

[PT3]

61

Channel 6
Instance Block

[PT3]

Task 3's Entries in MPS

62

Channel 4
Instance Block

[PT2]

SC 61: [PT3]

SC 62: [PT2]

SC 63:[MPS PT]

Timeslice: 2ms

Channels: 2

Timeslice: 2ms

Channels: 5

Subcontext ID:

Non-Compute Page Table:

Subcontext Table: SC 63: [PT1] SC 63: [PT1] SC 61: [PT3]

SC 62: [PT2]

SC 63:[MPS PT]

[Subcontext tables identical to Channel 2.]

Figure 7 Compute/Graphics Engine runlist of three tasks, with Task 2 and 3 run as MPS clients.

4.2 MPS Terminology270

MPS uses a client-server paradigm, where each CUDA-using task is a client of at most one271

MPS server task. The MPS server acts as an intermediary to the GPU for its clients, and272

allows clients to run concurrently with one another. Relative to the GPU, a system of two273

MPS clients and one MPS server would appear as a single task, since clients only access the274

GPU through the MPS server. Multiple MPS servers may exist, each with different clients.5
275

In this case, each MPS server would appear to be a separate task to the GPU.276

4.3 How MPS Modifies Runlist Scheduling277

We now investigate how adding MPS modifies arbitration between GPU-using tasks, i.e.,278

how it modifies the runlist and associated data structures. To enable our subsequent analysis279

of MPS’s pitfalls, this section is unusually detailed.280

We begin by reillustrating Fig. 4, with detail from our extensions to nvdebug, in Fig. 6.281

This figure retains the same runlist as Fig. 4, but expands on the configuration of each channel.282

The channel-configuration data structure is known as the channel’s instance block, and—283

besides describing the command queue (not shown for space)—specifies the virtual address284

space to be used for commands from the channel. Virtual address spaces are configured in a285

peculiar way; each channel includes an indexed list of page tables, and the page table to use is286

selected by specifying an index into that list. The list of page tables is called the “Subcontext287

5 Support for multiple MPS servers is only implicitly documented. The environment variable
CUDA_MPS_PIPE_DIRECTORY can be set to control where an MPS server advertises itself, and where
CUDA searches for the MPS server. Two MPS servers cannot advertise to the same path, and so this
variable must be set uniquely for each to allow multiple servers to exist.

ECRTS 2025

18:10 Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

Table,” and the channel’s index into it is called the channel’s “Subcontext ID.”6 Adding to288

the confusion, this mechanism only selects the page table for the Compute/Graphics Engine;289

the instance block includes a separate page table configuration field for other engines, such290

as Copy.7 In our experiments, we always observed the same page table configuration for291

all engines; we mirror that in Fig. 6. Note that all channels in a TSG have an identical292

subcontext table—this is a requirement for channels sharing a context.8 All of these details293

are important in order to discuss how MPS effects address-space isolation.294

In Fig. 7, we illustrate how runlist and channel configurations change when MPS is295

enabled. This is still a system of the same three GPU-using tasks, but an MPS server has296

been started with Task 2 and 3 as clients (Task 1 remains independent of MPS). Both the297

runlist location and virtual address space configuration have changed for the tasks now298

running as MPS clients. We discuss each change in turn.299

With MPS enabled, the two tasks now running as MPS clients no longer have independent300

TSGs in the runlist. The runlist only contains two TSGs: one for Task 1 (TSG 0), and one301

for the MPS server (TSG 1). While Tasks 2 and 3 do not retain independent TSGs, they do302

retain independent channels within the MPS server’s TSG (Channels 3–4 for Task 2 and 5–6303

for Task 3). (Note that the MPS server has taken Channel 2 for its own use, and so Tasks 2304

and 3 are forced to use channels with higher IDs.) When this runlist is scheduled, Task 1305

will, as before, execute for 2 ms before its budget expires and it is preempted. The GPU will306

then switch to the next TSG in the runlist, the one for the MPS server. This will likewise be307

run for 2 ms before the GPU loops back to Task 1. While the MPS server’s TSG is active,308

commands from all its channels are sent to the Compute/Graphics Engine concurrently.309

The effect is such that all the MPS client tasks’s CUDA streams concurrently execute as310

though they were in the same program. Note that the two MPS clients share a single 2 ms311

time-slice with a 4 ms period, whereas before they each got a single 2 ms time-slice at a 6 ms312

period. This is a reduction in GPU time available jointly to the two tasks, from two-thirds313

to one-half. This is a side-effect of enabling MPS to be aware of: if any other tasks in the314

system continue to run without MPS, the total GPU time available to all MPS clients will315

be less than the total time those tasks would have collectively received if run apart.9
316

We now consider how virtual address space configurations change—or stay the same—with317

the addition of MPS. Visible in Fig. 7, at the bottom of the Channel 2–6 Instance Blocks,318

the Subcontext Table for every channel of the MPS server TSG is triple the size of the tables319

in Fig. 6. This allows the table to include separate page tables for MPS, Task 2, and Task 3;320

the appropriate one is selected by the Subcontext ID on each channel. Each channel also has321

a non-compute page table identical to the one selected by its Subcontext ID. In this manner,322

Tasks 2 and 3 retain distinct virtual address spaces, just as without MPS.10
323

4.4 Evaluating Spatial Partitioning in MPS324

What does this mean for MPS’s suitability to real-time embedded systems? We answer by325

considering MPS under each of our desired properties (Sec. 2.5). Without lack of generality,326

6 Subcontext ID is also “Virtual Engine ID” (VEID) in some sources.
7 See line 297 in manuals/ampere/ga100/dev_ram.ref.txt [30].
8 See line 293 in manuals/ampere/ga100/dev_ram.ref.txt [30].
9 The time-slice length of the MPS server could be extended to ensure tasks retain access to an equivalent

fraction of GPU time, but this is unsupported by the NVIDIA driver.
10Why the convoluted TSG-wide Subcontext Table, rather than a per-channel page table? This may

speed up context switches by allowing a TSG’s page tables to be read all at once, rather than requiring
a scan of all a TSG’s channels.

J. Bakita and J. H. Anderson 18:11

we assume that all MPS clients are associated with a single server in this subsection.327

4.4.1 Portability328

The version of MPS we study is supported on all of NVIDIA’s GPUs since Volta (2018),329

including their embedded “Jetson” GPUs (as of CUDA 12.5).330

4.4.2 Logical Isolation331

Without MPS, contexts are isolated from one another in their GPU addresses spaces, hardware332

scheduling decisions, and exception handling. MPS preserves isolation in only the first area.333

The MPS documentation states that MPS clients have fully isolated virtual address334

spaces [27, Sec. 1.1.2]. Our findings support this—each MPS client exclusively uses its335

own page table. This follows from the per-subcontext page tables discussed in Sec. 4.3.336

Specifically, the unique-per-MPS-client subcontext ID is passed along with commands to the337

Compute/Graphics Engine,11 and this ID is used to access and maintain per-subcontext page338

table state throughout the scheduling and execution pipeline [8]. This isolation also covers339

non-compute engines, as their page table6 is always configured to match the per-subcontext340

page table. Only the kernel-level driver can change a channel’s page table or subcontext341

ID,12 ensuring that no client may reconfigure itself to access another client’s pages.342

Other areas lack isolation, bringing us to our first pitfall:343

▶ Pitfall 1. MPS clients share a per-server limit on the number of concurrently executing344

kernels.345

The use of subcontexts does not isolate MPS clients from one another in the GPU’s346

hardware scheduling pipeline. Prior work on this pipeline [4] found that two tasks co-running347

in a single context may conflict due to a hardware limit on the number of concurrent kernels.13
348

While an NVIDIA patent [8] suggests this limit is maintained per subcontext, we do not349

observe this, even on the most-recent Hopper- and Ada-generation GPUs. We tested by350

launching several hundred kernels, finding that the number of kernels a task can concurrently351

execute is reduced by the number of kernels concurrently executing in other MPS clients.352

▶ Pitfall 2. A crash in any MPS client may crash all MPS clients.353

The MPS documentation warns that MPS clients are not isolated from “fatal GPU faults”354

in other MPS clients [27, Sec. 2.2.3]. Such faults include errors such as out-of-bounds355

memory accesses in kernels. We test and find this lack of isolation persists on NVIDIA’s356

latest Hopper- and Ada-generation GPUs (at least for out-of-bounds memory accesses).357

NVIDIA’s drivers report exceptions on a per-subcontext basis,14 and other documentation358

hints that exceptions do not necessarily halt the entire TSG.15 We urge NVIDIA to leverage359

these capabilities to enhance MPS’s fault isolation.360

In summary, MPS preserves address space isolation, but does not fully isolate the361

scheduling pipeline nor prevent on-GPU exceptions from crashing other MPS clients. This362

partial isolation is better than libsmctrl and software partitioning, but worse than MiG.363

11 See line 2525 in manuals/ampere/ga100/dev_pbdma.ref.txt [30].
12 See line 2545 in manuals/ampere/ga100/dev_pbdma.ref.txt and line 525 in dev_ram.ref.txt [30].
13 Specifically, “task slot exhaustion” in Bakita and Anderson [4].
14 See line 1115 in src/nvidia/src/kernel/gpu/mmu/arch/volta/ kern_gmmu_gv100.c [26].
15 See line 666 in manuals/ampere/ga100/dev_runlist.ref.txt

ECRTS 2025

18:12 Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

K1:0 K2:0

K3:0 K4:0

K5:0 K6:0

K7:0 K8:0

Sufficient Channels without MPS
Stream 1 Stream 2Stream 3 Stream 4

0.1 0.2 0.3 0.4 0.5 0.6
Time (seconds)

SM 0

SM 1

SM 2

SM 3

SM 4

SM 5

SM 6

SM 7

... SM 8 through SM 79 idle; omitted

K1:0 K2:0

K3:0 K4:0

K5:0 K6:0

K7:0 K8:0

Insufficient Channels with MPS

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (seconds)

SM 8 through SM 79 idle; omittedBlocking
with MPS

Figure 8 Four streams, each with two one-block kernels launched in them on an otherwise-idle
NVIDIA Titan V GPU. Left is without MPS, right is with MPS defaults.

4.4.3 Transparency364

We define a transparent partitioning mechanism as one that does not require any changes365

to tasks (Sec. 2.5). This property encompasses more than no binary modification; tasks366

should not need to be modified to account for a different set of available features. While367

MPS does not require modifying task binaries, it changes the set of supported features and368

the scheduling behavior in a semi-transparency-compromising way.369

▶ Pitfall 3. MPS clients cannot launch kernels from on the GPU.370

CUDA Dynamic Parallelism (CDP) [25, Sec. 9]16 allows for one CUDA kernel to launch371

another without involving the CPU. MPS omits support for this feature [27, Sec. 2.3.2]. We372

verified that this restriction persists even on NVIDIA’s latest Ada-generation GPUs; any373

MPS client attempting to use this feature will get an error during initialization. We could374

not identify a conclusive reason why this feature is unsupported with MPS.375

▶ Pitfall 4. MPS clients support fewer concurrent CUDA streams.376

The MPS server also changes at least one scheduling-related property for its clients; the377

number of channels available to a task. Each MPS client only has access to two channels by378

default, whereas each non-MPS task has access to eight by default. An insufficient number379

of channels can result in implicit synchronization [5], so this changed default can significantly380

impact scheduling behavior, as shown in Fig. 8. Each subfigure shows how eight single-block381

kernels in four streams execute over time (x-axis) on the GPU’s SMs (y-axis). Kernel launch382

times are indicated with arrows at bottom, and the stream of each kernel is color-and-pattern383

coded. On the left, we show the system running without MPS; on the right, we show it384

running with MPS. No other work is running in this system. With MPS (right), we see that385

kernel launches are blocked due to channel exhaustion (as in [5]).386

▶ Pitfall 5. MPS clients receive fake SM IDs.387

16 CDP is also called CUDA Native Parallelism (CNP) or “GWC” [22, 26].

J. Bakita and J. H. Anderson 18:13

In GPU kernels, the special register %smid “returns the SM identifier on which a particular388

thread is executing” [31, Sec. 10.8]. Unfortunately, we found this register returns inconsistent389

values across MPS clients. For example, each MPS client’s kernel’s blocks start on %smid390

zero, and subsequent blocks start on sequentially-increasing SM IDs—even if another client391

claimed to be executing on those SMs. This indicates that the %smid register is emulated for392

each MPS client, as suggested in an NVIDIA patent [8]. We tested and found this behavior393

on Volta-, Turing-, Ampere-, and Ada-generation GPUs. This pitfall primarily hinders GPU394

study by obfuscating the SM assignment algorithm.395

In summary, MPS affects available CUDA features, scheduling concurrency, and hardware396

behavior, making it only partially transparent.397

4.4.4 Overheads398

GPU commands, such as kernel launches, are sent to the GPU via the queue encapsulated399

within a channel. MPS clients have direct access to their channel queues, and so no overheads400

are added to the kernel-launch critical path. We verified this on Volta-, Turing-, and Ada-401

generation GPUs via the measure_launch_oh benchmark we added to gpu-microbench.402

Task startup overheads, such as the time for library loading, are affected by MPS. The403

MPS server is lazily initialized, meaning the first MPS client pays an extra startup overhead.404

As this can be avoided by using a dummy task to pull forward server initialization, we do405

not consider it a pitfall. We show other startup overheads to be negligible in Sec. 6.406

4.4.5 Partitioning Capability407

As noted in Sec. 3, MPS only supports a static, per-task limit on what fraction of a GPU’s408

TPCs a task may use. This limit, set via an environment variable,17 is called “Execution409

Resource Provisioning.”410

▶ Pitfall 6. The partition size for an MPS client is static.411

The partition size is a specified at context creation, and NVIDIA provides no API to412

change the partition size for an already-created context.413

▶ Pitfall 7. MPS partitions are not bound to specific SMs.414

No API is provided to specify a specific set of SMs, TPCs, or GPCs onto which an MPS415

client is partitioned, and we find that MPS also does not select a set internally.416

The MPS documentation does not clarify how partitioning is enforced. However, we find417

that when MPS is running, a GPU register18 is set to enable “dynamic partitioning” in418

the Work Distribution Unit (WDU). The WDU is the GPU hardware unit responsible for419

dispatching blocks of pending kernels to TPCs [4]. A patent filed by NVIDIA when execution420

resource provisioning was added to MPS appears to describe this feature [8].421

In the patent, NVIDIA describes their dynamic execution resource partitioning system as422

associating each subcontext (MPS client) with a configurable number of credits. Every time423

a block of a kernel is dispatched to a TPC not previously occupied by its subcontext, the424

number of credits is decremented. Once a subcontext reaches zero credits, the WDU will425

only dispatch blocks from that subcontext to TPCs already in-use by that subcontext. When426

17 CUDA_MPS_ACTIVE_THREAD_PERCENTAGE
18 NV_PGRAPH_PRI_CWD_PARTITION_CTL [30]; CWD is a synonym for the WDU [4].

ECRTS 2025

18:14 Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

Task 2 finishes, but Task 3 is stuck

on the same TPCs as Task 1

Task 2 starts and fills

50% of the GPU

Task 3 starts on most-idle

TPCs; those shared with Task 1

Figure 9 Three tasks run with MPS, released at time 0, 0.5, and 1.0 respectively on an NVIDIA
Titan V GPU. MPS’s execution resource provisioning limits each task to 50% of the GPU. MPS
quirks force Task 1 and 3 to share TPCs, leaving half idle.

a TPC is vacated by all work from the subcontext, the number of credits is incremented. In427

effect, this caps the number of TPCs that any subcontext may concurrently have kernels428

executing on, but makes no guarantees about which TPCs are assigned to each subcontext.429

We find this behavior holds when partitioning with MPS. This is a problem, as GPU430

partitions mis-aligned with hardware can lead to cache, bus, TLB, and other interference [4,431

40]. We give an experimental example in the following pitfall.432

▶ Pitfall 8. The hardware implementation of MPS’s partitioning feature is prone to assigning433

two tasks to the same set of SMs, leaving other SMs idle.434

As MPS makes no guarantees about which TPCs are assigned to which MPS client,435

two clients with partitions of 50% may each be assigned to the same set of TPCs. We436

demonstrate this with an experimental result in Fig. 9 for a system of three tasks running as437

MPS clients, each with a 50% GPU partition. For this example, it is important to know that438

the WDU tries to spread work out to as many TPCs as possible, and assigns blocks of large439

kernels to less-occupied TPCs first [32]. Task 1 started first. Task 1 was a light workload440

and only required about a quarter of the GPU, but the WDU spread that work across as441

many TPCs as possible, causing Task 1 to partially occupy 50% of the TPCs. Task 2 was a442

heavy workload, and upon joining, it fully occupied the 50% of the TPCs unoccupied by443

Task 1. At this point, around 0.75 seconds, all TPCs were busy with either Task 1 or Task 2,444

but the TPCs containing Task 1 had capacity for more work. As Task 3 joined, it occupied445

the remaining capacity on the TPCs in-use by Task 1. Later, when Task 2 terminated, the446

50% of TPCs it was using became idle. Unfortunately, Task 3 remained on the same TPCs447

as Task 1, as it had already maxed out its active-on-50%-of-TPCs limit. This left 50% of the448

GPU unused, despite substantial pending work.449

Such partition settings, where the sum of allocated compute exceeds 100%, is NVIDIA-450

recommended [27, Sec. 2.3.5].451

This pitfall could be worse. The WDU will normally use an alternate assignment algorithm452

for small kernels, packing kernels unto SMs before spreading them onto idle SMs [32]. If453

this behavior persisted between kernels of different MPS clients, a system of only two MPS454

clients could be bound to to the same set of TPCs. Fortunately, after repeating a variant455

of the experiments from prior work [32], we did not find a similar behavior between MPS456

J. Bakita and J. H. Anderson 18:15

Figure 10 Same experiment as in Fig. 9, but with libsmctrl used to partition Task 1 onto
different TPCs than Tasks 2 and 3.

clients.19 This unexpected behavior appears triggered by the aforementioned GPU register13
457

for dynamic partitioning—zeroing this register restores the normal algorithm.458

In summary, MPS’s partition sizes cannot be changed dynamically, its partition boundaries459

are weak, and its partitions may unexpectedly overlap. This completes our classification460

of MPS in Table 1, showing that no prior work is adequate for spatial partitioning GPU461

compute cores in an embedded, real-time system.462

5 Compute Partitioning with nvsplit463

Among prior work (Table 1), libsmctrl and MPS have complementary strengths. MPS464

supports at least some logical isolation and transparency, whereas libsmctrl supports every465

desired partitioning property. We combine these two system—and fix bugs in both—to build466

nvsplit with the union of MPS and libsmctrl’s best attributes.467

Specifically, nvsplit takes libsmctrl and turns it into an automatically-loaded library468

that can apply partitions to any CUDA-using task (without modification), and adds a control469

tool called nvsplitctrl to support setting or dynamically changing the partition for any470

running task. This is only useful if tasks can run concurrently, so nvsplit requires starting471

MPS first to provide this capability. nvsplit then provides some optional mitigations to472

MPS’s transparency-compromising pitfalls.473

5.1 MPS + libsmctrl474

MPS provides no rigorous or dynamic means for partitioning compute cores, but libsmctrl [4]475

is able to provide both of these properties. Combining the two is simple.476

libsmctrl implements partitioning by modifying the TMD for each kernel immediately477

before it is uploaded to the GPU. The TMD contains a field that specifies which TPCs the478

hardware may run the kernel on, and libsmctrl modifies this field to effect partitioning.479

Tasks dispatch launches the same, with as without MPS—by inserting launch commands480

in their channel queues. MPS does not interdict any portion of this process, meaning that481

TMDs are untouched by MPS. Thus, including libsmctrl in an MPS client and setting a482

global TPC mask is sufficient to limit all kernels of that client to the specified set of TPCs.483

19 To workaround Pitfall 5, we observed the change in block distribution by limiting each task to one TPC,
and chaining a large kernel after the small one that would be assigned to the same TPC without MPS.
The large kernels do not limit the utilization of each other, indicating that the preceding small kernel of
each client ran on a different TPC.

ECRTS 2025

18:16 Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

We adjusted the experiment of Fig. 9 to use libsmctrl, assigned Task 1 the lower 50%484

of TPCs, and assigned Task 2 and Task 3 the upper 50%. In this configuration, Task 3485

completed a quarter-second faster, as it did not get stuck on the same TPCs as Task 1. In486

this way, libsmctrl avoids Pitfalls 7 and 8 of MPS.487

Unfortunately, libsmctrl requires minor task modification and recompilation to use,488

compromising its transparency. We address this limitation in nvsplit.489

5.2 Supporting Unmodified Tasks490

libsmctrl effects partitioning through interactions with the CUDA library; tasks only need491

a single API call to enable a partition. nvsplit eliminates the need for modification by492

effectively making the loader perform this API call.493

Specifically, we make nvsplit fully transparent to a task by instructing the loader to494

pre-load nvsplit.so before calling into the task. (This can be done on Linux by setting495

the LD_PRELOAD environment variable to nvsplit.so.) As part of pre-loading, the loader496

will automatically call library constructor functions—we write one into nvsplit that loads497

CUDA, reads our new NVSPLIT_MASK environment variable, sets up the task for partitioning498

control via nvsplitctrl, and registers the TMD interception callback with CUDA to enable499

partitioning. The loader than resumes as normal, and whenever the task executes a kernel500

launch, our pre-registered callback will be triggered inside CUDA and the TPC mask will be501

applied—no task modification required.502

5.3 Dynamic Partition Changes503

nvsplit supports dynamic partition changes by exposing a shared-memory region from each504

partitioned task that contains the current partition setting. Changes to this setting are505

automatically detected and applied to all subsequent kernel launches. We provide a tool506

called nvsplitctrl that can dynamically change a task’s TPC partition given the target507

task’s PID. However, as with libsmctrl, already-launched kernels cannot be re-partitioned;508

the new partition setting will only apply to kernels launched after the change.509

5.4 Minimizing MPS’s Pitfalls510

nvsplit uses MPS to allow tasks to run concurrently, and thus inherits some of its pitfalls.511

Fortunately, Pitfalls 6–8 do not apply, and Pitfalls 4–5 can be mitigated.512

Mitigating Pitfall 4 The number of channels provided to each client by the MPS server513

can be configured via an environment variable, and MPS clients mirror the behavior of514

non-MPS-tasks once the number of channels per task is configured to its non-MPS default (8515

channels).20 We recommend that NVIDIA adapt this configuration as the MPS default.516

This mitigation comes with a small cost. TSGs are limited to a maximum of 128517

channels [30], meaning that an MPS server can only service 15 clients of 8 channels each518

(after subtracting 8 MPS-server-internal channels). We verified this 15-client limit on both519

Volta- and Ada-generation GPUs.520

20 Set the environment variable CUDA_DEVICE_MAX_CONNECTIONS to 8 before launching the MPS server.

J. Bakita and J. H. Anderson 18:17

Mitigating Pitfall 5 We found that the %smid register can be restored to its consistent,521

non-MPS behavior by toggling off the WDU’s dynamic partitioning register.13
522

However, this pitfall should be mitigated only when necessary. To better support tasks523

which ignore the CUDA programming model and attempt to execute work on self-selected524

SMs (such as persistent threads [43, 13]), we can “hide” the existence of unallocated SMs525

with the WDU’s dynamic partitioning capability. To do this, leave on fake SM IDs, and set526

MPS’s partition limit to match the number of SMs allocated by nvsplit. This ensures that527

tasks only see allocated SMs, with seemingly-contiguous SM IDs.528

5.5 Additional Enhancements529

In the course of investigating Pitfall 5, we identified an error in how libsmctrl determined530

mappings from SMs to GPCs. libsmctrl assumed that SM IDs are assigned linearly to531

on-chip GPCs, such that the first n SM IDs would be in GPC 0, the next n in GPC 1, and532

so on. We uncover that SM ID to GPC mappings are actually arbitrary, and configured by533

the NVIDIA driver in a striping-like configuration by default. Knowing these mappings is534

critical to align partitions on GPC boundaries, and so we include a fixed implementation of535

the API for determining SM-to-GPC mappings in nvsplit. We repeated the “Partitioning536

Strategy” experiments from the libsmctrl paper [4] on nvsplit, but found no significant537

differences. We recommend the SE-packed strategy from prior work [4].538

5.6 Limitations539

nvsplit is still prone to Pitfalls 1–3 of MPS, does not support co-running more than 15540

tasks, and is only compatible with CUDA-using tasks.541

However, it is portable to any recent discrete NVIDIA GPU, does not require task542

modifications, preserves address space isolation, and is available as open-source software.21
543

6 Evaluation544

We evaluate nvsplit against MiG, MPS, and (where applicable) against no partitioning. We545

compare overhead impact, strength of partition enforcement, and granularity of partitioning.546

Our other target properties—portability, logical isolation, transparency, and dynamic547

reconfigurability—are largely binary properties, and have already been discussed.548

Experiments in this section were run on an NVIDIA A100 40GB GPU running CUDA 12.4549

on a 6-core, Linux 5.4 machine with the NVIDIA 550.78 GPU driver. At time of writing, the550

A100 is the only GPU that supports all of MiG, MPS, and nvsplit. We use the SE-packed551

partitioning strategy [4, 33] to assign SMs to nvsplit partitions. As MiG cannot perform a552

50/50 split of the A100, we use a 57/43 split for all mechanisms.22
553

6.1 Evaluating Partitioning Overheads554

We measure startup overhead and launch overheads for all mechanisms via benchmarks run555

in the 57% partition. Startup overhead is the time from exec() to first kernel running on556

the GPU of a minimal program, and launch overhead is the time from cuLaunch() to the557

21 Available at http://rtsrv.cs.unc.edu/cgit/cgit.cgi/libsmctrl.git and within our artifact.
22 MiG can only partition on GPC boundaries, and there are seven GPCs in the A100, meaning that a

57/43 split is as close as MiG can get to 50/50.

ECRTS 2025

http://rtsrv.cs.unc.edu/cgit/cgit.cgi/libsmctrl.git

18:18 Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

None
MiG

MPS
nvsp

lit

Partitioning Mechanism

0.0

0.5

1.0

1.5

2.0

M
ax

im
um

 S
ta

rtu
p

O
ve

rh
ea

d
(s

)

(a) Max time to start a CUDA-using task and
launch the first kernel (of 100 samples).

None
MiG

MPS
nvsp

lit

Partitioning Mechanism

6

7

8

9

10

La
un

ch
 O

ve
rh

ea
d

(µ
s)

(b) 0, 25, 50, 75, and 99th percentile time to launch
a CUDA kernel (1 million samples).

Figure 11 Overheads of each partitioning mechanism.

kernel running on the GPU. We added these benchmarks to the gpu-microbench suite [5],23
558

and ran each experiment once to prime caches before gathering the data displayed in Fig. 11.559

▶ Observation 1. No partitioning mechanism adds startup or launch overheads.560

As shown in Fig. 11a and Fig. 11b, no partitioning mechanism worsens observed worst- or561

average-case startup or launch times.24
562

▶ Observation 2. Only MiG reduces launch overheads.563

Uniquely, MiG statically binds a hardware scheduling pipeline to each partition’s TPCs [9]564

such that only a subset of TPCs have to be set up, and considered as part of a kernel launch.565

We suspect this is what lowers launch and startup overheads with MiG.566

▶ Observation 3. MPS and nvsplit have the lowest startup overheads.567

With MPS, newly launched tasks (MPS clients) only initialize channels and subcontexts,568

with the MPS server providing the parent context and TSG. This appears to significantly569

reduce startup overheads for MPS and MPS-based nvsplit, more than compensating for570

the added client-server communication cost of MPS.571

6.2 Evaluating Partition Enforcement572

To evaluate how strongly partitions are enforced, we measured the execution time of a 6144 ×573

6144 matrix multiply (yielding 36×210 blocks of 1024 threads) (“MM6144”) in a 57% partition574

while interfering tasks executed on the remainder of the GPU. We used the mandelbrot and575

random_walk tasks from the cuda_scheduling_examiner toolkit as compute- and memory-576

heavy interfering tasks respectively. Interfering tasks executed continuously, out of sync with577

each other and the matrix multiply. We carefully configured this experiment to sidestep the578

23 Available at http://rtsrv.cs.unc.edu/cgit/cgit.cgi/gpu-microbench.git/ and within our artifact.
24 Fig. 11b omits 100th percentile (max) times, as use of Linux’s isolcpus, sched_yield() and nohz=full

options were insufficient to eliminate all noise, potentially due to SMIs [21] or interrupts.

http://rtsrv.cs.unc.edu/cgit/cgit.cgi/gpu-microbench.git/

J. Bakita and J. H. Anderson 18:19

Scaled None MiG MPS nvsplit
Partitioning Mechanism

0

100

200

300

400

500

600
M

M
61

44
 E

xe
cu

tio
n

Ti
m

e
(m

s)
(v

er
su

s
51

2M
iB

 R
an

do
m

 W
al

k)

(a) Partition enforcement versus memory-heavy
competition (random walks of GPU DRAM).

Scaled None MiG MPS nvsplit
Partitioning Mechanism

250

252

254

256

258

260

M
M

61
44

 E
xe

cu
tio

n
Ti

m
e

(m
s)

(v
s.

 1
0M

-p
ix

el
 5

0k
-it

er
. M

an
de

lb
ro

t)

"None"
starts at
650 ms

(b) Partition enforcement versus compute-heavy
competition (Mandelbrot set generation). Axis
cropped.

Figure 12 Partition enforcement vs. a memory-heavy or compute-heavy competitor. Specifically,
0, 25, 50, 75, and 100th percentile time to execute many large matrix multiplies in a 57% partition
for each partitioning mechanism while competing tasks run in the remaining 43% partition (100
samples each).

pitfalls of MPS discussed in Sec. 4.4, focusing exclusively on how well a partition is enforced579

in an otherwise-ideal scenario. Good partition enforcement means that the execution time580

distribution of our MM6144 task does not shift in the presence of interfering tasks.581

The results against memory- and compute-heavy interference are shown in Fig. 12a and582

Fig. 12b respectively. Each plot includes a baseline “Scaled” time for comparison—this is not583

a measured value, but is a scaled-up value derived from the execution time of the benchmark584

without any partitioning or interference. For example, if MM6144 took 244 ms when run585

alone on the GPU, the “Scaled” value for a 57% partition would be 144/0.57 = 253 ms. This586

value is the minimum execution time possible for the MM6144 task in a 57% partition before587

accounting for sympathetic caching effects.588

We specifically choose this matrix multiply task as it was most sensitive to interference589

among several other synthetic tasks we tested, and it could be more-precisely timed than590

a full neural network. Since we use the same partitioning mechanism as libsmctrl, the591

enforcement results previously shown for real tasks [4] continue to apply.592

▶ Observation 4. MPS’s partitioning mechanism can worsen predictability and efficiency,593

even when used correctly.594

When competing work is memory-bound, as in Fig. 12a, MPS does nothing to prevent595

memory contention, only limiting the compute available for MM6144. This results in average596

(line in box) and worst-case (top of whisker) execution times for our MM6144 task larger597

than with no partitioning at all.598

▶ Observation 5. nvsplit can provide partition enforcement approaching MIG without599

requiring hardware modifications.600

For memory-bound competing work (Fig. 12a), MiG beats nvsplit, likely because MiG601

also partitions DRAM. Interestingly, even though nvsplit includes no explicit memory602

partitioning, its implicit partitioning of the L0, L1, and TLB caches by aligning partitions to603

GPCs appears to be enough to beat MPS and approach MiG’s performance.604

ECRTS 2025

18:20 Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

0 10 20 30 40 50
TPC Partition Size (# of TPCs)

103

104

A
ve

ra
ge

 M
M

81
92

 T
im

e
(m

s) MiG
MPS
nvsplit

Figure 13 Partitioning granularity comparison. Specifically, mean time to execute a matrix
multiply at each partition size, for each partitioning mechanism (10 samples).

Surprisingly, for compute-bound competing work (Fig. 12b), nvsplit beats MiG (and605

every other approach) on average- and worst-case execution times—without the hardware606

modifications of MiG. Upon further investigation, we found that MiG compromises compute607

speed to serve other design goals. This unexpected behavior is not documented, and causes608

MiG to fail in other ways, as we will explore under Obs. 7.609

In all, nvsplit enforces partitioning much better than MPS, and even better than MiG610

in some cases—all without requiring task, driver, or hardware modification.611

6.3 Evaluating Partition Granularity612

To evaluate partitioning granularity, we recorded the total execution time of a 8192 × 8192613

matrix multiply (yielding 64 × 210 blocks of 1024 threads) (“MM8192”) at every possible614

partition size for each partitioning method and plot the results as points in Fig. 13. The lines615

in Fig. 13 represent the closest available configuration which allocates at most the specified616

number of TPCs. For example, there is no MiG configuration for 10 TPCs, so we plot time617

for the closest available allocation of no more than 10 TPCs—7 TPCs.618

▶ Observation 6. nvsplit is the most granular partitioning mechanism.619

Both MPS and nvsplit can specify partition sizes down to the per-TPC level, visible as the620

different MM8196 execution times for each setting in Fig. 13. However, nvsplit can assign621

specific TPCs to a partition, in contrast to MPS’s generic percentage value. For this 54-TPC622

GPU, that means nvsplit supports a total of 254 different partition settings per-task, MPS623

supports 54 per-task, and MiG only supports 5 per-task.624

▶ Observation 7. MiG cannot access 9% of the A100 GPU cores (5 TPCs).625

Visible in Fig. 13, the largest-available MiG partition contains only 49 TPCs, whereas MPS626

or nvsplit are able to access up to 54 TPCs. Upon further investigation, we find that no627

configuration of MiG partitions on the A100 can access more than 49 TPCs total. Every628

partition size is an even multiple of 7 TPCs, and 7 does not divide 54 evenly, wasting the629

remainder—5 TPCs. This surprising issue is not documented, and means that enabling MiG630

immediately and inherently disables 9% of the A100 GPU. Concerningly, we found that631

this issue is even worse on NVIDIA’s newer GPUs. On the H100 GPU (SXM-80GB version632

J. Bakita and J. H. Anderson 18:21

tested), we found a loss of 6–15% (depending on the MiG partition size chosen).25
633

7 Conclusion634

In this work, we developed a system-level spatial partitioning mechanism for NVIDIA GPU635

compute cores, nvsplit. Our mechanism allows for GPU-using tasks to run both efficiently636

and time-predictably by running concurrently on disjoint sets of GPU cores.637

We demonstrated that our mechanism is portable, transparent, and low-overhead, and has638

the ability to provide granular, dynamic, logically-isolated, and hardware-enforced partitions.639

As part of this work, we exposed critical pitfalls of NVIDIA’s MPS-based partitioning640

mechanism, and revealed previously-undocumented capacity loss issues inherent to NVIDIA641

MiG. In future work, we aim to extend nvsplit to support partitioning non-CUDA workloads,642

and to build GPU schedulers on nvsplit that efficiently and predictably schedule tasks643

across both time and space.644

References645

1 Karim M Abdalla, Lacky V Shah, Jerome F Duluk Jr, Timothy John Purcell, Tanmoy Mandal,646

and Gentaro Hirota. Scheduling and execution of compute tasks, Jun 2015. U.S. Patent647

9,069,609.648

2 Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, and F. Donelson Smith.649

GPU scheduling on the NVIDIA TX2: Hidden details revealed. In Proceedings of the 38th IEEE650

Real-Time Systems Symposium, pages 104–115, Dec 2017. doi:10.1109/RTSS.2017.00017.651

3 Tanya Amert, Zelin Tong, Sergey Voronov, Joshua Bakita, F Donelson Smith, and James H652

Anderson. TimeWall: Enabling time partitioning for real-time multicore+accelerator platforms.653

In Proceedings of the 42nd IEEE Real-Time Systems Symposium, pages 455–468, Dec 2021.654

doi:10.1109/RTSS52674.2021.00048.655

4 Joshua Bakita and James H Anderson. Hardware compute partitioning on NVIDIA GPUs.656

In Proceedings of the 29th IEEE Real-Time and Embedded Technology and Applications657

Symposium, pages 54–66, May 2023. doi:10.1109/RTAS58335.2023.00012.658

5 Joshua Bakita and James H Anderson. Demystifying NVIDIA GPU internals to enable reliable659

GPU management. In Proceedings of the 30th IEEE Real-Time and Embedded Technology and660

Applications Symposium, pages 294–305, May 2024. doi:10.1109/RTAS61025.2024.00031.661

6 Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Aingara Paramakuru. Deadline-662

based scheduling for GPU with preemption support. In Proceedings of the 39th IEEE Real-Time663

Systems Symposium, pages 119–130, Dec 2018. doi:10.1109/RTSS.2018.00021.664

7 Nicola Capodieci, Roberto Cavicchioli, Ignacio Sañudo Olmedo, Marco Solieri, and Marko665

Bertogna. Contending memory in heterogeneous SoCs: Evolution in NVIDIA Tegra embedded666

platforms. In Proceedings of the 26th IEEE International Conference on Embedded and Real-667

Time Computing Systems and Applications, pages 1–10, Aug 2020. doi:10.1109/RTCSA50079.668

2020.9203722.669

8 Jerome F Duluk Jr, Luke Durant, Ramon Matas Navarro, Alan Menezes, Jeffrey Tuckey,670

Gentaro Hirota, and Brian Pharris. Dynamic partitioning of execution resources, Apr 2022.671

U.S. Patent 11,307,903.672

9 Jerome F Duluk Jr, Gregory Scott Palmer, Jonathon Stuart Ramsey Evans, Shailendra Singh,673

Samuel H Duncan, Wishwesh Anil Gandhi, Lacky V Shah, Eric Rock, Feiqi Su, James Leroy674

25 We suspect the capacity loss stems from a decision to make unit-size MiG slices appear identical, despite
differences in the underlying GPCs. Due to floorsweeping, some GPCs will have more working TPCs
than others—those TPCs must be disabled to emulate identical GPCs when using MiG.

ECRTS 2025

https://doi.org/10.1109/RTSS.2017.00017
https://doi.org/10.1109/RTSS52674.2021.00048
https://doi.org/10.1109/RTAS58335.2023.00012
https://doi.org/10.1109/RTAS61025.2024.00031
https://doi.org/10.1109/RTSS.2018.00021
https://doi.org/10.1109/RTCSA50079.2020.9203722
https://doi.org/10.1109/RTCSA50079.2020.9203722
https://doi.org/10.1109/RTCSA50079.2020.9203722

18:22 Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

Deming, et al. Techniques for configuring a processor to function as multiple, separate675

processors, Feb 2022. U.S. Patent 11,249,905.676

10 Samuel H Duncan, Lacky V Shah, Sean J Treichler, Daniel Elliot Wexler, Jerome F Duluk Jr,677

Philip Browning Johnson, and Jonathon Stuart Ramsay Evans. Concurrent execution of678

independent streams in multi-channel time slice groups, Sep 2016. U.S. Patent 9,442,759.679

11 Glenn A Elliott. Real-time scheduling for GPUs with applications in advanced automotive680

systems. PhD thesis, The University of North Carolina at Chapel Hill, 2015. doi:10.17615/681

gk2m-0503.682

12 Glenn A Elliott, Bryan C Ward, and James H Anderson. GPUSync: A framework for real-time683

GPU management. In Proceedings of the 34th Real-Time Systems Symposium, pages 33–44,684

Dec 2013. doi:10.1109/RTSS.2013.12.685

13 Kshitij Gupta, Jeff A. Stuart, and John D. Owens. A study of persistent threads style GPU686

programming for GPGPU workloads. In Proceedings of the 2012 IEEE Innovative Parallel687

Computing Conference, pages 1–14, May 2012. doi:10.1109/InPar.2012.6339596.688

14 Ari B Hayes, Fei Hua, Jin Huang, Yanhao Chen, and Eddy Z Zhang. Decoding CUDA binary.689

In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and690

Optimization, pages 229–241, Feb 2019. doi:10.1109/CGO.2019.8661186.691

15 Saksham Jain, Iljoo Baek, Shige Wang, and Ragunathan Rajkumar. Fractional GPUs: Software-692

based compute and memory bandwidth reservation for GPUs. In Proceedings of the 25th IEEE693

Real-Time and Embedded Technology and Applications Symposium, pages 29–41, Apr 2019.694

doi:10.1109/RTAS.2019.00011.695

16 Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza. Dissecting the NVIDIA696

Turing T4 GPU via microbenchmarking, Mar 2019. doi:10.48550/arXiv.1903.07486.697

17 Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza. Dissecting the NVIDIA698

Volta GPU architecture via microbenchmarking, Apr 2018. doi:10.48550/arXiv.1804.06826.699

18 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep700

convolutional neural networks. Advances in Neural Information Processing Systems, 25:1097–701

1105, Dec 2012.702

19 Jochen Liedtke, Hermann Hartig, and Michael Hohmuth. Os-controlled cache predictability703

for real-time systems. In Proceedings of the 3rd IEEE Real-Time Technology and Applications704

Symposium, pages 213–224, Jun 1997. doi:10.1109/RTTAS.1997.601360.705

20 Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen, and Chengyong Wu. A software706

memory partition approach for eliminating bank-level interference in multicore systems. In707

Proceedings of the 21st International Conference on Parallel Architecture and Compilation708

Techniques, pages 367–376, Sept 2012. doi:10.1145/2370816.2370869.709

21 Sizhe Liu, Rohan Wagle, James H Anderson, Ming Yang, Chi Zhang, and Yunhua Li. Autonomy710

today: Many delay-prone black boxes. In Proceedings of the 36th Euromicro Conference on711

Real-Time Systems, pages 12:1–12:27, July 2024. doi:10.4230/LIPIcs.ECRTS.2024.12.712

22 Albert Meixner. System and method for launching data parallel and task parallel application713

threads and graphics processing unit incorporating the same, Mar 2016. U.S. Patent 9,286,114714

B2.715

23 Mesa Project Authors. The Mesa 3D graphics library, 2022. URL: https://www.mesa3d.org/.716

24 Nouveau Project Authors. Nouveau: Accelerated open source driver for nVidia cards, 2022.717

URL: https://nouveau.freedesktop.org/.718

25 NVIDIA. CUDA C++ programming guide, 2022. Version PG-02829-001_v11.8.719

26 NVIDIA. Linux open GPU kernel module source, 2024. URL: https://github.com/NVIDIA/720

open-gpu-kernel-modules.721

27 NVIDIA. Multi-process service, 2024. Version R555.722

28 NVIDIA. nvgpu git repository, 2024. URL: git://nv-tegra.nvidia.com/linux-nvgpu.git.723

29 NVIDIA. NVIDIA multi-instance GPU user guide, 2024. Version RN-08625-v2.0.724

30 NVIDIA. Open GPU documentation, 2024. URL: https://github.com/NVIDIA/725

open-gpu-doc.726

https://doi.org/10.17615/gk2m-0503
https://doi.org/10.17615/gk2m-0503
https://doi.org/10.17615/gk2m-0503
https://doi.org/10.1109/RTSS.2013.12
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1109/CGO.2019.8661186
https://doi.org/10.1109/RTAS.2019.00011
https://doi.org/10.48550/arXiv.1903.07486
https://doi.org/10.48550/arXiv.1804.06826
https://doi.org/10.1109/RTTAS.1997.601360
https://doi.org/10.1145/2370816.2370869
https://doi.org/10.4230/LIPIcs.ECRTS.2024.12
https://www.mesa3d.org/
https://nouveau.freedesktop.org/
https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/NVIDIA/open-gpu-kernel-modules
git://nv-tegra.nvidia.com/linux-nvgpu.git
https://github.com/NVIDIA/open-gpu-doc
https://github.com/NVIDIA/open-gpu-doc
https://github.com/NVIDIA/open-gpu-doc

J. Bakita and J. H. Anderson 18:23

31 NVIDIA. Parallel thread execution ISA, 2024. Version 8.5.727

32 Ignacio Sañudo Olmedo, Nicola Capodieci, Jorge Luis Martinez, Andrea Marongiu, and Marko728

Bertogna. Dissecting the CUDA scheduling hierarchy: a performance and predictability729

perspective. In Proceedings of the 26th IEEE Real-Time and Embedded Technology and730

Applications Symposium, pages 213–225, Apr 2020. doi:10.1109/RTAS48715.2020.000-5.731

33 Nathan Otterness and James H Anderson. Exploring AMD GPU scheduling details by732

experimenting with “worst practices”. In Proceedings of the 29th International Conference on733

Real-Time Networks and Systems, pages 24–34, Apr 2021. doi:10.1145/3453417.3453432.734

34 Nathan Otterness, Ming Yang, Tanya Amert, James Anderson, and F Donelson Smith.735

Inferring the scheduling policies of an embedded CUDA GPU. In Proceedings of the 13th736

Annual Workshop on Operating Systems Platforms for Embedded Real Time Applications,737

pages 47–52, Jul 2017.738

35 Nathan Otterness, Ming Yang, Sarah Rust, Eunbyung Park, James H. Anderson, F. Donelson739

Smith, Alex Berg, and Shige Wang. An evaluation of the NVIDIA TX1 for supporting real-740

time computer-vision workloads. In Proceedings of the 23rd IEEE Real-Time and Embedded741

Technology and Applications Symposium, pages 353–364, Apr 2017. doi:10.1109/RTAS.2017.3.742

36 Timothy John Purcell, Lacky V Shah, and Jerome F Duluk Jr. Scheduling and management743

of compute tasks with different execution priority levels. U.S. Patent Application 13/236,473.744

37 Sujan Kumar Saha, Yecheng Xiang, and Hyoseung Kim. STGM: Spatio-temporal GPU745

management for real-time tasks. In Proceedings of the 25th IEEE International Conference746

on Embedded and Real-Time Computing Systems and Applications, pages 1–6, Aug 2019.747

doi:10.1109/RTCSA.2019.8864564.748

38 Roy Spliet and Robert Mullins. The case for limited-preemptive scheduling in GPUs for749

real-time systems. In Proceedings of 14th Annual Workshop on Operating Systems Platforms750

for Embedded Real-Time Applications, pages 43–48, Jul 2018.751

39 Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Jeffrey Vetter. Enabling and exploiting752

flexible task assignment on GPU through SM-centric program transformations. In Proceedings753

of the 29th ACM on International Conference on Supercomputing, ICS, pages 119–130, Jun754

2015. doi:10.1145/2751205.2751213.755

40 Tyler Yandrofski, Leo Chen, Nathan Otterness, James H Anderson, and F Donelson Smith.756

Making powerful enemies on NVIDIA GPUs. In Proceedings of the 43rd IEEE Real-Time757

Systems Symposium, pages 383–395, dec 2022. doi:10.1109/RTSS55097.2022.00040.758

41 Ming Yang, Nathan Otterness, Tanya Amert, Joshua Bakita, James H Anderson, and759

F Donelson Smith. Avoiding pitfalls when using NVIDIA GPUs for real-time tasks in760

autonomous systems. In Proceedings of the 30th Euromicro Conference on Real-Time Systems,761

pages 20:1–20:21, Jul 2018. doi:10.4230/LIPIcs.ECRTS.2018.20.762

42 Ming Yang, Shige Wang, Joshua Bakita, Thanh Vu, F Donelson Smith, James H Anderson,763

and Jan-Michael Frahm. Re-thinking CNN frameworks for time-sensitive autonomous-driving764

applications: Addressing an industrial challenge. In Proceedings of the 25th IEEE Real-765

Time and Embedded Technology and Applications Symposium, pages 305–317, Apr 2019.766

doi:10.1109/RTAS.2019.00033.767

43 Chao Yu, Yuebin Bai, Hailong Yang, Kun Cheng, Yuhao Gu, Zhongzhi Luan, and Depei768

Qian. SMGuard: A flexible and fine-grained resource management framework for GPUs.769

IEEE Transactions on Parallel and Distributed Systems, 29(12):2849–2862, Jun 2018. doi:770

10.1109/TPDS.2018.2848621.771

44 Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. PALLOC: DRAM772

bank-aware memory allocator for performance isolation on multicore platforms. In Proceedings773

of the 20th IEEE Real-Time and Embedded Technology and Applications Symposium, pages774

155–166, Apr 2014. doi:10.1109/RTAS.2014.6925999.775

45 Husheng Zhou, Soroush Bateni, and Cong Liu. S3DNN: Supervised streaming and scheduling776

for GPU-accelerated real-time DNN workloads. In Proceedings of the 24th IEEE Real-Time777

ECRTS 2025

https://doi.org/10.1109/RTAS48715.2020.000-5
https://doi.org/10.1145/3453417.3453432
https://doi.org/10.1109/RTAS.2017.3
https://doi.org/10.1109/RTCSA.2019.8864564
https://doi.org/10.1145/2751205.2751213
https://doi.org/10.1109/RTSS55097.2022.00040
https://doi.org/10.4230/LIPIcs.ECRTS.2018.20
https://doi.org/10.1109/RTAS.2019.00033
https://doi.org/10.1109/TPDS.2018.2848621
https://doi.org/10.1109/TPDS.2018.2848621
https://doi.org/10.1109/TPDS.2018.2848621
https://doi.org/10.1109/RTAS.2014.6925999

18:24 Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

and Embedded Technology and Applications Symposium, pages 190–201, Apr 2018. doi:778

10.1109/RTAS.2018.00028.779

46 An Zou, Jing Li, Christopher D Gill, and Xuan Zhang. RTGPU: Real-time GPU scheduling780

of hard deadline parallel tasks with fine-grain utilization. IEEE Transactions on Parallel and781

Distributed Systems, 34(5):1450–1465, May 2023. doi:10.1109/TPDS.2023.3235439.782

https://doi.org/10.1109/RTAS.2018.00028
https://doi.org/10.1109/RTAS.2018.00028
https://doi.org/10.1109/RTAS.2018.00028
https://doi.org/10.1109/TPDS.2023.3235439

	1 Introduction
	2 Background
	2.1 System Model
	2.2 GPU Usage Model
	2.3 GPU Architecture
	2.4 GPU Scheduling
	2.5 Interference and Spatial Partitioning

	3 Related Work
	3.1 DRAM Partitioning
	3.2 Compute Partitioning
	3.3 Barriers to Better Compute Partitioning

	4 How Does MPS Work?
	4.1 Methodology
	4.2 MPS Terminology
	4.3 How MPS Modifies Runlist Scheduling
	4.4 Evaluating Spatial Partitioning in MPS
	4.4.1 Portability
	4.4.2 Logical Isolation
	4.4.3 Transparency
	4.4.4 Overheads
	4.4.5 Partitioning Capability

	5 Compute Partitioning with nvsplit
	5.1 MPS + libsmctrl
	5.2 Supporting Unmodified Tasks
	5.3 Dynamic Partition Changes
	5.4 Minimizing MPS's Pitfalls
	5.5 Additional Enhancements
	5.6 Limitations

	6 Evaluation
	6.1 Evaluating Partitioning Overheads
	6.2 Evaluating Partition Enforcement
	6.3 Evaluating Partition Granularity

	7 Conclusion

