
Energy-aware implementation of hard-real-time

systems upon multiprocessor platforms�

James H. Anderson Sanjoy K. Baruah

Abstract

Multiprocessor implementations of real-time systems tend to be more energy-eÆcient than

uniprocessor implementations: since the power consumed by a CMOS processor is approximately

proportional to the cube of the speed or computing capacity at which the processor executes,

the total power consumed by an m-processor multiprocessor platform is approximately (1=m2)

times the power consumed by a uniprocessor platform of the same computing capacity. How-

ever several factors, including the non-existence of optimal multiprocessor scheduling algorithms,

combine to prevent all the computing capacity of a multiprocessor platform from being guar-

anteed available for executing the real-time workload. In this paper, this tradeo� | that while

increasing the number of processors results in lower energy consumption for a given computing

capacity, the fraction of the capacity of a multiprocessor platform that is guaranteed available for

executing real-time work decreases as the number of processors increases | is explored in detail.

Algorithms are presented for synthesizing multiprocessor implementations of hard-real-time sys-

tems comprised of independent periodic tasks in such a manner that the energy consumed by

the synthesized system is minimized.

Keywords: Real-time systems; Energy-aware System Synthesis; Multiprocessor Scheduling

Theory; Earliest Deadline First.

1 Introduction

With the proliferation of portable and mobile embedded systems, techniques for minimizing energy

consumption are becoming increasingly important. Energy-aware system design and implemen-

tation is expected to become even more crucial as ubiquitous computing environments | in which

relatively simple autonomous communicating devices (such as sensor networks) are distributed

throughout a physical space | place an even greater premium upon battery life. The advent of

these kinds of applications has led to a signi�cant amount of research over the past decade on design

methodologies and scheduling algorithms that consider the energy consumed by a system as a \�rst-

class" concept, on par with logical and temporal correctness [8, 12, 17, 20, 22, 27, 28, 29, 31, 32, 33].

Multiprocessor real-time scheduling. Another topic of growing interest within the real-time

systems community is multiprocessor scheduling theory [1, 3, 4, 6, 5, 7, 9, 11, 16, 18, 24,

25, 26]. This research has been motivated both by the advent of reasonably-priced multiprocessor

systems, and also by a growth in computation-intensive real-time applications that have pushed

beyond the capabilities of single-processor systems. In addition to o�ering more computing power,

�Supported in part by the National Science Foundation (Grant Nos. CCR-9988327, and ITR-0082866).

1

multiprocessor platforms often have the advantage of being more energy eÆcient than comparable

uniprocessor platforms. As Wolf [30] has observed:

The power consumption of a CMOS circuit is proportional to the square of the power

supply voltage (V 2). Therefore, by reducing the power supply voltage to the lowest level

that provides the required performance, we can signi�cantly reduce power consumption.

We also may be able to add parallel hardware and even further reduce the power supply

voltage while maintaining the required performance. [Emphasis added.]

| Wayne Wolf [30]

Simply put, energy consumption increases by a multiplicative factor as the speed of a single pro-

cessor is increased, but by an additive factor as processors are added. This would suggest that it

is advantageous to always use as many processors as possible. However, as processors are added,

most real-time scheduling schemes su�er increasing schedulability loss, i.e., their ability to make

use of all available processing capacity declines. Consequently the pertinent question that arises

when designing a particular application is: what is the optimal number of processors to use if energy

consumption is to be minimized? This question is addressed in this paper.

Static versus dynamic voltage management. In non-real-time systems, the term static power

management typically refers to mechanisms that are invoked by a user to manage power consump-

tion (e.g., a \hibernate" mode invoked to save battery life while not using a laptop). In real-time

and embedded systems, however, this term is more typically used to refer to energy-management

schemes that are applied prior to run-time. In contrast, dynamic power management schemes

(which include dynamic-voltage-scaling techniques) take actions to control power based upon the

run-time activities of the CPU; for example, the CPU can automatically switch to a lower voltage

(and hence execute at slower speed) if it is continually underutilized.

Depending upon such factors as the criticality of deadlines, the amount of computing overhead

that can be devoted to power management, characteristics of the hardware being used, etc., energy

management may be performed at many levels:

System synthesis: Particularly for relatively simple, low-cost, low-power embedded systems that

are to be mass-produced, the best (and perhaps only) time for performing energy optimiza-

tions may be during system design time. Energy-consumption requirements may greatly

impact the choice of hardware components, and the scheduling and resource-allocation al-

gorithms used. For mass-produced systems, it is worth putting considerable e�ort into the

design process if even minor savings can be realized.

As a concrete example consider the Janus system [13, 14], a dual-core chip designed for

controlling automotive power-train applications. This chip will eventually be deployed, with

an identical task workload , in hundreds of thousands of automobiles. Consequently, clients

are willing to use very computation-expensive (exponential-time) task-allocation algorithms

to determine a good allocation once, and then hard-wire this allocation into all produced

chips.

Static power management: Such schemes are particularly appropriate for embedded systems

that are (i) heavily loaded at run-time (and hence require simple scheduling and energy-

management schemes), or (ii) are extremely critical and thus need to be extensively tested to

ensure predictability. Such systems may be scheduled with table driven and time-triggered [23]

schedulers. In addition to providing scheduling information, lookup tables can store the

2

voltage levels that should be supplied to various system components | under a static power

management scheme, such voltages would be determined o�-line.

Dynamic power management: If a system has the capability to dynamically adapt to changes in

workload by changing energy consumption, then more sophisticated dynamic-voltage-scaling

(DVS) techniques are possible. While DVS schemes may be able to save more energy, and

work very well for soft- and non-real-time systems, they have some disadvantages in hard-

real-time systems:

� Complexity : In most hard-real-time systems, there is a relationship between how aggres-

sive the DVS algorithm can be (i.e., how much energy it is able to save on average) and

its computational complexity. DVS algorithms that are able to make real-time perfor-

mance guarantees are typically quite complex. On very simple embedded systems (such

as the Janus system [13, 14]), a complex power management scheme may itself place too

heavy a load on the system.

� Responsiveness: The time taken for a processor to respond to changes in voltage supply

can be on the order of tens or hundreds of milliseconds, particularly in \commodity"

multi-level-voltage microprocessors. Hence, systems with widely varying real-time work-

loads comprised of jobs with tight deadlines may not allow suÆcient time for switching

a processor between power modes.

The discussion above suggests that there is a tradeo� between the complexity and sophistication

of di�erent energy management schemes, and their bene�ts in di�erent scenarios. One of the long-

term goals of our research is to identify the conditions under which each kind of energy management

scheme may be most appropriate.

This paper. In this paper, we describe our research into the energy-eÆcient synthesis techniques

for the construction of small embedded systems (such as the Janus automotive control system [13,

14]). Such systems typically have very well-de�ned workloads. We will assume that this workload

is completely known at system design time, and is comprised either of (i) several independent jobs

that all repeat with the same period,1 or (ii) a collection of sporadic tasks (the sporadic task model

is de�ned in Section 2). One of the major design goals in determining a scheduling strategy for

such a system is simplicity : while it is acceptable to spend a considerable amount of time during

(o�-line) system synthesis, it should not be computationally expensive to make scheduling decisions

at run-time. This requirement favors the use of simple on-line scheduling algorithms, such as table

lookup schedulers (which are clock driven) or the earliest-deadline �rst scheduling algorithm (EDF)

(which is event driven), which are known to have computationally eÆcient implementations. We

impose the following requirements on our run-time system:

� First, we require that all the processors comprising the multiprocessor platform be provided

the same supply voltage, resulting in them all being of equal speeds or computing capacities.

Such multiprocessor platforms are referred to as identical multiprocessors.

� Next, we assume that our application is not amenable to table-driven scheduling. Due to

additional constraints (such as those referred to above), it is necessary that we use an eÆcient

run-time scheduling algorithm. We assume that this scheduling algorithm is EDF. One of

1Thus, the scheduling problem reduces to the problem of constructing a schedule of length equal to this common

period, which is then repeatedly executed.

3

the advantages of EDF scheduling on identical multiprocessor platforms is that the number

of preemptions and interprocessor migrations can bounded from above at the number of

jobs being scheduled. (Upon multiprocessor systems in which di�erent processors may have

di�erent speeds, implementations of EDF generally require a signi�cantly larger number of

preemptions and interprocessor migrations.)

Our approach in this paper is to �rst abstract out the \pure" scheduling-theoretic tradeo�s

involved in choosing a particular multiprocessor computing problem | this gives rise to the gen-

eralized multiprocessor feasibility (GMF) problem (De�nition 1). We motivate, formally

state, and solve this scheduling problem in Sections 2.1 and 3. We believe that the GMF problem

is interesting in its own right, and obtaining an eÆcient solution to it is one of the major contribu-

tions of this paper. In Section 4, we explain how solving the GMF problem permits us to synthesize

energy-eÆcient multiprocessor real-time systems; in particular, we focus here on synthesizing EDF-

scheduled systems upon multiprocessor platforms comprised of several identical processors.

Prior research on energy-aware multiprocessor scheduling. While a signi�cant amount

of research has been done over the last decade on addressing energy considerations in real-time

systems (e.g., see [12, 17, 21, 20, 27, 28, 31, 32, 33] | this list is by no means exhaustive), much

of this work has focused on dynamic-voltage-scaling (DVS) techniques. Also, most previously-

proposed algorithms are applicable either to uniprocessor systems, or to relatively simple table-

driven, frame-based multiprocessor ones. Our research di�ers from most of the work cited above in

that we are considering the issues of system synthesis and pre-run-time scheduling for signi�cantly

non-trivial multiprocessor systems. While DVS techniques could perhaps be used in conjunction

with the techniques we devise, they are not directly related to our work and are in fact somewhat

orthogonal to it.

Research is being conducted under several projects on the issue of energy-aware system synthe-

sis, our focus here. Particularly notable are the Power-aware Multiprocessor Architecture

(PUMA) project [22, 29] from the University of Southern California, and the MIT �AMPS

project [8]. Our research di�ers from these and other similar projects in that we are taking a more

scheduling-theoretic approach: we seek to adapt the most recent results in multiprocessor real-time

scheduling theory for obtaining energy-aware system designs, and to help drive the agenda in multi-

processor scheduling research towards becoming more cognizant of energy-eÆciency considerations.

2 Background and motivation

Task and machine model. We assume that our multiprocessor platforms are preemptive shared-

memory multiprocessors (SMP's), and that our scheduling model is as a consequence preemptive

(i.e., a job executing on a processor may be interrupted and its execution resumed later at no cost

or penalty), and allows for the interprocessormigration of jobs (a preempted job may resume exe-

cution upon the same or a di�erent processor as the one it had executed upon prior to preemption,

again at no additional cost).

As stated in Section 1 above, we will assume in this paper that our real-time workload is

completely known at system design time, and is comprised of independent preemptive periodic

tasks. First, we will consider the case where all these tasks have the same period. In this case, the

problem of constructing an in�nite schedule for the tasks reduces to the problem of determining

a schedule for one period, which is then repeated over and over again. Hence, we will model our

4

real-time workload as a collection of independent jobs, with the understanding that these jobs are

repeated with a common period. (Such a strategy could of course also be used in case of di�ering

periods, by constructing a schedule over the hyperperiod | the least common multiple of the

individual periods | and repeating this schedule every hyperperiod. However, such an approach

leads to combinatorial explosion in that exponentially many jobs of each periodic task will may

need to be considered.)

A hard-real-time job J = (a; c; d) is characterized by three parameters: an arrival time a,

an execution requirement c, and a deadline d, with the interpretation that this job must receive c

units of execution over the interval [a; d). A hard-real-time instance I is comprised of a collection

of such jobs.

In many embedded applications, the hard-real-time jobs comprising a real-time instance I are

generated by a �nite collection of sporadic tasks. A sporadic task �i = (Ci; Ti) is characterized by

two parameters: an execution requirement Ci and a minimum inter-arrival separation parameter Ti.

Such a sporadic task generates an in�nite number of jobs, each having an execution requirement of

Ci and a deadline Ti time units after its arrival time. The �rst job may arrive at any time-instant;

successive arrivals are separated by at least Ti time units. A sporadic task system consists of several

such sporadic tasks that are to execute on a speci�ed processor architecture. Let � = f�1; �2; : : : ; �ng

denote a sporadic task system. We will use the notation I(�) to denote the real-time instance

comprised of all the jobs generated by the sporadic tasks in sporadic task system � .

2.1 Identifying the Design Space of Possible Multiprocessor Implementations

We have argued in the introduction that while it is generally more energy-eÆcient to use multiple

processors instead of one, the total computing capacity needed to execute a particular workload

tends to increase as the number of processors increases. Unfortunately, deducing the exact rela-

tionship between the number of processors required and the total computing capacity needed can

be quite hard. We illustrate this point by considering the generalized multiprocessor feasibility

problem, which we now de�ne as a language-membership problem.

De�nition 1 (The generalized multiprocessor feasibility (GMF) problem) Let I = fJ1; J2;

: : : ; Jng denote a hard-real-time instance, and Smax and Ssum be positive real numbers. We say

that (I; Smax; Ssum) 2 GMF i� instance I is feasible upon some platform of cumulative computing

capacity Ssum, in which no processor has computing capacity greater than Smax.

De�nition 2 Given a hard-real-time instance I = fJ1; J2; : : : ; Jng and positive real number Smax,

let GMF(I; Smax) denote the smallest value of Ssum such that (I; Smax; Ssum) 2 GMF.

How does the GMF problem relate to our problem of embedded-system synthesis to minimize

energy consumption? For a given real-time workload I, if GMF(I; Smax) were to be independent of

Smax, then as we have stated in the introduction (and will prove in Section 2.2), the most eÆcient

implementation would be the one with maximum parallelism. However, we will illustrate via an

example (Section 3) that GMF(I; Smax) is not independent of Smax; rather, it tends to increase as

Smax decreases. Consequently, our synthesis problem is transformed to the problem of determin-

ing the critical value of the ordered pair (Smax;GMF(I; Smax)) for which energy consumption is

minimized.

As will be proved in Section 3, there is non-trivial relationship between the total computing

capacity of any platform upon which a real-time instance is feasible, and the fastest processor

5

in that platform: this is the relationship that is captured in the de�nition of the GMF problem.

Determining the most-energy-eÆcient platform upon which workload I can be scheduled to meet all

deadlines essentially requires that a solution space be determined, i.e., ordered pairs (Smax; Ssum)

such that I can be scheduled to meet all deadlines upon a platform of cumulative computing

capacity at most Ssum and in which no individual processor has computing capacity greater than

Smax. For simple workloads comprised entirely of a �xed collection of independent jobs (as in

the statement of the problem and the example above), we will show (Section 3) that this solution

space can be represented as a collection of linear constraints, and that the GMF problem can be

eÆciently solved using standard linear programming techniques. However, the problem becomes

considerably more diÆcult if the instance to be scheduled is represented more succinctly than by

enumerating all jobs (e.g., as systems of periodic or sporadic tasks) or if resource-sharing constraints

added. Solving this problem is an essential prerequisite to obtaining optimal or near-optimal energy-

eÆcient implementations of embedded real-time systems.

2.2 How Multiprocessor Scheduling Relates to Energy Consumption

The e�ect of varying processor voltage (and hence varying the processor's energy consumption)

upon the processor's computing capacity has been thoroughly explored during the last decade.

The speed or computing capacity of a processor has been shown to be approximately directly

related to its clock frequency fc:

speed / fc :

For CMOS (and related) technologies [10], the Power consumed satis�es the following relationship:

Power / fcV
2 ;

where V denotes the voltage supplied to the processor. Operating at a lower supply voltage results

in increased circuit delay and consequently decreased frequency fc. The relationship here is [19]

fc /
(V � VT)

2

V
;

where VT denotes the threshold voltage and is a property of the processor chip. Hence, we see that

Power / V (V � VT)
2; and (1)

speed /
(V � VT)

2

V
(2)

When VT � V , we have the approximate relationships (Power / V 3) and (speed / V); i.e.,

Power / speed3 : (3)

This states that the power consumed by a processor is approximately proportional to the cube of

its speed or computing capacity. That is, in obtaining a computing capacity of s on a uniprocessor

platform, the power consumed is k � s3, where k is the constant of proportionality. If we were to

instead obtain the same cumulative computing capacity by havingm processors, each of computing

capacity s=m, executing in parallel, then the total power consumption would be approximately

m � k �
� s

m

�3
=

1

m2
� k � s2;

which is 1
m2 times the power consumed by a uniprocessor platform of equal capacity.

6

Observe that the power consumption of a multiprocessor platform relative to that of a com-

parable uniprocessor platform approaches zero as m ! 1. This may suggest that we can reduce

energy consumption to arbitrarily low levels by making the number of processors m as large

as possible, with each processor of very low computing capacity . However, this is clearly

not possible: in the job model typically used in real-time scheduling (and assumed here), individual

jobs are executed sequentially . Hence, there is a certain minimum speed that the processors must

have if individual jobs are to complete by their deadlines: At the very least, computing capacity

must be suÆcient to complete each job between its arrival and its deadline.

In implementing energy-aware real-time systems on multiprocessor platforms, the tradeo� is

thus as follows: while increasing the number of processors results in lower energy consumption for

a given computing capacity, the fraction of that capacity that is guaranteed available for executing

the real-time workload decreases as the number of processors increases.

3 The Generalized Multiprocessor Feasibility Problem

Recall the de�nition of the generalized multiprocessor feasibility problem:

De�nition 1 (GMF problem (page 5)) For any hard-real-time instance I and positive numbers

Smax and Ssum, (I; Smax; Ssum) 2 GMF i� instance I is feasible upon some platform of cumulative

computing capacity Ssum, in which no processor has computing capacity greater than Smax.

A note. A reasonable question to ask at this instant is this: Why have we chosen to specify

the GMF problem in terms of the total computing capacity and the computing capacity of only the

fastest processor? After all, the computing capacities of the processors other than the fastest

also contribute to the total energy consumption: assuming that the constant of proportionality in

Equation 3 is unity, the power consumption of a platform comprised of two processors of speeds

one and one is 13 + 13 = 2, while that of a platform comprised of three processors of speeds one,

one-half, and one-half is 13 + (1
2
)3 + (1

2
)3 = 1:25; this despite the fact that both platforms have the

same cumulative capacities and fastest processors.

To answer this question, recall that while the GMF problem is concerned with the feasibility

question (\does there exist a schedule of the real-time instance?") our goal is to implement real-

time systems upon EDF-scheduled identical multiprocessors. To achieve this goal, we will

make use of a result from [15] (reproduced below, as Theorem 3), which relates EDF-schedulability

upon identical multiprocessors to feasibility upon a multiprocessor platform with known cumulative

and maximum computing capacities. Since Theorem 3 makes use of only the cumulative capacity

and the fastest processor speed, we have chosen to simplify the de�nition of the GMF problem by

restricting its focus to just these two quantities.

In Example 1 below, we illustrate (i) how GMF(I; Smax) may be determined by careful case-

analysis for particular values of I and Smax, and (ii) how solutions to the GMF problem may help

determine energy-eÆcient multiprocessor implementations for I.

Example 1 Consider the real-time instance I comprised of the following three jobs:

J1 = (0; 1; 1),

J2 = (0; 2; 2), and

J3 = (0; 4; 4),

7

where (as before) J = (a; c; d) denotes a job arriving at time instant a and needing to execute for

c time units by a deadline at time instant d. Suppose that we wish to schedule this instance on

a processing platform in which processor speeds will remain static during run-time (i.e., dynamic

power management is not an option).

Step x1: Solving the GMF. We consider four di�erent scenarios:

Scenario 1: Suppose that the fastest available processor has a computing capacity of one unit of

work per time unit. In that case, it is not diÆcult to see that each job must execute on a

di�erent processor and all processors must be of the same capacity. Such a platform has a

cumulative computing capacity of three. Thus, GMF(I; 1) = 3.

Scenario 2: Suppose that the fastest available processor has a computing capacity of (at least)

7=4 units of work per time unit. In that case, it may be veri�ed that the EDF algorithm

will successfully schedule all three jobs on a single processor of computing capacity 7=4, by

executing J1 over [1; 4=7), J2 over [4=7; 12=7), and J3 over [12=7; 4). That is, the cumulative

computing capacity of a platform comprised of individual processors of computing capacity

no more than 7=4 units of work per time unit is 7=4. Equivalently, GMF(I; 7=4) = 1:75

Scenario 3: Suppose that the fastest available processor has a computing capacity of 3=2 units

of work per time unit. In that case, GMF(I; 3=2) = 2; i.e., any platform that successfully

schedules I must have a cumulative computing capacity of at least two. This is seen as

follows:

� Over [2; 4), job J3 may execute on the faster processor, and thus complete 3
2
� 2 = 3

units of work. This implies that a total of 1+2+1 = 4 units of work (e1+ e2 + the one

unit of e3 not completed during [2; 4)) must be done over [0; 2). Hence, at least 2 units

of work must be done in each time unit, i.e., the cumulative computing capacity is at

least two.

� The following schedule upon a platform comprised of two processors P1 and P2, of

computing capacity 3=2 and 1=2, respectively, completes all three jobs by their deadlines:

P1: J1 executes over [0;
2
3
), J2 over [

2
3
; 2), and J3 over [2; 4);

P2: J3 executes over [0; 2).

Scenario 4: Suppose that the fastest available processor has a computing capacity of 5=4 units

of work per time unit. In that case, a 2-processor system with processor speeds equal to

1:25 and 1:0 respectively (i.e., GMF(I; 5=4) = 2:25) will successfully schedule the system, as

follows:

J1 is scheduled during [0; 1) upon the slower processor for one unit of execution,

J2 is scheduled over [0; 0:8) upon the faster processor and [1; 2) upon the slower processor for

a total of (0:8� 1:25 + 1� 1) = 2 units of execution, and

J3 is scheduled over [0:8; 4) upon the faster processor for a total of (4:0 � 0:8) � 1:25 = 4

units of execution.

To see that no platform with fastest processor of speed 1:25 can have total capacity less than

2:25, notice that the work that must be done over the interval [0; 2) is at least (1 + 2 + 4)�

1:25 � 2 = 4:5; hence, at least 2:25 units of work must be performed per unit time.

8

Step x2: Choosing an energy-eÆcient design. Suppose that the available processors upon

which to synthesize this system may run at a maximum speed of 2:0 units of execution per time

unit. In Step x1 above, we explored the multiprocessor design space for this real-time system by

iterating through the possible values of Smax starting at this maximum speed and iterating in steps

of 0:252, and obtained the following possible con�gurations.

Smax GMF(I;Smax) con�guration

< 1.0 1 (not feasible)

1.0 3.0 [1; 1; 1]

1.25 2.25 [1:25; 1]

1.5 2.0 [1:5; 0:5]

�1.75 1.75 [1:75]

As we saw in Section 2.2 (Equation 3), the amount of energy consumed by a processor is approx-

imately proportional to the cube of its speed. Assuming that the constant of proportionality in

Equation 3 is equal to unity, the energy consumed by each of the four (feasible) con�gurations

above would be 13 + 13 + 13 = 3, 1:253 + 1:03 = 2:953125, 1:53 + 0:53 = 3:5, and 1:753 = 5:359375,

respectively. Consequently, the second con�guration, with 2 processors of speeds of 1:25 and 1:0

respectively, would be optimal from the perspective of energy consumption.

Given a hard-real-time instance I and positive real numbers Smax and Ssum, we now describe

how to construct a series of linear inequalities, denoted by (4){(7) below. We prove (Lemmas 1

and 2) that these inequalities together have a feasible solution if and only if I is feasible upon a

multiprocessor platform of cumulative computing capacity Ssum in which no processor has com-

puting capacity greater than Smax. Determining whether I is feasible upon such a platform is

thus transformed to the linear programming problem of determining whether the linear inequalities

(4){(7) have a feasible solution.

Observe that the 2n points
Sn

i=1fai; dig partition the time-line between minni=1faig and maxni=1

fdig into p segments each of non-zero length, for some p � 2n� 1. Let us denote the length of the

j'th such inteval as `j , for 1 � j � p. We de�ne n� p variables xi;j, 1 � i � n and 1 � j � p. The

variable xi;j represents the rate at which job Ji executes during the j'th interval, for each 1 � i � n

and 1 � j � p.

� Certain of these variables are set equal to zero; speci�cally,

(8i : 1 � i � n : (8j : the j'th interval does not lie in [ai; di) : xi;j = 0)) : (4)

That is, for each i, the xi;j's corresponding to all intervals that lie before ai or after di are

set equal to zero.

� No job may execute at a greater rate during any interval than can be accommodated by the

fastest processor available; this is formalized in the following constraints:

(8i : 1 � i � n : (8j : 1 � j � p : 0 � xi;j � Smax)) : (5)

2In practice, we would iterate in much smaller increments | perhaps 0:01; for each value of Smax selected during

this iteration, we would solve the corresponding GMF problem. Since this step is done once during system synthesis

(as opposed to dynamically during run-time), the added computational cost of �ner-grained iteration is not a major

consideration.

9

� During each interval, the total amount of capacity assigned all the jobs cannot exceed the

cumulative capacity of the entire platform; this is formalized in the following constraints:

(8j : 1 � j � p :

nX
i=1

xi;j � Ssum) : (6)

� For feasibility, each job must be allocated (at least) as much execution as its execution

requirement; this is formalized in the following constraints:

(8i : 1 � i � n :

pX
j=1

(xi;j � `j) � ei) : (7)

The following two lemmas demonstrate the equivalence between the generalized multiprocessor

feasibility problem and the problem of determining whether a collection of linear inequalities is

feasible.

Lemma 1 Given a solution to the linear inequalities (4){(7), we can construct a schedule meeting

all deadlines for I upon any multiprocessor platform of cumulative computing capacity Ssum in

which no processor has computing capacity greater than Smax.

Proof Sketch: Let (xi;j)i=1;:::;n;j=1;:::;p
denote the solution to the linear inequalities (4){(7).

The schedule that assigns (xi;j � `j) units of execution to job Ji during the j'th interval for all

i; 1 � i � n and all j; 1 � j � p, would meet all deadlines of all jobs in I.

Lemma 2 Given any schedule meeting all deadlines for I upon some multiprocessor platform of

cumulative computing capacity Ssum in which no processor has computing capacity greater than

Smax, we can obtain a feasible solution to the linear inequalities (4){(7).

Proof Sketch: Let (ei;j)i=1;:::;n;j=1;:::;p
denote the amount of execution assigned to job Ji during

the j'th interval in the schedule meeting all deadlines for all i; 1 � i � n and all j; 1 � j � p. A

feasible solution to the linear inequalities (4){(7) is obtained by assigning variable xi;j the value

(ei;j=`j), for all i; 1 � i � n and all j; 1 � j � p.

Observe that Constraints (4) and (5) together give rise to n� p linear inequalities, Constraints

(6) give rise to p inequalities, and Constraints (7) give rise to n inequalities, for a total of (np+p+n)

inequalities. Since p � 2n�1, at most (2n2+2n�1) inequalities are generated | i.e., a polynomial

number of inequalities. Now the problem of determining GMF(I; Smax) | the smallest Ssum such

that hard-real-time instance I is feasible upon a platform with cumulative capacity Ssum in which

no individual processor has computing capacity greater than Smax | is equivalent to solving the

following linear programming problem:

Do the (np+ p+ n) linear inequalities (4){(7) have a solution?

Thus, an instance of the GMF problem is converted, in polynomial time, into an instance of the

linear programming problem on a polynomial number of variables. Since the linear programming

problem is known to be solvable in polynomial time, it follows that

Theorem 1 The GMF problem has a polynomial-time algorithm.

10

Sporadic task systems. If it is a priori known that I = I(�) for some sporadic task system

� (i.e., that instance I is generated by sporadic task system �), then the GMF problem is easily

solved. Let

Usum(�)
def

=
X

(Ci;Ti)2�

Ci

Ti
; and Umax(�)

def

= max
(Ci;Ti)2�

�
Ci

Ti

�
:

First, observe that we must have Ssum � Umax(�), since it is possible that all tasks generate a job

simultaneously and each task then generates subsequent jobs as soon as legal. Similarly, we must

have Smax � Umax(�), in order to be able to meet all deadlines of the maximum-utilization task

under such a scenario. A platform comprised of n processors of computing capacities u1; u2; : : : ; un
respectively would have total computing capacity Usum(�) and fastest processor computing capacity

Umax(�), and hence be optimal in terms of simultaneously minimizing both Ssum and Smax. We

therefore have the following result concerning the GMFwhen the workload is generated by a sporadic

task system � .

Theorem 2 Let � denote a sporadic task system, and I(�) range over all legal collections of

real-time jobs generated by � . Then

GMF(I(�); Smax) =

�
1 if Smax < Umax(�)

Usum(�); if Smax � Umax(�)
(8)

That is, � is not feasible upon a multiprocessor platform in which the fastest processor has speed

less than Umax(�), regardless of the cumulative computing capacity of the platform; if processors

with speed at least Umax(�) are available, then a cumulative computing capacity of at least Usum(�)

is (necessary and) suÆcient to guarantee feasibility.

4 Energy-optimized system synthesis

x1. General workloads. For a given real-time instance I speci�ed as a collection of independent

jobs, we have seen (Example 1 in Section 3 above) how the space of possible multiprocessor designs

can be explored by iterating through values of Smax; for each value of Smax so considered, the most

energy-eÆcient implementation can be deduced (as was done in Example 1) and the implementation

found to be most energy-eÆcient subsequently selected.

For real-time systems that are to be scheduled at run-time by table-driven schedulers, such an

iterative approach to exploring the multiprocessor implementation space may suÆce for obtaining

the most energy-eÆcient system implementation (provided the algorithm used for solving the GMF

problem during each iteration is constructive, i.e., it either explicitly or implicitly constructs the

required schedule). In many systems, however, a table-driven scheduler is not an option, either

because the workload is dynamic, or because the table would be too large to store in memory. (For

recurring tasks, a table of size proportional to the least common multiple of the task periods may

be required. This value can be exponential with respect to the representation of the task system.)

Recall (from Section 1) that our objective is to design a method to synthesize an energy-eÆcient

EDF-scheduled identical multiprocessor implementation of given real-time workload I. The

GMF problem, on the other hand, is concerned with feasibility upon multiprocessor platforms in

which all processors need not be of the same speed: for such platforms, the GMF problem restricts

attention to the cumulative computing capacity of the platform the speed of the fastest processor.

11

To obtain an EDF-scheduled implementation upon identical multiprocessors from a solution to

the GMF problem, we make use of the following result from [15], which relates feasibility upon

(non-identical) multiprocessor platforms to EDF-feasibility upon identical multiprocessors.

Theorem 3 (Theorem 5 from [15]) Let I denote a hard-real time instance, which is feasible on

a multiprocessor platform with total computing capacity Ssum in which the fastest processor has

computing capacity Smax. Instance I is scheduled to always meet all deadlines on m processors

each of computing capacity s by EDF, provided

Ssum � m � s� (m� 1)Smax : (9)

Given hard-real-time instance I comprised of independent real-time jobs and positive real num-

bers Smax and Ssum, we had proved in Section 3 above (Lemmas 1 and 2) that the series of linear

inequalities (4){(7) de�ned in Section 3 together have a feasible solution if and only if I is feasible

upon a multiprocessor platform of cumulative computing capacity Ssum in which no processor has

computing capacity greater than Smax. Equivalently, any values for (Smax; Ssum) satisfying inequal-

ities (4){(7) represent a feasible implementation for I. Hence by Theorem 3 above, if (Smax; Ssum)

satisfy inequalities (4){(7) then I can be EDF-scheduled upon m identical processors of speed s

each, where Smax, Ssum, m, and s satisfy Equation 9. And, the energy consumed by this implemen-

tation would be proportional to m� s3. Since our objective is to minimize the energy consumed,

the systhesis problem can therefore be stated as the following (non-linear) optimization problem.

Problem EnergyOpt

Minimize
�
m� s3

�
subject to the following constraints:

1. m an integer;

2. Ssum �m � s� (m� 1)Smax; and

3. the linear inequalities (4){(7).

Thisproblem can be solved using standard techniques for non-linear optimization.

x2. Sporadic workloads. For a real-time instance I that is a priori known to have been

generated by a sporadic task � system with known parameters, we have seen (Theorem 2) that there

are unique optimal values for the speed of the fastest processor (Smax) and the cumulative computing

capacity (Ssum) of multiprocessor platforms upon which I is guaranteed feasible: necessary and

suÆcient conditions for I to be feasible upon a multiprocessor platform are that the total computing

capacity of the platform be at least Usum(�), and the fastest processor be of speed at least Umax(�).

When the optimal values of (Smax; Ssum) are unique (and can be easily identi�ed) for a given

real-time workload I in this manner, the energy-optimal EDF-scheduled identical multiprocessor

implementation of I can be more eÆciently determined than by solving the non-linear optimization

problem above, as we now show. In the following, we set Ssum Usum(�), and Smax Umax(�)

From Equation 9, we can derive an expression for the minimum value of speed in terms of the

number of processors m:

speed �
Ssum � Smax

m
+ Smax (10)

12

Hence, by Expression (10), the total power consumed when workload I is scheduled on m

identical processors using EDF satis�es

Power(m) / m�

�
Ssum � Smax

m
+ Smax

�3

: (11)

The value of m that minimizes the power consumed can be obtained by taking the derivative of the

right-hand side of Expression (11) with respect to m, and setting the resulting expression equal to

zero. Solving for m, we get

m = 2�

�
Ssum

Smax
� 1

�
: (12)

Since the number of processors must be integral, we require that m be either the oor or the

ceiling of the expression on the right-hand-side of Equation 12. To determine which one, we simply

substitute both into the right-hand-side of Equation 3, which computes the total amount of energy

consumed, and choose the value that yields the minimum energy consumption. In detail, this

algorithm is

Algorithm EnergyOpt-Sporadic

1. Determine Smax and Ssum: by Theorem 2, Smax = Umax(�) and Ssum =

Usum(�).

2. Use Equation 12 to determine how many processors would be needed

to obtain an energy-optimized implementation of I upon an EDF-

scheduled identical multiprocessor platform. (Since Equation 12 may

yield a non-integral result, both the ceiling and the oor of this result

may need to be considered in the next step.)

3. Use Equation 3 to determine how much energy would be consumed

if this particular EDF-scheduled identical multiprocessor con�guration

were to be used.

We illustrate by an example.

Example 2 Consider a sporadic task system � with Usum(�) = 2:1 and Umax(�) = 0:8. By

Theorem 2, any instance I(�) of jobs generated by this sporadic task system is feasible upon

a multiprocessor platform with total computing capacity equal to 2:1 and in which the fastest

processor has speed 0:8. By Equation 12,

m = 2�

�
2:1

0:8
� 1

�
= 3:25

Since we cannot have a fractional number of processors, we must evaluate both the implementation

with 3 processors, and the one with 4 processors:

With 3 processors: By Equation 10, the speed of each processor is (2:1 � 0:83 + 0:8) = 3:7
3
. By

Equation 3, the power consumption of this implementation is 3� (3:7
3
)3 = 5:62811.

With 4 processors: By Equation 10, the speed of each processor is (2:1� 0:84 + 0:8) = 1:125.

By Equation 3, the power consumption of this implementation is 4� 1:1253 = 5:6953125

13

processors m speed = 2:1�0:8
m

+ 0:8 Power = m� speed3

(by Equation 10) (by Equation 3)

1 2:1 1� 2:13 = 9:261

2 1:45 2� 1:453 = 6:09725

3 1:2333 3� 1:23333 = 5:62811

4 1:125 4� 1:1253 = 5:6953125

5 1:06 5� 1:063 = 5:95508

Table 1: EDF-scheduled identical multiprocessor implementations of the sporadic task system of

Example 2 on di�erent numbers of processors.

Hence the most energy-eÆcient implementation of this hard-real-time task system as an EDF-

scheduled identical-multiprocessor system is on 3 processors, each of computing capacity 3:7
3
. This

is borne out by examining the implementations on one through �ve processors (Table 1).

x3. General workloads: When solving the general optimization problem is too ex-

pensive. While excellent tools exist for solving non-linear optimization problems such as the one

that lies at the heart of Algorithm EnergyOpt , the fact remains that this problem may not have a

polynomial-time solution. If the exponential time taken to solve this optimization problem is not

acceptable, we can obtain a sub-optimal solution by applying an iterative technique (as we did in

Example 1) to explore the design space of possible multiprocessor implementations of the system,

by iterating through possible values of Smax. That is, we would iterate through possible values of

Smax in steps of some prede�ned size (the �ner the granularity of the iteration, the closer to the

optimal solution we are likely to come). For the value of Smax considered during each iteration, we

would determine Ssum GMF(I; Smax), and use Steps 2 and 3 of Algorithm EnergyOptSporadic to

compute the energy consumed if this particular con�guration were to be implemented using EDF

on identical multiprocessors. After all values for Smax have been iterated through, we would select

for synthesis that particular con�guration that yields the most energy-eÆcient implementation.

5 Conclusions

The advent of reasonably-priced shared-memory multiprocessor architectures, and corresponding

advances in multiprocessor real-time scheduling theory, have made it possible to implement real-

time systems upon multiprocessor platforms. One of the bene�ts of such multiprocessor implemen-

tations is energy eÆciency: since the energy consumed by a CMOS circuit is approximately pro-

portional to the square of the power supply voltage while the computing capacity is approximately

14

proportional to the supply voltage, the total energy consumed by an m-processor multiprocessor

platform is approximately 1
m2 times the power consumed by a uniprocessor platform of the same

computing capacity. However, in contrast to the uniprocessor case in which provably optimal run-

time scheduling algorithms (such as EDF) exist, not all the computing capacity of a multiprocessor

platform may be available for executing a given real-time workload; in general, the fraction of the

total computing capacity of an m-processor platform that is guaranteed available for executing a

given arbitrary real-time workload tends to decrease with increasing m.

In this research, we have studied the problem of synthesizing a multiprocessor real-time system

to implement a given real-time workload, with the objective of minimizing the energy consumed

by the real-time system during run-time. Our target real-time applications are mass-produced

embedded systems in which the real-time workloads are simply characterized and the run-time

control system needs to be kept simple. Hence, we restricted our attention to

� workloads that are comprised either of (i) independent real-time jobs, each characterized by

an arrival time, and execution requirement, and a deadline, such that all the jobs must be

repeatedly executed with a common period (the \window" of the system), or (ii) independent

sporadic tasks, each characterized by an execution requirement and a period (all periods are

not required to be equal);

� multiprocessor platforms that are comprised of several identical processors, and that use no

dynamic energy management techniques (such as Dynamic Voltage Scaling { DVS) during

run-time; and

� systems that are scheduled using the widely-used, eÆciently-implementable preemptive EDF

scheduling algorithm.

For such systems, we have derived algorithms for optimally synthesizing multiprocessor implemen-

tations of given real-time workloads in order that the resulting system minimizes the amount of

energy consumed. For workloads comprised entirely of sporadic tasks, we have shown (Algorithm

EnergyOpt-Sporadic) that determining the energy-optimal implementation can be done in polyno-

mial time. However for systems comprised of independent jobs that are repeatedly invoked with a

common period, our algorithm (Algorithm EnergyOpt) for determining the energy-optimal imple-

mentation requires that a non-linear optimization be solved. Since the system is synthesized prior

to run-time, we believe that this doesn not place an unreasonable computational requirement; how-

ever, if solving the non-linear optimization problem turns out to be computationally intractable,

we have proposed (in Section 4) a polynomial-time technique for approximating the solution to the

non-linear optimization problem.

References

[1] Abdelzaher, T., Andersson, B., Jonsson, J., Sharma, V., and Nguyen, M. The aperiodic mul-

tiprocessor utilization bound for liquid tasks. In Proceedings of the Eighth IEEE Real-Time and Embed-

ded Technology and Applications Symposium (San Jose, California, September 2002), IEEE Computer

Society Press.

[2] Anderson, J., and Baruah, S. Energy-aware implementation of hard-real-time systems upon multi-

processor platforms. Tech. Rep. TR02-045, Department of Computer Science, The University of North

Carolina, 2002. Submitted for publication.

[3] Anderson, J., and Srinivasan, A. Early release fair scheduling. In Proceedings of the EuroMicro

Conference on Real-Time Systems (Stockholm, Sweden, June 2000), IEEE Computer Society Press,

pp. 35{43.

15

[4] Anderson, J., and Srinivasan, A. Mixed Pfair/ERfair scheduling of asynchronous periodic tasks. In

Proceedings of the EuroMicro Conference on Real-Time Systems (Delft, The Netherlands, June 2001),

IEEE Computer Society Press.

[5] Andersson, B., Baruah, S., and Jansson, J. Static-priority scheduling on multiprocessors. In

Proceedings of the IEEE Real-Time Systems Symposium (December 2001), IEEE Computer Society

Press, pp. 193{202.

[6] Andersson, B., and Jonsson, J. Fixed-priority preemptive multiprocessor scheduling: To partition

or not to partition. In Proceedings of the International Conference on Real-Time Computing Systems and

Applications (Cheju Island, South Korea, December 2000), IEEE Computer Society Press, pp. 337{346.

[7] Baruah, S., Cohen, N., Plaxton, G., and Varvel, D. Proportionate progress: A notion of

fairness in resource allocation. Algorithmica 15, 6 (June 1996), 600{625.

[8] Bhardwaj, M., Min, R., and Chandrakasan, A. Power-aware systems. In Proceedings of the 34th

Asilomar Conference on Signals, Systems, and Computers (Nov. 2000), vol. 2, pp. 1695{1701.

[9] Burchard, A., Liebeherr, J., Oh, Y., and Son, S. H. Assigning real-time tasks to homogeneous

multiprocessor systems. IEEE Transactions on Computers 44, 12 (December 1995), 1429{1442.

[10] Chandrakasan, A. P., Sheng, S., and Brodersen, R. W. Low-power CMOS digital design. IEEE

Journal of Solid-State Circuits 27, 4 (1992), 119{123.

[11] Davari, S., and Dhall, S. K. An on-line algorithm for real-time tasks allocation. In Proceedings of

the Real-Time Systems Symposium (1986), pp. 194{200.

[12] Elnozahy, E., Melhem, R., and Mosse, D. Energy-eÆcient duplex and TMR real-time systems. In

Proceedings of the IEEE Real-Time Systems Symposium (Austin, TX, December 2002), IEEE Computer

Society Press.

[13] Ferrari, A., Garue, S., Peri, M., Pezzini, S., Valsecchi, L., Andretta, F., and Nesci, W.

The design and implementation of a dual-core platform for power-train systems. In Convergence 2000

(Detriot (MI), USA, October 2000).

[14] Gai, P., Lipari, G., and di Natale, M. Minimizing memory utilization of real-time task sets in

single and multi-processor systems-on-a-chip. In Proceedings of the IEEE Real-Time Systems Symposium

(December 2001), IEEE Computer Society Press.

[15] Goossens, J., Funk, S., and Baruah, S. Priority-driven scheduling of periodic task systems on

multiprocessors. Real Time Systems . To appear.

[16] Ha, R., and Liu, J. W. S. Validating timing constraints in multiprocessor and distributed real-time

systems. In Proceedings of the 14th IEEE International Conference on Distributed Computing Systems

(Los Alamitos, June 1994), IEEE Computer Society Press.

[17] Havinga, P. J. M., and Smith, G. J. M. Design techniques for low-power systems. Journal of

Systems Architecture 46, 1 (2000).

[18] Holman, P., and Anderson, J. Guaranteeing pfair supertasks by reweighting. In Proceedings of the

IEEE Real-Time Systems Symposium (London, UK, December 2001), IEEE Computer Society Press.

[19] Hong, I., Kirovski, D., Qu, G., Potkonjak, M., and Srivastava, M. B. Power optimization

of variable voltage core-based systems. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 18, 12 (1999), 1702{14.

[20] Hong, I., Potkonjak, M., and Srivastava, M. B. On-line scheduling of hard real-time tasks on

a variable voltage processor. In International Conference on Computer Aided Design (ICCAD-98) (N.

Y., Nov. 8{12 1998), ACM Press, pp. 653{656.

[21] Hong, I., Qu, G., Potkonjak, M., and Srivastava, M. Synthesis techniques for low-power hard

real-time systems on variable voltage processor. In Proceedings of the Real-Time Systems Symposium

(Madrid, Spain, December 1998), IEEE Computer Society Press, pp. 178{187.

16

[22] Kang, D., Crago, S., and Suh, J. Power-Aware design synthesis techniques for distributed Real-

Time systems. In Proceedings of the Workshop on Languages, Compilers and Tools for Embedded

Systems (LCTES-01) (New York, June 22{23 2001), C. Norris and J. B. F. Jr., Eds., vol. 36, 8 of ACM

SIGPLAN Notices, ACM Press, pp. 20{28.

[23] Kopetz, H., and Gr�unsteidl, G. TTP - A time-triggered protocol for fault-tolerant real-time

systems. In Proceedings of the 23rd Annual International Symposium on Fault-Tolerant Computing

(FTCS '93) (Toulouse, France, June 1993), J.-C. Laprie, Ed., IEEE Computer Society Press, pp. 524{

533.

[24] Liu, C. L. Scheduling algorithms for multiprocessors in a hard real-time environment. JPL Space

Programs Summary 37-60 II (1969), 28{31.

[25] Lopez, J. M., Garcia, M., Diaz, J. L., and Garcia, D. F. Worst-case utilization bound for

EDF scheduling in real-time multiprocessor systems. In Proceedings of the EuroMicro Conference on

Real-Time Systems (Stockholm, Sweden, June 2000), IEEE Computer Society Press, pp. 25{34.

[26] Oh, D.-I., and Baker, T. P. Utilization bounds for N-processor rate monotone scheduling with static

processor assignment. Real-Time Systems: The International Journal of Time-Critical Computing 15

(1998), 183{192.

[27] Pillai, P., and Shin, K. G. Real-Time dynamic voltage scaling for Low-Power embedded operating

systems. In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP-01) (New

York, Oct. 21{24 2001), G. Ganger, Ed., vol. 35, 5 of ACM SIGOPS Operating Systems Review, ACM

Press, pp. 89{102.

[28] Rusu, C., Melhem, R., and Mosse, D. Maximizing the system value while satisfying time and

energy constraints. In Proceedings of the IEEE Real-Time Systems Symposium (Austin, TX, December

2002), IEEE Computer Society Press.

[29] Suh, J., Kang, D.-I., and Crago, S. Dynamic power management of multiprocessor systems. In

16th International Parallel and Distributed Processing Symposium (Washington - Brussels - Tokyo, Apr.

2002), IEEE, p. 97.

[30] Wolfe, W. Computers as Components: Principles of Embedded Computing Systems Design. Morgan

Kaufmann Publishers, 2000.

[31] Yao, F., Demers, A., and Shenker, S. A scheduling model for reduced CPU energy. In 36th Annual

Symposium on Foundations of Computer Science: October 23{25, 1995, Milwaukee, Wisconsin (1109

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1995), IEEE, Ed., IEEE Computer Society

Press, pp. 374{382.

[32] Zhu, D., AbouGhazaleh, N., Mosse, D., and Melhem, R. Power aware scheduling for AND/

OR graphs in multi-processor real-time systems. In Proceedings of ICPP'2002, The 2002 International

Conference on Parallel Processing (Vancouver, B.C. Canada, August 2002).

[33] Zhu, D., Melhem, R., and Childers, B. Scheduling with dynamic voltage/speed adjustment using

slack reclamation in multi-processor real-time systems. In Proceedings of the IEEE Real-Time Systems

Symposium (London, UK, December 2001), IEEE Computer Society Press.

17

