
Early-Release Fair Scheduling�

James H. Anderson and Anand Srinivasan

Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175

Phone: (919) 962-1757 Fax: (919) 962-1799 E-mail: fanderson,anandsg@cs.unc.edu

December 1999

Abstract

We present a variant of Pfair scheduling, which we call early-release fair (ERfair) scheduling. Like con-

ventional Pfair scheduling, ERfair scheduling algorithms can be applied to optimally schedule periodic tasks

on a multiprocessor system in polynomial time. However, ERfair scheduling di�ers from Pfair scheduling in

that it is work conserving. As a result, average job response times may be much lower under ERfair schedul-

ing than under Pfair scheduling, particularly in lightly-loaded systems. In addition, runtime costs are lower

under ERfair scheduling. This is because, in Pfair-scheduled systems, signi�cant bookkeeping information

is required to determine when a job of a task is and is not eligible for execution. In an ERfair system,

this bookkeeping information is not required because, once released, a job continues to be eligible until it

completes. To the best of our knowledge, ERfair scheduling is the �rst truly work-conserving scheduling

discipline for periodic task systems that is optimal for multiprocessors.

Keyword: fairness, multiprocessors, optimality, Pfair, real-time scheduling, work-conserving schedulers.

�Work supported by NSF grants CCR 9732916 and CCR 9972211. The �rst author was also supported by an Alfred P. Sloan
Research Fellowship.

1 Introduction

A major step forward in the evolution of processor scheduling techniques was recently achieved in the work

of Baruah and colleagues on Pfair scheduling [3, 5]. Pfair scheduling di�ers from more conventional real-time

scheduling disciplines in that tasks are explicitly required to make progress at steady rates. In most real-time

scheduling schemes, the notion of a rate is implicit. For example, in the classic periodic task model, each task

T executes at a rate given by T:e=T:p, where T:e is the execution cost of each job (i.e., instance) of T , and T:p

is the period of T . However, this notion of a rate is a bit inexact: during each interval of length T:p, there are

no guarantees as to exactly which T:e time units will be allocated to task T . In particular, a job of T may be

allocated T:e time units at the beginning of its period, or at the end of its period, or its computation may be

spread out more evenly. Under Pfair scheduling, this implicit notion of a rate is strengthened to require each

task to be executed at a rate that is uniform across each job.

Executing tasks at steady rates has important consequences. For instance, the Pfair scheduling algorithms

proposed by Baruah et al. optimally solve the problem of scheduling periodic tasks on a multiprocessor system in

polynomial time. This is a problem that was previously viewed by most researchers as being almost undoubtedly

NP-hard. Pfair scheduling algorithms schedule tasks by breaking them into quantum-length \subtasks" that are

subject to intermediate deadlines. By breaking tasks into smaller executable units, Pfair scheduling algorithms

circumvent many of the bin-packing-like problems that lie at the heart of intractability results involvingmultiple-

resource real-time scheduling problems. Intuitively, it is easier to evenly distribute small, uniform items among

the available bins than larger, nonuniform items.

Baruah et al. presented two Pfair scheduling algorithms called PF and PD [3, 5]. The two algorithms di�er

in the way in which ties are broken when two subtasks have the same deadline. In PF, ties are broken by

comparing future subtask deadlines, which is somewhat expensive. In PD, ties are broken in constant time

by inspecting four tie-break parameters. In recent work, we proved that PD can be simpli�ed to use only two

tie-break parameters [1]. (When we henceforth refer to PD, we mean the simpli�ed algorithm described in [1].)

In this paper, we present a variant of Pfair scheduling, which we call early-release fair (ERfair) scheduling.

ERfair scheduling di�ers from Pfair scheduling in a rather simple way. In Pfair scheduling, each subtask of a

task T must execute within a \window" of time slots, the last of which is its deadline. If some subtask of T

executes \early" within its window, then T is ineligible for execution until the beginning of the window of its

next subtask. Thus, Pfair scheduling is not a true work-conserving discipline. A scheduler is work conserving if

and only if it never leaves a processor idle when there exist uncompleted jobs in the system that could execute

on that processor. Under ERfair scheduling, if two subtasks are part of the same job, then the second subtask

becomes eligible for execution as soon as the �rst completes. In other words, a subtask may be released \early,"

i.e., before the beginning of its Pfair window. In an ERfair-scheduled system, no processor is ever idle while

there exist uncompleted jobs to schedule. Thus, ERfair scheduling is work conserving.

In this paper, we show that an early-release version of PD, which we call ER-PD, can be used to optimally

schedule tasks in an ERfair system. Because ER-PD is work conserving, it has several advantages over PD. In

1

particular, average job response times may be much lower when using ER-PD than when using PD, especially in

lightly-loaded systems. This makes ER-PD the preferred choice for applications in which average-case response

requirements are stipulated in addition to worst-case response requirements. In addition, runtime costs are

lower with ER-PD than with PD. This is because signi�cant bookkeeping information must be maintained by

PD to determine when a job of a task is and is not eligible for execution. With ER-PD, this bookkeeping

information is not required. Finally, ER-PD supports a more
exible notion of a \rate" than PD. For example,

if each subtask of a task is a routine that processes incoming packets, then with ER-PD, we can often avoid

having to bu�er for later processing packets that arrive \early" (e.g., due to jitter). As explained later, our

notion of ERfair scheduling also can be applied within a task model that allows sporadic \separations" between

subtask releases (and also job releases). In this model, ER-PD is a multiprocessor algorithm that functions in

much the same way as the uniprocessor deadline scheduling algorithm proposed by Je�ay and Goodard for their

rate-based execution (RBE) model [4].

In proving that ER-PD is correct, we borrow heavily from the correctness proof given by us for PD in

[1]. This proof is quite long. Fortunately, much of the reasoning presented in [1] remains intact and can be

encapsulated as a lemma. Given this lemma, only a modest number of additional cases must be considered.

Interestingly, our correctness proof for ER-PD actually shows that a variety of \hybrid" optimal schedulers

exist that incorporate aspects of both PD and ER-PD. For example, it is possible to declare certain tasks to

be \early releasable" and others not. This might be useful if a small subset of tasks in a system are subject to

stringent average response-time requirements. It is also possible to dynamically decide whether to early release

subtasks or not, and to subject early releases to a threshold (e.g., a subtask may be allowed to release early, but

only up to two time slots before its Pfair window). Such
exibility might be useful in systems in which average

response-time requirements must be balanced against jitter requirements.

The rest of this paper is organized as follows. In Section 2, we de�ne Pfair and ERfair scheduling. Then,

in Section 3, we present the PD and ER-PD algorithms (the two algorithms di�er only in when a subtask is

considered to be eligible for execution). We prove that ER-PD is correct in Section 4. In Section 5, we present

the results from some experiments we conducted to compare the runtime overhead associated with ER-PD with

that of PD. We end with concluding remarks in Section 6.

2 Pfair and ERFair Scheduling

Consider a collection of periodic real-time tasks to be executed on a system of multiple processors. We assume

that processor time in such a system is allocated in discrete time units, or quanta; the time interval [t; t+ 1),

where t is a nonnegative integer, is called slot t. Associated with each task T is a period T:p and an execution

cost T:e. Every T:p time units, a new invocation of T with a cost of T:e time units is released into the system;

we call such an invocation a job of T . Each job of a task must complete execution before the next job of that

task begins. Thus, T:e time units must be allocated to T in each interval [k � T:p; (k+ 1) � T:p), where k � 0. T

2

may be allocated time on di�erent processors in such an interval, as long as it is not allocated time on di�erent

processors at the same time.

The sequence of allocation decisions over time de�nes a \schedule." Formally, a schedule S is a mapping

S : � �N 7! f0; 1g, where � is a set of periodic tasks and N is the set of natural numbers. If S(T; t) = 1, then

we say that T is scheduled at slot t. St denotes the set of tasks scheduled in slot t. The statements T 2 St and

S(T; t) = 1 are equivalent.

Following Baruah et al. [3], we refer to T:e=T:p as the weight of task T . We assume each task's weight is

strictly less than one | a task with weight one would require a dedicated processor, and thus is quite easily

schededuled. A task's weight de�nes the rate at which it is to be scheduled. Because processor time is allocated

in quanta, we cannot guarantee that a task T will execute for exactly (T:e=T:p)t time during each interval

of length t. Instead, in a Pfair-scheduled system, processor time is allocated to each task T in a manner that

ensures that its rate of execution never deviates too much from that given by its weight T:e=T:p. More precisely,

correctness is de�ned by focusing on the lag between the amount of time allocated to each task and the amount

of time that would be allocated to that task in an ideal system with a quantum approaching zero. Formally,

the lag of task T at time t, denoted lag(T; t), is de�ned as follows:

lag(T; t) = (T:e=T:p)t � allocated(T; t); (1)

where allocated(T; t) is the amount of processor time allocated to T in [0; t). A schedule is Pfair if and only if

(8T; t :: �1 < lag(T; t) < 1): (2)

Informally, the allocation error associated with each task must always be less than one quantum.

Our notion of early-release scheduling is obtained by simply dropping the �1 lag constraint. Formally, a

schedule is early-release fair (ERfair) if and only if

(8T; t :: lag(T; t) < 1): (3)

Note that any Pfair schedule is ERfair, but not necessarily vice versa. It is straightforward to show that any

ERfair schedule (and hence, any Pfair schedule) is periodic. In particular, in an ERfair schedule, lag(T; t) = 0

for t = 0; T:p; 2T:p; 3T:p; : : : . This is because, for these values of t, (T:e=T:p)t is an integer, and therefore by

(1), lag(T; t) is an integer as well. By (3), if lag(T; t) is an integer, then it must be 0 or some negative integer.

However, it cannot be a negative integer because this would imply that more processor time has been allocated

to T than has been requested by jobs of T up to time t. Hence, lag(T; t) is 0 for these values of t.

Baruah et al. [5] showed that a periodic task set � has a Pfair schedule on M processors if and only if

X
T2�

T:e

T:p
�M: (4)

3

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11

eight
windows
of T

iT i+1T i+2T i+3T i+4T i+5T i+6T i+7T

Figure 1: The eight \windows" of a task T with weight T:e=T:p = 8=11. Each of T 's eight units of computation
must be allocated processor time during its window, or else a lag-bound violation will result.

Because every Pfair schedule is also an ERfair schedule, (4) is a feasibility condition for ERfair systems as well.

The Pfair lag bounds given in (2) have the e�ect of breaking each task T into an in�nite sequence of unit-time

subtasks.1 We denote the ith subtask of task T as Ti, where i � 1. As in [3], we associate with each subtask Ti

a pseudo-release

r(Ti) =

�
(i� 1)�T:p

T:e

�
(5)

and a pseudo-deadline

d(Ti) =
l
i�T:p
T:e

m
� 1: (6)

(Derivations of these expressions can be found in [1].) In a Pfair-scheduled system, r(Ti) is the �rst slot into

which Ti could potentially be scheduled, and d(Ti) is the last such slot. For brevity, we often refer to pseudo-

deadlines and pseudo-releases as simply deadlines and releases, respectively. The interval [r(Ti),d(Ti)] is called

the window of subtask Ti and is denoted by w(Ti). The length of window w(Ti), denoted by jw(Ti)j, is de�ned

as d(Ti) � r(Ti) + 1. A window spanning n time slots is called an n-window . As an example, consider a task

T with weight T:e=T:p = 8=11. Each job of this task consists of eight windows, one for each of its unit-length

subtasks. Using Equations (5) and (6), it is possible to show that the windows within each job of T are as

depicted in Figure 1. Note that successive windows of T overlap by one slot and are of two di�erent lengths. In

general, consecutive windows of a task are either disjoint or overlap by one slot. In addition, either all windows

of a task are of the same length, or they are of two di�erent lengths (this property is proved in [1]).

Pfair and ERfair systems di�er only in when a subtask is considered to be eligible for execution. In a Pfair

system, a subtask Ti is eligible at time t if t 2 w(Ti) and if Ti�1 has been scheduled prior to t but Ti has not. In

an ERfair system, if Ti and Ti+1 are part of the same job, then Ti+1 becomes eligible for execution immediately

after Ti executes; if Ti is the �rst subtask of its job, then it becomes eligible at the slot that begins its window

(as in a Pfair system). The di�erence between Pfair- and ERfair-scheduled systems is illustrated in Figure 2.

This �gure shows Pfair and ERfair schedules for a two-processor system consisting of a set A of four tasks with

weight 4/16 and set B of 16 tasks with weight 1/16. Under Pfair scheduling, each set-A job consists of four

1We have refrained from introducing the term \subjob" to refer to an invocation of a subtask because each subtask is invoked
only once (each task consists of an in�nite sequence of subtasks).

4

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 2 _ _

2 2 _ _

2 2 _ _

A(4x4/16): 2 2 _ _

B(16x1/16): _ _ 2 2 _ _ 2 2 _ _ 2 2 _ _ 2 2

(a)

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 2 _ _ _ _ _ _ _ _

2 2 _ _ _ _ _ _

2 2 _ _ _ _

A(4x4/16): 2 2 _ _

B(16x1/16): _ _ _ _ _ _ _ _ 2 2 2 2 2 2 2 2

(b)

Figure 2: A schedule for a task set under Pfair scheduling (a) and under ERfair scheduling (b). In this �gure,
tasks of a given weight are shown together. Each window is shown on a separate line and is depicted by showing
the time slots it spans. Each column corresponds to a time slot. A slot t within a window is denoted by either
an integer value or a dash. An integer value n means that n of the subtasks that must execute within that
window are scheduled in slot t. A dash means that no such subtask is scheduled in slot t.

disjoint 4-windows, and each set-B job conists of one 16-window. Note that in the ERfair schedule (inset (b)),

all set-A jobs have �nished by time slot 7, while in the Pfair schedule (inset (a)), some of these jobs do not

�nish until time slot 13.

3 PD and ER-PD

In this section, we describe the PD scheduling algorithm for Pfair systems, and then the related algorithm ER-

PD for ERfair systems. In PD, eligible subtasks are prioritized by their deadlines. If two subtasks have the same

deadline, then two tie-break parameters are inspected to break the tie. (As explained earlier, the original PD

algorithm [5] used four tie-break parameters. The version of PD considered here is the more e�cient algorithm

described in [1].) In the following paragraphs, we describe these tie-break parameters.

The �rst tie-break parameter is a bit that is associated with each subtask deadline. By Equations (5) and (6),

r(Ti+1) is either d(Ti) or d(Ti)+1. The bit b(Ti), de�ned below, distinguishes between these two possibilities.

b(Ti) =

8<
:

1; if r(Ti+1) = d(Ti)

0; if r(Ti+1) = d(Ti) + 1.

As we will see shortly, in the event of a tie, PD favors a subtask deadline with a b-value of 1 over one with a

b-value of 0. Informally, it is better to execute a subtask Ti \early" if its window overlaps that of its successor

Ti+1. By not choosing to execute Ti \early" we may end up having to schedule it in the last slot of its window.

In e�ect, this reduces the length of Ti+1's window by one. Thus, it is desirable to tie-break a deadline with a

b-value of 1 over a deadline with a b-value of 0 because this places fewer constraints on future time slots.

Group deadlines. A task with weight less than 1/2 is called a light task, while a task with weight at least

1/2 is called a heavy task. It can be shown that a task is heavy if and only if the �rst window of each of its jobs

is of length two, and all of its windows are of length two or three (this property is proved in [1]). Because heavy

tasks have such \small" windows, they are more di�cult to schedule correctly than light tasks. To see this,

5

consider a sequence Ti; : : : ; Tj of subtasks of a heavy task T such that jw(Tk)j = 2 ^ b(Tk) = 1 for all i < k � j

and either jw(Tj+1)j = 3 or b(Tj) = 0 (e.g., Ti, Ti+1 or Ti+2, Ti+3, Ti+4 or Ti+5, Ti+6, Ti+7 in Figure 1). If any

one of the subtasks Ti; : : : ; Tj is scheduled in the last slot of its window, then each subsequent subtask in this

sequence must be scheduled in its last slot. In e�ect, Ti; : : : ; Tj must be considered as a single schedulable entity

subject to a \group" deadline. Formally, we de�ne the group deadline for the group of subtasks Ti; : : : ; Tj to be

d(Tj) + 1 if jw(Tj+1)j = 3, and d(Tj) if b(Tj) = 0. Intuitively, if we imagine a job of T in which each subtask

is scheduled in the �rst slot of its window, then the slots that remain empty exactly correspond to the group

deadlines of T . For example, in Figure 1, T has group deadlines at slots t+ 3, t+ 7, and t+ 10.

We let D(Ti) denote the group deadline of subtask Ti. Formally, if T is heavy, then

D(Ti) = (min u :: u � d(Ti) and u is a group deadline of T):

For example, in Figure 1, D(Ti) = t+3 and D(Ti+5) = t+10. The above de�nition of D is valid only for heavy

tasks. If T is light, then D(Ti) = 0.

Given the above discussion of group deadlines, we are now in a position to state the PD priority de�nition.

PD Priority De�nition: Task T 's priority at time t is de�ned to be (d(Ti); b(Ti); D(Ti)), where Ti is eligible

at time t. Priorities are ordered according to the following relation.

(d0; b0; D0) � (d; b;D) � [d < d0] _ [(d = d0) ^ (b > b0)] _ [(d = d0) ^ (b = b0) ^ (D � D0))]

If Ti and Uj are eligible at time t, then T 's priority is at least U 's at time t if (d(Uj); b(Uj); D(Uj)) �

(d(Ti); b(Ti); D(Ti)). 2

According to this de�nition, task T has higher priority than task U if the pseudo-deadline of T 's current

subtask is less than that of U 's. If two subtasks have the same pseudo-deadline, then the bit that we de�ned

for each pseudo-deadline is used as a tie-breaker. If two heavy subtasks have equal pseudo-deadlines and the

bits associated with them are the same, then the subtask with the greater group deadline has higher priority.

Note that choosing not to schedule the subtask with the greater group deadline in this case would more tightly

constrain scheduling decisions at future time slots. Due to the de�nition of D, if a heavy subtask and a light

subtask have identical pseudo-deadlines and associated bits, then the tie is always resolved in favor of the heavy

subtask. If a set of light-only tasks is to be scheduled, then the D parameter is not needed. Finally, note that

it is possible for two tasks to have identical priorities; such ties can be broken arbitrarily.

Given this priority de�nition, PD is simple to explain. A priority-sorted \ready queue" is used to store

eligible subtasks. In addition, as explained below, there are a number of priority-ordered \release queues"

associated with future time slots. At the beginning of each time slot, the M highest-priority subtasks in the

ready queue (if that many subtasks are eligible) are selected for execution, where M is the number of processors

in the system. If Ti is one of the selected subtasks, then its successor Ti+1 is inserted into the release queue Qt,

6

where t is the release time of Ti+1. At time t, Qt will be merged with the ready queue. Thus, at the beginning

of each time slot, the release queue for that slot is merged with the ready queue. An additional search structure

is used in order to e�ciently access the release queues.

ER-PD is a much simpler than PD, and is quite similar to more conventional priority-driven scheduling

algorithms. With ER-PD, if Ti is selected for execution, and if its successor Ti+1 is part of the same job, then

Ti+1 is inserted into the ready queue itself. If Ti and Ti+1 are part of di�erent jobs, then Ti+1 is inserted into

an appropriate release queue, as in PD. ER-PD is more e�cient than PD because queue-merge operations are

performed much less frequently than in PD.

4 Correctness Proof for ER-PD

We now prove that ER-PD produces an ERfair schedule. Throughout this section, we assume that
P

T2�
T:e

T:p
=

M , where M is the number of processors. If less than M , then several dummy tasks can be added to makeP
T2�

T:e

T:p
= M . The proof proceeds by showing the existence of certain schedules over the interval [0; L), where

L = LCM T2� (T:p). To facilitate our description of these schedules, we �nd it convenient to totally order all

subtasks that are released in [0; L). Let � be an irre
exive total order that is consistent with the � relation

in the PD priority de�nition. (� is obtained by arbitrarily breaking any ties left by �.) Let Ti and Uj be two

subtasks that are released in [0; L). Then, Ti is ordered before Uj , denoted Ti � Uj if and only if Ti has a higher

PD priority than Uj when the issue of eligibility is ignored, i.e., (d(Uj); b(Uj); D(Uj)) � (d(Ti); b(Ti); D(Ti)).

We let � denote the re
exive counterpart of �.

Our correctness proof for ER-PD uses several results from the proof given by us for PD in [1]. There, the

correctness of PD is established by showing that if there exists a Pfair schedule S that is in accordance with

PD up to time t � 1, then such a schedule exists that is in accordance with PD up to time t. The number of

scheduling decisions in S at time t that violate the PD priority de�nition can be inductively reduced to zero

by swapping some subtasks. Such swappings will be valid if all subtasks are still scheduled within their Pfair

windows, no two subtasks of the same task are scheduled in the same time slot, and M tasks are scheduled

in each time slot. The crux of the proof lies in showing that if, in schedule S, (i) Uj is scheduled in slot t,

(ii) Ti is eligible at t but scheduled later, and (iii) Ti � Uj , then Ti can be swapped into slot t, and Uj can

be swapped to a later slot. This is illustrated in Figure 3(a). If Uj+1 is not scheduled in the same slot as Ti,

then Ti and Uj can be directly swapped to get the desired schedule. On the other hand, if Uj+1 is scheduled

in the same slot as Ti, then Uj and Ti must have the same deadline and the windows of Uj and Uj+1 must

overlap by one slot, as shown in Figure 3(b). In this case, a swapping that is more complicated than a direct

exchange of Uj and Ti is required. It turns out that a rather large number of cases must be considered to show

that a valid swapping always exists. Fortunately for us, all of the swappings considered in [1] continue to be

valid if, instead of requiring the entire schedule S to be Pfair, we only require Pfairness for the set of subtasks

fVk j Ti � Vkg (only subtasks not in this set can be scheduled before the Pfair windows in S). This fact allows

7

(a) (b)

i

j

]
]

T

t’t

Uj

...

i

Uj+1

T

t’

i

j

t

Uj

...

]
]

isame
decisions
as PD

Figure 3: We use the following notation in this and subsequent �gures. \[" and \]" indicate the release and
deadline of a subtask; subscripts indicate which subtask. Each task is shown on a separate line. An arrow from
a subtask Vk to a slot u indicates that Vk is now scheduled in slot u. An arrow over \[" (or \]") indicates that
the actual position of \[" (or \]") can be anywhere in the direction of the arrow. Time is divided into unit-time
slots that are numbered. If Ti is released at slot t, then \[" is aligned with the left side of slot t. If Ti has a
deadline at slot t, then \]" is aligned with the right side of slot t. (a) Induction step of the PD correctness
proof. (b) The \di�cult" case to consider.

us to encapsulate all of the reasoning in [1] into the following lemma.

Lemma 1 Let Ti and Uj be two subtasks in the ERfair schedule S, where

� Uj is scheduled in slot t,

� t lies within Ti's window, but Ti is scheduled at a later slot,

� Ti � Uj , and

� for each Vk such that Ti � Vk, Vk is scheduled within its Pfair window.

Then, there exists a schedule S0 such that

� S0 and S are identical prior to slot t,

� S0t = St [fTig � fUjg.

� at each slot after t in S0, M subtasks from M distinct tasks are scheduled, and

� each subtask Vk such that Ti � Vk is scheduled in its Pfair window.

The situation addressed in Lemma 1 is like that depicted in Figure 3(a), except that only Ti and subtasks

ordered after Ti by � are required to execute within their Pfair windows. Subtasks ordered earlier than Ti by �

can be executed prior to their Pfair windows; such a subtask must executed within a slot where it is considered

to be eligible under ERfair scheduling. The lemma states that it is possible to move Uj to the right out of slot

t, and Ti to the left into slot t. As stated earlier, the swappings that must be considered to show that this is

always possible involve only Ti and subtasks ordered after Ti by �. Slot t is assumed to lie within Ti's Pfair

window, so the resulting schedule will still be Pfair for these subtasks.

To facilitate our proof of correctness for ER-PD, we de�ne an ERfair schedule S to be k-compliant if and

only if (i) each subtask that is not among the �rst k according to the relation � is scheduled within its Pfair

8

i

j

]
]

Ti

Uj+1Uj

[
i

t’t ...

Figure 4: The \di�cult" case to consider in the proof of Lemma 2.

window, and (ii) the �rst k subtasks according to � are scheduled in accordance with ER-PD. We now prove

that a k-compliant schedule exists by induction on k. Note that a 0-compliant schedule is just a Pfair schedule,

and the existence of such a schedule follows from [1]. Also, if N is the total number of subtasks in [0; L), then

an N -compliant schedule is an ERfair schedule that is fully in accordance with ER-PD. The following lemma

gives the inductive step of the proof.

Lemma 2 If S is a k-compliant schedule, then there exists a schedule S0 that is (k + 1)-compliant.

Proof: Let Ti be the (k+1)st subtask according to �. If Ti is scheduled in S in accordance with ER-PD, then

take S0 to be S. Otherwise, we have the following: there exists a time slot t such that Ti is eligible at t, some

subtask ordered after Ti by � is scheduled at t, and Ti is scheduled later than t. Take t to be the earliest such

time slot, and let Uj be the lowest-priority subtask scheduled at t. Let t0 be the slot where Ti is scheduled. If t

lies within Ti's Pfair window, then we can apply Lemma 1 to get the desired schedule S0. In the remainder of

the proof, assume that t is before Ti's Pfair window. Note that if Uj+1 is not scheduled in slot t0, then we can

directly swap Ti and Uj to get S
0. In the rest of the proof, we assume Uj+1 is scheduled in slot t0. As discussed

above, this implies that Uj and Ti have the same deadline and the Pfair windows of Uj and Uj+1 overlap by

one slot. This situation is depicted in Figure 4. We now prove that a valid swapping exists for this remaining

situation by considering four cases, which depend on the weights of tasks T and U . In these four cases, We

make use of the following properties concerning Pfair windows, which are proved in [1].

(P1) The length of each of task T 's windows is either
l
T:p
T:e

m
or
l
T:p
T:e

m
+ 1. A window of task T with lengthl

T:p
T:e

m
(respectively,

l
T:p
T:e

m
+1) is called a minimal (respectively, maximal) window of T .

(P2) A task has a 2-window if and only if it is heavy.

(P3) If two successive subtasks Ti and Ti+1 have windows that do not overlap, then we call them nonoverlapping

subtasks (as a special case, T1 is de�ned to be nonoverlapping as well). The window of each nonoverlapping

subtask is a minimal window.

All of swappings in the cases that follow involve only Ti and subtasks ordered after Ti by �. We remind the

reader that, by assumption, all such subtasks are scheduled within their Pfair windows in S.

Case 1: T is light and U is heavy. By the de�nition of D, T cannot have higher priority than U at time t.

9

Ti+1i

]
j

iT

Uj+1jU

i+1

j+1
]

i

...t t’

[]]

Figure 5: Case 2. T is heavy, U is light, and d(Ti) = d(Uj).

Case 2: T is heavy and U is light. In this case, we show that the swapping in Figure 5 is valid. Because

Ti has higher priority than Uj , the b-bit associated with Ti's deadline is not 0, i.e., Ti+1's Pfair window begins

in slot t0. As seen in Figure 5, Uj+1's window also begins in slot t0. Because T is heavy and U is light, by (P1),

each of T 's windows is of length two or three, and each of U 's windows is of length three or greater. Thus,

d(Ti+1) � d(Uj+1). If Ti+1 is a nonoverlapping subtask, then by (P2) and (P3), its window is of length two,

and hence d(Ti+1) < d(Uj+1). Thus, we have (d(Ti+1) < d(Uj+1)) _ (d(Ti+1) � d(Uj+1) ^ b(Ti+1) = 1).

Therefore, by the PD priority de�nition, Ti+1 � Uj+1. Hence, by Lemma 1, there exists a swapping that moves

Ti+1 into slot t
0 and Uj+1 to a later slot. This implies that the swapping in Figure 5 is valid.

Case 3: T and U are both light. In this case, we show that one of the swappings in Figure 6 is valid.

Because U is light, by (P2), jw(Uj+1)j � 3. Therefore, Uj+2 is released after t0 + 1 (refer to Figure 3(b)), and

hence no subtask of U is scheduled in slot t0+ 1. If Ti+1 is scheduled in slot t0 + 1, then the swapping in Figure

6(a) is valid. In the rest of the proof for Case 3, we assume that Ti+1 is scheduled after slot t0 + 1.

Because U 2 St0 and U =2 St0+1, and because all processors are fully utilized, there exists a task V such that

V =2 St0 and V 2 St0+1. Let Vk be the subtask of V scheduled in slot t0 + 1. Because Vk is scheduled at time

t0 + 1, we have r(Vk) � t0 + 1. If r(Vk) < t0 + 1, then the swapping shown in Figure 6(b) produces the desired

schedule. In the rest of the proof for Case 3, we assume r(Vk) = t0+ 1, in which case this swapping is not valid.

Consider subtask Vk�1. If Vk�1 is scheduled in the interval (t; t0), then the swapping shown in Figure 6(c)

is valid. (Note that Vk�1 either has a deadline at t0 + 1 or has a deadline at t0 and a b-bit of 0; hence, Vk�1 is

ordered after Ti by �.) On the other hand, if Vk�1 is scheduled in slot t, then we have a contradiction of our

choice of Uj as the lowest-priority subtask scheduled in slot t (because Vk�1 either has a deadline at t
0 + 1 or a

deadline at t0 and a b-bit of 0, it has lower priority than Uj). The remaining possibility is that Vk�1 is scheduled

before t. As shown in the following paragraph, d(Ti+1) < d(Vk) holds in this case. This implies that Ti+1 and

Vk+1 cannot be scheduled in the same slot, and hence, the swapping shown in Figure 6(d) is valid.

To facilitate the proof that d(Ti+1) < d(Vk), we let c = jw(Vk�1)j and let d = jw(Ti)j. As seen in Figure

6(d), c > d. Vk�1's deadline must be either at time t0 or at time t0 + 1. First, suppose it is at time t0. In this

case, Vk�1 and Vk are nonoverlapping subtasks, and hence by (P3), jw(Vk)j = c. Furthermore, by (P1), we have

jw(Ti+1)j � d + 1, which implies that jw(Ti+1)j � jw(Vk)j. Because w(Vk) begins one slot later than w(Ti+1),

10

[
i

[
i

[
i

[
i

j
]j+1UjU no

U

i
]iT

... t’t

T i+1

t’+1

(a)

Uj

...

]
]

i

j

T i+1]

k

i+1iT

Uj+1

t’+1

no
V kV[]

t’t ...

k[k-1
Vk-1[

i
]iT

...

j
]j+1U

kV[no
V

t’t

jU

k

t’+1

t’+1

i
]iT

j
]j+1U

no
V

t

Uj

Vk-1

... ...

k

t’(>t+1)

kV

(c) (d)

(b)

Figure 6: Case 3. (a) Ti+1 is scheduled in slot t0 + 1. (b) r(Vk) < t0 + 1. (c) r(Vk) = t0 + 1, and Vk�1 is
scheduled in the interval (t; t0). (c) r(Vk) = t0 + 1, and Vk�1 is scheduled before slot t.

this implies that d(Ti+1) < r(Vk), as claimed. The other case to consider is that Vk�1's deadline is at time t0+1.

In this case, as seen in Figure 6(d), d � c� 2. By (P1), we have jw(Vk)j � c� 1 and jw(Ti+1)j � d+1. So, once

again, we have jw(Ti+1)j � jw(Vk)j, which implies that d(Ti+1) < r(Vk). This completes the proof for Case 3.

Case 4: T and U are both heavy. In this case, by (P1) and (P2), t0 in Figure 4 must be t + 2, i.e., the

situation to consider is as depicted in Figure 7(a). As explained in Case 2, Ti+1 and Uj+1 both have windows

starting at slot t + 2. Moreover, because T and U are both heavy, by (P1) and (P2), each of w(Ti+1) and

w(Uj+1) is either a 2-window or a 3-window. If w(Ti+1) is a 2-window, then Ti+1 � Uj+1. To see this, note

that if w(Uj+1) is of length three, then Ti+1 has an earlier deadline than Uj+1; if w(Uj+1) is of length two, then

Ti+1 and Uj+1 have equal deadlines, but the PD tie-break favors Ti+1 over Uj+1 since it favored Ti over Uj .

Because Ti+1 � Uj+1, by Lemma 1, there exists a swapping that moves Ti+1 into slot t+ 2 and Uj+1 to a later

slot. Thus, the swapping in Figure 7(b) is valid.

Now, suppose that w(Ti+1) is a 3-window. This implies that T has a group deadline at time slot t+3. Because

the PD tie-break favored Ti over Uj , this implies that w(Uj+1) is either a 3-window or a nonoverlapping 2-window

(if w(Uj+1) were a 2-window overlapping w(Uj+2), then Uj 's group deadline would be after t + 3, and hence,

the PD tie-break would favor Uj over Ti). Because w(Uj+1) is either a 3-window or a nonoverlapping 2-window,

and because Uj+1 is scheduled in slot t + 2 (the �rst slot of its window), no subtask of U is scheduled in slot

t+ 3. Thus, if Ti+1 is scheduled in slot t+ 3, then the swapping in Figure 7(c) is valid.

In the rest of the proof for Case 4, we assume that Ti+1 is not scheduled in slot t+ 3, which implies that it

must be scheduled in slot t + 4. Because U 2 St+2 and U =2 St+3, and because all processors are fully utilized,

there exists a task V such that V =2 St+2 and V 2 St+3. Let Vk be the subtask of V scheduled in slot t + 3.

If Vk is released at or before slot t + 2, then the swapping in Figure 7(d) is valid. Also, if Vk has a deadline

11

or

no
U

no
T

no
V

no
U

no
T

no
V

no
V

no
U

no
T

no
V

no
U

t

[
i

t+1 t+2

Ti

UjU jj+1]
i

] Ti+1]

]
j+1

t+3

i+1

(b)

t

[
i

t+1 t+2

Ti

UjU jj+1]
i

]

(a)

t

[
i

t+1 t+2

Ti

jU jj+1]
i

] Ti+1

]
j+1

t+3

i+1
]

]
j+1U

t+4

(c)

t

[
i

t+1 t+2

Ti

jU jj+1]
i

]

t+3

i+1
]

U

t+4

i+1T

Vk[
k

(d)

t

[
i

t+1 t+2

Ti

jU jj+1]
i

]

t+3

i+1
]

U

t+4

i+1T

k

t+5

]
k

V

(e)

t

[
i

t+1 t+2

Ti

jU jj+1]
i

]

t+3

i+1
]

U

t+4

i+1T

kV]
k

[
k

[
k-1

Vk-1

(f)

Figure 7: Case 4. (a) The situation to consider if T and U are both heavy. (b) w(Ti+1) is a 2-window. (c)
w(Ti+1) is a 3-window, and Ti+1 is scheduled in slot t+ 3. (d) w(Ti+1) is a 3-window, Ti+1 is scheduled in slot
t + 4, and r(Vk) � t + 2. (e) w(Ti+1) is a 3-window, Ti+1 is scheduled in slot t + 4, and d(Vk) � t + 5. (f)
w(Ti+1) is a 3-window, Ti+1 is scheduled in slot t+ 4, and w(Vk) = [t+ 3; t+ 4].

after slot t+ 4, then no subtask of V is scheduled in slot t+ 4, and hence the swapping in Figure 7(e) is valid.

The remaining possibility is that Vk is released at slot t + 3 and has a deadline at slot t + 4, which by (P2),

implies that V is heavy. Because V is heavy, w(Vk�1) begins in slot t+1 (it is either a nonoverlapping 2-window

[t+1; t+2] or a 3-window [t+1; t+3]). Moreover, because V =2 St+2, Vk�1 is scheduled in slot t+1. This implies

that the swapping in Figure 7(f) is valid. (Note that Vk�1 either has a deadline at t
0+ 1 or has a deadline at t0

and a b-bit of 0; hence, Vk�1 is ordered after Ti by �.) This completes the proof for Case 4. 2

By applying Lemma2 inductively as discussed above, there exists an ERfair schedule consistent with ER-PD.

Thus, we have the following theorem.

Theorem 1 A task system � can be scheduled correctly in an ERfair system using our priority de�nition if and

only if
P

T2� (T:e=T:p) �M , where M is the number of processors.

Lemma 2 actually allows us to conclude a much more general result than that stated in Theorem 1. In

essence, the lemma shows that any subtask that is eligible before its Pfair window can be properly scheduled

12

using the PD priority de�nition. There is much freedom here in de�ning when a subtask is eligible. In particular,

there is no requirement that \early" eligibility be an option for all subtasks or even all subtasks of the same

task. For that matter, a subtask's eligibility can be restricted so that it can become eligible only up to a �xed

number of slots before its window. The only crucial requirement is this: if a subtask Ti is eligible at a slot t

prior to w(Ti), then Ti and Ti�1 must be part of the same job, and Ti�1 must be scheduled before t.

5 Experimental Results

In this section, we discuss the results of some preliminary experiments we conducted to compare the runtime

overheads of ER-PD and PD. The runtime costs of the two algorithm di�er only in the number of queue-merge

operations performed. In particular, consider the interval [0; L), where L is the least common multiple of all

task periods. Let njobs and nsubtasks denote the total number of jobs and subtasks, respectively, released in this

interval. In both algorithms, each subtask must be enqueued onto some priority queue and eventually dequeued.

Thus, each algorithm will perform nsubtasks enqueue and dequeue operations in total. It should be noted that in

most mergeable priority-queue algorithms, enqueue and dequeue operations are quite simple in comparison to

queue-merge operations. Thus, we would expect the cost of queue-merge operations to be the dominate factor

in the runtime overhead of both algorithms. In PD, a queue-merge operation must be performed at each slot

where a subtask is released. The number of such slots is upper bounded by nsubtasks. In contrast, in ER-PD,

a queue-merge operation must be performed at each slot where a job is released. The number of such slots is

upper bounded by njobs.

In order to determine how many fewer queue-merge operations ER-PD performs than PD, we conducted

some experiments involving randomly-generated task sets. The results of these experiments are shown in Figure

8. Four plots are shown in the �gure corresponding to systems of 8, 16, 32, and 64 processors, respectively. In

each plot, the x-axis represents the number of tasks in each randomly-generated task set. Task sets of 10 to

500 tasks were considered (in steps of 10). The y-axis gives the number of queue-merge operations performed

up to time slot L (the least common multiple of all task periods). Each data point was obtained by averaging

over 40 randomly-generated task sets. As these plots show, ER-PD performs about half as many queue-merge

operations as PD. This is because the methodology we followed in generating task sets resulted in an average of

two subtasks per job. (Note that determining the number of queue-merge operations for each algorithm is not

simply a matter of analytically determining the number of jobs and subtasks released in [0; L). In particular, we

are interested in the number of slots at which jobs or subtasks are released, and there may be multiple releases

per slot.) In general, ER-PD's gain over PD should roughly equal the number of subtasks per job averaged over

all jobs in the system.

The experiments reported here obviously only provide a rough comparison of the two algorithms' runtime

costs. In future work, we plan to empirically evaluate real implementations of both algorithms on a multipro-

cessor testbed.

13

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 o

pe
ra

tio
ns

 p
er

fo
rm

ed

Number of tasks

"16proc.pd"
"16proc.er"

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 o

pe
ra

tio
ns

 p
er

fo
rm

ed

Number of tasks

"8proc.pd"
"8proc.er"

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 o

pe
ra

tio
ns

 p
er

fo
rm

ed

Number of tasks

"64proc.pd"
"64proc.er"

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 o

pe
ra

tio
ns

 p
er

fo
rm

ed

Number of tasks

"32proc.pd"
"32proc.er"

Figure 8: A comparison of the number of queue-merge operations performed by ER-PD and PD. The x-
axis represents the number of tasks in the system. The y-axis gives the number of queue-merge operations
performed up to the least common multiple of all task periods. Each data point was obtained by averaging
over 40 randomly-generated task sets. Plots are shown for 8, 16, 32, and 64 processors. In all cases, ER-PD
performs about half as many queue-merge operations as PD.

6 Concluding Remarks

We have presented a work-conserving variant of Pfair scheduling called early-release fair (ERfair) scheduling.

Our notion of ERfair scheduling is obtained by simply dropping the �1 lag constraint used in Pfair scheduling.

Without this constraint, subtasks can sometimes execute \early," i.e., before their Pfair windows. We have also

presented an ERfair scheduling algorithm called ER-PD that can be used to e�ciently schedule any task system

whose total utilization is at most the number of available processors. ER-PD was obtained from the related PD

algorithm for Pfair systems. We have shown that ER-PD entails lower runtime overhead than PD and that job

response times can be much less with ER-PD than with PD.

It follows from our correctness proof for ER-PD that a variety of \hybrid" optimal schedulers exist that

14

incorporate aspects of both PD and ER-PD. For example, it is possible to declare certain tasks to be \early

releasable" and others not. This might be useful if a small subset of tasks in a system are subject to stringent

average response-time requirements. It is also possible to dynamically decide when and by how much subtasks

may be released early. Such
exibility might be useful in systems in which average response-time requirements

must be balanced against jitter requirements. The development of a methodology for analyzing response-

time/jitter tradeo�s is a subject of ongoing research.

In recent work, we have shown that PD and ER-PD are correct not only for periodic task systems, but also

sporadic and \intra-sporadic" systems [2]. In an intra-sporadic task system, additional separation is allowed

not only between jobs of the same task, as in a sporadic system, but also between the windows within a job.

The intra-sporadic/early-release (IS/ER) model supports a very
exible notion of a rate without sacri�cing

optimality. This notion of a rate allows allocation errors to be quite arbitrary within a job release. However,

such allocation errors are not allowed to bridge across job releases. In essence, each task's allocation error must

periodically be reset to zero. When applied within the IS/ER model, ER-PD is a multiprocessor algorithm

that functions in much the same way as the uniprocessor deadline scheduling algorithm proposed by Je�ay and

Goodard for their rate-based execution (RBE) model [4]. Connections between the IS/ER and RBE models

warrant further study.

Acknowledgement: We are grateful to Sanjoy Baruah and Kevin Je�ay for many helpful discussions concerning this

paper.

References

[1] J. Anderson and A. Srinivasan. A new look at Pfair priorities. Submitted to Real-time Systems Journal,

October 1999. Available at http://www.cs.unc.edu/~anderson/papers.html.

[2] J. Anderson and A. Srinivasan. Towards a more e�cient and
exible Pfair scheduling framework. In

Proceedings of the Twentieth IEEE Real-Time Systems Symposium Work-in-progress Session, pages 46{50,

December 1999.

[3] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in resource

allocation. Algorithmica, 15:600{625, 1996.

[4] K. Je�ay and S. Goddard. The rate-based execution model. In Proceedings of the Twentieth IEEE Real-Time

Systems Symposium, pages 304{314, December 1999.

[5] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast scheduling of periodic tasks on multiple resources. In

Proceedings of the the 9th International Parallel Processing Symposium, pages 280{288, April 1995.

15

