
Mixed Pfair/ERfair Scheduling of Asynchronous

Periodic Tasks�

James H. Anderson and Anand Srinivasan

Department of Computer Science, University of North Carolina

Chapel Hill, NC 27599-3175

E-mail: fanderson,anandsg@cs.unc.edu

Phone: (919) 962-1757

December 2000

Abstract

There has been much recent interest in multiprocessor Pfair and ERfair scheduling algorithms. Under

Pfair scheduling, each task is broken into quantum-length subtasks, each of which must execute within a

\window" of time slots. These windows divide each period of a task into potentially overlapping subintervals

of approximately equal length. \Early-release" fair (ERfair) scheduling was recently proposed as a work-

conserving variant of Pfair scheduling. Under ERfair scheduling, subtasks within the same job are allowed

to execute before their Pfair windows.

In this paper, we prove that a simpli�ed variant of the PD Pfair algorithm, called PD2, is optimal for

scheduling any mix of early-release and non-early-release asynchronous tasks on a multiprocessor. This

result breaks new ground in two ways. First, we are the �rst to consider the problem of scheduling both

early-release and non-early-release tasks under a common framework. Second, all prior work on optimal

multiprocessor Pfair or ERfair scheduling algorithms has been limited to synchronous periodic task systems.

�Work supported by NSF grants CCR 9732916, CCR 9972211, CCR 9988327, and ITR 0082866.

1 Introduction

Pfair scheduling was proposed by Baruah et al. as a way of optimally and eÆciently scheduling periodic tasks on

a multiprocessor system [4, 5]. Pfair scheduling di�ers from more conventional real-time scheduling disciplines

in that tasks are explicitly required to make progress at steady rates. In the classic periodic task model, each

task T executes at an implicit rate given by T:e=T:p, where T:e is the execution cost of each job (i.e, instance)

of T , and T:p is the period of T . However, this notion of a rate is a bit inexact: a job of T may be allocated

T:e time units at the beginning of its period, or at the end of its period, or its computation may be spread out

more evenly. Under Pfair scheduling, this implicit notion of a rate is strengthened to require each task to be

executed at a rate that is uniform across all jobs.

Pfair scheduling algorithms ensure uniform execution rates by breaking tasks into quantum-length \sub-

tasks." Each subtask must execute within a \window" of time slots, the last of which is its deadline. These

windows divide each period of a task into potentially overlapping subintervals of approximately equal length. By

breaking tasks into smaller executable units, Pfair scheduling algorithms circumvent many of the bin-packing-

like problems that lie at the heart of intractability results involving multiple-resource real-time scheduling

problems. Intuitively, it is easier to evenly distribute small, uniform items among the available bins than larger,

non-uniform items.

Baruah et al. [4, 5] gave two algorithms, called PF and PD, that generate Pfair schedules on multiprocessors

for any feasible synchronous periodic task set. (As explained later, any Pfair schedule is also periodic. In a

synchronous task system, each task releases its �rst job at time 0; in an asynchronous task system, a task may

release its �rst job at any time.) PD is the more eÆcient of the two algorithms. In recent work [2], we presented

an improved version of PD, called PD2. PD2 is the most eÆcient Pfair algorithm proposed to date for optimally

scheduling synchronous periodic tasks.

In other recent work, we considered a work-conserving variant of Pfair scheduling called \early-release" fair

(ERfair) scheduling, and showed that an early-release version of PD is an optimal ERfair scheduling algorithm

for synchronous periodic task systems [1]. ERfair scheduling di�ers from Pfair scheduling in a rather simple

way. Under Pfair scheduling, if some subtask of a task T executes \early" within its window, then T is ineligible

for execution until the beginning of its next window. Under ERfair scheduling, if two subtasks are part of the

same job, then the second subtask becomes eligible for execution as soon as the �rst completes. In other words,

a subtask may be released \early," i.e., before the beginning of its Pfair window.

One limitation of most prior work on Pfair and ERfair scheduling is that only synchronous periodic task sys-

tems have been considered.1 One may think that the optimality of PD and related algorithms for asynchronous

task systems follows as a simple corollary from previous work on synchronous task systems. However, most

correctness proofs published previously for these algorithms hinge critically on the assumption that all tasks

1Moir and Ramamurthy have recently given a static-priority Pfair scheduling algorithm for asynchronous task systems [6]. Such

static-priority algorithms are not optimal. In other recent work, we proposed a task model that generalizes the sporadic (and hence

asynchronous) task model [3]. However, the algorithms given in [3] are only applicable to two-processor systems.

1

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

A(1x5/16): _ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

B(3x4/16): _ _ _ _

C(15x1/16): _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(a)

1

1

1

1

1

1 2

2 1

2 1

1 2

2 1 1 1 2 2 2 2 2

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

A(1x5/16): _ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

B(3x4/16): _ _ _ _

C(15x1/16): _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(b)

1

1

1

1

1

1 2

1 2

1 2

1 2

1 2 2 2 2 2 2 2

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_ _

_ _ _ _

_ _ _ _

_ _ _ _

A(1x5/16): _ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

B(3x4/16): _ _ _ _

C(15x1/16): _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(c)

1

1

1

1

1

2 1

2 1

2 1

1 2

1 1 1 2 1 2 2 1 2 2

Figure 1: A schedule for a task set under (a) Pfair scheduling, (b) ERfair scheduling, and (c) mixed Pfair and ERfair

scheduling. In this �gure, tasks of a given weight are shown together. Each Pfair window is shown on a separate line and

is depicted by showing the time slots it spans. Each column corresponds to a time slot. In inset (a), an integer value n

in slot t of some window means that n of the subtasks that must execute within that window are scheduled in slot t. No

integer value means that no such subtask is scheduled in slot t. In insets (b) and (c), some subtasks may be scheduled

before their Pfair windows.

are synchronous and periodic. In other words, these proofs are quite brittle and diÆcult to adapt to other task

models.

Contributions of this paper. In this paper, we prove that the PD2 Pfair algorithm is optimal for scheduling

any mix of early-release and non-early-release asynchronous tasks on a multiprocessor. In addition to being the

�rst work on optimal multiprocessor Pfair or ERfair scheduling algorithms for asynchronous systems, this paper

is also is the �rst to consider the problem of scheduling both early-release and non-early-release tasks under a

common framework. Such functionality might be useful if a small subset of tasks in a system are subject to

stringent average response-time requirements. A task's average response time can be lowered by scheduling it

as an early-release task.

Some examples. Before continuing, we consider some example schedules that highlight the di�erences among

the task models considered in this paper. In the Pfair scheduling literature, the ratio of a task T 's execution

cost and period, T:e=T:p, is referred to as its weight . A task's weight determines the length and alignment of

its Pfair windows. Figure 1 shows some schedules involving three sets of tasks executing on two processors: a

set A of one task of weight 5/16, a set B of three tasks of weight 4/16, and a set C of 15 tasks of weight 1/16.

Inset (a) shows the schedule for these tasks up to time slot 15 in a Pfair-scheduled system. Note that successive

2

windows of a task are either disjoint or overlap by one slot. As explained later, this is a general property of

Pfair-scheduled systems. Inset (b) shows the same task set under ERfair scheduling. In this case, each subtask

is eligible as soon as its predecessor completes. Notice that all set-A and set-B jobs have �nished by time slot 8,

which is much sooner than in the Pfair schedule. Inset (c) shows a schedule in which only the set-A task is an

early-release task. Note that this task's response time is lower here than in either of the previous two examples.

As we shall see, all of the schedules in Figure 1 are consistent with PD2.

The rest of this paper is organized as follows. In Section 2, we de�ne Pfair and ERfair scheduling. Then,

in Section 3, we de�ne the PD2 algorithm. In Section 4, we prove that PD2 correctly schedules any feasible

asynchronous periodic task set consisting of a mix of early-release and non-early-release tasks. Concluding

remarks appear in Section 5.

2 Pfair and ERfair Scheduling

Consider a collection of synchronous periodic real-time tasks to be executed on a system of multiple processors.

(For the moment, we are only considering synchronous periodic tasks. Asynchronous tasks will be considered

later.) We assume that processor time in such a system is allocated in discrete time units, or quanta; the time

interval [t; t+ 1), where t is a nonnegative integer, is called slot t. Associated with each task T is a period T:p

and an execution cost T:e. Every T:p time units, a new invocation of T with a cost of T:e time units is released

into the system; we call such an invocation a job of T . Each job of a task must complete execution before the

next job of that task begins. Thus, T:e time units must be allocated to T in each interval [k � T:p; (k+1) � T:p),

where k � 0. T may be allocated time on di�erent processors in such an interval, as long as it is not allocated

time on di�erent processors at the same time.

The sequence of allocation decisions over time de�nes a \schedule." Formally, a schedule S is a mapping

S : � � I 7! f0; 1g, where � is a set of periodic tasks and I is the set of nonnegative integers. If S(T; t) = 1,

then we say that task T is scheduled at slot t. St denotes the set of tasks scheduled in slot t. The statements

T 2 St and S(T; t) = 1 are equivalent.

Lag constraints. The ratio T:e=T:p is called the weight of task T , denoted wt(T). We assume each task's

weight is strictly less than one | a task with weight one would require a dedicated processor, and thus is quite

easily scheduled. A task with weight less than 1/2 is called a light task, while a task with weight at least 1/2

is called a heavy task.

A task's weight de�nes the rate at which it is to be scheduled. Because processor time is allocated in quanta,

we cannot guarantee that a task T will execute for exactly (T:e=T:p)t time during each interval of length t.

Instead, in a Pfair-scheduled system, processor time is allocated to each task T in a manner that ensures that

its rate of execution never deviates too much from that given by its weight T:e=T:p. More precisely, correctness

is de�ned by focusing on the lag between the amount of time allocated to each task and the amount of time

3

that would be allocated to that task in an ideal system with a quantum approaching zero. Formally, the lag of

task T at time t, denoted lag(T; t), is de�ned as follows:

lag(T; t) = (T:e=T:p)t� allocated (T; t); (1)

where allocated (T; t) is the amount of processor time allocated to T in [0; t). A schedule is Pfair i�

(8T; t :: �1 < lag(T; t) < 1): (2)

Informally, the allocation error for each task cannot exceed one quantum. The notion of early-release scheduling

is obtained by simply dropping the �1 lag constraint. Formally, a schedule is early-release fair (ERfair) i�

(8T; t :: lag(T; t) < 1): (3)

In a mixed Pfair/ERfair-scheduled task system, each task's lag is subject to either (2) or (3); such a task is

called a non-early-release task in the former case, and an early-release task in the latter. Note that any Pfair

schedule is ERfair, but not necessarily vice versa. It is straightforward to show that any ERfair schedule (and

hence any Pfair or mixed Pfair/ERfair schedule) is periodic [1, 3, 4].

Feasibility. A synchronous periodic task set � has a Pfair schedule on M processors i�

X
T2�

T:e

T:p
�M: (4)

This result was proved by Baruah et al. [4] by means of a network ow construction. Because any Pfair schedule

is ERfair, (4) is a feasibility condition for ERfair-scheduled systems as well. For similar reasons, it is also a

feasibility condition for mixed Pfair/ERfair-scheduled task systems.

Windows. The Pfair lag bounds given in (2) have the e�ect of breaking each task T into an in�nite sequence of

unit-time subtasks . We denote the ith subtask of task T as Ti, where i � 1. Subtask Ti�1 is called the predecessor

of Ti and Ti+1 is called the successor of Ti. As in [4], we associate with each subtask Ti a pseudo-release r(Ti)

and a pseudo-deadline d(Ti). If Ti is synchronous and periodic, then r(Ti) and d(Ti) are as follows.

r(Ti) =

�
i� 1
wt(T)

�
(5)

d(Ti) =

�
i

wt(T)

�
� 1 (6)

(Derivations of these expressions can be found in [2].) r(Ti) is the �rst slot into which Ti potentially could be

scheduled, and d(Ti) is the last such slot. For brevity, we often refer to pseudo-deadlines and pseudo-releases

as simply deadlines and releases, respectively. The interval [r(Ti),d(Ti)] is called the window of subtask Ti and

is denoted by w(Ti). The length of window w(Ti), denoted jw(Ti)j, is de�ned as d(Ti) � r(Ti) + 1. A window

4

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11

eight
windows
of T

iT i+1T i+2T i+3T i+4T i+5T i+6T i+7T

Figure 2: The eight \windows" of a task T with weight T:e=T:p = 8=11. Each of T 's eight units of computation must

be allocated processor time during its window, or else a lag-bound violation will result.

spanning n time slots is called an n-window .

Under Pfair scheduling, two tasks T and T 0 for which T:e
T:p

= T 0:e
T 0:p

are scheduled in precisely the same way.

Thus, for notational simplicity, it is reasonable to assume that T:e and T:p are relatively prime for each task T .

We do make this assumption here. Unfortunately, this creates a slight problem, because under ERfair scheduling,

two tasks with equal weights but di�erent periods may be scheduled di�erently, because their job releases occur

at di�erent times (under ERfair scheduling, a subtask is eligible as soon as its predecessor executes, unless it is

the �rst subtask of its job). To circumvent this problem, we will henceforth use the term task instance to refer

to a single release of some task. Each task instance consists of a sequence of one or more jobs.

As an example, consider a task T with weight wt(T) = 8=11. Each job of this task consists of eight windows,

one for each of its unit-time subtasks. Each job corresponds to one task instance. Using Equations (5) and (6),

it is possible to show that the windows within each job of T are as depicted in Figure 2. Under our model, a

task T 0 with weight 16/22 is treated exactly like a task with weight 8/11, except that each task instance of T 0

consists of two jobs.

The following properties concerning windows, which are proved in [2], are used in our proof.

(P1) The windows of each job of a task T are symmetric, i.e., jw(Tke+i)j = jw(Tke+e+1�i)j, where e = T:e,

1 � i � T:e, and k � 0.

(P2) The length of each of task T 's windows is either
l
T:p
T:e

m
or
l
T:p
T:e

m
+ 1. A window of task T with lengthl

T:p
T:e

m
(respectively,

l
T:p
T:e

m
+1) is called a minimal (respectively, maximal) window of T .

(P3) The �rst window of each job of a task is a minimal window of that task.

(P4) A task has a 2-window i� it is heavy. By (P1) and (P3), the �rst and last windows of any job a heavy

task are both of length two.

Asynchronous Pfair task systems. In the usual de�nition of an asynchronous periodic task system, each

task may release its �rst task instance at any time. For Pfair- or ERfair-scheduled systems, this means that

the �rst subtask of each task T , namely T1, may be released any time at or after time zero. Our notion of

5

an asynchronous task system generalizes this: We allow a task T to begin execution with any of its subtasks,

perhaps one other than T1, and this subtask may be released any time at or after time zero. As we shall see,

this added generality facilitates our proof. It is straightforward to modify the ow construction in [4] to apply

to asynchronous task systems as de�ned here; thus, (4) is a feasibility condition for such systems. In addition,

it is possible to de�ne the release and deadline of each subtask using simple formulae that are similar to those

given in (5) and (6) for synchronous task systems. We will not bother to state these formulae here because we

do not make explicit use of them in our proof. We instead rely on Properties (P1)-(P4) stated above.

3 PD2 Algorithm

For synchronous periodic task systems, the most eÆcient Pfair scheduling algorithm proposed to date is an

algorithm called PD2 [2], which is an improvement of the PD algorithm [5]. PD prioritizes subtasks by pseudo-

deadline (hence its name). It is related to an earlier algorithm called PF [4] in which ties among subtasks with the

same deadline are broken by comparing vectors of future pseudo-deadlines. Although PF was originally presented

only in the context of synchronous periodic systems, its correctness proof is also applicable to asynchronous

systems. Unfortunately, the runtime costs associated with PF are prohibitive, so it is not a practical algorithm.

In PD and PD2, the pseudo-deadline vectors of PF are replaced by a constant number of tie-break parameters.

Four tie-break parameters are used in PD, while in PD2, only two tie-break parameters are used. We now de�ne

the two PD2 tie-break parameters. The rationale behind each tie-break is explained later when considering the

PD2 priority de�nition.

First tie-break: The b-bit. By (5) and (6), r(Ti+1) is either d(Ti) or d(Ti)+1, i.e., successive windows are

either disjoint or overlap by one slot. We de�ne a bit b(Ti) that distinguishes between these two possibilities.

b(Ti) =

8<
:

1; if r(Ti+1) = d(Ti)

0; otherwise.
(7)

It can be shown that b(Ti) = 0 i� w(Ti) is the last window of a job of T . This follows from (2) and the fact

that T:p and T:e are relatively prime.

Second tie break: The group deadline. Consider a sequence Ti; : : : ; Tj of subtasks of a heavy task T such

that jw(Tk)j = 2 ^ b(Tk) = 1 for all i < k � j and either jw(Tj+1)j = 3 or w(Tj+1) = 2 ^ b(Tj+1) = 0 (e.g.,

Ti, Ti+1 or Ti+2, Ti+3, Ti+4 or Ti+5, Ti+6 in Figure 2). If any of Ti; : : : ; Tj is scheduled in the last slot of its

window, then each subsequent subtask in this sequence must be scheduled in its last slot. In e�ect, Ti; : : : ; Tj

must be considered as a single schedulable entity subject to a \group" deadline. Formally, we de�ne d(Tj) + 1

to be the group deadline for the group of subtasks Ti; : : : ; Tj . Intuitively, if we imagine a job of T in which each

subtask is scheduled in the �rst slot of its window, then the slots that remain empty exactly correspond to the

6

group deadlines of T . For example, in Figure 2, T has group deadlines at slots t+ 3, t+ 7, and t+ 10.

We let D(Ti) denote the group deadline of subtask Ti. Formally, if T is heavy, then

D(Ti) = (min u :: u � d(Ti) and u is a group deadline of T):

For example, in Figure 2, D(Ti) = t + 3 and D(Ti+5) = t + 10. The above de�nition of D is valid only for

heavy tasks. If T is light, then D(Ti) = 0. Our proof makes use of the following properties concerning group

deadlines. These properties are proved in [2].

(P5) If t and t0 are successive group deadlines of a task T , then t0 � t is either
j

T:p
T:p�T:e

k
or
j

T:p
T:p�T:e

k
+ 1.

(P6) Let T be a heavy task with more than one group deadline per job. Let t and t0 (respectively, u and u0) be

successive group deadlines of T , where t0 (respectively, u0) is the �rst (respectively, last) group deadline

within a complete job J of T (if J is the �rst job of T , then take t to be one less than J 's release time).

Then, t0 � t = u0 � u+ 1.

Having de�ned the two tie-break parameters, we can now state the PD2 priority de�nition.

PD2 Priority De�nition: Task T 's priority at time t is de�ned to be (d(Ti); b(Ti); D(Ti)), where Ti is the

currently-enabled subtask of T . Priorities are ordered according to the following relation.

(d0; b0; D0) � (d; b;D) � [d < d0] _ [(d = d0) ^ (b > b0)] _ [(d = d0) ^ (b = b0) ^ (D � D0))]

At time t, if the current subtasks of T and U are Ti and Uj , respectively, then T 's priority is at least U 's if

(d(Ti); b(Ti); D(Ti)) � (d(Uj); b(Uj); D(Uj)). 2

All of the components within the PD2 priority de�nition can be calculated in an asynchronous system using

simple formulae. If a task T is subject to the Pfair lag constraint (2), then each subtask Ti becomes eligible

for execution at time r(Ti). If T is instead subject to the ERfair lag constraint (3), then Ti becomes eligible at

time r(Ti) if it is the �rst subtask of its task instance, and immediately after the execution of Ti�1 otherwise.

According to the above priority de�nition, Ti has higher priority than Uj if it has an earlier pseudo-deadline.

If Ti and Uj have equal pseudo-deadlines, but b(Ti) = 1 and b(Uj) = 0, then the tie is broken in favor of Ti.

This is because scheduling a subtask with a b-bit of 1 earlier places fewer constraints on the future schedule. (In

particular, if Ti were scheduled very late, i.e., in the last slot of its window, then this would reduce the number

of slots available to Ti+1 by one.) If Ti and Uj have equal pseudo-deadlines and b-bits, then their group deadlines

are inspected to break the tie. If one is heavy and the other light, then the tie is broken if favor of the heavy

task. If both are heavy and their group deadlines di�er, then the tie is broken in favor of the one with the larger

group deadline. Note that the subtask with the larger group deadline can force a longer cascade of scheduling

decisions in the future. Thus, choosing to schedule such a subtask early places fewer constraints on the future

schedule. If both are heavy and their group deadlines are equal, then the tie can be broken arbitrarily.

7

4 Correctness Proof

We now prove that PD2 produces a valid schedule for any feasible asynchronous periodic task system. We begin

by assuming, to the contrary, that PD2 fails to correctly schedule some such task system.

De�nition 1 td is de�ned as the minimal time at which some feasible asynchronous periodic task system misses

a deadline under PD
2
.

Let � be a feasible asynchronous periodic task system with the following properties.

(T1) � misses a deadline under PD2 at td.

(T2) Among all feasible task systems that miss a deadline under PD2 at td, no task system releases a larger

number of subtasks in [0; td] than � .

The following lemma gives an important property of the task set � (note that the proof of this lemma relies

crucially on the fact that we have generalized the notion of an asynchronous system to allow a task to begin

execution with any of its subtasks).

Lemma 1 If task T 2 � releases its �rst subtask at time t > 0, and if this �rst subtask is Ti, i > 1, then either

b(Ti�1) = 0 and jw(Ti�1)j > t or b(Ti�1) = 1 and jw(Ti�1)j > t+ 1.

Proof: We prove that if b(Ti�1) = 0, then jw(Ti�1)j > t; the proof for b(Ti�1) = 1 is similar. Suppose

that jw(Ti�1)j � t. Consider the task system � 0 obtained by adding the subtask Ti�1 with a release at time

t� jw(Ti�1)j. Then, �
0 satis�es the following properties.

� It has one more subtask than � .

� It misses a deadline at td.

To see the latter, note that upon adding Ti�1 to � , if Ti�1 does not miss its deadline, then it will either be

scheduled in a slot where a processor is idle, or it will \push" a lower-priority subtask to a later slot. This

\pushed" subtask either misses a deadline or is scheduled correctly, in which case it may \push" yet another

subtask to a later slot, and so on. Hence, � 0 misses a deadline at td or earlier. This contradicts either De�nition

1 (the minimality of td) or (T2). Therefore, jw(Ti�1)j > t. 2

Our proof proceeds by showing the existence of certain schedules for task set � . To facilitate our description

of these schedules, we �nd it convenient to totally order all subtasks in � . Let � be an irreexive total order that

is consistent with the � relation in the PD priority de�nition. (� is obtained by arbitrarily breaking any ties

left by �.) Let Ti and Uj be two subtasks in � . Then, Ti is ordered before Uj , denoted Ti�Uj i� Ti has a higher

PD2 priority than Uj when the issue of eligibility is ignored, i.e., (d(Uj); b(Uj); D(Uj)) � (d(Ti); b(Ti); D(Ti)).

We de�ne a valid schedule S to be k-compliant i� (i) the �rst k subtasks according to � are scheduled in

accordance with PD2, and (ii) the remaining subtasks are scheduled within their Pfair windows.

8

(a) (b)

T

t’

i
same

decisions
as our

algorithm j

t

Uj

...

]
]

i i

j

]
]

T

t’t

Uj

...

i

Uj+1

Figure 3: We use the following notation in this and subsequent �gures. \[" and \]" indicate the release and deadline

of a subtask; subscripts indicate which subtask. Each task is shown on a separate line. An arrow from subtask Ti to

subtask Uj indicates that Ti is now scheduled in place of Uj . An arrow over \[" (or \]") indicates that the actual position

of \[" (or \]") can be anywhere in the direction of the arrow. Time is divided into unit-time slots that are numbered.

(Although all slots are actually of the same length, due to formatting concerns, they don't necessarily appear as such in

our �gures.) If Ti is released at slot t, then \[" is aligned with the left side of slot t. If Ti has a deadline at slot t, then

\]" is aligned with the right side of slot t. (a) Conditions of Lemma 3. (b) The \diÆcult" case to consider.

We now present two lemmas. The second of these, Lemma 3, allows us inductively prove that � does not

miss a deadline at td as originally assumed. Lemma 2, which is proved in an appendix, deals with a situation

arising in one of the cases in Lemma 3. According to Lemma 2, if subtasks Ti, Uj , and Uj+1 are scheduled as

shown in Figure 10(a) in the appendix, then by swapping some subtasks, it is possible to move Uj out of slot t.

Lemma 2 Let S be a valid schedule for � such that for light tasks T and U and t < t0, Uj is scheduled in slot

t, Uj+1 and Ti are scheduled in slot t0, and r(Uj) = t, d(Uj) = t0, r(Uj+1) = t0, and d(Ti) = t0, where w(Uj) is

a minimal window of U . If all subtasks scheduled at or after t in S are scheduled within their Pfair windows,

then there exists a valid schedule S0 also satisfying this property such that U =2 S0t, Su = S0u for 0 � u < t, and

St � fUg � S0t.

We now prove that a k-compliant schedule exists by induction on k. Note that a 0-compliant schedule is

just a Pfair schedule, and the existence of such a schedule is guaranteed for any feasible task system. Also, if

N subtasks are released in [0; td], then an N -compliant schedule is a valid schedule that is fully in accordance

with PD2 over [0; td]. The following lemma gives the inductive step of the proof.

Lemma 3 If S is a valid k-compliant schedule for � , then there exists a valid schedule S0 for � that is (k+1)-

compliant.

Proof: Let Ti be the (k + 1)st subtask according to �. If Ti is scheduled in S in accordance with PD2, then

take S0 to be S. Otherwise, there exists a time slot t such that Ti is eligible at t but scheduled later, and either

(i) some processor is idle at t, or (ii) some subtask ordered after Ti by � is scheduled at t. In the former case,

we can easily schedule Ti at t, so in the rest of the proof, we assume that (ii) holds. Take t to be the earliest

such time slot, and let Uj be the lowest-priority subtask scheduled at t. Let t0 be the slot where Ti is scheduled,

as depicted in Figure 3(a). Note that t may or may not lie within Ti's Pfair window; this depends on whether

Ti is an early-release subtask. However, because S is k-compliant, t lies within Uj 's Pfair window and t0 lies

within Ti's Pfair window. In the rest of the proof, we prove that S0 can be obtained from S by swapping Ti

and Uj and perhaps some other subtasks. In all cases, the subtasks that are swapped include Ti and subtasks

ranked after Ti by �. Since S is k-compliant, all such subtasks are scheduled within their Pfair windows.

9

no
T

no
U

no
T

no
U U

no

or

]

]
j+2

i+2

Uj+p

i+p-1T
i+1

j+1]

Ti+2

Uj+3

]

t’+3 t’+4

Ti+1]i

t’+2

j+2U]
j

iT

Uj+1

...

jU

t

i+p-1

]j+p-1

] i+pT i+p
]

j+p
]

...

...

...

...t’+1t’ u-1 u+1
u

Figure 4: Case 2. T is heavy, U is light, and d(Ti) = d(Uj).

Because S is a valid schedule and Ti's priority is higher than Uj 's, we have

t < t0 � d(Ti) � d(Uj)

If d(Ti) < d(Uj) or if d(Ti) = d(Uj) ^ b(Uj) = 0, then no subtask of U can be scheduled in the interval (t; t0].

Hence, Ti and Uj can be directly swapped to get the required schedule. In the rest of the proof, we assume that

d(Ti) = d(Uj) ^ b(Uj) = 1: (8)

Because T has higher priority than U at time t, we have

b(Ti) = 1: (9)

If Uj+1 is not scheduled in slot t0, then T and U still can be directly swapped to get a valid schedule. Thus, we

henceforth assume Uj+1 is scheduled in slot t0, i.e., the same slot as Ti. By (8), this can happen only if d(Ti)

and d(Uj) both equal t0 (otherwise, w(Uj) and w(Uj+1) would overlap by more than one slot). Thus, we have

Uj+1 2 St0 ^ d(Ti) = t0 ^ d(Uj) = t0: (10)

These conditions are depicted in Figure 3(b). We now consider four cases, which depend on the weights of tasks

T and U . We remind the reader that, in all of these cases, (8) through (10) are assumed to hold.

Case 1: T is light and U is heavy. By the de�nition of D, T cannot have higher priority than U at time t.

Case 2: T is heavy and U is light. In this case, we show that the swapping in Figure 4 is valid. (The

argument hinges on the fact U 's windows are at least as long as T 's.) By (P2) and (P4), all windows of T are

of length two or three, and the last window of each job of T is of length two. By (9), w(Ti) is not the �nal

window of its job. Thus, there exists r such that

jw(Ti+r)j = 2 ^ (8k : 0 < k < r :: jw(Ti+k)j = 3 ^ b(Ti+k) = 1):

10

an idle
processor

(b)

i
]iT

... t’t

j
]j+1UjU

Ti+1

t’+1

(a)

i
]iT

...t

j
]j+1UjU

t’ t’+1

Figure 5: Case 3. (a) Some processor is idle in slot t0 + 1. (b) Ti+1 is scheduled in slot t0 + 1.

(Note that r could be one, i.e., T could have no 3-windows between w(Ti) and w(Ti+1).) Because U is light,

by (P4), jw(Uk)j � 3 for all k. This implies that d(Ti+r) < d(Uj+r). Let q denote the smallest value of k that

satis�es d(Ti+k) < d(Uj+k). (Note that q � r.) Then,

(8k : 0 < k < q :: d(Ti+k) = d(Uj+k) ^ jw(Ti+k)j = 3 ^ jw(Uj+k)j = 3 ^ b(Ti+k) = 1) ^ d(Ti+q) < d(Uj+q):

Because d(Ti+q) < d(Uj+q), we have d(Ti+q) < r(Uj+q+1). Thus, Ti+q is scheduled before Uj+q+1. Let p be the

smallest value for k such that Ti+k is scheduled prior to Uj+k+1. (Again, note that p � q). To summarize:

� (8k : 0 < k < p :: d(Ti+k) = d(Uj+k) ^ jw(Ti+k)j = 3 ^ jw(Uj+k)j = 3 ^ b(Ti+k) = 1) ^ d(Ti+p) � d(Uj+p),

� Ti+p is scheduled before Uj+p+1, and

� for each k in the range 0 < k < p, Ti+k is not scheduled before Uj+k+1.

It is straightforward to see that the relevant subtasks are scheduled as shown in Figure 4 and the depicted

swapping is valid.

Case 3: Both T and U are light. (This case and Case 4 are somewhat lengthy.) Again, the situation

under consideration is as depicted in Figure 3(b). Because U is light, by (P4), jw(Uj+1)j � 3. Therefore, Uj+2

is released after t0 + 1 and so U is not scheduled in slot t0 + 1. If a processor is idle in slot t0 + 1, then the

swapping shown in Figure 5(a) gives the required schedule. If Ti+1 is scheduled in slot t0+1, then the swapping

shown in Figure 5(b) gives the required schedule. In the rest of Case 3, we assume that no processor is idle in

slot t0 + 1 and Ti+1 is not scheduled there. We show that one of the swappings in Figure 6 is valid.

Because U is scheduled at t0 but not t0+1, and because no processor is idle in slot t0+1, there exists a task

V scheduled in t0+1 but not t0. Let Vk be the subtask of V scheduled at t0+1. Because Vk is scheduled at time

t0 + 1, we have r(Vk) � t0 + 1. If r(Vk) < t0 + 1, then the swapping shown in Figure 6(a) produces the desired

schedule. In the rest of the proof for Case 3, we assume

r(Vk) = t0 + 1; (11)

in which case this swapping is not valid. Now consider subtask Vk�1. If Vk�1 =2 � , then by Lemma 1, either

11

Uj+1]
]

i

j

]i+1T

Uj+1]
]

i

j

t’+1

iT

v’

iT

t’+1 v’-1...

t

i
]iT

j
]j+1U

[no
V Vk

t’

i
]iT

...

j
]j+1U

kV[no
V

(a)

i
]iT

j
]j+1U

[no
V Vk

(b)

t’(>t+1)

(c) (d)

(f)(e)

t’ t

Uj

v

Vk-1

... ...

...

U

k-1V

v

j

...

]
]

i

j

T i+1]

k

i+1iT

Uj+1

t’+1

no
V kV[]

t’t ...

t’t’

t

jU

Vk-1

Uj

...t

Uj

...

Uj

... v’-1

i+1
]i+1T

v’ w...t

j

i

Uj+1]
]iT

Vk

i+1
]i+1T

k
]k+1V

no
Wh

W

V
no

t

Uj

t’... ... v’-1 v’

[
j

i

Uj+1]
]iT

Vk

i+1
]i+1T

k
]k+1V

no
Wh

W[
V
no

W
no

t

Uj

t’... ... v’-1 v’

]
h

t’+1t’+1

]
h

i

k-1

 equal
not

[

[
k

k k

k

k

h

k

h

V
no]

k
Vk+1

no
W]

h

[Vk

h
W

]V
no

]
h+1

W

k+1

h+1

(g)

[
h

k V
no [Vk

W[
h-1

(h)

h
]

h
W

Lemma 1 case

k+1
]window

W h+1

k+2V

W]
h+1

no

minimalVk+1]
kk

[

Figure 6: Case 3 (continued). (a) r(Vk) � t + 1. (b) r(Vk) = t + 2 ^ r(Vk�1) < r(Ti). (c) d(Wh) � v
0. (d)

d(Wh) = v
0

� 1 ^ r(Wh) � t+ 1 ^W =2 St+1. (e) d(Wh) = v
0

� 1 ^ r(Wh) � t+ 2. (f) d(Wh) = v
0

� 1, r(Wh) = t+ 1,

and W 2 St+1.

b(Vk�1) = 0 and jw(Vk�1)j > t0 or b(Vk�1) = 1 and jw(Vk�1)j > t0 + 1. For both possibilities, we have

jw(Vk)j > t0 � jw(Ti)j. Therefore, by (P2), jw(Vk)j � jw(Ti+1)j. Because r(Vk) = r(Ti+1) + 1, this implies that

d(Vk) > d(Ti+1). Hence, the swapping in Figure 6(d) is valid (this �gure actually depicts Vk�1 2 � , but the

swapping depicted is applicable nonetheless). In the rest of the proof for Case 3, we assume that Vk�1 2 � .

If Vk�1 is scheduled in the interval (t; t0), then the swapping shown in 6(b) is valid. If Vk�1 is not scheduled

in (t; t0), then it is scheduled at or before t. We now show that it cannot be scheduled in slot t.

12

Suppose, to the contrary, that Vk�1 is scheduled in slot t, as depicted in Figure 6(c). Because r(Vk) = t0+1,

d(Vk�1) is either t
0 + 1 or t0. If d(Vk�1) is t

0, then b(Vk�1) = 0. In either case, Vk�1 has lower priority than Uj

at t, which contradicts our choice of Uj as the lowest-priority subtask scheduled at t.

In the rest of Case 3, we consider the remaining possibility, i.e., Vk�1 is scheduled at a time v < t. Now,

it must be that Ti was not eligible to be scheduled at time v. To see this, note that if Ti were eligible at time

v, then it should have been scheduled there, as Ti has higher priority than Vk�1. This contradicts our starting

assumption that Ti should be scheduled at t. Thus, either r(Ti) > v or r(Ti) = v ^ Ti�1 2 Sv . (Note that

one of these assertions holds even if Ti is an early-release task.) Because r(Vk�1) � v, this implies that either

(r(Ti) > r(Vk�1)) or (r(Ti) = v ^ r(Vk�1) = v ^ Ti�1 2 Sv). We consider these two subcases next.

Subcase 3.A: r(Ti) > r(Vk�1). We show that d(Vk) > d(Ti+1), which implies that the swapping in Figure

6(d) is valid. There are two possibilities to consider, depending on the value of b(Vk�1).

b(Vk�1) = 0. In this case, by the de�nition of b(Vk�1), we have d(Vk�1) = r(Vk) � 1. By (10) and (11), this

implies that d(Vk�1) = d(Ti). Since b(Vk�1) is 0, w(Vk�1) is the last window of its job, and w(Vk) is the

�rst window of its job. Thus, by (P1), jw(Vk)j = jw(Vk�1)j. Because r(Vk�1) < r(Ti) (our assumption for

Subcase 3.A) and d(Vk�1) = d(Ti), we have jw(Ti)j � jw(Vk�1)j � 1. Therefore, jw(Ti)j � jw(Vk)j � 1. By (P2),

jw(Ti+1)j � jw(Ti)j + 1, and hence, jw(Vk)j � jw(Ti+1)j. Because r(Vk) = r(Ti+1) + 1 (see Figure 6(d)), this

implies that d(Vk) > d(Ti+1).

b(Vk�1) = 1. In this case, by the de�nition of b(Vk�1), we have d(Vk�1) = r(Vk). By (10) and (11), this implies

that d(Vk�1) = d(Ti) + 1. Because r(Vk�1) < r(Ti) (our assumption for Subcase 3.A) and d(Vk�1) = d(Ti) + 1,

jw(Vk�1)j � jw(Ti)j+ 2: (12)

By (P2), jw(Vk)j � jw(Vk�1)j�1 and jw(Ti)j � jw(Ti+1)j�1. Hence, by (12), jw(Vk)j+1 � jw(Ti+1)j�1+2, i.e.,

jw(Vk)j � jw(Ti+1)j. Because r(Vk) = r(Ti+1) + 1 (again, see Figure 6(d)), this implies that d(Vk) > d(Ti+1).

Subcase 3.B: r(Ti) = v ^ r(Vk�1) = v ^ Ti�1 2 Sv. Reasoning as in Subcase 3.A, it follows that

d(Vk) � d(Ti+1): (13)

We now show that a valid swapping exists in all cases. First, note that if Ti+1 is scheduled before Vk+1,

then the swapping shown in Figure 6(d) is still valid. This will be the case if d(Vk) > d(Ti+1) or if d(Vk) =

d(Ti+1) ^ r(Vk+1) = d(Vk) + 1. In the rest of the proof for Subcase 3.B, we assume that Ti+1 is not scheduled

before Vk+1. By (13), this can happen only if there exists v0 satisfying the following (see Figure 6(e)-(h)):

d(Vk) = v0 ^ r(Vk+1) = v0 ^ d(Ti+1) = v0 ^ Vk+1 2 Sv0 ^ Ti+1 2 Sv0 : (14)

13

Before considering other possible swappings, we �rst show that w(Vk) is a minimal window of V ; this fact

is used several times in the reasoning that follows. By (11) and the fact that consecutive windows of the same

task overlap by at most one slot, d(Vk�1) is either t
0 or t0+1. If d(Vk�1) = t0, in which case w(Vk�1) and w(Vk)

do not overlap, then w(Vk) is the �rst window of its job. Hence, by (P3), w(Vk) is a minimal window. On the

other hand, if d(Vk�1) = t0 + 1, in which case w(Vk�1) and w(Vk) do overlap, then we have the following:

� Ti and Vk�1 are both released at slot v (our assumption for Subcase 3.B),

� Ti has a deadline at t0 (see (10)) and Vk�1 has a deadline at t0 + 1 (by assumption), and

� Ti+1 and Vk have equal deadlines (by (14)).

By (P1)-(P3), this can happen only if jw(Vk)j = jw(Vk�1)j � 1, which implies that w(Vk) is a minimal window.

To continue, if some processor is idle in slot v0 � 1, then we can left-shift Ti+1 from v0 to v0 � 1 and then

apply the swapping in Figure 6(d). In the rest of Subcase 3.B, we assume that no processor is idle in slot v0�1.

Now, because Ti and Vk�1 are both released at v (our assumption for Subcase 3.B), and Ti has a deadline at t
0

and Vk is released at t
0+1 (see (10) and (11)), either jw(Vk�1)j = jw(Ti)j+1 or jw(Vk�1)j = jw(Ti)j ^ b(Vk�1) = 0.

In either case, because T is light, by (P2)-(P4), V is also light, and hence jw(Vk)j � 3. By (11) and (14),

w(Vk) = [t0 + 1; v0]; hence, v0 � t0 + 3. Because Vk 2 St0+1 ^ Vk+1 2 Sv0 , this implies that V =2 Sv0�1. Thus,

because no processor is idle at v0�1, there exists a task W that is scheduled in v0�1 but not v0. Let Wh be the

subtask of W scheduled at v0 � 1. We now show that at least one of the swappings in Figure 6(e)-(h) is valid.

d(Wh) � v0. In this case, the swapping in Figure 6(e) is clearly valid. We henceforth assume

d(Wh) = v0 � 1: (15)

(r(Wh) < t0) _ (r(Wh) = t0 ^ W =2 St0). In this case, the swapping shown in Figure 6(f) is valid.

r(Wh) > t0 ^ d(Wh) = v0. In this case, we show that d(Wh+1) < d(Vk+1), which implies that the swapping in

Figure 6(g) is valid. r(Wh) > t0 implies that jw(Wh)j < jw(Vk)j (see Figure 6(g)). Because w(Vk) is a minimal

window of V (as shown above), jw(Vk)j � jw(Vk+1)j. Thus,

jw(Wh)j < jw(Vk+1)j: (16)

Now, consider b(Wh). If b(Wh) = 0, then by (15), r(Wh+1) = v0. Thus, by (14) r(Wh+1) = r(Vk+1). In addition,

by (P1), jw(Wh+1)j = jw(Wh)j. Hence, by (16), we have jw(Wh+1)j < jw(Vk+1)j. Therefore, d(Wh+1) < d(Vk+1).

If b(Wh) = 1, then by (15), r(Wh+1) = v0�1, which by (14) implies that r(Wh+1) < r(Vk+1). In addition, by

(P2), jw(Wh+1)j � jw(Wh)j+1. Hence, by (16), we have jw(Wh+1)j � jw(Vk+1)j. Therefore, d(Wh+1) < d(Vk+1).

r(Wh) = t0 ^ W 2 St0. In this case, analysis similar to that above shows that d(Wh+1) � d(Vk+1). Let

d(Wh+1) = w. If d(Wh+1) < d(Vk+1) or if d(Wh+1) = d(Vk+1) ^ Vk+2 =2 Sw, then the swapping shown in

14

Figure 6(g) is valid (the �gure actually shows Wh being released after time t0, but the swapping is still valid).

On the other hand, if d(Wh+1) = d(Vk+1) and Vk+2 2 Sw, then we have the following (see Figure 6(h)):

� Wh is released at slot t0 and Vk is released at slot t0 + 1,

� Vk+1 is released at slot v0, and

� Vk+1 and Wh+1 have deadlines at slot w.

By (P1)-(P3), this can happen only if jw(Vk+1)j = jw(Vk)j. Because w(Vk) is a minimal window of V , this

implies that w(Vk+1) is a minimal window as well. Thus, by Lemma 2, there exists a schedule in which Vk+1 is

not scheduled at time v0. The swapping shown in Figure 6(h) is therefore valid. This completes Case 3.

Case 4: Both T and U are heavy. In the proof for this case, we refer to successive group deadlines of a

task. The following notation will be used. If g is a group deadline of task X , then pred (X; g) (respectively,

succ(X; g)) denotes the group deadline of task X that occurs immediately before (respectively, after) g. For

example, in Figure 2, pred(T; t+ 7) = t+ 3 and succ(T; t+ 7) = t+ 10.

As before, we are dealing with the situation depicted in Figure 3(b). Because Ti has higher priority than

Uj at time t according to PD2, D(Uj) � D(Ti). Because Ti 2 St0 and t0 = d(Ti) (refer to Figure 3(b)), each

subsequent subtask of T with a deadline at or before D(Ti) is scheduled in the last slot of its window. Note

that, because T and U are heavy tasks, t0 is either t + 1 or t+ 2. Let u be the earliest time after t0 such that

U =2 Su. Then, u � D(Uj). Because D(Uj) � D(Ti), this implies that either u < D(Ti) or u = D(Ti). If

u < D(Ti) holds then we have the following (refer to Figure 7(a)):

� in all slots in [t0; u], a subtask of T is scheduled in the last slot of its window;

� in all slots in [t0; u� 1], a subtask of U is scheduled in the �rst slot of its window;

� no subtask of U is scheduled in slot u.

This implies that the swapping in Figure 7(a) is valid. If u = D(Ti) ^ T 2 Su, then a similar swapping is valid

(in this case, the subtasks of T to be swapped occupy all slots in the interval [t0; D(Ti)]).

The remaining possibility is u = D(Ti) ^ T =2 Su. In this case, because u � D(Uj) � D(Ti), we have

D(Ti) = D(Uj) ^ D(Uj) = u ^ T =2 Su:

Let Uj+j0 be the subtask of U scheduled at u � 1. Then, u = t0 + j0, as shown in Figure 7(b). As the �gure

shows, each of the subtasks Ti+1; : : : ; Ti+j0�1 and Uj+1; : : : ; Uj+j0�1 has a window of length two. In addition,

because T =2 Su, w(Ti+j0) is either a 2-window starting at slot u or a 3-window starting at slot u� 1; however,

if w(Ti+j0) is a 2-window starting at slot u, then T has a group deadline at u� 1 rather than u. We conclude

that w(Ti+j0) is a 3-window and Ti+j0 is scheduled in slot t0 + j0 + 1.

15

no no

no

= t+1
or t+2()

= t+1
or t+2()

= t+1
or t+2()

= t+1
or t+2()

]] i+j’i i+1 i+j’-1T i i+j’]...

Vk

Ti+1
no
Ti+j’-1T

t

Uj+1]]]
j j+1 j+j’-1

...Uj+2 Uj+j’
no
U

[
k

]

t’+j’+1t’+j’t’+j’-1t’+1

Uj

...
(= u)

t’

V V]

T

... t’+j’+2

k+1

Ti+j’+1

...

...

...

]
i+j’+1

]Vk+2 k+1

Ti+j’+i’-1]i+j’+i’-1

]
k+i’-1 V

Ti+j’+i’]i+j’+i’

vv-1

k

(d)

Vk+i’

(= u)

...
i]]i+1]]i+j’T i+j’i+j’-1T Ti+1 i+j’-1Ti

... t’+j’t’+j’-1t’+1

j+1U]
j j+1]]]j+j’j+j’-1

...U no
Uj+j’Uj+2

(a)

t

Uj

... t’

(= u)

]

(b)

]] Ti+j’i i+1 i+j’-1T i i+j’]...

Vk

Ti+1
no
Ti+j’-1T

t

Uj+1]]]
j j+1 j+j’-1

...Uj+2 Uj+j’
no
U

V
no

t’+j’-1...

[

t’+j’+1t’+j’t’+1

jU

... t’

]] Ti+j’i i+1 i+j’-1T i i+j’]...

Vk

Ti+1
no
Ti+j’-1T

t

Uj+1]]]
j j+1 j+j’-1

...Uj+2 Uj+j’
no
U

[]k
no
V

]

... t’+j’+1t’+j’t’+j’-1t’+1

Uj

...
(= u)

t’

V k

k

(c)

Figure 7: Case 4. We use the following notation in Figures 7-9. A group deadline at slot t is denoted by an up-arrow that

is aligned with the right side of slot t. A left- or right-pointing arrow over an up-arrow indicates a group deadline that

may be anywhere in the direction of the left- or right-pointing arrow. (a) D(Ti) > D(Uj) or D(Ti) = D(Uj) ^ T 2 Su.

(b) D(Ti) = D(Uj) and r(Vk) < t
0 + j

0. (c) D(Ti) = D(Uj), r(Vk) = t
0 + j

0, and V =2 S
0

t0+j0+1. (d) D(Ti) = D(Uj),

r(Vk) = t
0 + j

0, and D(Ti+j0) > v.

If some processor is idle in slot u, then shifting subtask Uj+j0 to slot u produces a situation in which a

swapping like that in Figure 7(a) is applicable. We henceforth assume that no processor is idle at u.

Our strategy now is to identify another task to use as an intermediate for swapping. Because T and U are

scheduled at u � 1 but not u, and because no processor is idle at u, there exists a task V scheduled at u but

16

not u� 1. Let Vk be the subtask of V scheduled at u. If r(Vk) < u, then the swapping in Figure 7(b) is valid,

and if r(Vk) = u ^ V =2 Su+1, then the swapping in Figure 7(c) is valid. In the rest of the proof, we assume

r(Vk) = u ^ V 2 Su+1:

Note that V 2 Su+1 implies that d(Vk) = u+ 1, i.e., jw(Vk)j = 2. Therefore, by (P4), V is heavy. Consider the

group deadline of Vk, D(Vk). Let v be the earliest slot after u such that V =2 Sv . Note that

v � D(Vk): (17)

(See Figure 7(d).) Let Vk+i0 be the subtask of V that is scheduled in slot v � 1. If either v < D(Ti+j0) or

v = D(Ti+j0) ^ b(Ti+j0+i0) = 0, then Ti+j0+i0 is scheduled in slot v, and the swapping shown in Figure 7(d) is

valid. In the rest of the proof, we assume that neither of these conditions holds, i.e.,

[D(Ti+j0) < v] _ [v = D(Ti+j0) ^ b(Ti+j0+i0) = 1]: (18)

We claim that u� 1 is a group deadline of V . As seen in Figure 7(d), Vk�1 is not scheduled in slot u � 1.

Because r(Vk) = u, d(Vk�1) is either u� 1 or u. If d(Vk�1) = u� 1, then b(Vk�1) = 0 and w(Vk�1) is the �nal

window of a job of V , and thus u � 1 is a group deadline. If d(Vk�1) = u, then we reason as follows. Because

V is a heavy task, by (P2) and (P4), jw(Vk�1)j � 3. Because Vk�1 is not scheduled in slots u� 1 or u, r(Vk�1)

has to be u� 2. This implies that jw(Vk�1)j = 3. Therefore, u� 1 is a group deadline of V .

Having shown that u � 1 is a group deadline of V , we now show that pred(V; u � 1) � pred(T; u). T has

consecutive group deadlines at u and succ(T; u) = D(Ti+j0). Therefore, by (P5), the di�erence between u and

pred (T; u) is at most one more than D(Ti+j0)� u, i.e., u� pred (T; u) � D(Ti+j0)� u+ 1. Therefore,

pred(T; u) � 2u�D(Ti+j0)� 1: (19)

V has consecutive group deadlines at u� 1 and succ(V; u� 1) = D(Vk). Hence, by (P5), the di�erence between

u� 1 and pred(V; u� 1) is at least one less than D(Vk)� (u� 1), i.e., u� 1� pred(V; u� 1) � D(Vk)�u. Thus,

pred(V; u� 1) � 2u�D(Vk)� 1: (20)

By (17), (18), (19), and (20), pred(V; u � 1) � 2u � D(Vk) � 1 � 2u � D(Ti+j0) � 1 � pred(T; u). Thus,

pred (V; u�1) � pred(T; u). Note also that pred(V; u�1) = pred(T; u) i� D(Ti+j0) = D(Vk) = v. In addition, as

seen in Figure 7(d), T cannot have a group deadline in the interval [t0; u� 1]. Therefore, we have the following.

pred(V; u� 1) � pred(T; u) � t0 � 1 (21)

(pred (V; u� 1) = pred (T; u))) (D(Ti+j0) = v ^ D(Vk) = v) (22)

Recall that t0 is either t+ 2 or t+ 1. We consider these two subcases next.

17

]] Ti+j’i i+1 i+j’-1T i i+j’]...Ti+1
no
Ti+j’-1T

t’+1

Uj+1]]]
j j+1 j+j’-1

...Uj+2 Uj+j’
no
U

t’+j’+1t’+j’-1

]

...

Ti+j’+1]i+j’+1
...

...

Ti+j’+i’-1

t’

Uj

t t+1 t’+j’
(= t+2)

k[
k]kk+1]k+1

......k’V k’+1V]]
k’-1 k’

no
Vk’-1

(= u)

VVV k+2V

i+j’+i’-1]

v-1

]k+i’-1k+i’V

i+j’+i’]i+j’+i’T

v

T
no

V
no

v+1

Figure 8: Subcase 4.A. t0 = t+ 2.

Subcase 4.A: t0 = t + 2. In this case, we show that the swapping in Figure 8 is valid. To begin, note that

t0 = t+ 2 implies that T =2 St+1 and U =2 St+1. Let k
0 = k � j0 + 1. As Figure 8 shows,

� w(Vk�1) is a 2- or 3-window starting in slot u� 2 = t0 + j0 � 2 (since u� 1 is a group deadline of V);

� for each l in the range k0 � l < k � 1, w(Vl) is a 2-window (this is because, by (21), pred(V; u� 1) < t0);

� each of Vk0 ,. . . ,Vk�1 is scheduled in the �rst slot of its window (this can be seen by inducting from right

to left, starting with Vk�1).

Before continuing, we note that all of the subtasks Vk0�1; : : : ; Vk�1 belong to � . To see why, note that their

windows �t in the interval [0; t0 + j0 � 1] (see Figure 8) and therefore, by Lemma 1, they are in � .

Because Vk0 is released at t0 = t + 2, Vk0�1 has a deadline at either t + 1 or t + 2. We now prove that

d(Vk0�1) 6= t+1. Assume, to the contrary, that d(Vk0�1) = t+1. Because w(Vk0) is a 2-window starting in slot

t0 = t+ 2 (see Figure 8), this implies that b(Vk0�1) = 0, i.e., w(Vk0�1) is the �nal window of its job. Thus,

pred(V; u� 1) = t+ 1: (23)

If V has multiple group deadlines per job, then by (P5) and (P6), the di�erence between pred(V; u � 1) and

u� 1 is at least succ(V; u� 1)� (u� 1), i.e., succ(V; u� 1)� (u� 1) � (u� 1)� pred(V; u� 1). If V has one

group deadline per job, then clearly succ(V; u� 1)� (u� 1) = (u� 1)� pred(V; u� 1). In either case, by (23),

succ(V; u� 1) � 2u� t� 3: (24)

Because t0 = t + 2, w(Ti) is a 3-window. Thus, pred(T; u) = t0 � 1 = t + 1. By (P5), the di�erence between

succ(T; u) and u is at least one less than u � pred(T; u), i.e., succ(T; u) � u � u � (t + 1) � 1. Because

succ(T; u) = D(Ti+j0), this implies that D(Ti+j0) � 2u � t � 2. Thus, by (18), v � 2u � t � 2. Because

succ(V; u�1) = D(Vk), by (17), we have succ(V; u�1) � v. Thus, succ(V; u�1) � 2u� t�2, which contradicts

(24). Therefore, we conclude that d(Vk0�1) cannot be t+ 1. Thus, we have the following.

d(Vk0�1) = t+ 2

18

We now show that Vk0�1 is scheduled in slot t + 1, which implies that the swapping in Figure 8 is valid.

Assume, to the contrary, that Vk0�1 is not scheduled at t + 1. We have established that V is heavy and

d(Vk0�1) = t+ 2. Moreover, Vk0�1 is not scheduled in slot t+ 1 (by assumption) or in slot t+ 2 (because Vk0 is

scheduled there). By (P2)-(P4), this implies that w(Vk0�1) is a 3-window, r(Vk0�1) = t, and Vk0�1 is scheduled

in slot t. As seen in Figure 8, d(Vk0�1) = d(Uj), b(Vk0�1) = b(Uj), and D(Vk0�1) < D(Uj). Thus, Vk0�1 has

lower priority than Uj at time t, contradicting our choice of Uj as the lowest-priority subtask scheduled at t.

Subcase 4.B: t0 = t+ 1. In this case, we show that one of the swappings in Figure 9 is valid. We �rst prove

pred(V; u� 1) = t: (25)

As in Subcase 4.A, it is possible to show that

� each of Vk0 ; : : : ; Vk�2 has a window of length two and is scheduled in the �rst slot of its window, and

� Vk�1 has a window of length two or three and is scheduled in the �rst slot of its window.

(The existence of subtasks Vk0 ; : : : ; Vk�1 in � follows from the same reasoning given earlier in Subcase 4.A.)

This is depicted in Figure 9(a). Because r(Vk0) = t + 1, d(Vk0�1) is either t or t + 1. If d(Vk0�1) = t, then

w(Vk0�1) is the �nal window of its job. Therefore, pred(V; u� 1) = t.

If d(Vk0�1) = t+ 1, then we reason as follows. Because V is heavy, by (P2) and (P4), w(Vk0�1) is of length

two or three. If jw(Vk0�1)j = 3, then clearly, pred(V; u � 1) = t. Thus, it suÆces to show that jw(Vk0�1) 6= 2.

Suppose, to the contrary, that jw(Vk0�1)j = 2. Because d(Vk0�1) = t + 1, and because Vk0 is scheduled in slot

t + 1, Vk0�1 is scheduled in slot t. Observe that d(Vk0�1) = t + 1, d(Uj) = t + 1, b(Vk0�1) = 1, b(Uj) = 1,

and D(Vk0�1) < D(Uj). Thus, Vk0�1 has lower priority than Uj at t, which contradicts our choice of Uj as the

lowest-priority subtask scheduled at t. This completes our proof of (25). By (21) and (25), we have

pred(T; u) = pred(V; u� 1):

By (22), this implies that D(Ti+j0) = D(Vk) = v (see Figure 9(a)).

Because T =2 Su and T 2 Su+1, and because no processor is idle at u, there exists a taskW that is scheduled

at u but not u + 1. Let Wh be the subtask of W scheduled at u. If d(Wh) > u, then the swapping shown in

Figure 9(b) is valid. In the rest of the proof, we assume that

d(Wh) = u:

In this case, we show that one of the swappings in Figure 9(c)-(e) are valid. If W =2 Su�1, then the swapping

shown in Figure 9(c) is valid. In the rest of the proof, we assume

W 2 Su�1:

19

] Ti+j’i i+j’-1T i i+j’]...

Vk

no
Ti+j’-1T

t’

Uj+1]]
j j+j’-1

... Uj+j’
no
UUj

t’+j’+1t’+j’-1

[]k

]

...

k+1

Ti+j’+1

]

]

k+1

i+j’+1
...

...

...

Ti+j’+i’-1

no
V

no
T

t

(a)

]] Ti+j’i i+1 i+j’-1T i i+j’]...

k

Ti+1
no
Ti+j’-1T

t’ t’+1 t’+j’

Uj+1]]]
j j+1 j+j’-1

...Uj+2 Uj+j’
noUj

t’+j’+1t’+j’-1

k k

]

...

Vk+1

Ti+j’+1

]

]

k+1

i+j’+1
...

...

...

Ti+j’+i’-1

no
V

no
T

t

U

h]h
W W

no

(b)

t’+j’
(= t+1)

v-1

(= t+1)

...k’V
k’

]k’+1V

j+1]j+2U

i+1]i+1T

t’+1
(= u)

(= u)

V

V

k+2V

k+2V

i+j’+i’T

v+1

T
no

i+j’+i’-1]

v-1 v

V
no]k+i’-1

Vk+i’

T

v+1

T
no

v

]i+j’+i’-1

i+j’+i’]

i+j’+i’i+j’+i’]

V
no]k+i’-1k+i’V

[
kk’

t’+j’+2

t’+j’+2

][

Figure 9: Subcase 4.B. In each inset, t0 = t+1, D(Ti) = D(Uj), and D(Vk) = D(Ti+j0). (a) pred(V; u�1) = pred(T; u).

(b) d(Wh) > u. (Continued on the following page.)

In this case, we have r(Wh) = u� 1, i.e., jw(Wh�1)j = 2. Thus, by (P4), W is heavy.

We now show that W has a group deadline at time u or u+1 (refer to Figure 9(d)). Because Wh+1 =2 Su+1

and W is heavy, by (P2) and (P4), Wh+1 has to be scheduled at time u+2, and w(Wh+1) is either a 3-window

beginning at slot u or a 2-window beginning at slot u + 1. In the former case, u + 1 is the middle slot of a

3-window, and in the latter case, u is the �nal slot of a job of W , so either u or u+1 is a group deadline of W .

We now look at earlier subtasks of W . If there exists w such that t0 � w � u � 1 and W =2 Sw, then a

swapping similar to that shown in Figure 9(d) is valid and produces the desired schedule. In the rest of the

proof, we assume that for each w in the range t0 � w � u,W 2 Sw. This implies that, at each slot in the interval

[t0; u], a subtask of W is scheduled in the last slot of its window (recall that W is heavy). This is illustrated

in Figure 9(e). As seen in the �gure, each of the subtasks Wh�j0+1; : : : ;Wh has a window of length two. This

implies that the most recent group deadline of W before the one at u or u+ 1 occurs at or before time t, i.e.,

(u is a group deadline of W) pred(W;u) � t) ^

(u+ 1 is a group deadline of W) pred(W;u+ 1) � t): (26)

We now show that W 's next group deadline after the one at u or u+ 1 occurs after time v, which implies that

the swapping shown in Figure 9(e) is valid. There are two possibilities to consider, depending on whether W

has a group deadline at u or u+ 1. In both cases, by (17), (20), and (25), we have

v � 2u� t� 1: (27)

20

j+1

i+1]iT i Ti+1

t’ t’+1

Uj+1]]
j

Uj+2Uj

]no
T

t
(=t+1)

U

Ti+2

j+3

]

]

t’+2

h-h’W
no

] Ti+j’i+j’-1 i+j’]...

Vk

no
Ti+j’-1T

t’+j’

]j+j’-1
... Uj+j’

no

t’+j’+1t’+j’-1

[]k

...

Vk+1

Ti+j’+1

]

]

k+1

i+j’+1
...

...

...

Ti+j’+i’-1

no
V

U

h W
no...

(=u)

OR

k+2V
k

h
]

h-1
]

h-h’
] h-1 WW W

v-1

]

]

i+j’+i’-1

V

i+j’+i’T

no

no
T

k+i’-1k+i’V

i+j’+i’
]

v+1 v

] Ti+j’i+j’-1 i+j’]

k

no
Ti+j’-1T

]j+j’-1Uj+j’
noUj

t’+j’-1

[]k
Vk+1

Ti+j’+1

]

]

k+1

i+j’+1
...

...

...

Ti+j’+i’-1

no
V

no
T

t

U

h
W W

no
h-1h-j’+1

j+1]

i+1]

t’+1

i+1T

j+2U

t’

h-j’ h-j’

Uj+1

Ti]i

]
j

OR

W...

t’+j’+1t’+j’

...

...

v-1

k+i’

(=u)(=t+1)

W

V k+2V V
k

...

...
h-j’+1

]
h-1

]
h

]
h+1

]] h+1WWW h+i’-1

i+j’+i’

]

i+j’+i’-1

V

i+j’+i’T

no

no
T

W

v+1

k+i’-1

h+i’h+i’-1
]]h+i’

]]

 v

]] Ti+j’i i+1 i+j’-1T i i+j’]...

Vk

Ti+1
no
Ti+j’-1T

t’ t’+1 t’+j’

Uj+1]]]
j j+1 j+j’-1

...Uj+2 Uj+j’
noUj

t’+j’-1

[]k

]

...

Vk+1

Ti+j’+1

]

]

k+1

i+j’+1
...

...

...

T

no
V

no
T

t

U

W[no no
WW

t’+j’+1 v-1
(=t+1) (=u)

k+2V
k

i+j’+i’-1

k+i’V

]

]

i+j’+i’-1

V
no

no
T

 v v+1

k+i’-1

i+j’+i’
]Ti+j’+i’

h
h

]h

(c)

(d)

(e)

Figure 9: (Continued) (c) d(Wh) = u and W =2 Su�1. (d) d(Wh) = u, W 2 Su�1, and W =2 Sw for some w in [t0; u� 1].

(e) d(Wh) = u, W 2 Su�1, and W 's most recent group deadline before the one at u or u+ 1 is at or before t.

u is a group deadline of W . In this case,Wh is the last subtask of its job. By (P5) and (P6), the di�erence

between succ(W;u) and u is at least the di�erence between u and pred(W;u), i.e., succ(W;u)�u � u�pred(W;u).

Furthermore, by (26), pred(W;u) � t. Therefore, succ(W;u) � 2u� t. By (27), this implies that succ(W;u) > v.

u+ 1 is a group deadline of W . In this case, by (P5), the di�erence between succ(W;u + 1) and u + 1

is at least one less than the di�erence between u + 1 and pred(W;u + 1), i.e., succ(W;u + 1) � (u + 1) �

21

(u + 1) � pred(W;u + 1) � 1. Therefore, succ(W;u + 1) � 2u � pred(W;u + 1) + 1. Furthermore, by (26),

pred (W;u+ 1) � t. This implies that succ(W;u+ 1) � 2u� t+ 1. Therefore, by (27), succ(W;u+ 1) > v.

This exhausts all the possibilities if T and U are both heavy, and concludes the proof of Lemma 3. 2

By applying Lemma 3 inductively as discussed above, there exists a valid schedule for � over [0; td] consistent

with PD2, contrary to our original assumption. Thus, we have the following theorem.

Theorem 1 PD
2
generates a valid schedule for any feasible asynchronous periodic task system in which each

task's lag is bounded by either (2) or (3).

5 Concluding Remarks

We have shown that the PD2 algorithm is optimal for scheduling any mix of early-release and non-early-release

asynchronous periodic tasks on a multiprocessor. This is the �rst work known to us on the problem of scheduling

both early-release and non-early-release tasks under a common framework. In addition, this is the �rst paper

to show that any variant of the PD Pfair algorithm is optimal for scheduling asynchronous task systems on a

multiprocessor. We are currently trying to extend the results of this paper to show that PD2 is also optimal for

scheduling sporadic task systems.

Acknowledgements: We are grateful to Sanjoy Baruah, Mark Moir, and Srikanth Ramamurthy for many helpful

discussions on the subject of this paper.

References

[1] J. Anderson and A. Srinivasan. Early-release fair scheduling. In Proc. of the 12th Euromicro Conference on Real-Time

Systems, pages 35{43, June 2000.

[2] J. Anderson and A. Srinivasan. A new look at pfair priorities. Technical Report TR00-023, University of North

Carolina at Chapel Hill, Sept. 2000. Available at http://www.cs.unc.edu/~anderson/papers.html.

[3] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond periodic task systems. In Proc. of the 7th International

Conference on Real-Time Computing Systems and Applications, Dec 2000. To appear.

[4] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in resource allocation.

Algorithmica, 15:600{625, 1996.

[5] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast scheduling of periodic tasks on multiple resources. In Proc. of the 9th

International Parallel Processing Symposium, pages 280{288, Apr. 1995.

[6] S. Ramamurthy and M. Moir. Static-priority periodic scheduling of multiprocessors. In Proc. of the 21st IEEE

Real-Time Systems Symposium, pages 69{78, Dec. 2000.

22

Appendix: Proof of Lemma 2

In this appendix, we prove Lemma 2, which is restated below.

Lemma 2 Let S be a valid schedule for � such that for light tasks T and U and t < t0, Uj is scheduled in slot

t, Uj+1 and Ti are scheduled in slot t0, and r(Uj) = t, d(Uj) = t0, r(Uj+1) = t0, and d(Ti) = t0, where w(Uj) is

a minimal window of U . If all subtasks scheduled at or after t in S are scheduled within their Pfair windows,

then there exists a valid schedule S0 also satisfying this property such that U =2 S0t, Su = S0u for 0 � u < t, and

St � fUg � S0t.

Proof: Note that Ti and Uj cannot be swapped directly because this would result in a schedule in which two

subtasks of U are scheduled in the same slot. Instead, we identify another subtask Vk that can be used as an

intermediate between Uj and Ti for swapping. Because T and U are both light, by (P2), all windows of each

span at least three slots. Thus, t0 > t+ 1 and fT; Ug 6� St0�1.

If some processor is idle at slot t0 � 1, then the swapping shown in Figure 10(b) gives the required schedule.

We henceforth assume that no processor is idle at slot t0 � 1. In this case, because fT; Ug 6� St0�1 and

fT; Ug � St0 , there exists a task V that is scheduled at t0 � 1 but not t0. Let Vk be the subtask of V scheduled

at t0 � 1. If d(Vk) > t0 � 1, then the swapping shown in Figure 10(c) gives the desired schedule. In the rest of

the proof, we assume

d(Vk) = t0 � 1: (28)

If r(Vk) < t or if r(Vk) = t ^ V =2 St, then the swapping shown in Figure 10(d) produces the desired

schedule. The remaining possibility to consider is

(r(Vk) > t) _ (r(Vk) = t ^ V 2 St): (29)

In this case, we show that the swapping in Figure 10(e) is valid (this �gure actually depicts the case r(Vk) =

t ^ V 2 St). From (28), (29), and the statement of the lemma, we have d(Vk) = d(Uj) � 1 and r(Vk) � r(Uj).

This implies that

jw(Vk)j < jw(Uj)j: (30)

Because w(Uj) is a minimal window of U , jw(Uj+1)j � jw(Uj)j. By de�nition, jw(Uj+1)j = d(Uj+1)�r(Uj+1)+1.

From the statement of the lemma, this implies that d(Uj+1) = jw(Uj+1)j+ t0 � 1. Therefore,

d(Uj+1) � t0 � 1 + jw(Uj)j: (31)

Now, by (28) and the fact that consecutive windows of a task overlap by at most one slot, Vk+1 is released at

either t0 � 1 or t0. We now show that in either case, d(Vk+1) � t0 � 1 + jw(Vk)j. If r(Vk+1) = t0, then by (P1),

jw(Vk+1)j = jw(Vk)j. By de�nition, jw(Vk+1)j = d(Vk+1)� r(Vk+1) + 1. Therefore, d(Vk+1) = t0 � 1 + jw(Vk)j.

23

an idle
processor

Ti i

Uj+1]j

(a)

t’

[Uj
minimal
window

t ...

]
j j Uj+1

]
]

i

jwindow

(b)

iT

t ...

minimal[U

t’t’-1

j j Uj+1

]
]

i

jwindow

no
V]

k

(c)

iT

t

kV

...

minimal[U

t’t’-1

j

Uj Uj+1

i

jwindow

no
VVk-1

(e)

iT

]k+1V

]

... t’-1t

minimal[

[

t’

]
]

]
k

...

Vk

j

k
[

(d)

]
i

]
j

iT

j+1U

]
k

Vk V
no

t’-1

minimal
window

t’...t

Uj

V
no

[
j

k

Figure 10: (a) Conditions of Lemma 2. (b) d(Vk) > t
0

� 1. (c) d(Vk) = t
0

� 1 and r(Vk) � t. (d) d(Vk) = t
0

� 1 and

r(Vk) � t.

On the other hand, if r(Vk+1) = t0 � 1, then we reason as follows. By (P2), jw(Vk+1)j � jw(Vk)j + 1.

Because jw(Vk+1)j = d(Vk+1) � r(Vk+1) + 1, it follows that d(Vk+1) � t0 � 1 + jw(Vk)j. Hence, in both cases,

d(Vk+1) � t0 � 1 + jw(Vk)j. By (30) and (31), this implies that d(Uj+1) > d(Vk+1). Thus, the swapping shown

in Figure 10(e) is valid, and produces the required schedule. 2

24

