
Object Sharing in Pfair-scheduled Multiprocessor

Systems∗

Philip Holman and James H. Anderson

Department of Computer Science

University of North Carolina

Chapel Hill, NC 27599-3175

Phone: (919) 962-1757

Fax: (919) 962-1799

E-mail: {holman, anderson}@cs.unc.edu

December 2001

Abstract

We consider various techniques for implementing shared objects and for accounting for object-

sharing overheads in Pfair-scheduled multiprocessor systems. We primarily focus on the use of lock-free

objects, though some lock-based alternatives are briefly considered as well. Lock-free objects are more

economical for implementing relatively simple objects such as buffers, stacks, queues, and lists; locking

techniques are preferable for more complicated objects and for sychronizing accesses to physical devices.

We present schedulability conditions for Pfair-scheduled systems in which lock-free objects are used.

In addition, using shared queues as an example, we show how one can exploit the tight synchrony that

exists in Pfair-scheduled systems to optimize lock-free implementations. We also show that lock-free

object-sharing overheads can be reduced by combining tasks into supertasks; this is because, within a

supertask, less-costly uniprocessor synchronization techniques can be used.

∗Work supported by NSF grants CCR 9972211, CCR 9988327, and ITR 0082866.

1 Introduction

There has been much recent work on scheduling techniques that ensure fairness, temporal isolation, and

timeliness among tasks multiplexed on the same set of processors. Under fair scheduling disciplines, tasks

are assigned weights, and each task is scheduled at a rate that is in proportion to its weight. Executing

tasks at predictable rates prevents “misbehaving” tasks from exceeding their weight-defined rates (temporal

isolation), and allows real-time deadlines to be guaranteed, where feasible (timeliness).

In recent years, there has been considerable interest in fair scheduling algorithms for multiprocessor

systems [3, 4, 5, 7, 8, 9, 16]. One reason for this interest is the fact that fair scheduling algorithms, at

present, are the only known means for optimally scheduling recurrent real-time tasks on multiprocessors.

In addition, there has been growing practical interest in such algorithms. Ensim Corp., for example, an

Internet service provider, has deployed multiprocessor fair scheduling algorithms in its product line [9].

One limitation of prior work on multiprocessor fair scheduling algorithms is that only independent tasks

that do not synchronize or share resources have been considered. In contrast, tasks in real systems usually

are not independent. Synchronization entails additional overhead, which must be taken into account when

determining system feasibility [2, 6, 18, 19, 20, 21]. Unfortunately, prior work on real-time synchronization

has been directed at uniprocessor systems, or systems implemented using non-fair scheduling algorithms (or

both), and thus cannot be directly applied in fair-scheduled multiprocessor systems. (Indeed, fair-scheduled

uniprocessor systems were first considered only very recently [10, 11, 14, 16].)

In this paper, we consider the problem of object sharing in fair-scheduled multiprocessor systems. We

primarily focus on the use of lock-free objects, which are implemented without critical sections or related

mechanisms. However, some lock-based alternatives are briefly considered as well. We take as our notion

of fairness the Pfairness constraint proposed by Baruah et al. [7]. We also limit attention to periodic task

systems [15]. Although we consider only Pfair-scheduled periodic tasks, many of our results are applicable

to other fair scheduling algorithms and notions of recurrent execution as well.

To reduce object-sharing overheads, we consider the use of supertasking, which was proposed previously

to reduce migration costs in Pfair-scheduled systems [17]. A supertask is merely a collection of periodic

tasks that is scheduled as a single entity; when a supertask is scheduled, it selects one of its component

tasks for execution. We show that, by combining tasks into supertasks, synchronization overheads can

be reduced. This is because a supertask executes its component tasks as a virtual uniprocessor; hence,

contention for objects is reduced, and less-costly uniprocessor synchronization techniques often can be used.

The rest of this paper is organized as follows. In Sec. 2, we consider Pfair scheduling and supertasking in

greater detail. Then, in Sec. 3, we consider several problems that occur when synchronizing tasks in Pfair-

scheduled systems. In Sec. 4, we present schedulability conditions for Pfair-scheduled systems comprised of

periodic tasks that share lock-free objects, with and without supertasking. In Sec. 5, two implementations

of a shared queue are given to demonstrate the algorithmic benefits of supertasking. We then present and

experimentally evaluate a heuristic for assigning tasks to supertasks in Sec. 6. We conclude in Sec. 7.

1

2 Pfair Scheduling and Supertasking

Let τ denote a set of periodic tasks to be scheduled on M ≥ 2 processors. Let ρ denote the set of objects

shared by tasks in τ . Assume that each object � ∈ ρ is accessed by at least two tasks and that each task

accesses at least one object.

Pfair scheduling. Under Pfair scheduling, each task has a weight , which determines the manner in

which it is scheduled. Let T.w denote the weight of task T ∈ τ . T.w is determined (as explained later) by

considering two parameters associated with T : an integer period T.p, and a base execution cost T.e, which

is defined as the worst-case cost of a single job (i.e., invocation) of T without considering shared-object

accesses. Unlike prior work on Pfair scheduling, we do not assume that T.e is an integer here.

Pfair scheduling algorithms allocate processor time in discrete time units, or quanta. The interval

[t, t + 1), where t is a non-negative integer, is called time slot t. In each time slot, each processor can

be assigned to at most one task and each task may be assigned at most one processor. Task migration

is allowed. The sequence of scheduling decisions made in these time slots defines a schedule. A schedule

respects Pfairness if and only if the following property holds for all T ∈ τ and for all t ≥ 0 [12].

PF: T receives either �T.w · t� or 	T.w · t
 quanta over any interval [0, t).

At present, three optimal Pfair scheduling algorithms are known: PF [7], PD[8], and PD2 [3, 4, 5].

Because these algorithms are optimal, each will produce a Pfair schedule whenever some such schedule

exists. Baruah et al. [7] derived the following necessary and sufficient condition for the existence of a Pfair

schedule for a task set τ on M processors.

∑
T∈τ

T.w ≤ M (1)

Baruah et al. also demonstrated that a rational task weight T.w = b
c ensures that exactly b quanta are

received in the interval [k · c, (k + 1) · c) for all k ≥ 0 in any schedule that respects Pfairness. Therefore,

our goal in this paper is to determine a worst-case object-sharing overhead T.∆ for each task T such that

the worst-case per-job execution cost of task T is upper-bounded by 	T.e+ T.∆
. In this case, the weight

assignment T.w = �T.e+T.∆�
T.p will be sufficient to ensure that all job deadlines of T are met in any Pfair

schedule. Notice that the ceiling is necessary to ensure that the weight is rational.

Example. To illustrate Pfair scheduling, consider the schedule shown in Fig. 1(a), which was produced

by the PD2 scheduler. In this schedule, two processors are shared among five tasks, labeled S–W , which

are assigned weights 1/2, 1/3, 1/3, 1/5, and 1/10, respectively. Vertical dashed lines mark the quantum

boundaries and boxes show when each task is allocated a processor. Notice the even distribution of each

task’s allocation. This distribution of allocation both simplifies multiprocessor scheduling and complicates

object sharing, as will be explained later in Sec. 3.

2

T

S

U

V

W

1/2

1/3

1/3

1/5

1/10

TIME

TASKS SCHEDULE

0 5 10

(a) PD2 schedule

TASKS SCHEDULE

T

S

U

1/2

1/3

1/3

S* 3/10

1/5

1/10

V

W

TIME 0 5 10

WITHIN S*

(b) Supertasking schedule

Figure 1: Sample Pfair schedules for a task set consisting of five tasks with weights 1/2, 1/3, 1/3, 1/5, and 1/10
respectively. (a) Normal schedule produced when no supertasks are used. (b) Schedule produced when tasks V
and W are combined into the supertask S*, which competes with weight 3/10.

Supertasking. In supertasking [17, 12], the task set τ is partitioned into a collection of non-empty

subsets, σ. Each S ∈ σ, called a supertask , is then assigned a weight S.w (see below) and competes for

the system’s processors in place of the tasks in S, called S’s component tasks . Whenever S is scheduled,

it selects one of its component tasks for execution. (When |S| = 1, the lone component task is assumed to

be scheduled directly.) We let S(T) denote the supertask of which task T is a component task.

To illustrate supertasking, consider Fig. 1(b). The schedule shown is derived from that of Fig. 1(a)

by letting σ = {{S}, {T}, {U}, {V,W}}. Here, S* is a supertask with component tasks V and W and

competes with weight S*.w = 3/10 = V.w +W.w. When S* is scheduled in the upper schedule, it selects

one of its component tasks to execute (shown in the lower schedule) as indicated by the arrows. (Note

that, although S* executes V and W as a virtual uniprocessor, these tasks actually may migrate.)

Although in this example S*’s weight is equal to the cumulative weight of its component tasks, Moir and

Ramamurthy [17] demonstrated that such a simple weight assignment may result in deadline misses when

used with PF, PD, or PD2. In previous work, we showed that component-task deadlines can be guaranteed

by reweighting supertasks so that they use a slightly larger weight [12]. It is unknown whether supertasking

without weight inflation is inherently suboptimal. In the experimental evaluations that we present later in

Sec. 6, we present results for supertasking with and without weight inflation for this reason.

3 Object Sharing in Fair-scheduled Systems

Fair schedulers distribute each task’s allocation evenly across any interval of time. Requiring a task to

execute at a steady rate is problematic when blocking synchronization is introduced. If a task is blocked

due to a lock request, it is incapable of executing. Even worse, a lock-holding task cannot always execute

nonpreemptively to reduce blocking times since such behavior might violate fairness. For these reasons,

techniques that avoid blocking are preferable in fair-scheduled systems, where applicable.

3

typedef Qtype: record data: valtype; next : pointer to Qtype
shared var Head , Tail : pointer to Qtype
private var old , new : pointer to Qtype; input: valtype;

addr : pointer to pointer to Qtype

procedure Enqueue(input)
∗new := (input, nil);
do old := Tail ;
if old �= nil then addr := &((∗old).next) else addr := &Head fi

while ¬CAS2(&Tail , addr , old ,nil ,new ,new)

Figure 2: Lock-free enqueue implementation.

Lock-free algorithms. Lock-free algorithms work particularly well for simple objects like buffers, queues,

and lists. In such algorithms, object calls are implemented using “retry loops.” Fig. 2 depicts a lock-free

enqueue operation that is implemented in this way. An item is enqueued in this implementation by us-

ing a two-word compare-and-swap (CAS2) instruction1 to atomically update a tail pointer and either the

“next” pointer of the last item in the queue or a head pointer, depending on whether the queue is empty.

This loop is executed repeatedly until the CAS2 instruction succeeds. An important property of lock-free

implementations such as this is that operations may interfere with each other. An interference results in

this example when a successful CAS2 by one task causes another task’s CAS2 to fail.

In addition to lock-free algorithms, we will also consider “wait-free” algorithms in this paper. The wait-

free requirement strengthens the lock-free requirement by guaranteeing that each operation will eventually

make progress. For this reason, wait-free algorithms may consist only of code segments with a bounded

number of loop iterations.

When lock-free objects are used in real-time systems, bounds on loop retries must be computed for

scheduling analysis. On uniprocessors, aspects of priority schedulers can be taken into account to determine

such bounds [2]. In real-time multiprocessor systems, lock-free algorithms have been viewed as being

impractical, because deducing bounds on retries due to interferences across processors is difficult. However,

as we later show, the tight synchrony in Pfair-scheduled systems can be exploited to help bound interferences

more tightly than in an asynchronous multiprocessor system. In addition, the use of supertasking in

Pfair-scheduled systems may permit the use of uniprocessor wait-free object implementations in place of

multiprocessor lock-free variants. For most objects, these wait-free implementations will be more efficient.

(We illustrate this fact with an example in Sec. 5.)

Lock-based algorithms. Despite the expected superiority of lock-free techniques, they cannot be ap-

plied in all cases. The effectiveness of lock-free algorithms is limited to operations that can be completed

quickly. For some lengthy operations, lock-based techniques may be a necessity. Hence, lock-based tech-

1The first two parameters of CAS2 specify addresses of two shared variables, the next two parameters are values to which
these variables are compared, and the last two parameters are new values to assign to the variables if both comparisons
succeed. Although CAS2 is uncommon, it makes for a simple example here.

4

niques cannot be totally ignored in fair-scheduled systems. We will now briefly explain how some existing

lock-based concepts can be applied in fair-scheduled systems. We intend to examine these lock-based

techniques in more detail in future work.

In real-time systems in which locks are used, priority inversions must be dealt with. A priority inversion

occurs when a task is blocked by a task of lower priority. Inheritance and ceiling schemes [6, 18, 19, 20, 21]

limit the duration of priority inversions by temporarily boosting a lock-holding task’s priority when it blocks

any higher-priority task. In fair-scheduled systems, such schemes cannot be applied directly because they

disrupt allocation rates. As a result, blocking times in fair-scheduled systems are likely to be much worse

than in systems that do not require fair scheduling.

As an example, reconsider the schedule shown in Fig. 1(a), which shows the PD2 schedule for five

independent tasks on two processors. Now consider Fig. 3(a), in which the tasks are no longer independent.

In time slot 2, suppose task W obtains a lock, which it will not release for two quanta. When S, T , and

U request this lock in time slots 3-4, they are forced to wait until the lock is released by W . Due to W ’s

low weight, this does not happen until sometime after time slot 14. In the meantime, all quanta allocated

to S, T , and U are useless (because they are blocked).

Although conventional inheritance and ceiling protocols are not directly applicable in fair-scheduled

systems, many of the concepts underlying them are applicable. Disruptions to fair allocation rates can be

ameliorated by decoupling the choice of which task to schedule in a particular time slot from the choice of

which task to charge for the execution time. The following list describes several alternatives based on this

idea that we intend to explore in future work.

Rate inheritance. This approach is based on the priority inheritance protocol [21]. Since allocation

rates are proportional to weights in Pfair-scheduled systems, we can speed a lock-holding task’s critical-

section execution by letting it execute within any quantum allocated to the heaviest task that it blocks (if it

indeed blocks a heavier task). Fig. 3(b) illustrates this technique. In time slot 3, W inherits T ’s scheduling

parameters, and in time slot 4, it inherits S’s parameters. W executes within the quanta allocated to S in

time slots 6 and 8.

Allocation inheritance. In this approach, a lock-holding task inherits all quanta allocated to all tasks

that it blocks. This is similar to the concept of bandwidth inheritance, discussed in [14]. The effectiveness

of this approach in multiprocessor systems is limited by the possibility that many of the inherited quanta

may be allocated in parallel. As an example, consider Fig. 3(c). Notice that W receives allocations from

both S in time slot 6 and U in time slot 7. Also, notice that two blocked tasks are scheduled in time slot 6,

hence one quantum is wasted.

Weight inheritance. The problem of parallel quantum allocations can be avoided by adding to a lock-

holding task’s weight the weight of each task that it blocks, rather than by simply inheriting their quanta.

5

T

S

U

V

W

1/2

1/3

1/3

1/5

1/10

TIME

TASKS SCHEDULE

0 5 10

(a) Simple locking

T

S

U

V

W

1/2

1/3

1/3

1/5

1/10

TIME

TASKS SCHEDULE

0 5 10

(c) Allocation inheritance

T

S

U

V

W

1/2

1/3

1/3

1/5

1/10

TIME

TASKS SCHEDULE

0 5 10

(b) Rate inheritance

Lock is obtained

Inherited quantum

Wasted quantum

Allocated quantum

Lock is held

Lock is requested

Lock is released

LEGEND

Figure 3: A series of two-processor Pfair schedules for an non-independent task set consisting of five tasks with
weights 1/2, 1/3, 1/3, 1/5, and 1/10 respectively. (a) Simple locking (b) Rate inheritance (c) Allocation inheritance

In this manner, weight inheritance is also derived from the concept of bandwidth inheritance. By inheriting

the weight of all blocked tasks, the lock-holding task can guarantee that the number of quanta it receives

is the highest possible with respect to the available bandwidth. However, at present, Pfair scheduling only

permits statically-defined task weights, which prevents the use of such an approach.

Though these and similar techniques may be potentially useful in fair-scheduled systems, it is doubtful

that they will outperform lock-free techniques when both are applicable. For this reason, we focus on lock-

free techniques in the rest of this paper. However, a paper on lock-based techniques will be forthcoming.

4 Schedulability Conditions

We now state and prove sufficient schedulability conditions for a system of Pfair-scheduled tasks that share

lock-free objects. To the best of our knowledge, this is the first work involving the use of lock-free objects in

real-time multiprocessors. The efficient use of lock-free algorithms is made possible by the tight synchrony

provided by Pfair scheduling. In addition, supertasks can be used to reduce the number of retries caused

by concurrent object accesses. Indeed, if all tasks accessing an object can be packed into a single supertask,

then a uniprocessor implementation of the object may be used instead of the multiprocessor implementation

(as explained later). We demonstrate the benefits of such a substitution later in Sec. 5.

6

Definitions and assumptions. Assume that each object � ∈ ρ is accessed at most JT (�) (respectively,

QT (�)) times within a single job (quantum) of task T . Further, assume that each access to � has a

base cost of b(�) and a retry cost of r(�). Let B[M](�) and R[M](�) denote the the base and retry costs,

respectively, for an M -processor implementation of �. Then, B[1](�) and R[1](�) denote the costs associated

with a uniprocessor implementation. As we shall see, b(�) will be defined to be either B[M](�) or B[1](�)

depending on how tasks are assigned to supertasks (and similarly for r(�)). Note that we are assuming that

the costs of all operations of � are the same; this assumption could be eliminated, at the price of slightly

more complicated notation and analysis.

For systems with supertasks, we let QS(�) = max{QT (�) | T ∈ S}, which is the worst-case number

of accesses to � ∈ ρ in a single quantum by any component task of S. We will use S.w to denote the

minimum weight at which the safety of S’s component tasks can be guaranteed . (As mentioned earlier,

supertask weights may need to be inflated to guarantee component-task safety.)

We make the following assumptions regarding retries and interferences.

• Interference Assumption (IA): Any pair of concurrent accesses to the same object may potentially
interfere with each other.

• Retry Assumption (RA): A retry can be caused only by the completion of some object access.

This bounds the number of retries to at most the number of concurrent accesses to an object and

prevents two tasks from livelocking due to repeated mutual interference.

• Preemption Assumption (PA): A single object access will be preempted (i.e., cross a quantum

boundary) at most once. This assumption comes from previous work [1] on lock-free algorithms and

is based on the observation that lock-free operations typically are very short in comparison to the

length of a quantum.

We also define a few shorthand notations. Let maxsumk{a1, . . . , an} be the maximum value produced

by summing min(k,n) elements from the multiset {a1, . . . , an}. For example, maxsum2{2, 2, 1} = max{2 +
2, 2+1, 2+1} = 4, maxsum4{2, 2, 1} = max{2+2+1} = 5, and maxsum0{2, 2, 1} = max{0} = 0. In addition,

let IT (�) = maxsumM−1{QU (�) | U ∈ τ −{T}} and let IS(�) = maxsumM−1{QT (�) | T ∈ σ−{S}}. (Recall
that τ is the set of tasks and σ is the set of supertasks.)

4.1 Feasibility Without Supertasks

Since at least two tasks are assumed to share each object � ∈ ρ, we let b(�) = B[M](�) and r(�) = R[M](�)

in the analysis that follows.

Theorem 1 If task T competes with weight

T.w =

⌈
T.e+

∑
�∈ρ

JT (�) · [b(�) + (2IT (�) + 1) · r(�)]
⌉

T.p
,

7

where T.w ≤ 1, then each job of T will complete by its deadline in any schedule that respects Pfairness.

Proof: By (PF), a Pfair schedule guarantees that each task T with a rational weight T.w equal to the

expression given in the theorem will receive
⌈
T.e +

∑
�∈ρ

JT (�) · [b(�) + (2IT (�) + 1) · b(�)]
⌉
quanta during

the interval [k · T.p, (k + 1) · T.p) for all k ≥ 0. Consider a single job of T and a single access to some

object � ∈ ρ. By (PA), a single access to � is preempted at most once before completion. In the worst case,

this access experiences the maximum number of retries during the quantum preceding the preemption and

during the quantum in which the access completes. By (RA), the worst-case number of retries in a single

quantum is bounded by the number of concurrent accesses to � within the quantum. Since there are at

mostM−1 tasks executing in parallel with T and each concurrent task U makes at most QU (�) accesses to

� within the quantum, it follows that IT (�) is an upper bound on the number of retries that T will perform

in a single quantum. Therefore, at most 2IT (�) + 1 retries are performed before the access completes. (At

most IT (�) retries are needed for each quantum in which T executes. In addition, if T is preempted while

accessing �, then one additional retry may be needed.) Therefore, b(�) + (2IT (�) + 1) · r(�) is an upper

bound on the worst-case execution cost of one access to �. Since at most JT (�) accesses to � occur in one

job, the per-job execution requirement of T can be no more than T.e+
∑
�∈ρ

JT (�) · [b(�) + (2IT (�) + 1) · b(�)],

which is at most
⌈
T.e+

∑
�∈ρ

JT (�) · [b(�) + (2IT (�) + 1) · b(�)]
⌉
. Therefore, T ’s job deadlines will be met. ✷

Corollary 1 If for all T ∈ τ , T.w = (
⌈
T.e +

∑
�∈ρ

JT (�) · [b(�) + (2IT (�) + 1) · r(�)]
⌉
/T.p) ≤ 1, and if

∑
T∈τ

T.w ≤ M , then τ is feasible on M processors.

4.2 Feasibility With Supertasks

Supertasking can improve performance in two ways.

• A supertask can prevent a collection of potentially-interfering tasks from executing in parallel. By

doing so, the worst-case number of retries needed to complete an object access can be reduced.

• By (PA), if all tasks that access an object can be placed in the same supertask, then at most one

retry is needed during any access. (A retry is necessary only if the object access is preempted.) Since

the number of retries is constant in this case, the lock-free algorithm becomes a wait-free algorithm

and can usually be simplified considerably.

When supertasks are used, the worst-case number of interferences experienced in a single quantum

changes from IT (�) to IS(�). An object’s implementation can be selected based simply upon this value.

Notice that the definition of IS(�) implies that its value is zero only when all tasks that share � are

component tasks of S. From this, b(�) and r(�) can be determined easily using the following definition.

b(�), r(�) =

B[1](�), R[1](�) if IS(�) = 0 for some S
B[M](�), R[M](�) otherwise

8

Task e p J1 Q1 J2 Q2

T1 10 100 2 1 0 0
T2 15 100 1 1 0 0
T3 15 100 0 0 1 1
T4 25 100 0 0 2 2
T5 25 200 2 1 1 1
T6 30 200 1 1 0 0
T7 20 200 0 0 1 1
T8 40 300 3 2 0 0
T9 65 500 0 0 2 1
T10 50 700 5 2 12 3

(a)

Object B[1] R[1] B[M] R[M]

�1 0.012 0.08 0.05 0.16
�2 0.005 0.075 0.017 0.11

(b)

Task I1 I2 δ1 δ2 ∆1 ∆2 w
T1 5 6 1.81 1.447 3.62 0.0 14/100
T2 5 6 1.81 1.447 1.81 0.0 17/100
T3 5 6 1.81 1.447 0.0 1.447 17/100
T4 5 5 1.81 1.227 0.0 2.454 28/100
T5 5 6 1.81 1.447 3.62 1.447 30/200
T6 5 6 1.81 1.447 1.81 0.0 32/200
T7 5 6 1.81 1.447 0.0 1.447 22/200
T8 4 6 1.49 1.447 4.47 0.0 45/300
T9 5 6 1.81 1.447 0.0 2.894 68/500
T10 4 4 1.49 1.007 7.45 12.084 70/700

(c)

Figure 4: (a) A sample task set τ on M = 4 processors with two lock-free objects �1 and �2. (b) Parameters of �1
and �2. (c) Summary of all values computed when using Corollary 1 to assign weights to tasks.

Theorem 2 If component task T of a safely-weighted supertask competes with weight

T.w =

⌈
T.e+

∑
�∈ρ

JT (�) ·
[
b(�) + (2IS(T)(�) + 1) · r(�)

] ⌉

T.p
,

where T.w ≤ 1, then each job of T will complete by its deadline in any schedule that respects Pfairness.

Proof: The proof is virtually identical to that of Theorem 1. However, since T can only be scheduled

concurrently with at most one component task from each of the other supertasks, the worst-case number

of retries that can occur during a single quantum changes from IT (�) to IS(T)(�). ✷

Corollary 2 If for all T ∈ τ , T.w = (
⌈
T.e +

∑
�∈ρ

JT (�) ·
[
b(�) + (2IS(T)(�) + 1) · r(�)

] ⌉
/T.p) ≤ 1, and if

S.w ≤ 1 for each supertask S ∈ σ, and if
∑
S∈σ

S.w ≤ M , then τ is feasible on M processors.

4.3 Examples

To demonstrate the use of these results, we will compute Pfair scheduling weights for the simple task set

shown in Fig. 4(a)–(b) on a four-processor system.

Scheduling without supertasks. Fig. 4(c) summarizes the values that are computed when assigning

weights to tasks based on Corollary 1. We will explain each column in turn by considering the com-

putation of T10’s weight. First, we must bound the number of retries for each of T10’s object accesses.

Consider �1. Applying the definition of IT (�) yields IT10(�1) = maxsumM−1{QU (�1) | U ∈ τ − {T10}} =

maxsum3{2, 1, 1, 1, 1, 0, 0, 0, 0} = 4. This is shown in the column labeled I1 in Fig. 4(c). Next, we compute

the worst-case execution cost of a single access to object �1 by T10, labeled δ1 in the table. By previ-

ous observations, we know that b(�1) = B
[M]
1 = 0.05 and r(�1) = R

[M]
1 = 0.16. From these values and

9

Supertask Components Q1 Q2 I1 I2
S1 T1, T2, 2 0 2 3

T6, T8

S2 T3, T4, T5, 2 3 2 0
T7, T9, T10

(a)

Task I1 I2 δ1 δ2 ∆1 ∆2 w
T1 2 3 0.85 0.53 1.70 0.0 12/100
T2 2 3 0.85 0.53 0.85 0.0 16/100
T3 2 0 0.85 0.08 0.0 0.08 16/100
T4 2 0 0.85 0.08 0.0 0.16 26/100
T5 2 0 0.85 0.08 1.70 0.08 27/200
T6 2 3 0.85 0.53 0.85 0.0 31/200
T7 2 0 0.85 0.08 0.0 0.08 21/200
T8 2 3 0.85 0.53 2.55 0.0 43/300
T9 2 0 0.85 0.08 0.0 0.16 66/500
T10 2 0 0.85 0.08 4.25 0.96 56/700

(b)

Figure 5: (a) Parameters for the partitioning σ = {{T1, T2, T6, T8}, {T3, T4, T5, T7, T9, T10}}. (b) Summary of all
values computed when using Corollary 2 to assign weights to tasks.

the expression δT (�) = b(�) + (2IT (�) + 1) · r(�), we get δT10(�1) = 0.05 + (2 · 4 + 1) · 0.16 = 1.49. We

can now determine the total execution overhead of T10’s accesses to �1 in a single job, labeled ∆1 in the

table, by simply multiplying δ1 by JT10(�1). Doing so yields ∆T10(�1) = 5 · 1.49 = 7.45. In a similar

manner, it can be shown that ∆T10(�2) = 12.084. By Corollary 1, T10 should be assigned the weight

T10.w = �50+7.45+12.084�
700 = �69.534�

700 = 70
700 , as shown in the last column of the table. Note that feasibility

is not guaranteed unless both conditions in Corollary 1 hold. However, each weight in the last column of

Fig. 4(c) is easily seen to be less than one, and
∑

T∈τ T.w ≈ 1.57 ≤ 4.

Scheduling with supertasks. Fig. 5(a) shows one possible partitioning of the example task set from

Fig. 4(a). This partitioning assigns all tasks accessing �2 to S2 and then assigns all remaining tasks to

S1. By doing so, we permit the use of the more efficient uniprocessor algorithm for �2 in place of the

multiprocessor version. Therefore, b(�2) = B
[1]
2 = 0.005 and r(�2) = R

[1]
2 = 0.075. However, notice

that the multiprocessor version of �1’s algorithm must still be used. Hence, b(�1) = B
[M]
1 = 0.05 and

r(�1) = R
[M]
1 = 0.16.

Since the computations in Corollary 2 are similar to those already demonstrated, we do not explain

them here. The values resulting from each step can be seen in Fig. 5(b). Notice that many of the task

weights are smaller than in the previous example. In addition, the sum of the task weights has been

reduced from 1.57 to 1.45. However, the use of supertasking introduces an inflation term, due to supertask

reweighting, that will likely negate this benefit for this simple example. We will not present the details

of the reweighting approach since they are not directly related to the process of computing task weights.

Instead, we refer the interested reader to our previous work on that subject [12].

In Sec. 6, we present experimental results that suggest that supertasking often improves schedulability,

even with reweighting. In a system with relatively few processors, the benefit of supertasking is often

negated by the inflation overhead. This is because of the limited parallelism in such systems. As the

degree of parallelism increases, the benefits of supertasking increase while its overhead remains relatively

constant. (Inflation in the reweighting approach depends on the magnitudes of the component task weights

and is independent of both the number of tasks and the number of processors in the system.)

10

5 Case Study: Queues

In this section, we present two lock-free queue implementations that demonstrate how algorithmic simpli-

fications may be obtained by applying the supertasking approach.

Lock-free algorithms often employ the compare-and-swap (CAS) primitive to ensure the safety of state

variable updates. CAS is similar to the CAS2 primitive used in Fig. 2, but accesses only a single memory

location. (CAS or related primitives are available on most modern machines.) By using CAS to update state

variables, and by tagging each such variable with a counter that is incremented with each update, it can be

ensured that “out-of-date” updates that could corrupt the implemented object’s state have no effect. This

mechanism is used in the implementations presented here. To simplify the presentation of our algorithms,

we use the template definition shown below to define such tagged state variables. The tag field holds the

variable’s current tag value, while the val field holds the variable’s current logical value.

template tagged(T): record tag : integer; val : T

It is assumed that all tagged variables require only a single word of memory for both the tag and val

fields combined. Though bounding the range of counters is important, we ignore this issue here to simplify

the presentation of the algorithms, and make the simplifying assumption that the range of each tag field is

unbounded. (It is actually possible to bound the size of these counters using the results of our scheduling

analysis in Sec. 4. However, deriving counter bounds is outside the scope of this paper.)

Our multiprocessor and uniprocessor queue implementations are shown in Figs. 7 and 8, respectively.

Both implementations use a linked list data structure, in which each list node consists of a value field, val ,

and a tagged pointer to the next list node, next . In addition, the tagged state variables Head and Tail

record the start and end, respectively, of the list. To allow safe concurrent enqueue and dequeue operations,

the linked list has a dummy head node. The structure of the queue is illustrated in Fig. 6.

DUMMY

Tail Head

HeadTail

Representation
Physical

Representation
Logical

Figure 6: Physical and logical representation of the shared queue.

The next fields and the Tail variable are tagged to help synchronize multiple enqueuers (writers).

For the single-enqueuer case, the enqueue procedure simplifies to Enqueue-1W, shown below Enqueue-MW

in Fig. 7, and these tag fields may be removed. Similarly, the tag field in Head synchronizes multiple

dequeuers (readers) and can be removed in the single-dequeuer case. For this case, Dequeue-MR simpli-

fies to the procedure Dequeue-1R in Fig. 7. Enqueue-1W and Dequeue-1R are actually common to both

implementations, and thus are not repeated in Fig. 8.

11

template tagged(T):
record

tag: integer;
val : T

typedef node:
record

val : eltype;
next : tagged(pointer to node)

shared var
Head , Tail : tagged(pointer to node)

procedure Enqueue-MW(in)
1: x := *(in).next ;
2: *(in).next := (x.tag+1,nil);

do
3: done := false;
4: t := Tail ;
5: x := *(t.val).next ;
6: if t = Tail then
7: done := CAS(&(*(t.val).next),

(x.tag,nil),(x.tag+1,in));
8: x := *(t.val).next ;
9: CAS(&Tail , t, (t.tag+1,x.val))

fi
10: while ¬done

procedure Enqueue-1W(in)
11: x := *(in).next ;
12: *(in).next := (x.tag+1,nil);
13: t := Tail ;
14: x := *(t.val).next ;
15: *(t.val).next := (x.tag+1,in);
16: Tail := (t.tag+1,in)

private var
x, h, t: tagged(pointer to node); done: boolean;
in: pointer to node; out : eltype

procedure Dequeue-MR() returns pointer to node
do

17: done := false;
18: h := Head ;
19: if h.val = Tail .val then
20: if h = Head then
21: return nil

fi
else

22: x := *(h.val).next ;
23: if x.val �= nil then
24: out := *(x.val).val ;
25: done := CAS(&Head , h, (h.tag+1,x.val))

fi
fi

26: while ¬done;
27: *(h.val) := (out ,(x.tag+1,nil));
28: return h.val

procedure Dequeue-1R() returns pointer to node
29: h := Head ;
30: if h.val = Tail .val then
31: return nil

else
32: x := *(h.val).next ;
33: out := *(x.val).val ;
34: Head := (h.tag+1,x.val);
35: *(h.val) := (out ,(x.tag+1,nil));
36: return h.val

fi

Figure 7: Multiprocessor (lock-free) shared queue.

Multiprocessor lock-free queue. In the multiprocessor implementation, an enqueue operation invokes

Enqueue-MW and passes a list node (in) containing the value to be enqueued. The next field of the node is

initialized in lines 1–2 and the done flag cleared in line 3. The next field at the end of the queue is then

read in lines 4–5. If the comparison at line 6 fails, then another enqueue has completed an operation and

a retry occurs. Otherwise, an update of the next field read earlier is attempted (line 7). If successful, then

the new node has been chained onto the end of the list and it remains only to update the Tail pointer.

This is done in lines 8–9. If the CAS at line 7 is not successful, then another node, call it X, has already

been chained onto the end of the list by another task, in which case the operation under consideration

must be retried. Lines 8–9 ensure that Tail is correctly updated before the retry occurs. Note that it may

be the case that the task enqueuing X has not yet updated Tail . In this case, if Tail were not updated,

then the operation in question could be retried repeatedly.

The Dequeue-MR procedure returns either a pointer to a list node containing a queue element, or a nil

pointer, if the queue is empty. To understand how Dequeue-MR works, it is important to note that Head

always points to a dummy node at the head of the list, and if the queue is nonempty, the node following the

dummy node contains the data to dequeue. Thus, Dequeue-MR seeks to remove the dummy head node and

12

return the data stored in the node after it. This latter node then becomes the new dummy head node. In

Dequeue-MR the done flag is initialized at line 17 and then the dummy head node’s address is determined

at line 18. This address is then compared to that stored in Tail at line 19. If equal, then either the list

is empty or the node referenced by h has been dequeued and re-enqueued by other concurrent operations.

In the latter case, because of the tag fields, h �= Head . Thus, line 20 correctly distinguishes between these

possibilities. If the test at line 19 is not successful, then either an interference has occurred, or the list is

nonempty. In either case, an attempt is made to dequeue the head node in lines 22-25. (If an interference

has indeed occurred, then this dequeue attempt will fail. It is easier to attempt a dequeue than to try

to determine if an interference has actually occurred.) If x.val is nil at line 23, then an interference has

occurred, and the operation is retried. In line 24, the data value in the node after the dummy head node

is read, as discussed above. In line 25, an attempt is made to advance the Head pointer past the (old)

dummy head node. If this attempt fails, then the operation is retried. (If the CAS at line 25 succeeds, then

no other enqueue could have completed between lines 18 and 25.) Line 27 simply moves the data value

read at line 24 into the removed node (the old dummy head node). This node is returned at line 28.

Uniprocessor wait-free queue. The uniprocessor wait-free queue implementation is obtained by un-

rolling the loop in the multiprocessor version a constant number of times and then simplifying the code

listing. The result is shown in Fig. 8.

The loop in Enqueue-MW (Fig. 7) is unrolled three times to produce the procedure shown in Fig. 8.

Three iterations are necessary because some enqueue operation may have chained a new tail node onto the

end of the list and gotten preempted before updating Tail . In the worst case, the first iteration completes

this stalled operation (by updating Tail in line 9 in Fig. 7), the second iteration is preempted, and the

third iteration is successful. (Notice that only one of these iterations was caused by a preemption. Thus,

although there are three loop iterations, there is only one retry, and this scenario is not a violation of (PA).)

In Fig. 8, the first loop iteration, which checks for a partially-completed operation, produces lines 6–11. The

second iteration, which attempts to perform the enqueue operation, produces lines 12–15. If a preemption

is detected at any point during these two “iterations,” then (PA) ensures that the operation is guaranteed

to complete before being preempted again. Therefore, the third iteration can be executed nonpreemptively,

as shown in lines 16–24.

By (PA), the multiprocessor version of Dequeue-MR iterates at most twice on a uniprocessor. The first

loop iteration corresponds to lines 25–34 in Fig. 8. If the operation is preempted, then it can be retried

nonpreemptively in the second iteration, which corresponds to lines 35–42.

Comparison. One simple method of comparison is to count the number of shared-memory reads and

writes (denoted R and W , respectively) and the number of CAS invocations (denoted CAS) in the worst

case for one operation (on a uniprocessor). For the multiprocessor version of Enqueue-MW, the worst-case

path includes three loop iterations, with six CAS calls being made in lines 7 and 9. In addition, lines 1–2

13

template tagged(T):
record

tag: integer;
val : T

procedure Enqueue-MW(in)
1: pm := false;
2: x := *(in).next ;
3: *(in).next := (x.tag+1,nil);
4: t := Tail ;
5: x := *(t.val).next ;
6: if x.val �= nil then
7: if CAS(&Tail , t, (t.tag+1,x.val)) then
8: t := (t.tag+1,x.val);
9: x := *(t.val).next ;
10: pm := (x.val �= nil)

else
11: pm := true

fi
fi;

12: if ¬pm ∧ t = Tail then
13: if CAS(&(*(t.val).next),x,(x.tag+1,in)) then
14: CAS(&Tail , t, (t.tag+1,in))

else
15: pm := true

fi
fi;

16: if pm then
17: t := Tail ;
18: x := *(t.val).next ;
19: if x.val �= nil then
20: Tail := (t.tag+1,x.val);
21: t := (t.tag+1,x.val);
22: x := *(t.val).next

fi;
23: *(t.val).next := (x.tag+1,in);
24: Tail := (t.tag+1,in)

fi

typedef node:
record

val : eltype;
next : tagged(pointer to node)

shared var
Head , Tail : tagged(pointer to node)

private var
x, h, t: tagged(pointer to node); pm: boolean;
in: pointer to node; out : eltype

procedure Dequeue-MR() returns pointer to node
25: h := Head ;
26: if h.val = Tail .val then
27: if h = Head then
28: return nil

fi
else

29: x := *(h.val).next ;
30: if x.val �= nil then
31: out := *(x.val).val ;
32: if CAS(&Head , h, (h.tag+1,x.val)) then
33: *(h.val) := (out ,(x.tag+1,nil));
34: return h.val

fi
fi

fi
35: h := Head ;
36: if h.val = Tail .val then
37: return nil

else
38: x := *(h.val).next ;
39: out := *(x.val).val ;
40: Head := (h.tag+1,x.val);
41: *(h.val) := (out ,(x.tag+1,nil));
42: return h.val

fi

Figure 8: Uniprocessor (wait-free) shared queue.

contribute one read and write, and each loop iteration contributes four reads. Therefore, in the worst case,

the multiprocessor Enqueue-MW algorithm has R = 13, W = 1, and CAS= 6.

A similar analysis can be applied to each of the other procedures with the exception of Enqueue-MW.

It is not clear which path through the code produces the worst-case behavior in this procedure. For this

reason, we will consider two possible paths through the code, one of which will be the worst-case path.

Fig. 9 summarizes the instruction counts along all considered paths.

Synchronization primitives usually require considerably more cycles than uncached reads and writes.

For example, according to LaMarca [13], the load-linked/store-conditional instruction pair (which provides

functionality similar to CAS) on a DEC 3000-400 with a 130 Mhz Alpha 2 21064 CPU requires approximately

3.5 times the number of cycles as an uncached shared memory read. Although LaMarca’s paper dates back

to 1994, this and similar architectures are still being used today. Moreover, in embedded systems, older

processors are often used for cost reasons.

An admittedly simple method for approximating the performance of these algorithms is to take the

14

M Procedure Path R W CAS 1 × R 1 × W 3.5 × CAS Total
> 1 Enqueue-MW 13 1 6 13 1 21 35
> 1 Dequeue-MR 10 2 2 10 2 7 19

1 Enqueue-MW preempted 8 4 2 8 4 7 19
1 Enqueue-MW not preempted 5 1 3 5 1 10.5 16.5
1 Dequeue-MR 8 3 1 8 3 3.5 14.5

Figure 9: Shared-memory instruction counts along worst-case execution paths for both queue algorithms.

weighted sum of the previous instruction counts. (Since our comparison is only intended to illustrate

that some benefit to using a uniprocessor algorithm exists, a precise comparison of the algorithms is

unnecessary.) Based on LaMarca’s observations, it seems reasonable to assign a weight of 1 to read and

write operations, and a weight of 3.5 to CAS calls. Figure 9 shows these weighted values. These numbers

suggest that the uniprocessor version of Dequeue-MR is approximately 84% (35
19 ≈ 1.84) better than its

multiprocessor counterpart, and the uniprocessor implementation of Enqueue-MW is approximately 31%

(19
14.5 ≈ 1.31) better.

For simple lock-free operations that require updating only a single state variable, a uniprocessor im-

plementation may be only a marginal improvement. However, for more complex operations, which update

multiple state variables, a uniprocessor implementation should be a considerable improvement. This is

illustrated quite well by the improvement of Dequeue-MR, which is still a relatively simple operation since

it only updates two state variables.

Implementations of operations that involve multiple updates often can be simplified considerably by

using the multi-word-compare-and-swap (MWCAS) primitive, which generalizes CAS by allowing multiple

words to be accessed. MWCAS is impractical to provide in hardware, but fortunately, it can be efficiently

implemented in software on a uniprocessor [1]. In contrast, no efficient implementation is known for

multiprocessors. For this reason, the class of objects that have efficient uniprocessor implementations is

far larger than the class that can be efficiently implemented on multiprocessors.

6 Assigning Tasks to Supertasks

In this section, we present a simple heuristic for assigning tasks to supertasks, along with an experimental

evaluation of its effectiveness.

6.1 The Heuristic

The problem of assigning tasks to supertasks has a strong resemblance to the bin packing problem, which

is known to be NP-complete in the strong sense. This is why we focus on using a heuristic. A simplified

version of our heuristic is shown in Fig. 10. Tasks are prioritized based upon their object-access patterns

and the level of contention associated with each object. We define the weighted contention for object � by

15

Create |τ | empty supertasks;
R := τ ;
while ρ �= ∅ ∧ R �= ∅ do

Select � ∈ ρ with largest R[M](�) ·
∑
T∈τ

JT (�)
T.p

value;

ρ := ρ − { � };
while there exists T ∈ R with QT (�) > 0 do

Select T ∈ R with largest QT (�);
R := R − { T };
Assign T to a non-full supertask using the first-fit algorithm

od
od;
Add all non-empty supertasks to σ

Figure 10: Heuristic algorithm for assigning tasks to supertasks.

the value R[M](�) ·
∑

T∈τ
JT (�)
T.p . In this expression,

∑
T∈τ

JT (�)
T.p approximates the frequency of accesses to

� by all tasks in τ . R[M](�) can be thought of as an interference penalty. All tasks that access the object �

with the highest weighted contention are assigned to supertasks first. Since task T ’s interference depends

on QT (�), tasks are assigned to supertasks in nonincreasing order by QT (�). After all of these tasks are

assigned, the remaining objects are considered in nonincreasing order of weighted contention.

Notice that our heuristic assigns tasks to supertasks using the first-fit algorithm. As the name suggests,

first-fit assigns each task to the first supertask with sufficient capacity. This strategy actually works against

the goal of reducing sharing overhead since it may spread multiple tasks that share the same object across

multiple supertasks. However, this strategy ensures that the supertasks are packed as tightly as possible,

which reduces the inflation overhead when reweighting is used. In short, this aspect of the heuristic targets

reweighting inflation rather than object-sharing overhead.

We should point out here that implementing our heuristic is a non-trivial task. Observe that we use

task weights to assign tasks to supertasks. However, this assignment affects object-sharing overheads and

hence each task’s ultimate weight. We address this circularity by applying our heuristic iteratively. In

each round, the task weights computed in the previous round (which have been inflated to reflect object-

sharing costs) are used when assigning tasks to bins. In addition, the capacity of each bin (supertask)

is reduced in each round. Using a bin capacity that is less than one permits a degree of error in the

task weight approximations. On the other hand, it may increase the reweighting inflation. In the first

round, we bootstrap the iterative process by computing “ideal” weights for the tasks and by setting the

bin capacities to one. An ideal weight is based on the assumption that uniprocessor implementations are

used for all shared objects. Once tasks are assigned to supertasks, we compute new task weights and check

the validity of the assignment. If the cumulative weight of the tasks comprising any supertask exceeds one,

then another round is performed. In our experiments, we decremented the bin capacity by 0.01 after each

round. We found that the process typically terminated after only two or three rounds.

16

6.2 Experimental Evaluation

To evaluate our heuristic, we generated 10,000 random task sets for four different system models, consisting

of 2, 4, 8, and 16 processors, respectively. Task sets were required to satisfy the assumptions stated earlier

in Sec. 4. Our experiments mainly involved lightweight tasks, as we believe such tasks are probably more

likely to occur in practice. Our random tasks were generated to have a base utilization of at most 0.05. It is

important that this utilization not be confused with actual utilization, which is only known after the object-

sharing overheads have been taken into account. Since object-sharing overheads are often substantial, the

actual utilization of a task may be much higher than its base utilization. In addition, the following ranges

were used to generate parameters for the random tasks and objects: |ρ| ∈ [5, 200], |τ | ∈ [25, 25 + log2 M],

T.p ∈ [200, 5000], T.e ∈ [0.05, 0.05 · T.p], QT (�) ∈ [0, 5], JT (�) ∈ [QT (�), 50], b(�) ∈ [0.000001, 0.1], and

r(�) ∈ [0.000001, 0.0142857]. These ranges were actually chosen rather arbitrarily and hold no particular

significance. Our goal here is simply to illustrate that supertasking can be used to reduce lock-free object-

sharing overheads. More thorough experimentation would be necessary to express this benefit as a function

of the task set parameters.

Results. Our experimental results are shown in Fig. 11. For each sample task set, the weights were

computed (i) without supertasks, (ii) with ideal supertasks, and (iii) with reweighted supertasks. To

represent the algorithmic improvements of uniprocessor object implementations, we used a scaling factor

α, where R[1](�) = αR[M](�) and B[1](�) = αB[M](�) for all � ∈ ρ. Although such a scaling factor may be

overly simplistic, it nevertheless allows us to demonstrate the benefit of using simpler algorithms. (Observe

that α = 1 corresponds to the case in which there is no benefit to using an uniprocessor implementation.)

After computing all task weights, the schedulability of each sample task set was checked and all task sets

that were unschedulable in any of the three scenarios were thrown out.

In each graph, the x axis shows the cumulative weight of all tasks when supertasks are not used, while

the y axis shows the average relative performance of the heuristic. Here, relative performance is obtained

by dividing the cumulative weight without supertasking by the cumulative weight of all supertasks when

supertasks are used. Hence, y values larger than one suggest a schedulability improvement.

There are many factors at work that determine the shape of the plotted curves. Unfortunately, the

curves for the M = 8 and M = 16 cases are not smooth. By generating a larger number of sample task

sets (which we plan to do) this could presumably be ameliorated. Despite this, we will now briefly explain

a few of the dominant factors that influence the shape of each curve.

Effectiveness of contention bounds. The performance when using supertasks is only slightly better

at very small and very large values of x. This is due to the equations used by Corollaries 1 and 2 to bound

worst-case interferences. For very small x, the task sets are small, which results in very little contention.

Low contention suggests low object-sharing overhead. As for large x values, the interference term used in

17

0.9

0.95

1

1.05

1.1

1.15

1.2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
el

at
iv

e
U

til
iz

at
io

n
w

ith
 S

up
er

ta
sk

in
g

Utilization without Supertasking

Performance of Supertask Packing Heuristic (M=2)

Ideal Supertasking (alpha = 1)
Reweighting (alpha = 1)

Ideal Supertasking (alpha = 0.5)
Reweighting (alpha = 0.5)

Ideal Supertasking (alpha = 0.25)
Reweighting (alpha = 0.25)

(a) M = 2

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1 2 3 4 5 6 7 8

R
el

at
iv

e
U

til
iz

at
io

n
w

ith
 S

up
er

ta
sk

in
g

Utilization without Supertasking

Performance of Supertask Packing Heuristic (M=8)

Ideal Supertasking (alpha = 1)
Reweighting (alpha = 1)

Ideal Supertasking (alpha = 0.5)
Reweighting (alpha = 0.5)

Ideal Supertasking (alpha = 0.25)
Reweighting (alpha = 0.25)

(c) M = 8

0.95

1

1.05

1.1

1.15

1.2

1.25

0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e
U

til
iz

at
io

n
w

ith
 S

up
er

ta
sk

in
g

Utilization without Supertasking

Performance of Supertask Packing Heuristic (M=4)

Ideal Supertasking (alpha = 1)
Reweighting (alpha = 1)

Ideal Supertasking (alpha = 0.5)
Reweighting (alpha = 0.5)

Ideal Supertasking (alpha = 0.25)
Reweighting (alpha = 0.25)

(b) M = 4

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

2 4 6 8 10 12 14 16

R
el

at
iv

e
U

til
iz

at
io

n
w

ith
 S

up
er

ta
sk

in
g

Utilization without Supertasking

Performance of Supertask Packing Heuristic (M=16)

Ideal Supertasking (alpha = 1)
Reweighting (alpha = 1)

Ideal Supertasking (alpha = 0.5)
Reweighting (alpha = 0.5)

Ideal Supertasking (alpha = 0.25)
Reweighting (alpha = 0.25)

(d) M = 16

Figure 11: Graphs of experimental results for (a) 2-, (b) 4-, (c) 8-, and (d) 16-processor systems.

Corollary 1 is a function of the number of processors in the system, while that used in Corollary 2 is a

function of the number of supertasks. In our experimental setup, when x approaches M , the number of

supertasks approaches M . Hence, for large values of x, the interference costs computed by Corollaries 1

and 2 are similar.

Effectiveness of heuristic with respect to α. In the M = 2 and M = 4 graphs, different values of

α result in different relative utilizations only around x = 1. Around this point, almost all tasks can be

assigned to the same supertask, which implies that mostly uniprocessor object implementations will be

used. However, as x increases, it becomes less likely that uniprocessor implementations will be used, so

the lines representing the different values of α converge to a single line.

These graphs demonstrate that supertasking can be used to reduce object sharing overhead in many

cases, particularly as the degree of parallelism in the system increases. Even with reweighting, our heuristic

yields an approximate improvement of 15% whenM = 8 and 30% whenM = 16. However, as demonstrated

18

by the M = 2 graph, the inflation overhead will often dominate any reduction in object-sharing costs when

the degree of parallelism is small.

In addition to the magnitude of the improvement obtained by applying supertasks, it is also interesting

to consider the frequency of improvement. For the M = 2 case, we found that the number of task

sets that showed improvement with the application of reweighted supertasks varied considerably with α.

When α = 1, 0.5, and 0.25, around 9%, 33.7%, and 40.6% (respectively) of the task sets showed some

improvement. Furthermore, approximately 82.5% of the task sets considered in the M = 4 case showed

improvement, while 98.8% showed improvement for theM = 8 case, and 99.9% for theM = 16 case. These

last three percentages suggest that supertasking, even with reweighting, produces an improvement almost

always on systems of four or more processors. (However, keep in mind that this observation only applies

to the experimental setup considered here.)

7 Conclusion

In this paper, we have addressed the problem of synchronization and object sharing in fair-scheduled

multiprocessor systems. To the best of our knowledge, we are the first to consider fair scheduling in

multiprocessor systems with non-independent tasks, and the first to consider the use of lock-free objects in

real-time multiprocessor systems. We have presented schedulability tests and a technique for assigning Pfair

weights to a set of periodic tasks that share lock-free objects. We have also shown that lock-free object-

sharing overheads can be reduced by restricting parallelism through the use of supertasks. In addition, we

presented a simple heuristic for assigning tasks to supertasks and experimentally evaluated its effectiveness.

In future work, we intend to explore some of the lock-based techniques briefly described in Section 3.

We also plan to continue developing the supertasking approach, which appears to be the key to reducing

synchronization overheads in Pfair-scheduled systems. Specifically, we need to determine whether the safety

of component tasks can be guaranteed without reweighting.

References

[1] J. Anderson and S. Ramamurthy. A framework for implementing objects and scheduling tasks in

lock-free real-time systems. In Proceedings of the 17th IEEE Real-Time Systems Symposium, pages

92–105. December 1996.

[2] J. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with lock-free objects. ACM

Transactions on Computer Systems, 15(6):388–395, May 1997.

[3] J. Anderson and A. Srinivasan. Early-release fair scheduling. In Proceedings of the 12th Euromicro

Conference on Real-Time Systems, pages 35–43, June 2000.

19

[4] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond periodic task systems. In Proceedings of the

Seventh International Conference on Real-Time Computing Systems and Applications, pages 297–306,

December 2000.

[5] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous periodic tasks. In

Proceedings of the 13th Euromicro Conference on Real-Time Systems, pages 76–85, June 2001.

[6] T. Baker. Stack-based scheduling of real-time processes. Real-Time Systems, 3(1):67–99, March 1991.

[7] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in

resource allocation. Algorithmica, 15:600–625, 1996.

[8] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast scheduling of periodic tasks on multiple resources. In

Proceedings of the 9th International Parallel Processing Symposium, pages 280–288, April 1995.

[9] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus fair scheduling: A proportional-share cpu

scheduling algorithm for symmetric multiprocessors. In Proceedings of the Fourth Symposium on

Operating System Design and Implementation (OSDI), 2000.

[10] D. de Niz, L. Abeni, S. Saewong, and R. Rajkumar. Resource sharing in reservation-based systems.

In Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages 171–180. December 2001.

[11] P. Gai, G. Lipari, and M. di Natale. Minimizing memory utilization of real-time task sets in single and

multi-process or systems-on-a-chip. In Proceedings of the 22nd IEEE Real-Time Systems Symposium,

pages 73–83. December 2001.

[12] P. Holman and J. Anderson. Guaranteeing pfair supertasks by reweighting. In Proceedings of the 22nd

IEEE Real-time Systems Symposium, pages 203–212. December 2001.

[13] A. LaMarca. A performance evaluation of lock-free synchronization protocols. In Proceedings of the

13th Annual ACM Symposium on Principles of Distributed Computing, pages 130–140, August 1994.

[14] G. Lamastra, G. Lipari, and Luca Abeni. A bandwidth inheritance algorithm for real-time task

synchronization in open systems. In Proceedings of the 22nd IEEE Real-Time Systems Symposium,

pages 151–160. December 2001.

[15] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real–time environment.

Journal of the ACM, 30:46–61, January 1973.

[16] M. Caccamo and L. Sha. Aperiodic servers with resource constraints. In Proceedings of the 22nd IEEE

Real-Time Systems Symposium, pages 161–170. December 2001.

[17] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and migrating periodic tasks on multiple

resources. In Proceedings of the Twentieth IEEE Real-Time Systems Symposium, pages 294–303,

December 1999.

20

[18] R. Rajkumar. Real-time synchronization protocols for shared memory multiprocessors. In Proceedings

of the International Conference on Distributed Computing Systems, pages 116–123, 1990.

[19] R. Rajkumar. Synchronization In Real-Time Systems – A Priority Inheritance Approach. Kluwer

Academic Publishers, Boston, 1991.

[20] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization protocols for multiprocessors. In

Proceedings of the Ninth IEEE Real-Time Systems Symposium, pages 259–269. 1988.

[21] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An approach to real-time

system synchronization. IEEE Transactions on Computers, 39(9):1175–1185, 1990.

21

