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Abstract

Most proof methods for reasoning about concurrent programs are based upon the interleaving

semantics of concurrent computation: a concurrent program is executed in a stepwise fashion,

with only one enabled action being executed at each step. Interleaving semantics, in e�ect,

requires that a concurrent program be executed as a nondeterministic sequential program. This

is clearly an abstraction of the way in which concurrent programs are actually executed. To

ensure that this is a reasonable abstraction, interleaving semantics should only be used to

reason about programs with \simple" actions; we call such programs \atomic." In this paper,

we formally characterize the class of atomic programs. We adopt the criterion that a program

is atomic if it can be implemented in a wait-free, serializable manner by a primitive program. A

program is primitive if each of its actions has at most one occurrence of a shared bit, and each

shared bit is read by at most one process and written by at most one process. It follows from

our results that the traditionally accepted atomicity criterion, which allows each action to have

at most one occurrence of a shared variable, can be relaxed, allowing programs to have more

powerful actions. For example, according to our criterion, an action can read any �nite number

of shared variables, provided it writes no shared variable.
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1 Introduction

Most proof methods that have been proposed for reasoning about concurrent programs are based

upon the assumption that only one action of a concurrent program is executed at a time [16, 21, 23,

26]. This model of program execution is often referred to as interleaving semantics since the actions

executed by one process are interleaved with those of other processes. Under interleaving semantics,

a concurrent program is executed as a nondeterministic sequential one. Therefore, techniques for

reasoning about sequential programs (such as using invariants to prove safety properties and well-

founded rankings to prove progress properties) can be applied to concurrent programs as well.

For interleaving semantics to be a reasonable abstraction of concurrent program execution, some

restrictions must be imposed on the way in which concurrent programs are implemented on parallel

machines. Clearly, it is unreasonable to require a concurrent program to be executed in a sequential

fashion, i.e., one action at a time. Instead, such an implementation is typically expected to satisfy

the weaker requirement that every parallel execution of two or more actions be \equivalent" to some

interleaved one. For example, if a read and a write of a variable overlap in time, then the read either

obtains the variable's value before the write or its value after the write | the net e�ect being that

the read either precedes the write or vice versa. With programs implemented in this way, the power

of parallel machines can be fully exploited, without having to abandon the simplicity of interleaving

semantics.

The task of implementing a concurrent program so that any parallel execution is equivalent to

an interleaved one may be di�cult, unless we restrict our attention to programs with su�ciently

simple actions. Consider, for example, a concurrent program consisting of processes P0; . . . ; P99 and

variables X0; . . . ; X99; each process Pi, where 0 � i < 100, consists of a single action Xi := (SUM j :

0 � j < 100 : Xj). If this program is to be executed in accordance with interleaving semantics, then

a high degree of synchronization and coordination among processes will be required. We contend

that such a program will not be \easy" to implement on any parallel machine.

To ensure that programs are easily implementable, interleaving semantics should not be used to

reason about all programs, but only those programs with su�ciently simple actions; we call such

programs \atomic." The purpose of this paper is to give a criterion for determining those programs

that should be considered atomic.

If ease of implementation were our only concern, then we could stop here and de�ne the class of

atomic programs to include only those programs with the very simplest of actions. However, ease of

implementation is not our only concern. We would also like to ease the burden on the programmer

as much as possible by allowing a rich set of actions. Thus, we are faced with a dilemma: For ease

of implementation, we should be as strict as possible, but for ease of programming, we should be as

lax as possible. How can we possibly satisfy both of these seemingly con
icting requirements?

The roots of this question can be traced back to the seminal work of Owicki and Gries [26], who

were perhaps the �rst to de�ne a criterion for atomicity. In order to state their atomicity criterion,

it is necessary to �rst distinguish between two classes of program variables, shared and private. A

variable is shared if it appears among the actions of more than one process; otherwise, it is private.

Owicki and Gries adopted the criterion that each action of a concurrent program has at most one

occurrence of at most one shared variable. For example, if a is private and X and Y are shared,1

1We will generally follow the convention of using upper-case letters for shared variables, and lower-case letters for
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then the action X := a + 15 would be allowed by their criterion, but the actions X := Y + 2 and

Y := Y + 1 would not. The underlying assumption here is that it should be possible to read or

write any shared variable in a single action. Owicki and Gries attribute the \observation that the

memory reference must have `reasonable' properties" to John Reynolds [26]. For this reason, the

Owicki-Gries atomicity criterion is sometimes known as Reynolds' Rule [20]. This atomicity criterion

has gained widespread acceptance since its introduction.

Owicki and Gries, in e�ect, resolve the dilemma noted above \by de�nition" because they do

not defend their atomicity criterion on any formal basis. We are thus led to question their criterion

on two grounds. First, it is not clear whether this is a viable criterion from an implementation

standpoint. In fact, its \reasonableness" in this regard probably quali�es as a folk theorem [20].

Second, we question whether this criterion is unnecessarily restrictive. That is, it might be possible

to relax the Owicki-Gries atomicity criterion somewhat without making programs any harder to

implement.

In this paper, we remedy these two shortcomings by providing a formal framework for de�ning the

class of atomic programs. This formal framework is based upon three concepts: primitive actions,

wait-freedom, and serializability. The motivation behind this framework can best be explained by

returning to the central question posed above: What kinds of actions should an atomicity criterion

allow, given the con
icting requirements of ease of implementation and ease of programming?

Clearly, an atomicity criterion should allow one process of a concurrent program to communicate

with another, i.e., it is unreasonable to disallow all actions that access shared variables. We therefore

choose to allow some actions that access shared variables, but to ensure that programs are easily

implementable, we will begin by insisting that each such action be as restrictive as possible. This

gives rise to the notion of a \primitive" action: an action is primitive if it has at most one occurrence

of a shared bit, and each shared bit is read by at most one process and written by at most one process.

For example, letting a and b be private bits and X and Y be shared bits that are read by at most

one process and written by at most one process, the action a; b := X; :b would be considered

primitive, but the actions a; b := X;:X and X := Y would not. Our starting point, then, is the

assumption that each primitive action is reasonable enough to implement.

Given this assumption, it seems reasonable to allow certain nonprimitive actions as well. In

particular, we also choose to allow any action that can be implemented in terms of primitive actions

without a high degree of synchronization or coordination among processes. We illustrate this by

considering two examples. First of all, consider the �rst nonprimitive action given above, i.e.,

a; b := X; :X. This action can be implemented in terms of primitive actions as follows.

a := X; b := :a

Such an implementation seems su�ciently simple, so we conclude that our atomicity criterion should

also allow an action such as a; b := X; :X.

Next, consider the other nonprimitive action mentioned above, i.e., X := Y . It turns out that

this action can be quite di�cult to implement in terms of primitive actions. In particular, consider

the following concurrent program, where initially X 6= Y .

process P : X := Y process Q : Y := X

private variables.
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According to interleaving semantics, either process P executes its action �rst or process Q does. In

either case, the program terminates in a state satisfying the assertion X = Y . However, as shown

in Section 5, if we implement each action X := Y and Y := X in terms of primitive actions, then

at least one of the two processes P and Q must busy-wait in order to enforce the necessary mutual

exclusion. A process that busy-waits may execute an in�nite number of primitive actions, and hence

may never terminate. Thus, it is impossible to implement the actions of this program in terms of

primitive actions so that the program always terminates in a state satisfying X = Y . We therefore

conclude that it is unreasonable to allow an action such as X := Y .

With this motivation in mind, our atomicity criterion can be described as follows. We de�ne a

program to be atomic if it can be implemented in a wait-free, serializable manner by a primitive

program. A program is primitive i� each of its actions is primitive. Our notion of serializability

is re
ected by the implementation of the action a; b := X; :X given above. In particular, this

notion requires that whenever two or more implemented actions are executed concurrently (i.e.,

the primitive actions that implement them are interleaved), there exists an equivalent sequential

execution.

Any program allowed by our atomicity criterion is easily implementable because it can be \re-

duced" to one with only primitive actions. It turns out that our atomicity criterion includes all

programs allowed by the Owicki-Gries atomicity criterion.2 This con�rms their choice of actions

from an implementation standpoint. However, as we shall see shortly, our atomicity criterion allows

some rather complicated actions that are not allowed by the Owicki-Gries criterion. For example,

our criterion allows an action to read any �nite number of shared variables, provided it writes no

shared variable. Thus, our results establish that the traditional Owicki-Gries atomicity criterion is

too restrictive.

The rest of this paper is organized as follows. In Section 2, we present our model of concurrent

programs, and in Section 3, we present the proposed atomicity criterion mentioned above. The

task of checking whether a program is atomic is nontrivial if we appeal directly to this criterion.

Therefore, we present a method that allows this task to be performed systematically. We outline

our approach to justifying this method at the end of Section 3. The actual justi�cation is given in

Sections 4 through 8. Concluding remarks appear in Section 9.

2 Concurrent Programs

A concurrent program consists of a set of processes and a set of variables. A process is a sequential

program speci�ed using Dijkstra's guarded commands [12]. Each variable is either unsubscripted or

subscripted. Unsubscripted variables are de�ned using integer, boolean, and subrange (e.g., 0::K)

types. Subscripted variables are de�ned using an array type; the elements of an array are of type

integer, boolean, or subrange. Multi-dimensional arrays and arrays with an in�nite number of

elements are allowed.

Each variable of a concurrent program is either private or shared. A private variable is de�ned

only within the scope of a single process, whereas a shared variable is de�ned globally and may be

2At least, for the kinds of programs considered here. We require processes to be speci�ed using ordinary sequential

programming statements, whereas Owicki and Gries also allow the possibility of an await statement. Such a statement

obviously cannot be implemented from primitive actions in a wait-free fashion, and hence should not be allowed.
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accessed by more than one process. We assume that the elements of an array are either all shared

or all private to the same process. We also make the simplifying assumption that only expressions

over private variables are used as array subscripts.

In the remainder of this paper, the term \variable" is meant to refer to either an unsubscripted

variable or an element of an array | we do not refer to an entire array as being a single variable.

The processes of a concurrent program are allowed to access shared variables only by executing

assignment statements. An assignment statement has the form

x1; . . . ; xN := E1; . . . ; EN

where each xi is a distinct variable and each Ej is an expression over a �nite number of variables. This

statement is executed as a single action as follows: �rst, the expressions E1; . . . ; EN are evaluated

along with any array subscripts appearing in x1; . . . ; xN ; then, the value of each expression Ei is

assigned to the corresponding variable xi. We say that the variables appearing in the expressions

E1; . . . ; EN and the array subscripts appearing in x1; . . . ; xN are read by the assignment statement,

and the variables x1; . . . ; xN are written by the assignment statement. For example, consider the

assignment statement X[i]; i := Y [j]; j + 1. This statement reads the variables i, j, and Y [j], and

writes the variables i and X[i].

Associated with each shared variable is a set of processes that are allowed to read that variable,

and a set of processes that are allowed to write that variable. These two sets of processes must be

speci�ed as part of the de�nition of every shared variable. An assignment statement of a process

may read (write) a shared variable only if that process has read (write) access to that variable.

(Presumably, a runtime error would occur if this rule is ever violated.)

3 Atomicity Criterion

In this section, we de�ne two important classes of programs, \primitive" and \atomic." Informally,

a program is primitive if its processes communicate only by means of single-reader, single-writer,

shared bits. More precisely, a program is primitive i� it satis�es the following six constraints.

(0) Each shared variable is a single bit.

(1) Each shared variable is read by at most one process.

(2) Each assignment statement reads at most one shared variable and does so at most once.

(3) Each shared variable is written by at most one process.

(4) Each assignment statement writes at most one shared variable.

(5) An assignment statement does not both read a shared variable and write a shared variable.

Note that these constraints can be checked syntactically. In particular, constraint (0) can be checked

by simply noting the type of each shared variable. Constraints (1) and (3) can be checked by counting

the number of processes that are allowed to read or write each shared variable. Constraints (2),

(4), and (5) can be checked by counting the number of occurrences of shared variables in each
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assignment statement. This can be done on a syntactic basis, given our assumptions concerning

variable declarations. (For example, consider the statement a; b := X[i]; X[j], where a and b are

private. By assumption, either all elements of the array X are shared, or all are private to the same

process. If each element of X is shared, then there are two occurrences of shared variables in this

statement, namely X[i] and X[j]; if, on the other hand, each element of X is private, then there are

no occurrences of shared variables in this statement.)

As stated previously, we assume that any primitive program is easily implementable. Our def-

inition of the more general class of atomic programs re
ects this assumption. Simply stated, this

de�nition is as follows.

Atomicity Criterion: A program is atomic i� it can be implemented by a primitive

program.

The notion of \implements" referred to here is formally de�ned in Section 4. Informally, we im-

plement an atomic program by replacing each assignment statement that fails to satisfy constraints

(0) through (5) by a program fragment whose statements satisfy (0) through (5). Di�erent program

fragments in di�erent processes may be executed concurrently (i.e., their statements may be inter-

leaved); each such execution, however, is required to \resemble" one in which the program fragments

are executed in sequence. The program fragments are restricted to be wait-free, i.e., busy-waiting

loops that can iterate an in�nite number of times are not allowed. This restriction guarantees that a

process executes each of its implemented assignment statements in a �nite amount of time, regardless

of the activities of other processes.

In general, the task of proving that a given program satis�es our proposed atomicity criterion

is nontrivial. A proof must establish that whenever two or more of the above-mentioned program

fragments in di�erent processes are executed concurrently, there exists an equivalent execution in

which they are executed in sequence. The number of di�erent cases that must be taken into account

in order to establish this proof obligation can be considerable (see, for example, the proofs given in

[4]).

The main contribution of this paper is to give a simple method for checking whether a given pro-

gram satis�es the proposed atomicity criterion. In many cases, this method amounts to a syntactic

check of the program text. (For instance, see the example below.) In particular, we prove that a

program is atomic if its assignment statements satisfy the following three conditions.

� Exact-Writing : The shared variables can be partitioned into classes, where each class either

consists of a single variable, or a number of unsubscripted variables, such that the following

condition holds: if an assignment statement writes a variable from some class, then it writes

every variable in that class and no variable from any other class.

� Single-Phase: If an assignment statement of one process reads a variable that is written by

another process, then that assignment statement does not write a shared variable.

� Finite-Reading : If an assignment statement reads an element of an in�nite shared array, then

it reads no other shared variable.

We call these three conditions atomicity constraints. The Exact-Writing and Finite-Reading con-

straints can be checked on a syntactic basis by simply checking the shared variables that are written
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and read, respectively, by each assignment statement. By contrast, it may be necessary to take the

semantics of a program into account in order to check whether Single-Phase is satis�ed. For exam-

ple, consider the assignment statement X[i] := Y [j] of some process P . To determine whether this

statement violates Single-Phase, it is necessary to determine whether Y [j] is written by a process

other than P | but, this may depend on the value of j. Note that we are, in e�ect, viewing each

statement such as X[i] := Y [j] as being a separate statement for each of the possible values of i and

j.

The Exact-Writing constraint speci�es the conditions under which an assignment statement may

write several shared variables; an assignment statement that writes several shared variables is called

a multi-register assignment in [14]. Intuitively, this constraint implies that we can view the set of

shared variables written by a given assignment statement as a single \compound" variable. (For the

sake of simplicity, we have made Exact-Writing more restrictive than is necessary. In particular,

we allow a class to consist of more than one shared variable only if each variable in the class is

unsubscripted. In [4], a more permissive version of Exact-Writing is considered in which a class may

consist of several subscripted variables. This version of Exact-Writing is considered in Section 9.)

The Single-Phase constraint speci�es the conditions under which an assignment statement may both

read and write shared variables. As shown in Section 6, this constraint implies that any assignment

statement can easily be implemented in terms of assignment statements that either read shared

variables or write shared variables; hence the name \Single-Phase." The Finite-Reading constraint

speci�es the conditions under which an assignment statement may read several shared variables.

Note that this is a very permissive constraint, as it only restricts those programs that have in�nite

shared arrays.

We illustrate the atomicity constraints by the following example.

Example: Consider the concurrent program in Figure 1. This program consists of aCONTROLLER

process and N DEVICE processes that communicate by means of �ve shared variables V , W , X,

Y , and Z. Variables V , X, and Y are written by the CONTROLLER, and variables W and Z are

written by the DEVICEs. Variables V and X are read by the DEVICEs, variable W is read by the

CONTROLLER, and variables Y and Z are read by all N + 1 processes.

The �ve variables V , W , X, Y , and Z are used as follows. V stores a \request" as produced

by the CONTROLLER and X identi�es the DEVICE for which the request is intended. The

particular DEVICE's \reply" to the given request is stored in W . A request is \pending" i� Y 6= Z;

Y is updated by the CONTROLLER and Z by the DEVICEs. The protocol followed by these

processes is simple. The CONTROLLER repeatedly consumes replies and produces requests, and

each DEVICE repeatedly consumes requests and produces replies.

To verify that Exact-Writing is satis�ed, we partition the shared variables into classes as follows:

the tuple fV;X; Y g is a class, and the pair fW;Zg is a class. Observe that the only assignment

statements that write shared variables are

V; X; Y := request; dev; :Y

and

W; Z; := reply; z :
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shared var V;W : integer;

X : 1::N ;

Y; Z : boolean

initialization (W = default value) ^ (Y = Z)

process CONTROLLER

private var request; reply : integer;

dev : 1::N ;

pending : boolean

begin

do true ! reply; pending := W; (Y 6= Z);

if :pending ! consume reply; produce next request; dev;

V; X; Y := request; dev; :Y

[] pending ! skip

�

od

end

process DEVICE (j : 1::N)

private var request; reply : integer;

dev : 1::N ;

pending; z : boolean

begin

do true ! request; dev; pending := V; X; (Y 6= Z);

if pending ^ dev = j ! consume request; produce reply;

z := :Z;

W; Z := reply; z

[] :pending _ dev 6= j ! skip

�

od

end

Figure 1: An example program.

Thus, because V , X, and Y are always written together, and because W and Z are always written

together, Exact-Writing is satis�ed. Note that the only assignment statement that both reads and

writes shared variables is the statement

V; X; Y := request; dev; :Y

of the CONTROLLER. Because variable Y is written only by the CONTROLLER, this implies that

Single-Phase is satis�ed. Finite-Reading is trivially satis�ed because there are no in�nite shared

arrays. Notice that this program violates the traditional atomicity criterion of Owicki and Gries. 2
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The remaining sections are dedicated to justifying the proposed atomicity constraints: Exact-

Writing, Single-Phase, and Finite-Reading. In particular, we show that any program satisfying these

atomicity constraints is atomic. We also show that Exact-Writing and Single-Phase are necessary

in the following sense: for each of these constraints, there exists a nonatomic program violating

that constraint, but satisfying the other two constraints. This shows that if we remove either of

these two constraints from our set of constraints, then we can no longer make the claim that every

program satisfying our set of constraints is atomic. As yet, we do not know whether Finite-Reading

is necessary in this sense. However, this constraint does not appear to be a severe limitation, as it

only restricts those programs that have in�nite shared arrays.

To establish the necessity of Exact-Writing and Single-Phase, we consider in Section 5 the prob-

lem of two-process leader election. We �rst show that there is no primitive program that solves this

problem. Then, we exhibit two programs that solve this problem, one that violates Exact-Writing

and satis�es Single-Phase and Finite-Reading, and another that violates Single-Phase and satis�es

Exact-Writing and Finite-Reading. Neither of these two programs can be implemented by a prim-

itive program, because we know that such a program does not exist. Thus, both programs are

nonatomic. This establishes the following theorem.

Theorem 1: There exists a nonatomic program violating Exact-Writing (or Single-Phase), but

satisfying the other two constraints. 2

To establish the su�ciency of our atomicity constraints, we consider in Section 6 a shared data

object called a composite register [2, 3]. A composite register is an array-like variable consisting of

a number of components. An operation of the register either writes a value to a single component,

or reads the values of all of the components. As shown in Section 6, any program satisfying our

proposed atomicity constraints can be implemented by a program with processes that communicate

only by reading and writing composite registers. Thus, we can establish the su�ciency of our

atomicity constraints by showing that a composite register can be implemented in terms of single-

reader, single-writer, shared bits. Given the structure of a composite register, this proof obligation

can be broken into several steps. The register constructions for these steps are described in Section

6; one of the constructions is presented in detail in Section 8. These constructions establish the

following theorem.

Theorem 2: Any program satisfying Exact-Writing, Single-Phase, and Finite-Reading is atomic.

2

4 Implementing Atomic Programs

As stated in Section 3, a program is atomic i� it can be implemented by a primitive program. In

this section, we formally de�ne what it means to implement one program by another.

Terminology: If program A is implemented by program B, then we refer to A as the implemented

program, and B as the implementation. 2
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De�nition: An implementation is obtained by replacing each shared variable of the implemented

program by a set of variables, and each assignment statement of the implemented program by a

program fragment. In principle, such a program fragment can be expressed as follows:

S0; do B1 ! S1 [] � � � [] BN ! SN od

where each Bi is an expression over private variables, and each Sj is an assignment statement. 2

As we shall see later, an implementation is correct i� it is wait-free, sequentially correct, and

serializable. Informally, these conditions are de�ned as follows.

� Wait-Freedom: Each program fragment is free of busy-waiting loops that can potentially iterate

an in�nite number of times.

� Sequential Correctness: When executed in isolation, each program fragment has the same

\e�ect" as the assignment statement that it replaces.

� Serializability : Whenever two or more program fragments in di�erent processes are executed

concurrently (i.e., their statements are interleaved), there exists an \equivalent" execution in

which the program fragments are executed in sequence.

In this section, we formally de�ne these conditions. We motivate our formal treatment by con-

sidering the following example. As this example shows, it is usually straightforward to de�ne an

implementation so that wait-freedom and sequential correctness hold. The principal di�culty lies

in satisfying serializability.

Example: Consider a concurrent program with a process that includes the assignment statement

X := 4, where X is a single-reader, single-writer, four-bit, shared variable. Note that this statement

violates constraint (0) in the de�nition of primitive programs given in Section 3. To implement the

given program by a primitive program, it is necessary to replace X by a set of single-bit variables.

One way to do this is to partition variable X into four separate single-bit variables X0, X1, X2, and

X3. Then, we can replace the statement X := 4 by the following program fragment.

X0 := 0;

X1 := 0;

X2 := 1;

X3 := 0

Each other assignment statement of the implemented program that reads (or writes) X would

similarly be replaced by a program fragment that reads (or writes) each Xi.

The above program fragment for X := 4 is loop-free. Moreover, executing this program fragment

in isolation clearly has the e�ect of assigning the value 4 to variable X. Thus, this implementation

is both wait-free and sequentially correct. However, a read of X may obtain an incorrect value if it

is executed concurrently with a write to X. Suppose, for example, that the program fragment for

X := 4 is executed when X = 15 (i.e., when X0 = X1 = X2 = X3 = 1). If a program fragment that

reads X (by reading each Xi) is executed between the write of 0 to X1 and the write of 1 to X2,
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then the incorrect value 12 will be obtained for X (i.e., X0 = X1 = 0 and X2 = X3 = 1). Thus, this

simple implementation is not serializable. 2

Terminology: In order to avoid confusion, we henceforth refer to the variables of an implemented

program as higher-level variables, and the variables of an implementation as lower-level variables.

Note that each higher-level variable corresponds to some set of lower-level variables. We capitalize

terms such as \Read" and \Write" when they apply to higher-level variables, and leave them un-

capitalized when they apply to lower-level variables. 2

In the above example, the higher-level variable X corresponds to the set of lower-level variables

fX0; X1; X2; X3g. The assignment statement X := 4 \Writes" the value 4 to X. The assignment

statement X2 := 1 \writes" the value 1 to X2.

De�nition: Consider a program fragment that replaces an assignment statement S of the imple-

mented program. We say that the program fragment Reads (respectively, Writes) each higher-level

variable that is Read (respectively, Written) by the assignment statement S; the set of all such

higher-level variables comprise the Read Set (respectively, Write Set) of the program fragment. A

program fragment is only allowed to access the lower-level variables that correspond to the higher-

level variables in its Read Set and Write Set. 2

Consider, for example, the program fragment for X := 4 given earlier. The Write Set for the

program fragment consists of the single variable X, while the Read Set for the program fragment

is empty. Note that the program fragment does not actually write X, but rather writes the corre-

sponding lower-level variables X0, X1, X2, and X3; variable X exists only on a logical basis in the

implementation.

Each execution of a program fragment has the e�ect of Reading a value from each variable in

the Read Set of the program fragment, and Writing a value to each variable in the Write Set of

the program fragment. The value \Read from" or \Written to" a given higher-level variable can be

de�ned formally by specifying a function over the values read from and written to the lower-level

variables that correspond to that higher-level variable. For instance, in the example considered at

the beginning of this section, \the value Written to X" is de�ned by the function v0+2v1+4v2+8v3,

where each vi is the value written to Xi. Thus, associated with each program fragment is a set of

functions, one for each higher-level variable in the program fragment's Read Set and Write Set.

Note that if a variable appears in both the Read Set and Write Set of a program fragment, then two

functions must be speci�ed for that variable, one that de�nes the value Read from that variable,

and another that de�nes the value Written to that variable.

We now de�ne several concepts that are needed in order to formally de�ne what it means for

an implementation to be wait-free, sequentially correct, and serializable. The following de�nitions

apply to any concurrent program.

De�nition: A state is an assignment of values to the variables of the program. (Note that each

process's program counter is considered to be a private variable of that process.) One or more states

10



are designated as initial states. 2

De�nition: An event is an execution of a statement of the program. (In the case of a do or if

statement, \execution of a statement" means the evaluation of each guard in the statement's set of

guards, and the subsequent transfer of control.) 2

De�nition: Let t and u be any two states. If u is reached from t via the occurrence of event e,

then we say that e is enabled at state t and we write t
e
!u. 2

De�nition: A history is a sequence t0
e0
!t1

e1
!� � �. Unless noted otherwise, the �rst state t0 is as-

sumed to be an initial state. 2

A given statement may be executed many times in a history. Each such statement execution

corresponds to a distinct event.

De�nition: Event e precedes another event f in a history i� e occurs before f in the history. 2

The remaining de�nitions apply to a given implementation.

De�nition: Let S0; do B1 ! S1 [] � � � [] BN ! SN od be a program fragment of the implemen-

tation that replaces some assignment statement of the implemented program. Let h be a history of

the implementation. The set of events in h corresponding to an execution of the program fragment

| starting with an event that occurs as a result of executing statement S0, and followed by all events

that subsequently occur as a result of executing the statements in doB1 ! S1 [] � � � []BN ! SN od

| is called an operation. 2

De�nition: An operation p precedes another operation q in a history i� each event of p precedes

all events of q. 2

Observe that the precedes relation is an irre
exive total order on events and an irre
exive partial

order on operations.

We now formally de�ne the notions of wait-freedom, sequential correctness, and serializability.

These concepts are de�ned with respect to the histories of the implementation.

De�nition: A history of the implementation is wait-free i� each operation in the history consists

of a �nite number of events. 2

In de�ning sequential correctness and serializability, it is su�cient to consider only \well-formed"

histories. In a well-formed history, the values Read from and Written to the higher-level variables

by each operation are well-de�ned.

De�nition: A history of the implementation is well-formed i� each operation in the history is

11



complete, i.e., the execution of the corresponding program fragment terminates. 2

De�nition: Let p be an operation in a well-formed history of the implementation, and let

x1; . . . ; xK := E1; . . . ; EK denote the assignment statement of the implemented program that

corresponds to p. Let vi denote the value Written to xi by p, and let Vj denote the value obtained

by replacing each variable appearing in Ej by the value Read from that variable by p. We say that

p is sequentially correct i� the condition vi = Vi holds for each i. A well-formed history of the

implementation is sequentially correct i� each operation in the history is sequentially correct. 2

Next, we de�ne what it means for a history of the implementation to be serializable. According to

this de�nition, if several operations are executed concurrently, then the net e�ect should be equivalent

to some serial order. Our de�nition of serializability is similar to the de�nition of linearizability given

by Herlihy and Wing in [15].

De�nition: Let h be a well-formed history of the implementation. History h is serializable i� the

precedence relation on operations (which is a partial order) can be extended3 to a total order <

where for each operation p in h and each variable x that is Read by p, the value Read by p from x

is the same as the last-Written value according to <. More speci�cally,

� if there exists an operation q that Writes x such that q < p ^ :(9q0 : q0 Writes x : q < q0
< p),

then the value Read by p from x is the same as the value Written by q to x;

� if no such q exists, then the value Read by p from x is the same as the initial value of x as

de�ned in the implemented program. 2

We are now in a position to formally state the correctness condition for an implementation.

De�nition: An implementation is correct i� each of its histories is wait-free, and each of its well-

formed histories is sequentially correct and serializable. 2

5 Necessity Results

In this section, we establish the necessity of Exact-Writing and Single-Phase. In particular, we show

that for each of these constraints there exists a nonatomic program violating that constraint, but

satisfying the other two constraints. This implies that if we remove either of these two constraints

from our set of constraints, then we can no longer make the claim that any program satisfying all

of our atomicity constraints is atomic.

The above-mentioned impossibility results are proved by considering the problem of two-process

leader election; we call our version of this problem the binary election problem. We �rst show that

this problem cannot be solved by a primitive program. We then give two programs that solve this

problem: the �rst program violates Exact-Writing, and the second program violates Single-Phase.

It follows, then, that neither of these programs can be implemented by a primitive program.

We now de�ne the binary election problem.

3A relation R over a set S extends another relation R0 over S i� for each a and b in S, aR0
b) aRb.
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shared var X;Y;Z : 0::2

initializationX = Y = Z = 0

process P process Q

private var private var

electp : boolean =� decision variable �= electq : boolean =� decision variable �=

begin begin

0: X; Y := 1; 1; 2: Y; Z := 2; 2;

1: electp := ((Y; Z) = (1; 2)) 3: electq := ((X; Y ) = (1; 2))

end end

Figure 2: Proof of Theorem 4.

Binary Election Problem: We are required to construct a program consisting of two processes.

Each process has a private boolean decision variable that it writes only once. The program is

required to satisfy the following three conditions.

� Wait-Freedom: All histories of the program are �nite.

� Equity : For each process, there exists a history with a �nal state in which the value of that

process's decision variable is true.

� Validity : In the �nal state of every history, the value of one of the decision variables is true

and the value of the other decision variable is false. 2

In [5], we proved that the binary election problem cannot be solved by any program satisfying

constraints (4) and (5) in the de�nition of primitive programs. In particular, we showed that if such

a program satis�es both Equity and Validity, then it has an in�nite history, violating Wait-Freedom.

Similar proofs have been obtained independently by Chor, Israeli, and Li [11] and by Herlihy [14].

This establishes the following theorem.

Theorem 3: The binary election problem cannot be solved by a primitive program. 2

We now show that the binary election problem can be solved if either Exact-Writing or Single-

Phase is violated.

Theorem 4: The binary election problem can be solved by a program that violates Exact-Writing.

Proof: Consider the program given in Figure 2. Statement 0 of process P and statement 2 of process

Q together constitute a violation of Exact-Writing. In particular, it is impossible to partition the

variables X, Y , and Z into classes such that each of these two statements writes every variable

from one class and no variable from any other class. This program satis�es Wait-Freedom because

it is loop-free. To see that the program satis�es Equity and Validity, consider Figure 3. This �gure

depicts the possible values of (X;Y; Z); each arrow is labeled by the statement that causes the state

13



(1; 2; 2) (1; 1; 2)

(1; 1; 0)

�
��	

2

(0; 2; 2)

@
@@R

0

(0; 0; 0)

�
��	

0 @
@@R

2

Figure 3: Possible values of (X;Y; Z).

shared var X : boolean

process P process Q

private var private var

electp : boolean =� decision variable �= electq : boolean =� decision variable �=

begin begin

X; electp := :X; X X; electq := :X; X

end end

Figure 4: Proof of Theorem 5.

change. Based on this �gure, we conclude that either (Y; Z) = (1; 2) when statement 1 is executed

by P and (X;Y ) 6= (1; 2) when statement 3 is executed by Q, or vice versa. This implies that Equity

and Validity are satis�ed. 2

Theorem 5: The binary election problem can be solved by a program that violates Single-Phase.

Proof: Consider the program given in Figure 4. Note that the assignment statement of each process

both reads and writes the shared variable X and hence violates Single-Phase. It is easy to see that

this program solves the binary election problem. 2

6 Su�ciency Results

In this section, we discuss the proof strategy for establishing the su�ciency of our atomicity con-

straints. We prove that any program satisfying the three atomicity constraints is atomic; that is,

such a program can be implemented by a primitive program (as described in Section 4). The im-

plementation is facilitated by considering a shared data object, called a composite register [2, 3]. A

composite register is an array-like variable that consists of a number of components. An operation

of a composite register either writes a value to one of the components, or reads the values of all

of the components. For convenience, we designate the structure of a given composite register by
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Writer (i;M � 1)

Writer (i; 0)

L bits per component

component K � 1

component i

component 0

Reader N � 1

Reader 0

Figure 5: K=L=M=N composite register structure.

a four-tuple K=L=M=N , where K is the number of components, L is the number of bits per com-

ponent, M is the number of writers per component, and N is the number of readers. Note that,

because integer variables are allowed in our de�nition of a program, L could be in�nite. The struc-

ture of a K=L=M=N composite register is shown in Figure 5. This �gure only depicts the writers

for component i.

We now present two theorems that reduce our proof obligation in establishing the su�ciency

of our atomicity constraints to one involving only composite registers. First, we show that if the

processes of a program communicate only by means of 1=1=1=1 composite registers, then that pro-

gram is primitive. Second, we show that any program satisfying our atomicity constraints can be

implemented by a program in which processes communicate only by means of K=L=M=N composite

registers. It follows from these two theorems that in order to establish the su�ciency of our atom-

icity constraints, it su�ces to prove that a K=L=M=N composite register can be constructed from

1=1=1=1 composite registers.

Theorem 6: If each shared variable of a program is a 1=1=1=1 composite register, then that pro-

gram is primitive.

Proof: A 1=1=1=1 composite register is a single-reader, single-writer, shared bit. Recall that a

program is primitive if its processes communicate only by means of such bits. Thus, if each shared

variable of a concurrent program is a 1=1=1=1 composite register, then that program satis�es the six

constraints in the de�nition of primitive programs. 2

Theorem 7: Any program satisfying our proposed atomicity constraints can be implemented by a

program in which each shared variable is a component of a K=L=M=N composite register.

Proof Sketch: Consider a program A that satis�es the three atomicity constraints: Exact-Writing,

Single-Phase, and Finite-Reading. Program A can be implemented by a program B in which no as-

signment statement both reads and writes shared variables. In particular, suppose that the following

assignment statement appears in some process P of A.

x1; . . . ; xN := E1; . . . ; EN
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If this statement both reads a shared variable and writes a shared variable, then, by Single-Phase, it

reads no shared variable that is written by a process other than P . This implies that we can replace

this statement by the two statements

v1; . . . ; vN := E1; . . . ; EN ;

x1; . . . ; xN := v1; . . . ; vN

where each vi is a new private variable of process P . By similarly replacing each assignment state-

ment of A that both reads and writes shared variables, we obtain program B.

Now, we show that B can be implemented by a program C in which each assignment statement

writes at most one shared variable. Consider an assignment statement of B that writes several shared

variables Z1; . . . ; ZK . By Exact-Writing, each Zi is an unsubscripted variable. Furthermore, if an

assignment statement writes some Zi, then it writes each Zi and no other shared variable. We can

therefore combine Z1; . . . ; ZK into a new \compound" variable ZNEW as follows:

ZNEW : record Z1 : type1; � � � ZK : typeK end

where typei is the type of Zi in B. (Note that ZNEW is really just an integer or subrange vari-

able. We are using the record type only as \syntactic sugar" to indicate that the bits of ZNEW

are partitioned into various �elds.) Each assignment statement of B that writes the K variables

Z1; . . . ; ZK is replaced by an assignment statement that writes the single variable ZNEW . We also

have to replace each assignment statement that reads some Zi. For example, the statement

a; b := Z1 + Z2; Z3 + Z4

(where a and b are private variables) would be replaced by the statement

a; b := ZNEW :Z1 + ZNEW :Z2; ZNEW :Z3 + ZNEW :Z4

Program C is obtained by making similar replacements for each class of shared variables given by

Exact-Writing.

From the above construction, if an assignment statement of programC accesses a shared variable,

then it either writes a single shared variable or reads one or more shared variables. Moreover, by

the Finite-Reading constraint, if an assignment statement of C accesses an element of an in�nite

shared array, then it either reads that element or writes that element, and accesses no other shared

variable.

Based upon these observations, we now show that C can be implemented by a program in which

each shared variable is a component of a composite register. The implementation is obtained as

follows: each element of an in�nite shared array in C is replaced by a composite register with only

one component; the remaining shared variables of C (other than elements of in�nite shared arrays)

are replaced by a single composite register, with each variable corresponding to one component of

the register. From the construction of program C, it follows that each assignment statement can

be implemented by either a write operation of one component of a composite register, or a read

operation of all components of a composite register. 2

Example: We show that the example program considered in Section 3 can be implemented by a
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type Ctype = record VW : integer; X : 1::N ; YZ : boolean end

shared var C : array[1::2] of Ctype =� composite register �=

initialization (C[2]:VW = default value) ^ (C[1]:YZ = C[2]:YZ)

process CONTROLLER

private var request; reply : integer;

dev : 1::N ;

pending; y : boolean;

c : array[1::2] of Ctype

begin

do true ! read c := C;

reply; pending := c[2]:VW; (c[1]:Y Z 6= c[2]:Y Z);

if :pending ! consume reply; produce next request; dev;

read c := C; y := :c[1]:YZ;

write C[1] := (request; dev; y)

[] pending ! skip

�

od

end

process DEVICE (j : 1::N)

private var request; reply : integer;

dev : 1::N ;

pending; z : boolean;

c : array[1::2] of Ctype

begin

do true ! read c := C;

request; dev; pending := c[1]:V W; c[1]:X; (c[1]:Y Z 6= c[2]:Y Z);

if pending ^ dev = j ! consume request; produce reply;

read c := C; z := :c[2]:YZ;

write C[2] := (reply; 1; z)

[] :pending _ dev 6= j ! skip

�

od

end

Figure 6: Example program, revisited.
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program with processes that communicate only via a single composite register. The corresponding

program is shown in Figure 6. There is a single composite register C that replaces the �ve shared

variables V , W , X, Y , and Z of the original program. C has two components, the �rst of which is

written by the CONTROLLER, and the second of which is written by the DEVICEs.

To explain the structure of C, we return to the original program given in Figure 1. As suggested

by Exact-Writing, we partition the �ve shared variables of this program into two classes fV;X; Y g

and fW;Zg. Each of these classes corresponds to one component of C: the class fV;X; Y g corre-

sponds to the �rst component of C, namely C[1], and the class fW;Zg corresponds to the second

component of C, namely C[2]. Note that the class fV;X; Y g contains an integer variable, a variable

of type 1::N , and a boolean variable, while the class fW;Zg contains an integer variable and a

boolean variable. To accommodate both classes, we de�ne each component of C to include a �eld

VW of type integer, a �eld X of type 1::N , and a �eld YZ of type boolean. The correspondence

between the shared variables of the original program and the composite register C is then as follows:

variable V corresponds to C[1]:VW , variable W corresponds to C[2]:VW , variable X corresponds

to C[1]:X, variable Y corresponds to C[1]:YZ , and variable Z corresponds to C[2]:YZ . Note that

C[2]:X is unused.

Using our tuple notation, C would be classi�ed as a 2=1=N=N + 1 composite register: it has

two components; each component consists of an in�nite number of bits (since each VW �eld is an

integer); each component can be written by N processes (although the CONTROLLER actually

only writes the �rst component and the N DEVICEs the second); and all N + 1 processes can read

C. Note that in Figure 6 we have annotated the program with the keywords read and write to

emphasize those assignment statements that access the composite register C. This convention will

also be adopted in the remainder of the paper. 2

It follows from these two theorems that in order to establish the su�ciency of our atomicity

constraints, our proof obligation is reduced to the following.

Proof Obligation: Show that a K=L=M=N composite register can be implemented in terms of

1=1=1=1 composite registers. 2

Fortunately, this proof obligation can be divided into a series of steps, one for each of the

parameters K, L, M , and N . Constructions for these steps can be found in the Ph.D. dissertation

of the �rst author [4], as well as in the literature. The steps involved in constructing a K=L=M=N

composite register from 1=1=1=1 composite registers are illustrated in Figure 7. Each arrow in this

�gure is labeled by a reference to the paper(s) in which the corresponding register construction(s)

appear.

One of the steps shown in Figure 7 is considered in detail in Section 8. In particular, we present

a construction of a 1=L=1=1 composite register from 1=1=1=1 composite registers. This construction

is included to give the reader (of this paper) some idea as to the structure of a composite register

construction. Our 1=L=1=1 construction is the �rst that we know of that explicitly addresses the

case in which L is allowed to be in�nite.

In proving that a composite register construction is correct, the principal di�culty that arises is
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K=L=M=N

K=L=1=N 1=L=M=N

1=L=1=N

1=L=1=1

1=1=1=1

[1][2]

[8, 22, 27, 30][1, 3]

[9, 17, 25, 28]

[19, 29]

Figure 7: Constructing a K=L=M=N composite register from 1=1=1=1 composite registers.

that of establishing that all well-formed histories of the construction are serializable. The de�nition

of serializability given in Section 4, while intuitive, is rather di�cult to use directly. In the next

section, we present a lemma that gives a set of conditions that are su�cient for establishing that

a well-formed history of a construction is serializable. Intuitively, a history is serializable if each

operation in the history can be shrunk to a point; that is, there exists a point between the �rst and

last events of each operation at which the operation appears to take e�ect. For this reason, this

lemma is referred to as the \Shrinking Lemma."

7 Shrinking Lemma

Before presenting the Shrinking Lemma, we �rst describe the basic structure of a composite register

construction. We de�ne a construction in a rather abstract way: we focus only on the Read andWrite

operations of the constructed register, while ignoring the processes that invoke these operations.

More speci�cally, a construction consists of a set of Writer procedures and a set of Reader procedures

that communicate via a set of lower-level variables. A Writer procedure is invoked by a process in

order to Write a value to a component of the constructed composite register. A Reader procedure

is invoked by a process in order to Read the values of all of the components of the constructed
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composite register. Each Writer procedure has one input parameter indicating the value to be

Written; each Reader procedure has one output parameter for each component of the constructed

register.

The Writer and Reader procedures of a construction correspond to the program fragments in-

troduced in Section 4. The Read Set of a Writer procedure consists of the single input parameter of

that procedure, while its Write Set consists of the single component Written by that procedure. The

Read Set of a Reader procedure includes all of the components of the constructed register, while

its Write Set includes all of its output parameters. In a history of a construction, the Writer and

Reader procedures are invoked in an arbitrary manner.

The correctness condition for a construction is the same as de�ned in Section 4. That is, a

construction is correct i� each of its histories is wait-free, and each of its well-formed histories is

sequentially correct and serializable. Establishing that a history is wait-free and sequentially correct

is usually straightforward. The major di�cultly lies in establishing that a history is serializable, so

it is this requirement that we will concentrate on here.

It is rather di�cult to prove that a history of a composite register construction is serializable

by appealing directly to the de�nition of serializability given in Section 4. The Shrinking Lemma,

given below, reduces our proof obligation to �ve distinct conditions. Before stating this lemma, we

�rst introduce some terminology.

De�nition: A Write operation of component k of the constructed composite register, where

0 � k < K, is called a k-Write operation. 2

In order to avoid special cases when proving the correctness of a construction, we make the

following assumption concerning the initial Write operations.

Initial Writes: For each k, where 0 � k < K, there exists a k-Write operation that precedes each

other k-Write operation and all Read operations. 2

Shrinking Lemma: A well-formed history h of a K=L=M=N composite register construction is

serializable if for each k, where 0 � k < K, there exists a function �k that maps every Read operation

and k-Write operation in h to some natural number, such that the following �ve conditions hold.

� Uniqueness: For each pair of distinct k-Write operations v and w in h, �k(v) 6= �k(w).

Furthermore, if v precedes w, then �k(v) < �k(w).

� Integrity : For each Read operation r in h, and for each k in the range 0 � k < K, there exists

a k-Write operation w in h such that �k(r) = �k(w). Furthermore, the value Read by r for

component k is the same as the value Written by w.

� Proximity : For each Read operation r in h and each k-Write operation w in h, if r precedes w

then �k(r) < �k(w), and if w precedes r then �k(w) � �k(r).

� Read Precedence: For each pair of Read operations r and s in h, if (9k :: �k(r) < �k(s)) or if

r precedes s, then (8k :: �k(r) � �k(s)).
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� Write Precedence: For each Read operation r in h, and each j-Write operation v and k-Write

operation w in h, where 0 � j < K and 0 � k < K, if v precedes w and �k(w) � �k(r), then

�j(v) � �j(r). 2

Uniqueness totally orders the Write operations on a given component in accordance with the

partial precedence ordering de�ned by h. According to Integrity, the value Read by a Read operation

for a given component must equal the value Written to that component by some Write operation.

This condition prohibits a Read operation from returning a predetermined value for some component.

Proximity ensures that a Read operation does not return a value from the \future," or one from the

\far past" that has subsequently been \overwritten" (i.e., each value Read by a Read operation must

have been Written by a Write operation in close proximity). Read Precedence disallows two Read

operations from obtaining inconsistent \snapshots" of the constructed register. Write Precedence

orders Write operations of one component with respect to Write operations of another component.

Note that for K = 1, Write Precedence is a direct consequence of Uniqueness. Conditions similar to

Integrity, Proximity, and Read Precedence have been used elsewhere as a correctness condition for

atomic register constructions; see, for example, the Integrity, Safety, and Precedence conditions of

[28], and Proposition 3 of [19]. An atomic register is a special case of a composite register in which

there is only one component.

The correctness proof for the Shrinking Lemma is given in [4]. The proof is somewhat tedious,

but is not hard. The proof strategy is as follows. We �rst augment the precedence relation on

operations in history h by adding pairs of operations. These added pairs of operations are de�ned

based on the �ve conditions of the lemma. We then show that the resulting relation is an irre
exive

partial order, i.e., it is irre
exive and transitive. Finally, we show that any extension of this relation

to an irre
exive total order satis�es the conditions in the de�nition of serializability given in Section

4.

8 1=L=1=1 Construction

In this section, we establish that a 1=L=1=1 composite register can be constructed from 1=1=1=1

composite registers (even if L is in�nite). For brevity, we only describe the construction informally

here; a formal correctness proof is given in [4].

The construction is depicted in Figure 8. (We assume that any arithmetic expression involving

L in this �gure is replaced by 1 for the case in which L is in�nite.) We begin by giving a brief

description of how the construction works; a more detailed description is given below. The Reader

and the Writer communicate by means of four \bu�ers." Each bu�er is an array of bits. The Writer

Writes a value to the constructed register by copying the binary representation of this value into

one of the four bu�ers. The Reader Reads a value from the constructed register by scanning one of

the four bu�ers. To ensure that the Reader obtains a correct value, the Reader and the Writer are

coordinated so that they never access the same bu�er at the same time. This technique has been

employed in several other similar constructions; see, for example, Burns and Peterson [10], Kirousis

et al. [17], and Tromp [29].

The shared variables used in the construction are as follows.

21



type Y type = array[0::2L] of 0::1

shared var Y : array[0::1][0::1] of Y type;

Z : array[0::1] of 0::1;

WP ;RP : 0::1

initializationWP = RP ^ (8i; j : 0 � i � 1 ^ 0 � j � 1 : (9k : k � 0 : Y [i; j][2k] = 0))

procedure Reader returns valtype procedure Writer(val : valtype)

private var private var

val : valtype; d;wp;walt : 0::1;

ralt; rp; x; y : 0::1; n : 1::L;

k : 0::L+ 1 k : 0::L

initialization initialization

rp = RP d = wp = WP

begin begin

read rp :=WP ; read d := RP;

write RP := rp; wp; walt; n := d� 1; walt� 1; number of bits in val;

read ralt := Z[rp]; write Y [wp;walt][2n] := 0;

val; k := 0; 0; k := 0;

do k � L ! do k < n !

read x := Y [rp; ralt][2k]; write Y [wp;walt][2k] := 1;

if x = 0 ! exit [] x 6= 0 ! skip �; write Y [wp;walt][2k+ 1] := val[k];

read y := Y [rp; ralt][2k+ 1]; k := k + 1

val; k := val + y � 2k ; k+ 1 od;

od; write Z[wp] := walt;

return(val) write WP := wp

end end

Figure 8: 1=L=1=1 construction.

Y [i; j]: A bu�er that is used to store the binary representation of a value as Written by a Write

operation. There are four such bu�ers since i and j each range over f0; 1g. Each bu�er is

an array of bits written by the Writer and read by the Reader. If L is �nite, then Y [i; j] has

2L+1 elements, and if L is in�nite, then Y [i; j] has an in�nite number of elements. (Note that

Y is really a three-dimensional array. However, in describing how the construction works, we

�nd it convenient to view Y as a two-dimensional array, where each element is itself an array.)

The following shared variables are used to ensure that the Reader and Writer never access the

same bu�er at the same time. This is described in detail below.

Z[i]: A bit that is written by the Writer and read by the Reader. There are two such bits since i

ranges over f0; 1g.

WP : A modulo-2 \write pointer" that is written by the Writer and read by the Reader. (We use �

to denote modulo-2 addition.)
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RP : A modulo-2 \read pointer" that is written by the Reader and read by the Writer.

To simplify the Reader and Writer procedures in Figure 8, we assume that the private variables

of each procedure retain their values between invocations.

A Write operation Writes a new value to the constructed register by copying the binary repre-

sentation of this value into the bu�er Y [wp;walt]. Thus, wp and walt together constitute a two-bit

\pointer" to one of the four shared bu�ers. The value of wp is obtained by �rst reading RP and

then incrementing the value read. The value of walt is obtained by incrementing the value assigned

to walt by the previous Write operation. After updating Y [wp;walt], the value of walt is made

available to the Reader by writing it to Z[wp], and the value of wp is made available to the Reader

by writing it to WP .

Each pair of bits (Y [wp;walt][2k]; Y [wp;walt][2k+ 1]), where k � 0, encodes a single bit of the

Written value. The pair (1; 0) encodes a bit with value 0 and the pair (1; 1) encodes a bit with value

1. The pair (0;�) is used to indicate the end of a string of bits. Note that such a string can be

arbitrarily long since L may be in�nite | hence the need for the encoding.

A Read operation Reads a value from the constructed register by scanning one of the four shared

bu�ers. A Read operation scans the bu�er that is pointed to by the pair of bits rp and ralt. The

value of rp is obtained by reading WP and the value of ralt is obtained by reading Z[rp]. The value

of rp is made available to the Writer by writing it to RP .

The correctness of this construction follows from the following fact (which is proved in [4]): if a

Read operation executes its do statement while a Write operation executes its do statement, then

rp 6= wp or ralt 6= walt. This implies that no Write operation interferes with a Read operation as it

reads from one of the four shared bu�ers.

The space complexity of the construction is determined by the number of shared 1=1=1=1 com-

posite registers required. If L is in�nite, then an in�nite number of 1=1=1=1 registers are obviously

required. So, assume that L is �nite. Then, the complexity of each of the shared variables is as

follows.

� Y [i; j], where 0 � i; j � 1, uses 2L + 1 bits.

� Z[i], where 0 � i � 1, uses 1 bit.

� WP uses 1 bit.

� RP uses 1 bit.

Therefore, the space complexity is 8L+ 8. The lower bound to construct an L-bit register is O(L).

Thus, our construction is asymptotically optimal.

The time complexity of a 1=L=1=1 construction is determined by the number of reads and writes

of shared 1=1=1=1 registers required to Read and Write the constructed register. The time complexity

of a Read in our 1=L=1=1 construction is O(L0), where L0 < L is the size (in bits) of the value Read.

The time complexity of a Write is O(L0), where L0 < L is the size (in bits) of the value Written.
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9 Concluding Remarks

We have presented a new criterion for the atomicity of concurrent programs along with a simple

method for checking whether a given program is atomic. This method consists of three constraints,

which can often be checked based on the syntax of a particular program. The class of programs

considered atomic according to our atomicity criterion is larger than the class considered atomic

according to the traditional Owicki-Gries atomicity criterion.

Our atomicity criterion is motivated by the following observation: Interleaving semantics is a

suitable abstraction only if we restrict our attention to programs with su�ciently simple actions.

According to our criterion, an action is \su�ciently simple" if it can be implemented in a wait-free,

serializable manner in terms of primitive actions. (In [13], Gouda argues that we should also restrict

our attention to only certain kinds of assertions when reasoning about the behavior of a program

under interleaving semantics. In particular, he considers a restricted notion of parallelism and argues

that for interleaving semantics to be a suitable abstraction for this notion of parallelism, we should

limit our attention to \parallelizable" assertions.)

Our notion of serializability is equivalent to the de�nition of linearizability given by Herlihy

and Wing in [15], for the special case of implementing a program in which shared variables are

accessed only by assignment statements. A similar notion has also been proposed by Misra [24]. In

particular, Misra gives a set of axioms for constructing concurrent hardware registers, and shows

that if a register satis�es these axioms, then concurrent accesses to the register can be viewed as

being interleaved.

To establish the su�ciency of our atomicity constraints, we considered in Section 6 a shared data

object called a composite register. The notion of a composite register is an extension of an atomic

register, and was �rst introduced by Anderson in [2, 3]. A composite register is equivalent to the

atomic snapshot primitive de�ned by Afek et al. in [1]. The notion of an atomic register was �rst

de�ned by Lamport [19]. An atomic register is a composite register with only one component.

We should point out that it may be possible to relax the Exact-Writing and Single-Phase con-

straints somewhat, despite the necessity results proved in Section 5. For example, according to

Exact-Writing, if two assignment statements in di�erent processes write a common shared variable,

then they write the same set of shared variables. In establishing the necessity of Exact-Writing,

we considered in Theorem 4 a program in which the two assignment statements X; Y := 1; 1 and

Y; Z := 2; 2 appeared in di�erent processes. Each of these assignment statements writes one shared

variable that is written by the other, and one that is not. This necessity proof leaves open the possi-

bility of relaxing Exact-Writing to allow an assignment statement of one process to write a subset of

the variables that are written by an assignment of another process; for example, X; Y; Z := 1; 1; 1

and Y; Z := 2; 2.

Recent results concerning \pseudo read-modify-write" (PRMW) operations show that Single-

Phase can also be relaxed somewhat. The PRMW operation takes its name from the classical read-

modify-write (RMW) operation as de�ned in [18]; the RMW operation has the form \temp; X :=

X; f(X)," where X is a shared variable, temp a private variable, and f a function. Executing this

operation has the e�ect of modifying the value of X according to function f , and returning the

original value of X in temp. The PRMW operation has the form \X := f(X)," and di�ers from the

RMW operation in that the value of X is not returned. It is shown in [6] and [7] that any shared
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data object that can either be read, written, or modi�ed by a commutative PRMW operation can be

implemented without waiting from atomic registers. This work shows that under certain conditions

it is permissible to allow an assignment statement of one process to both read and write a shared

variable that is written by another process.

It may also be possible to relax the atomicity constraints based upon the semantics of a particular

program. For instance, consider a program in which one process executes the statement X := Y and

another process executes the statement Y := X. This program violates Single-Phase. However, if

the two processes are synchronized in such a way so that these two statements are never enabled at

the same time, then it may be reasonable to consider both statements to be atomic. We have tried

as much as possible to avoid the need for analyzing the semantics of a program when appealing to

our atomicity constraints.

As mentioned earlier, the version of Exact-Writing considered in this paper is overly restrictive

because it allows an assignment statement to write several shared variables only if all such variables

are unsubscripted. In [4], a more permissive version of Exact-Writing is considered that allows an

assignment statement to write several subscripted variables. This version of Exact-Writing is similar

to the one given in this paper, except for the partitioning of shared variables into classes. In [4], a

class is allowed to consist of several shared variables in the following cases.

� A class may consist of a number of unsubscripted variables.

� A class may consist of all elements of a �nite array.

� If A;B; . . . ; C are single-dimensional arrays whose subscripts have the same range, then their

elements can be partitioned by subscript, i.e., A[i]; B[i]; . . . ; C[i] is a class for each i. Multi-

dimensional arrays may be similarly partitioned.

The above version of Exact-Writing is still, in fact, more restrictive than is necessary. However,

there is a tradeo� here: the more permissive we are concerning classes, the more di�cult it will be

to establish the su�ciency of our atomicity constraints.

We leave the question of whether Finite-Reading is necessary as an open problem. To prove

that Finite-Reading is necessary, we are required to demonstrate the existence of a nonatomic

program that violates Finite-Reading, but satis�es Exact-Writing and Single-Phase. On the other

hand, to prove that Finite-Reading is not necessary (i.e., can be removed from our proposed set of

atomicity constraints), we are required to show that any program satisfying only Exact-Writing and

Single-Phase can be implemented in terms of single-reader, single-writer, shared bits. Note that the

approach that we took in Theorem 2 will not work in this case. The principal di�culty that arises

is illustrated by the following example. Consider a concurrent program with a process that includes

the following program fragment, where the in�nite array X[0::1] is shared.

i := 0;

do true ! a[i]; b[i]; i := X[i]; X[i+ 1]; i+ 1 od

This program violates Finite-Reading because each assignment statement a[i]; b[i]; i := X[i]; X[i+

1]; i+1, where i � 0, reads two elements of the in�nite shared array X[0::1]. In order to implement

the variables of this program in terms of composite registers, it is necessary to partition the elements

of X into �nite classes and implement each such class by using a single composite register. This
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partitioning is necessary because a composite register, by de�nition, consists of a �nite number of

components. (An atomic snapshot of an in�nite number of components cannot be implemented in

a wait-free manner.) However, it is impossible to partition the elements of X so that all shared

variables accessed by each assignment statement come from the same class.
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