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1 Introduction

There has been much recent interest in fair scheduling algorithms for real-time multiprocessor

systems. The roots of much of the research on this topic can be traced back to the seminal work

of Baruah et al. on Proportionate fairness (Pfairness) [6]. This work proved that the problem of

optimally scheduling periodic tasks1 on multiprocessors could be solved on-line in polynomial time

by using Pfair scheduling algorithms. Pfair scheduling differs from more conventional real-time

scheduling approaches in that tasks are explicitly required to execute at steady rates. In most real-

time scheduling disciplines, the notion of a rate is implicit. For example, in a periodic schedule, a

task T executes at a rate defined by its required utilization (T.e/T.p) over large intervals. However,

T ’s execution rate over short intervals, e.g., individual periods, may vary significantly. Hence, the

notion of a rate under the periodic task model is a bit inexact.

Under Pfair scheduling, each task is executed at an approximately uniform rate by breaking it

into a series of quantum-length subtasks. Time is then subdivided into a sequence of (potentially

overlapping) subintervals of approximately equal lengths, called windows. To satisfy the Pfairness

1A periodic task T is characterized by a phase T.φ, an execution requirement T.e, and a period T.p: a job release
(i.e., task invocation) occurs at time T.φ + (k − 1) · T.p for each integer k ≥ 1 and the kth job must receive T.e units
of processor time by the next release (at time T.φ + k · T.p). A periodic task system is synchronous if each task in
the system has a phase of 0.
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rate constraint, each subtask must execute within its associated window. Different subtasks of a

task are allowed to execute on different processors (i.e., inter-processor migration is permitted),

but may not execute simultaneously (i.e., parallelism is prohibited).

By breaking tasks into uniform-sized subtasks, Pfair scheduling circumvents many of the bin-

packing-like problems that lie at the heart of intractability results that pertain to multiprocessor

scheduling. Indeed, Pfair scheduling is presently the only known approach for optimally scheduling

periodic tasks on multiprocessors. Three Pfair scheduling algorithms have been proven optimal:

PF [6], PD [7], and PD2 [2]. Several suboptimal algorithms have also been proposed, including the

earliest-pseudo-deadline-first (EPDF) algorithm [16, 21], the weight-monotonic (WM) algorithm [5,

17], and the deadline-fair-scheduling (DFS) algorithm [9].

In this chapter, we present an overview of Pfair scheduling and many of the extensions to it that

have been proposed. In Section 2, we formally describe Pfairness and its relationship to periodic task

scheduling. In Section 3, we present the intra-sporadic fairness (ISfairness) [3, 20] constraint, which

extends the Pfairness constraint to systems in which the execution of subtasks may be delayed.

In Section 4, we present results relating to dynamic task systems, i.e., systems in which tasks are

allowed to leave and join [22]. Section 5 describes prior work on using hierarchical scheduling under

a global Pfair scheduler [11, 16]. We then present resource-sharing protocols [12, 13] designed for

Pfair-scheduled systems in Section 6. Section 7 summarizes the chapter.

2 Periodic Task Systems

In this section, we consider the problem of scheduling a set τ of synchronous periodic tasks on a

multiprocessor. We assume that processor time is allocated in discrete time units, or quanta, and

refer to the time interval [t, t + 1), where t is a nonnegative integer, as slot t. We further assume
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that all task parameters are expressed as integer multiples of the quantum size. As mentioned in

the footnote in Section 1, each periodic task T is characterized by a period T.p, a per-job execution

requirement T.e, and a phase T.φ. (Recall that T.φ = 0 for synchronous tasks.) We refer to the

ratio of T.e/T.p as the weight of task T , denoted wt(T ). Informally, wt(T ) is the rate at which T

should be executed, relative to the speed of a single processor. A task with weight less than 1/2 is

called a light task, while a task with weight at least 1/2 is called a heavy task.

The sequence of scheduling decisions over time defines a schedule. Formally, a schedule S is

a mapping S : τ × Z �→ {0, 1}, where τ is a set of periodic tasks and Z is the set of nonnegative

integers. If S(T, t) = 1, then we say that task T is scheduled in slot t.

2.1 Pfair Scheduling

In a perfectly fair (ideal) schedule for a synchronous task system, every task T would receive wt(T )·t

quanta over the interval [0, t) (which implies that all deadlines are met). However, such idealized

sharing is not possible in a quantum-based schedule. Instead, Pfair scheduling algorithms strive to

“closely track” the allocation of processor time in the ideal schedule. This tracking is formalized

in the notion of per-task lag , which is the difference between each task’s allocation in the Pfair

schedule and the allocation it would receive in an ideal schedule. Formally, the lag of task T at

time t, denoted lag(T, t),2 is defined as follows:

lag(T, t) = wt(T ) · t−
t−1∑
u=0

S(T, u). (1)

2For brevity, we leave the schedule implicit and use lag(T, t) instead of lag(T, t, S).

3



A schedule is Pfair if and only if

(∀T, t :: −1 < lag(T, t) < 1). (2)

Informally, (2) requires each task T ’s allocation error to be less than one quantum at all times,

which implies that T must receive either 
wt(T ) · t� or �wt(T ) · t
 quanta by time t.

It is straightforward to show that the Pfairness constraint subsumes the periodic scheduling

constraint. For example, in the case of a synchronous system, a periodic task T must be granted

T.e quanta in each interval [k · T.p, (k + 1) · T.p), where k ≥ 0. At t = k · T.p, wt(T ) · t =

(T.e/T.p) · (k · T.p) = k · T.e, which is an integer. By (2), each task’s allocation in a Pfair schedule

will match that of the ideal schedule at period boundaries. Since all deadlines are met in the ideal

schedule, they must also be met in each possible Pfair schedule.

Windows. Under Pfair scheduling, each task T is effectively divided into an infinite sequence of

quantum-length subtasks. We denote the ith subtask of task T as Ti, where i ≥ 1. The lag bounds

in (2) constrain each subtask Ti to execute in an associated window, denoted w(Ti). w(Ti) extends

from Ti’s pseudo-release, denoted r(Ti), to its pseudo-deadline, denoted d(Ti). (For brevity, we

often drop the “pseudo-” prefix.) r(Ti) and d(Ti) are formally defined as shown below.

r(Ti) =
⌊
i− 1
wt(T )

⌋
(3)

d(Ti) =
⌈

i
wt(T )

⌉
(4)

As an example, consider a task T with weight wt(T ) = 8/11. Each job of this task consists of eight

windows, one for each of its subtasks. Using Equations (3) and (4), it is easy to show that the
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Figure 1: The Pfair windows of the first two jobs (or sixteen subtasks) of a synchronous periodic task T
with T.e = 8 and T.p = 11. Each subtask must be scheduled within its window in order to satisfy (2).

windows within each job of T are as depicted in Figure 1.

Feasibility. A Pfair schedule on M processors exists for τ if and only if

∑
T∈τ

T.e

T.p
≤ M. (5)

This result was proved by Baruah et al. by means of a network-flow construction [6]. Let L denote

the least common multiple of {T.p | T ∈ τ}. By restricting attention to subtasks that fall within

the first hyperperiod of τ (i.e., in the interval [0, L)), the sufficiency of (5) can be established by

constructing a flow graph with integral edge capacities and by then applying the Ford-Fulkerson

result [10] to prove the existence of an integer-valued maximum flow for that graph. This integral

flow defines a correct schedule over [0, L). (Interested readers are referred to [6] for a detailed proof

of this result).

2.2 Optimal Pfair Algorithms

At present, three Pfair scheduling algorithms have been proven optimal for scheduling synchronous

periodic tasks on multiprocessors: PF [6], PD [7], and PD2 [2]. These algorithms prioritize sub-

tasks on an earliest-pseudo-deadline-first (EPDF) basis, but differ in the choice of tie-breaking
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rules. Breaking ties appropriately turns out to be the key concern when designing optimal Pfair

algorithms. One tie-break parameter that is common to all three algorithms is the successor bit ,

which is defined as follows:

b(Ti) =
⌈

i
wt(T )

⌉
−

⌊
i− 1
wt(T )

⌋
. (6)

Informally, b(Ti) denotes the number of slots by which Ti’s window overlaps Ti+1’s window (see (3)

and (4)). For example, in Figure 1, b(Ti) = 1 for 1 ≤ i ≤ 7 and b(T8) = 0. (Note that the last

subtask of a job of a periodic task has a successor bit of 0.) We now briefly describe each of the

three algorithms.

The PF algorithm. Under the PF algorithm, subtasks are prioritized as follows: at time t, if

subtasks Ti and Uj are both ready to execute, then Ti has higher priority than Uj , denoted Ti � Uj ,

if one of the following holds:

(i) d(Ti) < d(Uj).

(ii) d(Ti) = d(Uj) and b(Ti) > b(Uj).

(iii) d(Ti) = d(Uj), b(Ti) = b(Uj) = 1, and Ti+1 � Uj+1.

If neither subtask has priority over the other, then the tie can be broken arbitrarily. Given the PF

priority definition, the description of the PF algorithm is simple: at the start of each slot, the M

highest priority subtasks (if that many eligible subtasks exist) are selected to execute in that slot.

As shown in Rule (ii), when comparing two subtasks with equal pseudo-deadlines, PF favors a

subtask Ti with b(Ti) = 1, i.e., if its window overlaps that of its successor. The intuition behind

this rule is that executing Ti early prevents it from being scheduled in its last slot. Avoiding

the latter possibility is important because it effectively shortens w(Ti+1), which makes it more

difficult to schedule Ti+1 by its pseudo-deadline. If two subtasks have equal pseudo-deadlines and
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successor bits of 1, then according to Rule (iii), their successor subtasks are recursively checked.

This recursion will halt within min(T.e, U.e) steps, because the last subtask of each job has a

successor bit of 0.

In [6], PF was proven optimal using an inductive swapping argument. The crux of the argument

is to show that, if there exists a Pfair schedule S such that all decisions in S before slot t are in

accordance with PF priorities, then there exists a Pfair schedule S′ such that all the scheduling

decisions in S′ before slot t + 1 are in accordance with PF priorities. To prove the existence of

S′, the scheduling decisions in slot t of S are systematically changed so that they respect the

PF priority rules, while maintaining the correctness of the schedule. We briefly summarize the

swapping arguments used to transform S.

Suppose that Ti and Uj are both eligible to execute in slot t and Ti � Uj . Furthermore, suppose

that, contrary to the PF priority rules, Uj is scheduled in slot t in S, while Ti is scheduled in a

later slot t′ in S. There are three possibilities.

• Ti � Uj by Rule (i). Because Ti’s pseudo-deadline is less than Uj ’s pseudo-deadline, and

because the windows of consecutive subtasks overlap by at most one slot, Uj+1 is scheduled at

a later slot than Ti. Therefore, Ti and Uj can be directly swapped, as shown in Figure 2(a).

• Ti � Uj by Rule (ii). By Rule (ii), b(Uj) = 0, which implies that Uj+1’s window does not

overlap that of Uj . Hence, Ti and Uj can be directly swapped without affecting the scheduling

of Uj+1, as shown in Figure 2(b).

• Ti � Uj by Rule (iii). In this case, it may not be possible to directly swap Ti and Uj because

Uj+1 may be scheduled in the same slot as Ti (i.e., swapping Ti and Uj would result in Uj

and Uj+1 being scheduled in the same slot). If Uj+1 is indeed scheduled in slot t′, then it is

necessary to first swap Ti+1 and Uj+1, as shown in Figure 2(c), which may in turn necessitate
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Figure 2: Correctness proof for PF. Dashed arrows indicates the movement of quanta when swap-
ping allocations. Insets (a)–(c) illustrate the three cases considered in the proof.

the swapping of later subtasks.

From this inductive proof, we obtain the following result:

Theorem 1 ([6]) PF is optimal for scheduling periodic tasks on multiprocessors.

The PD and PD2 algorithms. Though optimal, PF is inefficient due to the recursion in

Rule (iii). In PD, Rule (iii) is replaced by three additional rules, each of which involves only a

simple calculation. (Hence, PD uses four rules to break pseudo-deadline ties.) On the other hand,

PD2 replaces Rule (iii) with a single rule and requires only two tie-break parameters. Since PD2 is

a simplified version of PD, we discuss PD2 first.

Under Rule (iii) of the PD2 priority definition, group deadlines of competing subtasks are

compared. The group deadline of a task T is only important when the task is heavy but does not

have unit weight, i.e., when 1/2 ≤ wt(T ) < 1. If a task does not satisfy this criterion, then its

group deadline is 0.

To motivate the definition of the group deadline, consider a sequence Ti, . . . , Tj of subtasks

such that b(Tk) = 1 ∧ |w(Tk+1)| = 2 for all i ≤ k < j. Note that scheduling Ti in its last slot forces

the other subtasks in this sequence to be scheduled in their last slots. For example, in Figure 1,
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scheduling T3 in slot 4 forces T4 and T5 to be scheduled in slots 5 and 6, respectively. The group

deadline of a subtask Ti, denoted D(Ti), is the earliest time by which such a “cascade” must end.

Formally, it is the earliest time t, where t ≥ d(Ti), such that either (t = d(Tk) ∧ b(Tk) = 0)

or (t + 1 = d(Tk) ∧ |w(Tk)| = 3) for some subtask Tk. (Intuitively, if we imagine a job of

T in which each subtask is scheduled in the first slot of its window, then the slots that remain

empty exactly correspond to the group deadlines of T within that job.) For example, in Figure 1,

D(T3) = d(T6)− 1 = 8 and D(T7) = d(T8) = 11.

Using this definition, Rule (iii) of the PD2 priority rules is defined as follows.

(iii) d(Ti) = d(Uj), b(Ti) = b(Uj) = 1, and D(Ti) > D(Uj).

(Rules (i) and (ii) remain unchanged, and ties not resolved by all three rules can still be broken

arbitrarily.) As shown, PD2 favors subtasks with later group deadlines. The intuition behind this

prioritization is that scheduling these subtasks early prevents (or at least reduces the extent of)

cascades. Cascades are undesirable since they constrain the scheduling of future slots.

The priority definition used in the PD algorithm adds two additional tie-break parameters

(and rules) to those used by PD2. The first of these is a task’s weight. The second is a bit that

distinguishes between the two different types of group deadline. For example, in Figure 1, D(T1) is

a type-1 group deadline because its placement is determined by the (t+ 1 = d(Tk) ∧ |w(Tk)| = 3)

condition, while D(T6) is is a type-0 group deadline. (Effectively, the value of this bit is the value

of b(Tk), where Tk is the subtask that defines the group deadline.) The optimality of PD2 shows

that these two additional tie-break parameters are not needed.

PD was proved optimal by a simulation argument that showed that PD “closely tracks” the

behavior of the PF algorithm; the optimality of PF was then used to infer the optimality of PD [7].

On the other hand, PD2 was proved optimal through a swapping technique, similar to that used in
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optimality proof of PF [2]. We omit these proofs because they are quite lengthy.

Theorem 2 ([7]) PD is optimal for scheduling periodic tasks on multiprocessors.

Theorem 3 ([2]) PD2 is optimal for scheduling periodic tasks on multiprocessors.

Implementation. We now describe an implementation strategy that results in a scheduler with

O(M logN) time complexity, where M is the number of processors, and N the number of tasks [7].

First, assume that eligible subtasks are stored in a priority-ordered “ready queue” R and that

ineligible subtasks that will become eligible at time t are stored in the “release queue” Qt. At the

beginning of slot t, Qt is merged into R. The min(M, |R|) highest-priority subtasks in R are then

extracted from R and selected for execution. For each selected subtask Ti, its successor, Ti+1, is

initialized and inserted into the appropriate release queue. Using binomial heaps (which are capable

of performing all basic heap operations in O(logN) time) to implement the various queues yields

the desired O(M logN) time complexity.

2.3 ERfair Scheduling

One undesirable characteristic of Pfair scheduling is that jobs can be ineligible according to the

Pfairness constraint, despite being ready. Consequently, processors may idle while ready but un-

scheduled jobs exist. Early-release fairness (ERfairness) [2] was proposed to address this problem.

Under ERfairness, the −1 lag constraint is dropped from (2). Instead, each subtask Ti is assumed

to have an eligibility time e(Ti) ≤ r(Ti), which is the time at which Ti becomes eligible to execute.

(The scheduling of Ti must still respect precedence constraints, i.e., Ti cannot become eligible until

Ti−1 is scheduled, regardless of e(Ti).) In [2], PD2 was shown to correctly schedule any ERfair task

set satisfying (5). Note that a Pfair schedule will always respect ERfairness, but not vice versa.
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Figure 3: The Pfair windows of the first jobs of a task T with weight 8/11 are shown system. The schedule
shown is a valid ERfair schedule, but not a valid Pfair schedule.

Figure 3 illustrates how one job of the task in Figure 1 might be scheduled under ERfair scheduling.

Servicing aperiodic jobs. One important application of ERfair scheduling is to permit mixed

scheduling of Pfair tasks and aperiodic jobs. An aperiodic job is a one-shot job that is not associated

with any task. Such jobs typically represent the execution of service routines, including those used

for interrupt handling. The response times of aperiodic jobs can be improved by allowing server

tasks to early-release their subtasks [23]. This improves responsiveness while also ensuring that the

schedulability of periodic tasks is not compromised.

Implementation. PF, PD and PD2 can be easily adapted to allow early releases. In particular,

if Ti is selected for execution, and if its successor Ti+1 is eligible (perhaps due to an early release),

then Ti+1 can be inserted immediately into the ready queue. Hence, ERfair variants tend to be

more efficient than their counterparts since fewer queue-merge operations are needed.

2.4 Practicality

Because of the quantum-based nature of Pfair scheduling, the frequency of preemptions and migra-

tions is a potential concern. A recent experimental comparison conducted by Baruah and us [24]

showed that PD2 has comparable performance (in terms of schedulability) to a task-partitioning

approach in which each task is statically assigned to a processor and the well-known earliest-
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deadline-first (EDF) scheduling algorithm is used on each processor. In this study, real system

overheads such as context-switching costs were considered. Moreover, the study was biased against

Pfair scheduling in that only static systems with independent3 tasks of low weight4 were considered.

In spite of the frequent context-switching and cache-related overheads, PD2 performs competitively

because the schedulability loss due to these overheads is offset by the fact that PD2 provides much

better analytical bounds than partitioning.

To improve the practicality of Pfair scheduling, Holman and Anderson investigated many tech-

niques for reducing overhead and improving performance in Pfair-scheduled systems [11, 12, 13, 14,

15]. These techniques have targeted many aspects of the system, including the frequency of con-

text switching and migrations, scheduling overhead, cache performance, and contention for shared

hardware and software resources.

Chandra, Adler, and Shenoy investigated the use of Pfair scheduling in general-purpose oper-

ating systems [9]. The goal of their work was to determine the efficacy of using Pfair scheduling to

provide quality-of-service guarantees to multimedia applications. Consequently, no formal analysis

of their approach was presented. Despite this, the experimental evaluation of their work convinc-

ingly demonstrates the practicality of Pfair scheduling.

3Considering only independent tasks is advantageous to EDF. While the synchronization techniques described
later in Section 6 permit efficient sharing of global resources, no efficient global techniques have been proposed for
partitioned EDF-scheduled systems (to the best of our knowledge).

4Bin-packing heuristics, including those used to assign tasks to processors, usually perform better with smaller
items. As the mean task utilization increases, the performance of these heuristics tends to degrade, resulting in more
schedulability loss. Although heavy tasks are rare, some techniques, such as hierarchical scheduling, can introduce
heavy “server” tasks. Hence, it is unrealistic to assume that only light tasks will occur in practice.
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Figure 4: The PF-windows of the first eight subtasks of an IS task T with weight 8/11. Subtask T5 is
released three units late causing all later subtask releases to be delayed by three time units.

3 Intra-sporadic Task Systems

The intra-sporadic (IS) task model was proposed as an extension of the well-studied periodic and

sporadic models [3, 20]. The sporadic model generalizes the periodic model by allowing jobs to be

released “late”, i.e., the separation between consecutive job releases of a task is allowed to be more

than the task’s period. The IS model generalizes this by allowing subtasks to be released late, as

illustrated in Figure 4. More specifically, the separation between subtask releases r(Ti) and r(Ti+1)

is allowed to be more than 
i/wt(T )� − 
(i− 1)/wt(T )�, which would be the separation if T were

periodic. Thus, an IS task is obtained by allowing a task’s windows to be right-shifted from where

they would appear if the task were periodic. Figure 4 illustrates this.

Under the IS model, each subtask Ti has an offset , denoted θ(Ti), that gives the amount by

which its window has been right-shifted. Hence, (3) and (4) can be expressed as follows.

r(Ti) = θ(Ti) +
⌊
i− 1
wt(T )

⌋
(7)

d(Ti) = θ(Ti) +
⌈

i
wt(T )

⌉
(8)

The offsets are constrained so that the separation between any pair of subtask releases is at least
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the separation between those releases if the task were periodic. Formally, the offsets must satisfy

k ≥ i ⇒ θ(Tk) ≥ θ(Ti). (9)

Under the IS model, a subtask Ti is permitted to execute before the beginning of its Pfair window.

That is, each subtask Ti has an eligibility time e(Ti), as in ERfair scheduling, and e(Ti) is allowed

to be less than r(Ti). The interval [r(Ti), d(Ti)) is said to be Ti’s PF-window , while the interval

[e(Ti), d(Ti)) is said to be its IS-window .

Using the definitions above, it is easy to show that sporadic and periodic tasks are special cases

of IS tasks. In particular, using the expression J(Ti) = 
 i−1
T.e � + 1, which maps a subtask to the

index (starting at 1) of the associated job, a periodic task T can be expressed as an IS task with

e(Ti) = T.φ + (J(Ti)− 1) · T.p, i.e., each grouping of T.e subtasks become eligible simultaneously

when the associated job is released. Similarly, all subtasks associated with a job under the sporadic

model will become eligible when the associated job is released. All subtasks within a single job of

a sporadic task have the same offset, i.e., only the window of the first of these subtasks may be

separated from that of its predecessor by an amount exceeding that in a periodic system.

The IS model allows the instantaneous rate of subtask releases to differ significantly from the

average rate (given by a task’s weight). Hence, it is more suitable than the periodic model for

many applications, particularly those in networked systems. Examples include web servers that

provide quality-of-service guarantees, packet scheduling in networks, and the scheduling of packet-

processing activities in routers [25]. Due to network congestion and other factors, packets may

arrive late or in bursts. The IS model treats these possibilities as first-class concepts and handles

them more seamlessly. In particular, a late packet arrival corresponds to an IS delay. On the other

hand, if a packet arrives early (as part of a bursty sequence), then its eligibility time will be less
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than its Pfair release time. Note that its Pfair release time determines its deadline. Thus, in effect,

an early packet arrival is handled by postponing its deadline to where it would have been had the

packet arrived on time.

Feasibility. In [3], Anderson and Srinivasan showed that an IS task set τ is feasible on M pro-

cessors if and only if (5) holds. This feasibility proof is a straightforward extension of the feasibility

proof for periodic tasks described earlier in Sec. 2.1.

Scheduling algorithms. In [20], Srinivasan and Anderson proved that PD2 correctly schedules

any feasible IS task system, and thus, is optimal for scheduling IS tasks. When prioritizing subtasks,

the successor bits and group deadlines are calculated as if no IS delays occur in the future. For

example, consider subtask T5 in Figures 1 and 4. In Figure 1, T5’s group deadline is at time 8,

while in Figure 4, its group deadline is at time 11. However, T3’s group deadline is at time 8 in

both figures because T3 is prioritized as if no IS delays occur in the future. In both figures, each of

T3 and T5 has a b-bit of 1.

Theorem 4 ([20]) PD2 is optimal for scheduling intra-sporadic tasks on multiprocessors.

Srinivasan and Anderson also showed that the earliest-pseudo-deadline-first (EPDF) algorithm,

which uses only Rule (i) to prioritize subtasks, is optimal for scheduling IS tasks on M (> 1)

processors if the weight of each task is at most 1
M−1 . (This result is fairly tight. In particular, if

the weight of a task is allowed to be at least 1
M−1 +

1
(M−1)2

, then EPDF can miss deadlines.)

Although the periodic model represents the worst-case behavior of an IS task, it turns out

that the optimality proofs mentioned previously do not extend directly to the IS case. The primary

reason for this is that the proofs are based on swapping arguments, which require a priori knowledge
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of the positions of future windows. To prove the optimality of PD2, Srinivasan and Anderson

developed a novel and effective lag-based argument that is more flexible than swapping-based

arguments. (Interested readers are referred to [20] for the complete proof.) This same proof

technique was also used to obtain the EPDF results mentioned above, and also Theorem 7 in the

next section [22].

4 Dynamic Task Systems

In many real-time systems, the set of runnable tasks may change dynamically. For example, in an

embedded system, different modes of operation may need to be supported; a mode change may

require adding new tasks and removing existing tasks. Another example is a desktop system that

supports real-time applications such as multimedia and collaborative-support systems, which may

be initiated at arbitrary times. When considering dynamic task systems, a key issue is that of

determining when tasks may join and leave the system without compromising schedulability.

4.1 Join and Leave Conditions

For IS task systems, a join condition follows directly from (5), i.e., a task can join if the total weight

of all tasks will be at most M after its admission. It remains to determine when a task may leave

the system safely. (Here, we are referring to the time at which the task’s share of the system can

be reclaimed. The task may actually be allowed to leave the system earlier.) As shown in [8, 26], if

a task with negative lag is allowed to leave, then it can re-join immediately and effectively execute

at a rate higher than its specified rate, which may cause other tasks to miss their deadlines. Based

on this observation, the conditions shown below are at least necessary, if not sufficient.
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(C1) Join condition: A task T can join at time t if and only if (5) continues to hold after joining.5

Leave condition: A task T can leave at time t if and only if t ≥ d(Ti), where Ti is the

last-scheduled subtask of T .

The condition t ≥ d(Ti) is equivalent to lag(T, t) ≥ 0. To see why, note that since t ≥ d(Ti), task

T receives at least i units of processor time in the ideal schedule by time t. Because Ti is the

last-scheduled subtask of T in the actual schedule, T receives at most i quanta by time t. Hence,

lag(T, t) ≥ 0. As a straightforward extension of the feasibility proof for IS task systems [3], it can be

easily shown that a feasible schedule exists for a set of dynamic tasks if and only if condition (C1) is

satisfied. Indeed, condition (C1) has been shown to ensure schedulability when using proportional-

share scheduling on a uniprocessor [8, 26]. However, as shown below, (C1) is not sufficient when

using a priority-based Pfair algorithm (such as PF, PD, or PD2) on a multiprocessor.

The theorem below applies to any “weight-consistent” Pfair scheduling algorithm. An algorithm

is weight-consistent if, given two tasks T and U of equal weight with eligible subtasks Ti and Uj ,

respectively, where i = j and r(Ti) = r(Uj) (and hence, d(Ti) = d(Uj)), Ti has priority over a third

subtask Vk if and only if Uj does. All known Pfair scheduling algorithms are weight-consistent.

Theorem 5 ([22]) No weight-consistent Pfair scheduler can guarantee all deadlines on multipro-

cessors under (C1).

Proof: Consider task systems consisting of only two weight classes: class X with weight w1 = 2/5

and class Y with weight w2 = 3/8. Let Xf = { T1 | T ∈ X } and Yf = { T1 | T ∈ Y }. We

construct a counterexample based upon which task weight is favored by the scheduler. (In each

of our counterexamples, no subtask is eligible before its PF-window.) We say that Xf is favored

5If T joins at time t, then θ(T1) = t. A task that re-joins after having left is viewed as a new task.
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Figure 5: Counterexamples demonstrating insufficiency of (C1) and tightness of (C2). A boxed integer
value n in slot t means that n of the subtasks from the corresponding task set are scheduled in that slot.
The dotted vertical lines depict intervals with excess demand. (a) Theorem 5. Case 1: Tasks of weight 2/5
are favored at times 0 and 1. (b) Theorem 5. Case 2: Tasks of weight 3/8 are favored at times 0 and 1.
(c) Theorem 6. The tasks of weight 4/5 are allowed to leave at time 3 and re-join immediately.

(analogously for Yf ) if, whenever subtasks in Xf and Yf are released at the same time, those in Xf

are given priority over those in Yf .

Case 1: Xf is favored. Consider a 15-processor system containing the following sets of tasks.

Set A: 8 tasks of weight w2 that join at time 0.

Set B: 30 tasks of weight w1 that join at time 0 and leave at time 3.

Set C: 30 tasks of weight w1 that join at time 3.

Because 30w1+8w2 = 15, this task system is feasible and the join condition in (C1) is satisfied.

Furthermore, since d(T1) =
⌈

5
2

⌉
= 3 for every T ∈ B, the leave condition in (C1) is also satisfied.

Since subtasks in Xf are favored, tasks in Set B are favored over those in Set A at times 0

and 1. Hence, the schedule for [0, 3) will be as shown in Figure 5(a). Consider the interval [3, 8).

Each task in Sets A and C has two subtasks remaining for execution, which implies that the Set A

requires 16 quanta and Set C requires 60 quanta by time 8. However, the total number of quanta

in [3, 8) is 15 · (8− 3) = 75. Thus, one subtask will miss its deadline at or before time 8.

Case 2: Yf is favored. Consider an 8-processor system containing the following sets of tasks.
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Set A: 5 tasks of weight w1 that join at time 0.

Set B: 16 tasks of weight w2 that join at time 0 and leave at time 3.

Set C: 16 tasks of weight w2 that join at time 3.

Because 5w1 + 16w2 = 8, this task system is feasible and the join condition in (C1) is satisfied.

Furthermore, since d(T1) =
⌈

8
3

⌉
= 3 for every T ∈ B, the leave condition in (C1) is also satisfied.

Since subtasks in Yf are favored, tasks in Set B are favored over those in Set A at times 0 and 1.

Hence, the schedule for [0, 3) will be as shown in Figure 5(b). Consider the interval [3, 35). In this

interval, each task in Set A requires 35 · 2/5− 1 = 13 quanta. Similarly, each task in Set C requires

(35− 3) · 3/8 = 12 quanta. However, the total requirement is 5 · 13 + 16 · 12 = 257, whereas [3, 35)

contains only (35− 3) · 8 = 256 quanta. Thus, a deadline miss will occur at or before time 35. ✷

The problem illustrated by the preceding proof is that subtasks are prioritized according to the

requirements of their successors. When a subtask is the last subtask that a task will release, then it

has no successors and hence should be given a successor bit of 0 and a trivial group deadline (i.e.,

0). However, without a priori knowledge of task departures, the scheduler must assign parameter

values according to the normal priority rules, which are designed for persistent tasks. Indeed,

Theorem 5 can be circumvented if the scheduler has such knowledge. For example, in Figure 5(a),

if the scheduler had known that the subtasks in Set B had no successors, then it would have given

those subtasks lower priority than those in Set A (by setting their successor bits to 0). However,

in general, such a priori knowledge of task departures may not be available to the scheduler.

The examples in Figure 5(a)–(b) show that allowing a light task T to leave at d(Ti) when

b(Ti) = 1 can lead to deadline misses. We now consider heavy tasks.

Theorem 6 ([22]) If a heavy task T is allowed to leave before D(Ti), where Ti is the last-released

subtask of T , then there exist task systems that miss a deadline under PD2.
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Proof: Consider a 35-processor system containing the following sets of tasks (where 2 ≤ t ≤ 4).

Set A: 9 tasks of weight 7/9 that join at time 0.

Set B: 35 tasks of weight 4/5 that join at time 0, release a subtask, and leave at time t.

Set C: 35 tasks of weight 4/5 that join at time t.

All tasks in Sets A and B have the same PD2 priority at time 0, because each has a deadline

at time 2, a successor bit of 1, and a group deadline at time 5. Hence, the tasks in Set B may be

given higher priority.6 Assuming this, Figure 5(c) depicts the schedule for the case of t = 3.

Consider the interval [t, t+ 5). Each task in Sets A and C has four subtasks with deadlines in

[t, t+ 5) (see Figure 5(c)). Thus, 9 · 4 + 35 · 4 = 35 · 5 + 1 subtasks must be executed in [t, t+ 5).

Since 35 · 5 quanta are available in [t, t+ 5), one subtask will miss its deadline. ✷

The cases considered in the proofs of Theorems 5 and 6 motivate the new condition (C2), shown

below. In [22], this condition is shown to be sufficient for ensuring the schedulability of dynamic

IS task sets scheduled by PD2. By Theorems 5 and 6, this condition is tight.

(C2) Join condition: A task T can join at time t if and only if (5) continues to hold after joining.

Leave condition: A task T can leave at time t if and only if t ≥ max(D(Ti), d(Ti) + b(Ti)),

where Ti is the last-scheduled subtask of T .

Theorem 7 ([22]) PD2 correctly schedules any dynamic IS task set that satisfies (C2).

Observe that (C2) guarantees that periodic and sporadic tasks can always leave the system

at period boundaries. This follows from the fact that the last subtask Ti in each job will have a

successor bit of 0, which implies that max(D(Ti), d(Ti) + b(Ti)) = max(d(Ti), d(Ti) + 0) = d(Ti).

6This counterexample also works for PF and PD since both will give higher priority to the tasks in Set B at time 0.
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4.2 QRfair Scheduling

In dynamic task systems, spare processing capacity may become available that can be consumed

by the tasks present in the system. One way for a task T to consume such spare capacity is by

early releasing its subtasks. However, by doing this, it “uses up” its future subtask deadlines. As a

result, if the system load later increases, then T will be competing with other tasks using deadlines

far into the future. Effectively, T is penalized when the load changes for having used spare capacity

in the past.

In recent work, Anderson, Block, and Srinivasan proposed an alternative form of early-release

scheduling called quick-release (QRfair) scheduling [4]. QRfair scheduling algorithms avoid pe-

nalizing tasks for using spare capacity by allowing them to shift their windows forward in time

when an idle processor is detected. The benefits of doing this strongly resemble those provided by

uniprocessor fair scheduling schemes based on the concept of virtual time [26].

5 Supertasking

In [16], Moir and Ramamurthy observed that the migration assumptions underlying Pfair scheduling

may be problematic. Specifically, tasks that communicate with external devices may need to execute

on specific processors and hence cannot be migrated. They further noted that statically binding

tasks to processors may significantly reduce migration overhead in Pfair-scheduled systems.

To support non-migratory tasks, they proposed the use of supertasks. In their approach, a

supertask Sp replaces the set of tasks that are bound to processor p, which become the component

tasks of Sp. (We use Sp to denote both the supertask and its set of component tasks.) Each

supertask Sp then competes with a weight equal to the cumulative weight of its component tasks,
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as shown below.

wt(Sp) =
∑

T∈Sp

wt(T )

Whenever a supertask is scheduled, one of its component tasks is selected to execute according to

an internal scheduling algorithm. Although Moir and Ramamurthy proved that EPDF is optimal

for scheduling component tasks, they also demonstrated that component-task deadline misses may

occur when using each of PF, PD, and PD2 as the global scheduling algorithm.

Figures 6(a)–(b) illustrate supertasking. Figure 6(a) shows a PD2 schedule in which two pro-

cessors are shared among five tasks, labeled S, . . . ,W , that are assigned weights 1/2, 1/3, 1/3,

1/5, and 1/10, respectively. Vertical dashed lines mark the slot boundaries and boxes show when

each task is scheduled. Figure 6(b) is derived from Figure 6(a) by placing tasks V and W into

a supertask S* that competes with weight wt(S*) = 3/10 = wt(V ) + wt(W ) and is bound to

processor 2. The arrows show S* passing its allocation (upper schedule) to one of its component

tasks (lower schedule) based upon an EPDF prioritization. Although no component-task deadlines

are missed in this example, such a weight assignment is not sufficient, in general, to guarantee that

all deadlines are met when using the PD2 algorithm [16].

Supertasking as a hierarchical-scheduling mechanism. In [11], Holman and Anderson con-

sidered supertasking more generally as a mechanism for achieving hierarchical scheduling in Pfair-

scheduled systems. Hierarchal scheduling is particularly interesting (and desirable) under Pfair

scheduling because many common task behaviors (e.g., blocking and self-suspension) can disrupt

the fair allocation of processor time to tasks, making scheduling more difficult. One way to com-

pensate for these behaviors is to schedule a set of problematic tasks as a single entity and then use

a second-level (component-task) scheduler to allocate the group’s processor time to the member

(component) tasks. In this approach, fairness is somewhat relaxed in that the group is required
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Figure 6: Sample Pfair schedules for a task set consisting of five tasks with weights 1/2, 1/3, 1/3, 1/5,
and 1/10, respectively. (a) Normal schedule produced when no supertasks are used. (b) Schedule produced
when tasks V and W are combined into the supertask S*, which competes with weight 3/10 and is bound
to processor 2.

to make progress at a steady rate rather than each individual task within the group. (Since fair

scheduling was introduced primarily to improve schedulability, weakening the fairness guarantee in

order to improve schedulability should be an acceptable trade-off in many cases.)

One immediate advantage of this relaxed fairness is that the component-task scheduler need not

be a fair scheduler. Indeed, using an unfair scheduler can result in substantial improvements, as

discussed in [11] and as demonstrated in [12, 13]. In addition, using supertasking to achieve hierar-

chical scheduling ensures that only one component task is executing at each instant, i.e., scheduling

within a supertask is a single-resource problem. This characteristic provides two advantages. First,

selectively preventing tasks that share resources from executing in parallel can reduce contention,

and hence, improve the schedulability of the system, as demonstrated in [12, 13]. (This advantage

is discussed in more detail in the next section.) Second, component-task schedulability can be

analyzed using demand-based arguments and other simple uniprocessor techniques. Informally, a

demand-based argument states that a deadline miss must be preceded by an interval of time during

which the total time required to service all pending jobs (in priority order) exceeded the available

processor time. Such analysis is desirable due both to its simplicity and also to the ease with which
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it can be understood and adapted to new situations. Unfortunately, demand-based arguments tend

to be ineffective on multiprocessors because they do not account for parallel execution.

In the rest of this section, we provide an overview of problems and results relating to super-

tasking. We begin by discussing the scheduling problems that must be addressed. We conclude by

briefly describing an open problem relating to supertasking.

Scheduling within a supertask. Since a supertask is effectively a single resource, an induc-

tive swapping argument can be used to prove that both EPDF and EDF scheduling algorithms

can schedule any periodic component-task set that is feasible under a given supertask allocation,

provided that all component tasks are independent. We briefly sketch the proof for the EDF case

below.

First, suppose, to the contrary of the claim, that a schedule S exists in which all job deadlines

are met, but that the schedule produced by EDF, SEDF, does not meet all deadlines. Also, let t

be the earliest time (slot) at which the scheduling decisions differ. Specifically, select x and y so

that x ∈ St, x �∈ SEDF
t , y �∈ St, and y ∈ SEDF

t . By the EDF prioritization, y must have a deadline

that is at most the deadline of x. Furthermore, since y �∈ St and both schedules are identical up to

time t, it follows that y must be scheduled next at some time t′ in S, where t′ > t. By the initial

assumptions, no deadlines are missed in schedule S, which implies that y’s (and hence x’s) deadline

must be at or after t′ + 1. (Recall that job deadlines come at the end of slots while scheduling

decisions are made at the start of each slot.) It follows that x and y can be swapped in schedule

S without introducing a deadline miss. This process can then be repeated until all scheduling

decisions at time t are identical in both schedules. By then inducting over time, all decisions in

schedule S can be made to agree with those in SEDF without introducing a deadline miss. However,

this contradicts the claim that SEDF contains a deadline miss, which completes the proof. Hence,
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EDF is an optimal policy when scheduling within a supertask. The proof is identical for EPDF,

with the only exception being that subtask deadlines are considered instead of job deadlines.

Scheduling the supertask. The main problem when using supertasks is to schedule a supertask

so that its component-task set is feasible. There are two basic approaches to solving this problem.

First, the global scheduler could be modified to handle supertasks as a special class. When invoked,

the global scheduler would first need to determine when each supertask should be scheduled to

guarantee the schedulability of its component tasks and then schedule the remaining tasks “around”

the supertasks. Unfortunately, it seems unlikely that supertasks could be granted such special

treatment while maintaining the optimality of the global scheduler. In addition, this approach is

unappealing in that it would likely increase scheduling overhead and would not provide a clean

separation between global and component-task scheduling.

An alternative approach, which Holman and Anderson investigated in [11, 14], is to assign to

each supertask a weight that is sufficient to guarantee component-task feasibility under any Pfair

schedule. We refer to this weight-selection problem as the reweighting problem. Unfortunately, Moir

and Ramamurthy’s work implies that this approach will necessarily result in some schedulability

loss, at least in some cases. In [11], Holman and Anderson presented rules for selecting a supertask

weight. These rules are based upon demand-based analysis and stem from the theorem shown

below, which bounds the amount of processor time available to a supertask over any interval of a

given length.

Theorem 8 (Holman and Anderson) A Pfair-scheduled supertask with weight w will receive at

least 
wL� − 1 quanta of processor time over any interval spanning L slots.

The theorem stated below follows directly from the rules presented in [11] and highlights some of
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the interesting practical ramifications of supertasking.

Theorem 9 All component tasks of a Pfair-scheduled supertask S will meet their deadlines if

wt(S) = min

(
1,

∑
T∈S

wt(T ) +
1
L

)
,

provided that either (i) component tasks are scheduled using EPDF and L is the shortest window

length of any component task, or (ii) component tasks are scheduled using EDF and L is the

smallest period of any component task.

The first implication of the above theorem is that EDF is less costly than EPDF when scheduling

component tasks. Although this would seem to contradict the earlier claim that both algorithms

are optimal in this context, it actually highlights the fundamental difference between fair and unfair

scheduling. Specifically, EDF is optimal for scheduling when job deadlines must be met (i.e., for

periodic-task scheduling), but is not optimal when subtask deadlines must be met (i.e., for Pfair

scheduling). Since the Pfairness constraint is stricter than the periodic-task constraint, it is more

costly to provide this guarantee when scheduling component tasks. Hence, EDF should be used for

scheduling component tasks whenever fairness is not essential to the correctness of the system.

The second implication is that the schedulability loss that stems from reweighting a supertask

is bounded (by 1
L) and should often be small in practice. For instance, if the quantum size is 5

milliseconds and the smallest component-task period is 250 milliseconds, the inflation will be at

most 0.02. In addition, this penalty can be reduced when using EDF by increasing component-task

periods.

Feasibility. Although sufficient schedulability conditions have been derived for hierarchical schedul-

ing with supertasks (in [11, 14]), the corresponding feasibility problem (that is, the problem of
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devising necessary and sufficient schedulability conditions) remains open. In [16], Moir and Rama-

murthy proved that a periodic task system containing non-migratory tasks is feasible if and only if

it satisfies

∑
T∈τ

wt(T ) ≤ M ∧

∀p : 1 ≤ p ≤ M :

∑
T∈Sp

wt(T ) ≤ 1


 .

This proof is based on a flow-graph construction similar to that used by Baruah et al. [6] to prove

the feasibility condition (5) for periodic task systems. Unfortunately, this proof does not appear

to extend to the supertasking approach. Consequently, there is no known feasibility condition for

systems in which periodic tasks are scheduled within Pfair-scheduled supertasks.

6 Resource Sharing

In this section, we discuss techniques for supporting task synchronization under Pfair scheduling,

including techniques for lock-free [12] and lock-based [13] synchronization.

6.1 Lock-free Synchronization

In [12], Holman and Anderson considered Pfair-scheduled systems in which lock-free shared objects

are used. Lock-free algorithms synchronize access to shared software objects while ensuring system-

wide liveness, even when faced with process halting failures. Specifically, lock-free algorithms

guarantee that some task is always capable of making progress. Lock-based algorithms cannot

satisfy this property since a task can prevent all other tasks from making progress by halting while

holding a lock.

Lock-free algorithms typically avoid locking through the use of “retry loops” and strong syn-

chronization primitives. Figure 7 depicts a lock-free enqueue operation. An item is enqueued in this
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typedef Qtype:
record data: valtype; next : pointer to Qtype

shared var
Head , Tail : pointer to Qtype

private var
old , new : pointer to Qtype; input: valtype;
addr : pointer to pointer to Qtype

procedure Enqueue(input)
∗new := (input, nil);
do old := Tail ;

if old �= nil then addr := &((∗old).next)
else addr := &Head fi

while ¬CAS2(&Tail , addr , old ,nil ,new ,new)

Figure 7: This figure shows a lock-free enqueue operation using the CAS2 primitive. The first two parameters
of CAS2 specify addresses of two shared variables, the next two parameters are values to which these variables
are compared, and the last two parameters are new values to assign to the variables if both comparisons
succeed. Although CAS2 is uncommon, it makes for a simple example here.

implementation by using a two-word compare-and-swap (CAS2) instruction to atomically update a

tail pointer and either the “next” pointer of the last item in the queue or a head pointer, depend-

ing on whether the queue is empty. This loop is executed repeatedly until the CAS2 instruction

succeeds. An important property of lock-free implementations such as this is that operations may

interfere with each other. In this example, an interference results when a successful CAS2 by one

task causes another task’s CAS2 to fail.

Blocking due to lock requests complicates Pfair scheduling considerably, as explained below.

Because of this, the lock-free approach will likely perform better when it is applicable.

Problems with lock-based synchronization. Locking is problematic in Pfair-scheduled sys-

tems for three reasons. First, Pfair scheduling can lead to long delays. Specifically, low-weight tasks

are scheduled infrequently, as shown in Figure 8. In general, the worst-case delay experienced by

lock-requesting tasks due to a lock-holding Pfair-scheduled task T is inversely-proportional to T.w.

Second, critical sections can span multiple subtasks. Hence, a task’s priority may change during one

of its critical sections. Most existing locking protocols implicitly assume that each task’s priority

is static, at least until its critical section completes. Third, Pfair weights are a form of reservation

mechanism, which complicates blocking-time accounting.
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Figure 8: This figure illustrates the blocking delay bounds implied by Pfair scheduling for a task T of weight
1/10. In this example, task T obtains a lock within slot 0 and is preempted before releasing it. Assuming
the lock will be released shortly after the start of the next quantum allocated to T , the shared resource will
still be unavailable for an interval of at least 9 slots.

Accounting for lock-free overhead. Lock-free algorithms are usually viewed as impractical

for real-time multiprocessor systems because bounding the worst-case number of retries is difficult.

However, the tight synchrony provided by Pfair scheduling facilitates worst-case analysis. Specif-

ically, Pfair scheduling guarantees that quantum boundaries align across processors and that at

most M tasks execute within each time slot. Hence, a scheduled task faces interference from no

more than M − 1 other tasks in each time slot in which it executes. In addition, Pfair’s tight

synchrony implies that interference takes one of two possible forms: interference within a quantum

and interference across multiple quanta. Both forms are illustrated in Figure 9.

Bounding the number of interferences across multiple quanta is trivial in most cases due to

practical considerations. In experiments conducted by Ramamurthy [19] on a 66 MHz processor,

operation durations for a variety of common objects (e.g., queues, linked lists, etc.) were found

to be in the range of tens of microseconds. On modern processors, these operations will likely

require no more than a few microseconds. Since quantum sizes typically range from hundreds of

microseconds to milliseconds, it is unlikely that any shared-object operation will be preempted more

than once. Hence, we only consider using lock-free techniques when all operations are guaranteed

to be preempted at most once, which is expected often to be the case. Therefore, no more that one

retry is needed due to interference across multiple quanta.
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Figure 9: This figure shows scenarios under which task A causes task B’s lock-free operation to fail, and
hence be retried. (a) A is scheduled in parallel with B. (b) B is preempted during the operation.

Now, consider a specific task T that performs an operation on a lock-free object ρ. Let Q(T, ρ)

denote the worst-case number of operations applied to ρ by any group of M − 1 tasks, excluding

T , within one quantum, i.e., Q(T, ρ) is an upper bound on the number of interferences experienced

by T within any single quantum. Since T ’s operation is preempted at most once, it follows that

T ’s operation is interfered with at most 2 ·Q(T, ρ) + 1 times before it operation completes. Hence,

T ’s operation will require no more than 2 ·Q(T, ρ) + 1 retries.

Reducing retry overhead. Recall that interference within a quantum can only occur when two

or more tasks that share a common object are scheduled in parallel. One simple technique for

reducing such interferences is to place tasks that share common objects into the same supertask,

thereby reducing the value of Q(T, ρ). For instance, consider a 4-processor system in which four

tasks, denoted A, . . . ,D, share an object. Further, suppose that A, . . . ,D make at most 1, 4, 3, and

6 accesses to the object within a single quantum. Without supertasking, task A can experience up

to 6+4+3 = 13 interferences within each quantum due to tasks B, . . . ,D. The worst-case scenario

occurs when A, . . . ,D are all scheduled in the same time slot. However, if B, . . . ,D are placed

within a supertask, task A can experience no more than max(6, 4, 3) = 6 interferences within each

quantum since A can be scheduled together with at most one task from the supertask.

Uniprocessor object implementations. Another potential benefit of supertasking is the abil-

ity to utilize uniprocessor lock-free algorithms. Such algorithms can be used in the special case
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in which all tasks that access an object are contained in the same supertask. Uniprocessor im-

plementations tend to be structurally simpler than their multiprocessor counterparts and hence

more efficient. In addition, strong synchronization primitives can often be efficiently implemented

in software on a uniprocessor [1], which avoids the need for hardware support.

Evaluating the supertasking trade-off. Unfortunately, supertasking’s benefits may be coun-

terbalanced by the schedulability loss due to reweighting. To determine whether supertasking is a

viable tool for reducing lock-free overhead, Holman and Anderson conducted a series of experiments

for 2-, 4-, 8-, and 16-processor systems [12]. In each experiment, a task set that shares lock-free

objects was randomly generated and then the cumulative weight of the system was computed both

with and without supertasks. (The heuristic used to assign tasks to supertasks and the experi-

mental setup are described in detail in [12].) For 2-processor systems, schedulability loss due to

reweighting was found to outweigh the reduction in lock-free overhead in the vast majority (91%)

of the cases considered. This is because interference within a quantum is already limited to only a

single interfering task per time slot. Hence, the use of supertasking provides only marginal benefits.

On the other hand, supertasking improved schedulability in 82.5%, 98.8%, and 99.9% of the task

sets considered for the 4-, 8-, and 16-processor systems, respectively.

6.2 Locking Synchronization

In [13], Holman and Anderson presented two approaches for supporting (non-nested) critical sec-

tions under Pfair scheduling. In this section, we summarize the concepts underlying these ap-

proaches. The analysis of systems using these approaches is straightforward; details can be found

in [13].
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Limitations of lock-free synchronization. Although lock-free algorithms avoid many prob-

lems that come with locking, they have many limitations. As previously mentioned, lock-free

algorithms often require strong synchronization primitives. Such primitives may not be available in

some multiprocessor systems. In addition, time and space overheads do not scale well with respect

to object complexity. Complex objects can usually be implemented much more efficiently using

locking. Finally, lock-free techniques can only be applied to objects implemented in software. Locks

are still needed to synchronize access to external devices.

Approach 1: Timer-based. In the first approach presented by Holman and Anderson, the

durations of all critical sections guarded by the lock in question are assumed to be much shorter

than the length of a scheduling quantum. (For reasons already explained, this approach is expected

to be widely applicable.) For cases in which this assumption holds, a per-lock timer signal, called

FREEZE (see the diagram below), can be used that occurs towards the end of each time slot. Once

this signal is received, lock granting is disabled. By placing this signal appropriately in time, a

task that risks being preempted while holding the lock can be prevented from obtaining it. Hence,

no locks using this implementation can be held across a quantum boundary, which avoids many

of the previously-mentioned problems associated with locking. Effectively, the blocking overhead

caused by the preemption of a lock-holding task is traded for blocking overhead caused by the

frozen intervals. We discuss the effects of this trade-off at the end of this section.
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����� Normal

Frozen
QUANTUM

FREEZE

not allowed
locking
allowed

locking

Approach 2: Server-based. This approach can be used to implement any lock, i.e., no as-

sumptions are made about critical-section durations. In this approach, a server executes all crit-
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ical sections guarded by a specific lock in place of the requesting task. The primary alternative

to a server-based approach is the use of some form of inheritance mechanism. Unfortunately,

inheritance-based protocols are problematic under Pfair scheduling as explained below.

Under an inheritance-based protocol, a lock-holding task is allowed to inherit some of the

scheduling parameters of a lock-requesting task that it blocks. For example, under the priority

inheritance protocol [18], a lock-holding task T inherits the priority of a higher-priority task that

it blocks. Under Pfair scheduling, a task T that inherits another task U ’s scheduling parameters

is temporarily bound to U ’s state. Thus, an explicit distinction is made between scheduling states

and the tasks that are bound to them. Usually a task T is bound to its own state, but when

inheritance occurs, this binding may change. Specifically, T may become bound to another task

U ’s state, or even to both its own state and U ’s state, leaving U temporarily bound to no state.

The problem with using inheritance-based protocols in Pfair-scheduled systems is that blocking

durations are both determined by task weights and compensated for by changing task weights.

Specifically, the blocking experienced by a task T , which is determined by the weights of tasks that

share resources with T , is compensated for by adjusting T ’s weight. However, changing T ’s weight

changes its Pfair window layout, which may either increase or decrease the worst-case delay before

a lock held by T is released. This change in delay may then require compensatory changes in other

tasks’ weights that share locks with T . Unfortunately, when these other weights change, the worst-

case blocking experienced by T will change also, requiring T to change weight again. Identifying an

optimal weight assignment is a non-trivial task under inheritance-based protocols. Furthermore,

changing the weights of tasks may also change the worst-case blocking scenario, which further

complicates the weight assignment process. Ultimately, the interdependence of weights caused by

inheritance-based protocols makes the effect of a weight change difficult to predict, which may be

undesirable even if the weight-selection algorithm’s overhead is reasonable.
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Figure 10: Behavior of a lock-requesting task T with weight 7/19 under the SWSP. The figure shows the
release pattern for T ’s windows, where T has five phases per job. The first, third, and fifth phases consist of
local work, while the second and fourth phases require locks and are hence executed remotely by the servers.
Phase transitions are shown across the top of the figure and time is shown across the bottom. Arrows show
when each RPC begins and ends. Unshaded boxes show where T executes locally while boxes containing
X’s denote unutilized processor time.

The protocol proposed by Holman and Anderson, referred to as the Static-Weight Server Pro-

tocol (SWSP), uses statically-weighted lock servers to execute critical sections in place of the

requesting task [13]. Effectively, critical sections guarded by a common lock are implemented as

remote procedure calls serviced by a common server. Delays caused by critical-section requests are

easily modelled and accounted for by using the IS task model, as illustrated in Figure 10. In addi-

tion, the use of statically-defined server weights makes blocking-term computations straightforward

and the responsiveness of the server more predictable.

Comparison. Holman and Anderson conducted breakdown utilization tests for systems with 2,

4, 8, 16, and 32 processors to evaluate the schedulability loss under each of these protocols [13].

As expected, they found that the timer-based approach performs and scales very well when critical

sections are much shorter than the quantum’s duration. However, breakdown utilizations dropped

off quickly once critical section durations longer than approximately one-quarter of the quantum’s

duration were permitted. The SWSP, on the other hand, had typical breakdown utilizations ranging

from 75% to 25% of the system’s total utilization. However, in the context of long critical sections,

the SWSP did outperform the timer-based approach in many cases.
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7 Summary

In this chapter, we discussed the basic concepts behind Pfair scheduling and the various extensions

that have been proposed in the literature. We described the three optimal Pfair algorithms: PF,

PD, and PD2. The PD2 algorithm is optimal for scheduling tasks under the IS model, which

generalizes both the periodic and sporadic models. We also discussed extensions that support

dynamic task sets, hierarchical scheduling, and resource sharing.
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