
Time/Contention Trade-o�s for Multiprocessor

Synchronization�

James H. Anderson

Department of Computer Science

The University of North Carolina

Chapel Hill, North Carolina 27599-3175

Jae-Heon Yang

Department of Computer Science

The University of Maryland

College Park, Maryland 20742-3255

May 1994

Revised May 1995

Abstract

We establish trade-o�s between time complexity and write- and access-contention for solutions to

the mutual exclusion problem. The write-contention (access-contention) of a concurrent program is the

number of processes that may be simultaneously enabled to write (access by reading and/or writing) the

same shared variable. Our notion of time complexity distinguishes between local and remote accesses of

shared memory.

We show that, for any N -process mutual exclusion algorithm, if write-contention is w, and if at most

v remote variables can be accessed by a single atomic operation, then there exists an execution involving

only one process in which that process executes
(log
vw

N) remote operations for entry into its critical

section. We further show that, among these operations,
(
p

log
vw

N) distinct remote variables are

accessed. For algorithms with access-contention c, we show that the latter bound can be improved to

(log
vc
N). The last two of these bounds imply that a trade-o� between contention and time complexity

exists even if coherent caching techniques are employed.

In most shared-memory multiprocessors, an atomic operation may access only a constant number of

remote variables. In fact, most commonly-available synchronization primitives (e.g., read, write, test-

and-set, load-and-store, compare-and-swap, and fetch-and-add) access only one remote variable. In this

case, the �rst and the last of our bounds are asymptotically tight.

Our results have a number of important implications regarding speci�c concurrent programming prob-

lems. For example, the time bounds that we establish apply not only to the mutual exclusion problem,

but also to a class of decision problems that includes the leader-election problem. Also, because the

execution that establishes these bounds involves only one process, it follows that \fast mutual exclusion"

requires arbitrarily high write-contention. Although such conclusions are interesting in their own right,

we believe that the most important contribution of our work is to identify a time complexity measure for

asynchronous concurrent programs that strikes a balance between being conceptually simple and having

a tangible connection to real performance.

Keywords: Concurrent programs, lower bounds, mutual exclusion, remote memory references, shared

memory, time complexity.

�A preliminary version of this paper was presented at the 26th ACM Symposium on Theory of Computing [20]. Work

supported, in part, by NSF Contracts CCR-9109497 and CCR-9216421, by the NASA Center for Excellence in Space Data and

Information Sciences (CESDIS), and by an IBM Fund Award.

1

1 Introduction

The mutual exclusion problem is a fundamental paradigm for coordinating accesses to shared data on asyn-

chronous shared-memory multiprocessing systems [6]. In this problem, accesses to shared data are abstracted

as \critical sections" of code, and it is required that at most one process executes its critical section at any

time. In this paper, we consider bounds on time for mutual exclusion, a subject that has received scant

attention in the literature. Past work on the complexity of mutual exclusion has almost exclusively focused

on space requirements [4]; the limited work on time bounds that has been done has focused on partially

synchronous models [14].

The lack of prior work on time bounds for mutual exclusion within asynchronous models is probably due

to di�culties associated with measuring the time spent within busy-waiting constructs. In fact, because of

such di�culties, there has been scarcely little work of any kind on time bounds for asynchronous concurrent

programming problems for which busy-waiting is inherent. One of the primary contributions of this paper

is to show that it is possible to establish meaningful time bounds for such problems.

A natural approach to measuring the time complexity of a mutual exclusion algorithmwould be to simply

use the standard sequential programming measure of counting all operations. However, in any algorithm in

which processes busy-wait, the number of operations needed for one process to get to its critical section is

unbounded in the worst case. In other words, the standard sequential programming metric yields no useful

information concerning the performance of such algorithms under contention.

In a recent paper, we proposed a time measure for concurrent programs that distinguishes between

local and remote accesses of shared memory [19]. This measure is motivated by recent work on scalable

synchronization constructs [3, 8, 15]. Informally, a shared variable access is local if does not require a traversal

of the global interconnect between processors and shared memory, and is remote otherwise. Although

the notion of a locally accessible shared variable may seem counterintuitive, there are two mainstream

architectural paradigms that support it. In particular, on distributed shared-memory machines, a shared

variable can be made locally accessible by storing it in a local portion of shared memory, and on cache-

coherent machines, a shared variable can become locally accessible by migrating to a local cache line.

Under our proposed measure, the time complexity of a concurrent program is measured by counting only

remote accesses of shared variables; local accesses are ignored. This measure satis�es two criteria that must

be met by any reasonable complexity measure. First, it is conceptually simple. In fact, this measure is

a natural descendent of the standard time complexity measure used in sequential programming. Second,

this measure has a tangible connection with real performance, as demonstrated by a number of recently-

published performance studies of synchronization algorithms [3, 8, 15, 19]. In each of these studies, those

algorithms that minimize remote memory references exhibited the best performance under contention. All

other proposed time complexity measures for asynchronous concurrent programs that we know of fail to

satisfy at least one of these two criteria.1

We present several lower-bound results for mutual exclusion that are based on the time complexity

measure mentioned above. These results establish trade-o�s between time complexity and write- and access-

contention for solutions to the mutual exclusion problem. The write-contention (access-contention) of a

concurrent program is the number of processes that may be simultaneously enabled to write (access) the

same shared variable. Limiting access-contention is an important consideration when designing algorithms

for problems, such as mutual exclusion and shared counting, that must cope well with high competition

1Note that our time complexity measure cannot be used to make distinctions between programs that busy-wait on remote

variables. However, many concurrent programming problems that require busy-waiting (including mutual exclusion) can be

solved without busy-waiting on such variables. Using our time measure, all solutions to such problems in which processes

busy-wait on remote variables are deemed as being equally \bad" | all have unbounded time complexity.

2

among processes [3, 10, 11, 17]. Performance problems associated with high access-contention can be partially

alleviated by employing coherent caching techniques to reduce concurrent reads of the same memory location.

However, even when such techniques are employed, limiting write-contention is still an important concern.

We show that, for any N -process mutual exclusion algorithm, if write-contention is w, and if each atomic

operation accesses at most v remote variables, then there exists an execution involving only one process

in which that process executes
(log
vw

N) remote operations for entry into its critical section. We further

show that, among these operations,
(
p
log

vw
N) distinct remote variables are accessed. For algorithms

with access-contention c, we show that the latter bound can be improved to
(log
vc
N). We emphasize that

all of our bounds are established in the absence of competition.

These results have a number of important implications. For example, because the �rst access of any

variable causes a cache miss, the latter two bounds imply that a time/contention trade-o� exists even if

coherent caching techniques are employed. Also, because the execution that establishes these bounds involves

only one process, it follows that so-called fast mutual exclusion algorithms | i.e., algorithms that require a

process to execute only a constant number of remote memory references in the absence of competition [12]

| require arbitrarily high write-contention in the worst case. These bounds apply not only to the mutual

exclusion problem, but also to a class of decision problems that includes the leader-election problem.

In most shared-memory multiprocessors, an atomic operation may access only a constant number of

remote variables. In fact, most commonly-available synchronization primitives access only one remote vari-

able; examples include read, write, test-and-set, load-and-store, compare-and-swap, and fetch-and-add. If v

is taken to be a constant, then our results imply that, for any N -process mutual exclusion algorithm with

write-contention w, some process executes
(log
w
N) remote operations in the absence of competition for

entry into its critical section. Further, among these remote operations,
(
p
log

w
N) distinct remote variables

are accessed. For algorithms with access-contention c, the latter bound is improved to
(log
c
N). It can be

shown that the �rst and last of these bounds are asymptotically tight.

Related work includes previous research by Dwork et al. given in [7], where it is shown that solving

mutual exclusion with access-contention c requires
((log2N)=c) memory references. Our work extends that

of Dwork et al. in several directions. First, the implications concerning fast mutual exclusion and cache

coherence noted above do not follow from their work, because Dwork et al. do not consider competition-free

executions, and because they do not count the number of distinct variables accessed by a process for entry

into its critical section. Second, we consider programs in which atomic operations may access multiple shared

variables, whereas they only consider reads, writes, and read-modify-writes. Third, in our main result, we

restrict only write-contention, and if v is a constant, then we obtain a tight bound of
(log
w
N), which

exceeds the bound established by them. Finally, and most importantly, Dwork et al. make no distinction

between local and remote shared memory accesses. Because busy-waiting is required for mutual exclusion

in general, an unbounded number of memory accesses (local or remote) are required in the worst case.

It is our belief that time complexity results that do not distinguish between local and remote accesses of

shared memory are of questionable value as a measure of performance of mutual exclusion algorithms under

contention.

The rest of the paper is organized as follows. In Section 2, we present our model of shared memory

systems. In Section 3, we de�ne a simpli�ed version of the mutual exclusion problem called the \minimal"

mutual exclusion problem. The above-mentioned time bounds are then established in Sections 4 and 5.

Concluding remarks appear in Section 6.

3

2 Shared-Memory Systems

Our model of a shared-memory system is similar to that given by Merritt and Taubenfeld in [16]; much of our

notation is borrowed from Chandy and Misra [5]. A system S = (C;P; V) consists of a set of computations

C, a set of processes P = f1; 2; : : : ; Ng, and a set of variables V . A computation is a �nite sequence of

events.

An event is denoted [R;W; i], where R = f(xj; uj)j1 � j � mg for some m, W = f(yk; vk)j1 � k � ng for

some n, and i 2 P ; this notation represents reading value uj from variable xj , for 1 � j � m, and writing

value vk to variable yk, for 1 � k � n. Each variable in R (W) is assumed to be distinct. We say that this

event accesses each such xj and yk. We use R:var to denote the set of variables xj such that (xj; uj) 2 R

for some uj , and W:var to denote the set of variables yk such that (yk; vk) 2 W for some vk.

Each variable is local to at most one process and is remote to all other processes. (Note that we allow

variables that are remote to all processes.) An initial value is associated with each variable. An event is

local if it does not access any remote variable, and is remote otherwise.

We use he; : : :i to denote a computation that begins with the event e, and hi to denote the empty

computation. We de�ne the length of computation H, denoted jHj, as the number of events in H. H � G

denotes the computation obtained by concatenating computations H and G. If G is a subsequence of H,

then H �G is the computation obtained by removing all events in G from H. The value of variable x at the

end of computation H, denoted value(x;H), is the last value that is written to x in H (or the initial value

of x if x is not written in H). The last event to write variable x in H is denoted writer(x;H). If x is not

written by any event in H, then we let writer(x;H) = ?.

An extension of computation H is a computation of which H is a pre�x. For a computation H and a set

of processes Y , HY denotes the subsequence of H that contains all events in H of processes in Y .

ComputationsH and G are equivalent with respect to a set of processes Y , denoted H[Y]G, i� HY = GY .

Note that [Y] is an equivalence relation. We now present our model of shared-memory systems.

De�nition: A shared-memory system S = (C;P; V) is a system that satis�es the following properties.

� (P1) If H 2 C and G is a pre�x of H, then G 2 C. Informally, every pre�x of a computation is also a

computation.

� (P2) If H � h[R;W; i]i 2 C, G 2 C, G[Y]H, and i 2 Y , and if for all x 2 R:var, value(x;G) =

value(x;H) holds, then G � h[R;W; i]i 2 C. Informally, if two computations H and G are not distin-

guishable to process i, if i can execute [R;W; i] after H, and if all variables in R have the same values

after H and G, then i can execute [R;W; i] after G.

� (P3) If H � h[R;W; i]i 2 C, G 2 C, G[Y]H, and i 2 Y , then G � h[R0;W 0; i]i 2 C for some R0 and W 0

such that R0:var = R:var and W 0:var = W:var. Informally, if two computations H and G are not

distinguishable to process i, and if i can execute [R;W; i] after H, then i can read and write the same

variables in the next operation after G. (Note that the values read or written might be di�erent.)

� (P4) For any H 2 C, H � h[R;W; i]i 2 C only if for all (x; v) 2 R, v = value(x;H) holds. Informally,

only the last value written to a variable can be read. 2

For simplicity, we call a remote event a remote read if it reads a remote variable, and a remote write if

it writes remote variables. Note that a remote event can be both a remote read and a remote write.

Consider a shared-memory system S = (C;P; V). A computation H is a Y -computation i� either H = hi

and Y � P , or Y is the minimal subset of P such that H = HY holds. For simplicity, we abbreviate the

4

preceding de�nitions when applied to a singleton set of processes. For example, if Y = fig, then we use Hi

to mean Hfig, i-computation to mean fig-computation, and [i] to mean [fig].

In the following sections, we establish time bounds involving three notions of contention, which are de�ned

below. These de�nitions apply to a shared-memory system S = (C;P; V). The �rst and strictest notion of

contention we use is static in nature. It bounds the number of processes that may read or write a given

shared variable in throughout any computation. The other two notions of contention that we employ are

dynamic in nature. They bound the number of processes that may simultaneously write (access) the same

memory location.

De�nition: Consider a variable x in V . A process i in P is a reader (writer) of x i� there is an event of

i that reads (writes) x in some computation in C. We say that x is a k-reader (k-writer) variable i� there

are k readers (writers) of x. 2

De�nition: For H 2 C and x 2 V , let overwriters(x;H) � fi j H � h[R;W; i]i 2 C where x 2 W:varg.

Then, the write-contention of S is maxx2V;H2C (joverwriters(x;H)j). 2

De�nition: Let contenders(x;H) � fi j H � h[R;W; i]i 2 C where x 2 (R:var [W:var)g. Then, the

access-contention of S is maxx2V;H2C(jcontenders(x;H)j). 2

3 Minimal Mutual Exclusion

Our main results concerning the mutual exclusion problem are based on a simpli�ed version of the problem,

which we call the \minimal mutual exclusion problem".

Minimal Mutual Exclusion Problem: We de�ne the minimal mutual exclusion problem for a shared-

memory system S = (C;P; V) as follows. Each process i 2 P has a local variable i:dine that ranges over

fthink; hungry; eatg. Variable i:dine is initially think and is accessed only by the following events:

Think i � [fg; f(i:dine; think)g; i]

Hungry
i
� [fg; f(i:dine; hungry)g; i]

Eati � [fg; f(i:dine; eat)g; i]

The allowable transitions of i:dine are as follows: for any H 2 C, H �hThink ii 2 C i� value(i:dine;H) = eat;

H � hHungry
i
i 2 C i� value(i:dine;H) = think; and if H � hEatii 2 C, then value(i:dine;H) = hungry.

System S solves the minimal mutual exclusion problem i� the following requirements are satis�ed.

� Exclusion: For any H 2 C and processes i 6= j, value(i:dine;H) = eat) value(j:dine;H) 6= eat.

� Progress: For any H 2 C and process i 2 P , if H is an i-computation, then either H contains Eati, or

there exists an i-computation G such that H �G � hEatii 2 C. 2

Note that the Progress requirement above is much weaker than that usually speci�ed for the mutual

exclusion problem. (This, of course, strengthens our impossibility results.) Note also that any solution to

the leader election problem easily solves the minimal mutual exclusion problem. Thus, our time bounds

apply not only to the mutual exclusion problem, but also to the leader election problem, and any other

decision problem that can be used to directly solve leader election.2

2For example, the ranking problem. In this problem, each process is assigned a \rank" between 1 and N . The process that

obtains a rank of 1 can be de�ned to be the \leader".

5

Before presenting our main results, we give bounds for the case of statically-de�ned contention. In this

theorem and those that follow, we assume that S is a shared-memory system and that i 2 P .

Theorem 1: For any S = (C;P; V) that solves the minimalmutual exclusion problem, if each event accesses

at most v remote variables, and if either all variables in V are k-reader variables, or all variables in V are

k-writer variables, then there exists an i-computation in C that contains
(N=vk) remote events but no Eat i

event.

Proof: Suppose that all variables in V are k-reader variables. (A similar argument applies if all variables are

k-writer variables.) By the Progress requirement of the minimal mutual exclusion problem, there exists an

i-computationH(i) �Eati in C for each i 2 P such that H(i) does not contain Eat i. Let C
0 = fH(i) j i 2 Pg.

It can be shown that for each i and j such that i 6= j, H(i) contains a write of a variable that is read

in H(j). (Otherwise, we could show that H(i) � H(j) � Eat i � Eatj is a computation in C, violating the

Exclusion requirement.) Select one such variable for each pair (i; j) where i 6= j. Let V 0 be the set of the

variables selected.

Because each variable is a k-reader variable, H(i) contains writes of at least d(N � 1)=ke variables in

V 0. If there exists i 2 P such that d(N � 1)=2ke such variables are remote to i, then the theorem easily

follows. So, assume that each process i 2 P has at least d(N � 1)=2ke such variables, denoted as Li, as local

variables.

Observe that Li � V 0 and, because the variables in Li are local to i, Li \ Lj = fg holds for any i 6= j.

By the construction of V 0, for each x 2 Li, there exists H(j) in C0 that contains a remote event reading

x, where j 6= i. Thus, there exists a set of remote events in C0 that collectively read at least d(N � 1)=2ke

variables in Li (remotely). Thus, there exists a set of remote events in C0 that collectively read at least

dN (N � 1)=2ke variables in V 0 (remotely). If each event accesses at most v remote variables, then by the

pigeon-hole principle, there exists an i-computation in C0 that contains at least d(N �1)=2vke remote events.

2

For any N -process system S that satis�es the conditions of Theorem 1, some process i executes
(N=vk)

remote events in the absence of competition. If we remove process i from system S, we obtain a system that

satis�es the conditions of the theorem with N replaced by N � 1. Thus, there is a process j 6= i in system

S that executes
((N � 1)=vk) remote events in the absence of competition. Continuing in this manner, at

least half the processes in S execute at least
(N=2vk) remote events in the absence of competition. Thus,

we have the following corollary.

Corollary 1: For any system S satisfying the conditions of Theorem 1, there exist
(N) processes i in P

for which the conclusion of the theorem holds. 2

Similar corollaries apply to the theorems in the following sections.

In [2], a mutual exclusion algorithm requiring O(N) remote memory references per critical section ac-

quisition is given that employs only single-reader, single-writer variables. Thus, if v and k are taken to be

positive constants, then the bound of Theorem 1 is asymptotically tight. In the remainder of the paper, we

consider more interesting bounds based on dynamic notions of contention.

6

4 Main Result: Bounding Remote Events

In this section, we show that for any system with write-contention w, if an event may access at most v remote

variables, then
(log
vw

N) remote events are required in the absence of competition to solve the minimal

mutual exclusion problem. Formally, this result is stated as follows.

Theorem 3: For any S = (C;P; V) with write-contention w > 1 that solves the minimal mutual exclusion

problem, if each event accesses at most v remote variables, then there exists an i-computation in C that

contains
(log
vw

N) remote events but no Eat i event. 2

This bound has important consequences for distributed shared-memory multiprocessing systems. On such

systems, remote events require a traversal of the global interconnection network and hence are more expensive

than local events. Thus, for such machines, the lower bound of Theorem 3 not only gives the inherent time

complexity of implementing critical sections, it also bounds the communication complexity measured in

terms of global tra�c.

4.1 Proof Strategy

Theorem 3 is proved by considering a class of computations, as de�ned by a set of conditions. Each of these

conditions refers to an arbitrary computation H in this class. The �rst condition is as follows.

� (C1) For events [R;U; i] and [T;W; j] in H, if (R:var \ W:var) 6= fg holds and [T;W; j] precedes3

[R;U; i] in H, then i = j. Informally, no process reads a variable that is accessed by a preceding write

of another process in H.

We will use this condition and those that follow to inductively construct longer and longer computations.

Condition (C1) eliminates \information ow" between processes in the computations so constructed.

The �rst of the remaining conditions refers to \active" processes. If H = hi or Hi 6= hi, then process i is

active in H; otherwise i is inactive in H. The notion of an active process will arise in subsequent inductive

proofs. Initially, all processes are active; in a non-null computation, only those processes that have taken

steps are active.

� (C2) For any event [R;W; i] in H, if x 2 (R:var [W:var), and if x is local to a process j that is active

in H, then i = j. Informally, no local variable of an active process is accessed by other processes in H.

� (C3) For any events [R;W; i] and [T; U; j] in H, if (W:var \ U:var) 6= fg, then i = j. Informally, each

variable is written by at most one process in H.

� (C4) For any pre�x G of H, value(i:dine;G) 6= eat. Informally, no process eats in H.

By (C2), \information ow" between processes can only occur through remote events in the computations

we inductively construct. Condition (C3) makes it easier for us to make an active process inactive, i.e., remove

its events from a given computation. In particular, because each variable is written by at most one process,

if a process is made inactive, then the variables it writes simply take on their initial values. Condition (C4)

arises because we intend to compute the time complexity required for a process to eat for the �rst time.

3Although our de�nition of an event allows multiple instances of the same event, we assume that such instances are dis-

tinguishable from each other. (For simplicity, we do not extend our notion of an event to include an additional identi�er for

distinguishability.)

7

vw

n−1

(2v+1) vw
2 processes,

n−1 have a "next"
remote operation.

r+1 remote operations.

n processes, r remote operations.

1 process, log N remote operations.

N processes, 0 remote operations.

Figure 1: Proof Strategy.

The structure of our proof is depicted in Figure 1. In the induction step, we assume that there are n

processes, each of which executes r remote operations, in a computation H that satis�es conditions (C1)

through (C4). We show in Lemma 5 that, of these n processes, at least n�1 processes have a \next" remote

operation to execute. Then, in Lemma 6, we identify a subset of d(n � 1)=(2v + 1)2vwe processes that can

execute a next remote operation without violating any of the conditions (C1) through (C4), and construct a

computation G in which only these selected processes execute r + 1 remote operations each. This induction

step provides the
(log
vw

N) bound.

4.2 Proofs

We begin by presenting several lemmas that are needed to prove the main theorem. The �rst lemma directly

follows from the de�nitions of value(x;H) and writer(x;H).

Lemma 1. writer(x;H) = writer(x;G)) value(x;H) = value(x;G). 2

We now present several technical lemmas. For most of these lemmas, we provide only an informal proof

sketch in this section; detailed formal proofs are given in an appendix.

8

The next lemma gives us a means for projecting a computation onto a set of processes so that the result-

ing projection is itself a computation.

Lemma 2: For any S = (C;P; V), if G �H is a computation in C satisfying (C1), then for any Y � P ,

G �HY 2 C.

Proof: For any process in Y , HY is not distinguishable from H. Thus, we can let processes in Y execute

the same events after G as they execute in H. Note that (C1) implies that the pre�x G does not a�ect the

processes in Y . A full proof is presented in the appendix. 2

The next two lemmas give us means for extending a computation. We will usually use these lemmas to

extend a computation by appending local events.

Lemma 3: Consider S = (C;P; V). Let F , G, and H be computations such that for some i 2 P , F is an

i-computation, no event in F accesses a variable that is written by processes other than i in either G or H,

H 2 C, and G[i]H. If G � F 2 C, then H � F 2 C.

Proof: Because no event in F accesses any variable that is written by another process in either G or H,

process i cannot distinguishH fromG, even if it executes all events in F . Thus, if G�F 2 C, then H �F 2 C.

A more formal proof is presented in the appendix. 2

Lemma 4: Consider S = (C;P; V) and Q � P , where every process in Q is active in H. Without loss of

generality, assume that the processes are numbered so that Q = f1; 2; : : :; jQjg. Let H and L(j), 1 � j � jQj,

be computations satisfying the following conditions: L(j) is a j-computation; H � L(j) 2 C; and no event

in L(j) accesses any variable that is accessed by other processes in H � L(1) � L(2) � � � � � L(jQj). Then,

H � L(1) � L(2) � � � � � L(jQj) 2 C.

Proof: The lemma is established by inductively applying Lemma 3 to append each L(j) in turn. A formal

proof is given in the appendix. 2

According to the next lemma, if n processes are competing for entry into their critical sections, and if

each of these n processes has no knowledge of the others, then at least n � 1 of the processes have at least

one more remote event to execute. To formally capture the latter, consider a system S = (C;P; V) that

solves the minimal mutual exclusion problem and let i 2 P and H 2 C. We say that i has a remote event

after H i� there exists an i-computationM such that M does not contain Eati,M has a remote event, and

H �M 2 C.

Lemma 5: Suppose that S = (C;P; V) solves the minimal mutual exclusion problem. Let Y � P be a set

of n processes, and let H be a Y -computation in C satisfying (C1), (C2), and (C4). Then, at least n � 1

processes in Y have a remote event after H.

Proof: If there are two processes that do not have a remote event after H, then we can extend H by exe-

cuting those processes and violate the Exclusion requirement. A formal proof is presented in the appendix. 2

The next theorem by Tur�an [18] will be used in subsequent lemmas.

9

Theorem 2 (Tur�an): Let G = hV;Ei be an undirected multigraph,4 where V is a set of vertices and E is

a set of edges. If the average degree is d, then there exists an independent set5 with at least djV j=(d+ 1)e

vertices. 2

Our next lemma provides the induction step that leads to the lower bound in Theorem 3.

Lemma 6: Let S = (C;P; V) be a shared-memory system with write-contention w that solves the minimal

mutual exclusion problem. Let Y � P be a set of n processes, and let H be a Y -computation in C satisfying

(C1), (C2), (C3), and (C4) such that each process in Y executes r remote events in H. Suppose that each

event accesses at most v remote variables. Then, there exist Z � Y , where jZj = d(n�1)=(2v+1)2vwe, and

a Z-computation G in C satisfying (C1), (C2), (C3), and (C4) such that each process in Z executes r + 1

remote events in G.

Proof: The proof strategy is as follows. We show that there exists Z � Y that can execute another remote

event without violating any of the conditions (C1) through (C4). We \eliminate" processes not in Z, i.e.,

ones that may violate some condition. Finally, we construct a Z-computation G that satis�es (C1), (C2),

(C3), and (C4).

Lemma 5 implies that there exists Y 1 � Y , where jY 1j � n � 1, such that the following holds: for any

i 2 Y 1, there exists an i-computation B(i) such that H �B(i) 2 C, B(i) does not contain Eati, and B(i) has

at least one remote event. For i 2 Y 1, let B(i) = L(i) � h[Ri;Wi; i]; : : :i where [Ri;Wi; i] is the �rst remote

event in B(i). Note that, by (P1), the following holds.

H � L(i) � h[Ri;Wi; i]i 2 C (1)

We construct Y 2, a subset of Y 1, as follows. First, select a process i 2 Y 1. Let Xi = fx j x 2

Wi:var and x is remote to ig, i.e., Xi is the set of remote variables written by the event [Ri;Wi; i]. By

assumption, jXij � v. Let QXi
= fj j j 2 Y 1 ^ j 6= i ^ (Wj:var \Xi) 6= fgg, i.e., QXi

includes those

processes other than i that write variables in Xi. Because write-contention is w, it is straightforward to use

Lemma 4 to show that jQXi
j � v(w � 1). Delete i and all processes in QXi

from Y 1, and add i to Y 2.

Repeat the above procedure until Y 1 becomes empty. It follows, by construction, that

jY 2j � d(n � 1)=vwe : (2)

Now, we identify any possible \information ow" between the events f[Ri;Wi; i] j i 2 Y 2g and the events

of processes in Y 2 in H. Recall that f[Ri;Wi; i] j i 2 Y 2g contains events that can be applied after H. We

construct a graph hY 2; Ei as follows. (We do not distinguish a vertex representing p from the process p when

this does not cause any confusion.) Informally, an edge joining two processes represents possible information

ow between the two processes. Our proof strategy is to prohibit information ow between active processes.

Suppose that x 2 Rp:var [Wp:var and x is remote to p. Without loss of generality, we assume x is local to

q for some q 6= p. Note that q may or may not be a member of Y 2. We construct E by the following rules.

� (R1): If q 2 Y 2, then introduce an edge (p; q).

� (R2): If there is process w 2 Y 2 that writes to x in H, where w 6= p ^ w 6= q, then introduce an edge

(p; w). Note that, because H satis�es (C2), q =2 Y 2 holds.

4A multigraph is a graph in which multiple edges are allowed between any two vertices. For brevity, we will henceforth use

\graph" to mean an undirected multigraph.
5An independent set of a graph G = hV;Ei is a subset V 0 � V of vertices such that no edge in E is incident to two vertices

in V 0.

10

Consider the event [Ri;Wi; i], where i 2 Y 2. Because (R1) and (R2) are exclusive, at most one edge is

introduced for each remote variable this event accesses. Therefore, because each event accesses at most v

remote variables, at most v edges are introduced by this event in total. It follows that the average degree in

hY 2; Ei is at most 2v. By Theorem 2 and (2), this implies that there exists a subgraph hY 3; fgi of hY 2; Ei,

where

jY 3j � d(n � 1)=(2v + 1)vwe : (3)

Without loss of generality, assume the processes are numbered so that Y 3 = f1; 2; : : :; jY 3jg. Consider the

following computation.

H0 = HY 3 � L(1) � L(2) � � � � � L(jY 3j) � h[R1;W1; 1]; [R2;W2; 2]; : : :; [RjY3j;WjY 3j; jY 3j]i

We will use H0 to construct the computation G mentioned at the beginning of the proof. In order to

motivate the construction of G, we �rst prove that H0 satis�es conditions (C2) through (C4). We consider

each of these conditions as a separate case. In these cases, we make use of the fact that, because H satis�es

(C2) through (C4), HY 3 also satis�es (C2) through (C4).

Condition (C2). No L(i) accesses a remote variable, and hence, HY 3 � L(1) � L(2) � � � � � L(jY 3j) satis�es

(C2). By (R1), no [Ri;Wi; i] accesses a variable that is local to another process in Y 3. Hence, H0 satis�es

(C2). 2

Condition (C3). HY 3 satis�es (C2) and (C3), and each L(i) consists only of local events, so HY 3 � L(1) �

L(2) � � � � � L(jY 3j) satis�es (C3). Hence, to complete the proof that H0 satis�es (C3), it su�ces to prove

that for each distinct i and j in Y 3, [Ri;Wi; i] does not write a variable that is written by [Rj;Wj; j] or by

any event of process j in HY 3 or L(j).

By (R1), [Ri;Wi; i] does not access a variable that is local to process j. Hence, [Ri;Wi; i] does not write

a variable that is locally written by process j in HY 3 or any variable that is written by j in L(j). By (R2),

[Ri;Wi; i] does not access a variable that is remotely written by j in H. Hence, [Ri;Wi; i] does not write a

variable that is remotely written by j in HY 3. By the de�nition of Y 3 (speci�cally, the construction of Y 2),

the remote variables written by [Ri;Wi; i] and [Rj;Wj; j] are distinct. Hence, [Ri;Wi; i] does not write a

variable that is written by [Rj;Wj; j]. Hence, we conclude that H
0 satis�es (C3). 2

Condition (C4). By construction, L(i) does not contain Eati, and [Ri;Wi; i] 6= Eati. Hence, H 0 satis�es

(C4). 2

The above reasoning leaves only condition (C1). We now show that H 0 may violate this condition. By

(R1) and (R2), for each j 6= i, [Ri;Wi; i] does not read a variable that is written by any event of process j in

HY 3 or L(j). Note, however, that [Ri;Wi; i] may read a variable that is written by [Rj;Wj; j]. Such conicts

are the only way that H0 may violate (C1). We now apply another graph argument in order to eliminate

such conicts among the events f[Ri;Wi; i] j i 2 Y 3g. Suppose that x 2 Rp:var and x is remote to p. Then,

we construct a graph hY 3; E0i, where the edges in E0 are de�ned according to the following rule.

� (R3): If there is a process w 6= p such that x 2Ww:var and w 2 Y 3, then introduce an edge (p; w).

Because H0 satis�es (C3), p introduces at most one edge for each remote variable it reads. Because each

event reads at most v remote variables, p introduces at most v edges in total. Thus, by Theorem 2 and (3),

there exists a subgraph hZ; fgi of hY 3; E0i, where

jZj � d(n � 1)=(2v + 1)2vwe : (4)

11

The set Z represents the subset of the original n processes in Y that can execute another remote event

without violating any of the conditions (C1) through (C4). We show this below.

Without loss of generality, assume the processes are numbered so that Z = f1; 2; : : :; jZjg. The compu-

tation G we seek is de�ned as follows.

G = HZ � L(1) � L(2) � � � � � L(jZj) � h[R1;W1; 1]; [R2;W2; 2]; : : : ; [RjZj;WjZj; jZj]i

Observe that, because H0 satis�es (C2) through (C4), G also satis�es (C2) through (C4). We now show

that G satis�es (C1).

Condition (C1). Because H satis�es (C1) and (C2), HZ satis�es (C1) and (C2). Hence, because each L(i)

consists only of local events, HZ � L(1) � L(2) � � � � � L(jZj) satis�es (C1). Let p be any process in Z. To

complete the proof that G satis�es (C1), it su�ces to prove that no variable x in Rp:var is written in G by

a process other than p.

We �rst show that x is not written by processes other than p in HZ � L(1) � L(2) � � � � � L(jZj). By

(R1) and (R2), [Rp;Wp; p] does not access a variable that is written in H by other processes in Z. This

implies that x is not written by processes other than p in HZ. (R1) implies that [Rp;Wp; p] does not access

a variable that is local to another process in Z. Because each L(i) consists of only local events, this implies

that x is not written by processes other than p in HZ �L(1) �L(2) � � � � �L(jZj). Furthermore, by (R3), x is

not written by [Rj;Wj; j], where j 6= p. Hence, we conclude that G satis�es (C1). 2

To complete the proof of the lemma, we need to show that G is actually a computation in C. This is

established in the following claim.

Claim 1: G 2 C.

Proof: The proof is by induction on the subsequence h[R1;W1; 1]; : : :; [RjZj;WjZj; jZj]i.

Induction Base. We use Lemmas 2, 3, and 4 to establish the base case. Because H satis�es (C1),

by Lemma 2, HZ 2 C. Consider j 2 Z. By (1) and (P1), H �L(j) 2 C. Because j 2 Z, H[j]HZ.

Because H and HZ satisfy (C2), and because L(j) consists only of local events, no event in L(j)

accesses any variable accessed by processes other than j in H or HZ. By Lemma 3, this implies

that HZ � L(j) 2 C.

As above, because G satis�es condition (C2), no event in L(j) accesses any variable accessed

by another process in HZ � L(1) � L(2) � � � � � L(jZj). By Lemma 4, it follows that HZ � L(1) �

L(2) � � � � � L(jZj) 2 C.

Induction Hypothesis. Assume that

HZ � L(1) � L(2) � � � � � L(jZj) � h[R1;W1; 1]; [R2;W2; 2]; : : :; [Rj�1;Wj�1; j � 1]i 2 C : (5)

Induction Step. We use (P2) to prove that HZ � L(1) � L(2) � � � � � L(jZj) � h[R1;W1; 1];

[R2;W2; 2]; : : : ; [Rj;Wj; j]i 2 C. Because j 2 Z, the following holds.

HZ �L(1) �L(2) � � � � �L(jZj) � h[R1;W1; 1]; [R2;W2; 2]; : : : ; [Rj�1;Wj�1; j� 1]i [j] H �L(j) (6)

Consider x in Rj:var. Because G satis�es (C1), x is not written by a process other than j in

HZ �L(1) �L(2) � � � � �L(jZj) � h[R1;W1; 1]; [R2;W2; 2]; : : :; [Rj�1;Wj�1; j � 1]i. Hence, we have

the following.

(8x : x 2 Rj:var :: value(x; HZ � L(1) � L(2) � � � � � L(jZj) � h[R1;W1; 1];

[R2;W2; 2]; : : : ; [Rj�1;Wj�1; j � 1]i = value(x; H � L(j))) (7)

12

By (1), (5), (6), (7), and (P2), we conclude that HZ � L(1) � L(2) � � � � � L(jZj) � h[R1;W1; 1];

[R2;W2; 2]; : : : ; [Rj;Wj; j]i 2 C. 2

By construction, each process in Z executes r + 1 remote events in G. As shown above, G satis�es

conditions (C1) through (C4). Hence, by (4) and Claim 1, the lemma follows. 2

We now prove our �rst main result, Theorem 3, which for convenience is restated below. According to

this result, there exists a fundamental trade-o� between write-contention and time-complexity in solutions

to the mutual exclusion problem. This result also shows a trade-o� between the degree of atomicity and

time-complexity.

Theorem 3: For any S = (C;P; V) with write-contention w > 1 that solves the minimal mutual exclusion

problem, if each event accesses at most v remote variables, then there exists an i-computation in C that

contains
(log
vw

N) remote events but no Eat i event.

Proof: hi is a P -computation and satis�es (C1), (C2), (C3), and (C4). By repeatedly applying Lemma

6, this implies that there exists a computation F in C that satis�es (C1) and (C4) and that contains

(log((2v+1)2vw)N) =
(log
vw

N) remote events of some process i in P . By Lemma 2, Fi 2 C holds, from

which the theorem follows. 2

Corollary 2: For any system S satisfying the conditions of Theorem 3, there exist
(N) processes i in P

for which the conclusion of the theorem holds. 2

For the minimal mutual exclusion problem, the lower bound of Theorem 3 is asymptotically tight for any

values of v and w. An algorithm solving the minimal mutual exclusion problem that matches the bound of

the theorem can be obtained by using an \extended" test-and-set operation that simultaneously test-and-

sets v variables. We show this by �rst explaining how to use the extended test-and-set operation to solve

((v+1)w=2)-process minimal mutual exclusion in O(1) time. This is done by partitioning the processes into

v + 1 groups of size w=2. A boolean variable, whose initial value is false, is associated with each pair of

groups. Thus, each group is associated with v such variables. A process applies the extended test-and-set

operation to all associated variables (in a single step), and eats only if it reads false from every variable

accessed. It should be clear that this algorithm solves the minimal mutual exclusion problem in O(1) time.

Because each variable may be accessed only by processes in two groups of size w=2, the access-contention

(and hence write-contention) is at most w. By applying this solution within a balanced ((v+1)w=2)-ary tree

with N leaves, it is possible to solve the minimal mutual exclusion problem for N processes in O(log
vw

N)

time with access-contention w. Thus, the bound of Theorem 3 is tight.

If v is taken to be a positive constant, then we can further show that the lower bound of Theorem 3

is asymptotically tight for solutions to the mutual exclusion problem for any value of w. In particular, an

algorithm by Mellor-Crummey and Scott given in [15] solves the mutual exclusion problem for w processes,

in O(1) time, with access-contention (and hence write-contention) w. By applying this solution within

a balanced w-ary tree with N leaves, it is possible to obtain an N -process �(log
w
N) mutual exclusion

algorithm with access-contention w.

Note that Mellor-Crummey and Scott's algorithm uses load-and-store and compare-and-swap. Even

with weaker atomic operations, logarithmic behavior can be achieved. In particular, an N -process �(log2N)

mutual exclusion algorithm based on read/write atomicity has been given previously by us in [19]. This

algorithm has access-contention (and hence write-contention) two.

13

5 Bounds for Cache-Coherent Multiprocessors

On cache-coherent shared-memorymultiprocessors, the number of remote memory references may be reduced:

if a process repeatedly accesses the same remote variable, then the �rst access may create a copy of the

variable in a local cache line, with further accesses being handled locally. In this section, we count the

number of distinct remote variables a process must access to solve the minimal mutual exclusion problem.

A lower bound on such a count not only implies a lower bound on the number of cache misses a process

causes, but also implies that these cache misses will incur global tra�c.

We prove two lower bounds, which are given in the following theorems.

Theorem 4: For any S = (C;P; V) with access-contention c > 1 that solves the minimal mutual exclusion

problem, if each event accesses at most v remote variables, then there exists an i-computation in C containing

no Eat i event in which
(log
vc
N) distinct remote variables are accessed. 2

Theorem 5: For any S = (C;P; V) with write-contention w > 1 that solves the minimal mutual exclusion

problem, if each event accesses at most v remote variables, then there exists an i-computation in C containing

no Eat i event in which
(
p
log

vw
N) distinct remote variables are accessed. 2

According to Theorem 4, if the conditions of Theorem 3 are strengthened so that at most c processes can

concurrently access (read or write) any variable, then some process accesses
(log
vc
N) distinct remote

variables before eating. According to Theorem 5, if the conditions of Theorem 3 are unchanged, i.e., write-

contention is w, then some process accesses
(
p
log

vw
N) distinct remote variables before eating.

5.1 Proof Strategy

Our proof strategy rests on the distinction between \expanding" and \nonexpanding" events. Informally,

an event of a process is an expanding event if it accesses some remote variable for the �rst time. We can

similarly categorize an event as being an expanding read or write. This is illustrated in Figure 2, which is

explained below. These terms are formally de�ned as follows.

De�nition: Consider a remote event e of a process p in a computation H. Let X be the remote variables

accessed by e. If e is the �rst event by p in H that accesses some variable in X, then we say that e is an

expanding event in H. If e is a read (write) event, and if e is the �rst event by p in H that reads (writes)

some variable in X, then we say that e is an expanding read (write) event in H. If e is neither an expanding

read nor an expanding write, then we say that e is a nonexpanding event in H. 2

An expanding event can be an expanding read, or an expanding write, or both. Note, however, that an

expanding read (write) is not necessarily an expanding event. In Figure 2, where all variables are assumed

to be remote to processes P and Q, E0, E1, E3, and E4 are expanding events. Also, E0, E2, E3, and E4 are

expanding reads, and E1, E3, and E4 are expanding writes. Although E2 is an expanding read, it is not an

expanding event.

We count the number of expanding events in order to determine the number of distinct remote variables

accessed. Observe that if a process executes r expanding events, then it accesses at least r distinct remote

variables.

Because the �rst result of this section is based on a restriction on all concurrent accesses (rather than

only concurrent writes) of the same variable, it is necessary to replace condition (C3) by the following.

14

E0 E E1 2

read x write y read y
write y

E

read y,z
write x

E3

read y,z
write x

4

Process P:

Process Q:

Figure 2: Process P executes event E3, and process Q executes the other events depicted. Variables x, y,

and z are remote to both processes. E0, E1, E3, and E4 are expanding events, E0, E2, E3, and E4 are

expanding reads, and E1, E3, and E4 are expanding writes.

� (C5) For any events [R;W; i] and [T; U; j] in H, if ((R:var[W:var)\ (T:var[U:var)) 6= fg, then i = j.

Informally, each variable is accessed by at most one process in H.

The proof of Theorem 4 is based upon an inductive approach that is almost identical to that of Theorem

3. In the induction step, we assume that there are n processes, each of which executes r expanding remote

operations, in a computation H that satis�es the conditions (C2), (C4), and (C5). Note that (C5) subsumes

(C1) and (C3). In Lemma 7, we identify a subset of d(n� 1)=(2v + 1)vce processes that can execute a next

remote operation without violating any of the conditions (C2), (C4), and (C5), and construct a computation

G in which only these selected processes execute r + 1 expanding remote operations each. This induction

step provides the
(log
vc
N) bound.

In Theorem 5, we present a lower bound on the number of distinct remote variable accesses required

for solving the minimal mutual exclusion problem with write-contention w. To facilitate the proof, we �rst

de�ne the notion of a \predecessor" event. This notion is illustrated in Figure 3, which is explained below.

De�nition: Consider a computation H that contains a nonexpanding event e by process i. Let X denote

the remote variables accessed by e. Let S � ff j for some x 2 X, f is the last event by i in H that accesses

x before eg. Observe that jSj � jXj. The �rst event of S in H is called the predecessor of e in H. Note that

any su�x of H that contains the predecessor of e contains events by i (before e) that collectively access all

variables in X. 2

In Figure 3, where x and y are assumed to be remote to processes P and Q, the predecessor of E4 is E0. To

verify this, observe that E0 is the last event of process Q that accesses x before E4, and that E2 is the last

event of process Q that accesses y before E4. Clearly, E0 occurs before E2. Note that any su�x of the given

computation that contains E0 contains events by Q (before E4) that collectively access both x and y.

Now, we de�ne the notion of a \critical" remote event. Such events are used in the proof of Theorem 5

to count the number of distinct remote variables a process must access in its entry section.

De�nition: Consider a remote event e of a process i in a computation H. Event e is a critical event in H

i� one of the following holds: e is an expanding write in H; e is an expanding read in H; e is a nonexpanding

event and there is an expanding write by i between e and its predecessor in H. 2

In Figure 3, E0, E1, and E3 are critical events because they are expanding writes. E2 is also a critical event

because it is an expanding read. The nonexpanding event E4 is a critical event because there is an expanding

write E1 between E4 and its predecessor E0.

15

E0 E E1 2

write y

E

E3

4

Process P:

Process Q:

write x read y write x,y write x,y

Figure 3: Process P executes E3, and process Q executes the other events depicted. Variables x and y are

remote to both processes. The predecessor of E4 is E0. E0, E1, and E3 are critical events because they are

expanding writes. E2 is also a critical event because it is an expanding read. The nonexpanding event E4 is

a critical event because there is an expanding write E1 between E4 and its predecessor E0.

In order to prove Theorem 5, we inductively construct a competition-free execution H in which some

process executes
(log
vw

N) critical remote events before entering its critical section. Let D denote the

number of distinct remote variables accessed in H, let W denote the number of expanding writes in H, let R

denote the number of expanding reads in H, and let E denote the number of nonexpanding critical remote

events in H. We show that D �max(W;R;E=W) holds, which implies that Theorem 5 holds.

5.2 Proofs

Our next lemma provides the induction step that leads to the lower bound in Theorem 4.

Lemma 7: Let S = (C;P; V) be a shared-memory system with access-contention c that solves the minimal

mutual exclusion problem. Let Y � P be a set of n processes, and let H be a Y -computation in C satisfying

(C2), (C4), and (C5) such that each process in Y executes r expanding remote events in H. Suppose that

each event accesses at most v remote variables. Then, there exist Z � Y , where jZj = d(n� 1)=(2v + 1)vce,

and a Z-computation G in C satisfying (C2), (C4), and (C5) such that each process in Z executes r + 1

expanding remote events in G.

Proof: The proof strategy is as follows. We show that there exists Z � Y that can execute another remote

event without violating any of the conditions (C2), (C4), or (C5). We eliminate processes not in Z, i.e., ones

that may violate some condition. Finally, we construct a Z-computation G that satis�es (C2), (C4), and

(C5).

Because H satis�es (C5), it is possible to prove a result similar to Lemma 5 showing that there exists

Y 1 � Y , where jY 1j � n � 1, such that the following holds: for any i 2 Y 1, there exists an i-computation

B(i) such that H � B(i) 2 C, B(i) does not contain Eati, and B(i) has at least one expanding remote

event. (If there are two processes that do not have an expanding remote event after H, then the Exclusion

requirement can be violated; note that (C5) implies that these processes do not access any common variable

in their entry sections.) For i 2 Y 1, let B(i) = F (i) � h[Ri;Wi; i]; : : :i where [Ri;Wi; i] is the �rst expanding

remote event in B(i).

We construct Y 2, a subset of Y 1, as follows. First, select a process i 2 Y 1. Let Xi = fx j x 2

Ri:var[Wi:var and x is remote to ig, i.e., Xi is the set of remote variables accessed by the event [Ri;Wi; i].

By assumption, jXij � v. Let QXi
= fj j j 2 Y 1 ^ j 6= i ^ (Rj:var[Wj :var)\Xi 6= fgg, i.e., QXi

includes

those processes other than i that access variables in Xi. Because access-contention is c, it is straightforward

to use Lemma 4 to show that jQXi
j � v(c� 1). Delete i and all processes in QXi

from Y 1, and add i to Y 2.

16

Repeat the above procedure until Y 1 is empty. By construction,

jY 2j � d(n � 1)=vce : (8)

Observe that if i 2 Y 2, j 2 Y 2, and i 6= j hold, then [Ri;Wi; i] and [Rj;Wj; j] do not access a common

variable. Thus, there is no information ow among f[Ri;Wi; i] j i 2 Y 2g. Now, we identify any possi-

ble information ow between f[Ri;Wi; i] j i 2 Y 2g and the events in H of processes in Y 2. Recall that

f[Ri;Wi; i] j i 2 Y 2g contains events that can be applied after H.

Suppose that x 2 Rp:var[Wp:var and x is remote to p. Without loss of generality, we assume x is local

to q for some q 6= p. Note that q may or may not be a member of Y 2. We construct E by the following rules.

� (R1): If q 2 Y 2, then introduce an edge (p; q).

� (R2): If there is process w 2 Y 2 that accesses x in H, where w 6= p ^ w 6= q, then introduce an edge

(p; w). Note that, because H satis�es (C2), q =2 Y 2 holds.

Because (R1) and (R2) are exclusive, at most one edge is introduced for each remote variable an event

accesses. Because each event accesses at most v remote variables, at most v edges are introduced for each

remote event. We eliminate all edges by applying Theorem 2. The number of vertices is reduced by a

factor of 1=(2v + 1). These remaining vertices represent the subset of processes selected from the original n

processes in Y . We use Z to denote this subset of Y . Note that, for any i 2 Z, by Rule (R1), [Ri;Wi; i] does

not access any variable that is local to another process in Z, and by Rule (R2), it does not access a variable

that is accessed in H by other processes in Z.

Without loss of generality, assume the processes are numbered so that Z = f1; 2; : : :; jZjg. By (8), we

have jZj � d(n � 1)=(2v + 1)vce. The computation G we seek is de�ned as follows.

G = HZ � F (1) � F (2) � � � � � F (jZj) � h[R1;W1; 1]; [R2;W2; 2]; : : :; [RjZj;WjZj; jZj]i

Because H satis�es (C5), H also satis�es (C1). Thus, by Lemma 2, HZ 2 C. It is straightforward to use

this fact to prove that G 2 C.

By construction, each process in Z executes r + 1 expanding remote events in G. To complete the proof

of Lemma 7, it su�ces to prove that G satis�es (C2), (C4), and (C5). We consider each of these conditions

as a separate case. In these cases, we make use of the fact that, because H satis�es (C2), (C4), and (C5),

HZ also satis�es (C2), (C4), and (C5).

Condition (C2). Because HZ satis�es (C2), and because no F (i) contains an expanding remote event,

HZ � F (1) � F (2) � � � � � F (jZj) satis�es (C2). By (R1), no [Ri;Wi; i] accesses a variable that is local to

another process in Z. Hence, G satis�es (C2).

Condition (C4). By construction, F (i) does not contain Eati, and [Ri;Wi; i] 6= Eati. Hence, G satis�es

(C4).

Condition (C5). HZ satis�es (C2) and (C5), and each F (i) does not contain an expanding remote event, so

HZ �F (1)�F (2)� � � ��F (jZj) satis�es (C5). Hence, to complete the proof that G satis�es (C5), it su�ces to

prove that for each distinct i and j in Z, [Ri;Wi; i] does not access a variable that is accessed by [Rj;Wj; j]

or by any event of process j in HZ or F (j).

Because F (j) contains no expanding remote event, any variable accessed by process j in F (j) is either

local to j or accessed remotely by j inH. By (R1), [Ri;Wi; i] does not access a variable that is local to process

j. By (R2), [Ri;Wi; i] does not access a variable that is remotely accessed by j in H. Hence, [Ri;Wi; i]

does not access a variable that is remotely accessed by j in HZ . By the de�nition of Z (speci�cally, the

17

construction of Y 2), the remote variables accessed by [Ri;Wi; i] and [Rj;Wj; j] are distinct. Hence, [Ri;Wi; i]

does not access a variable that is accessed by [Rj;Wj; j]. Hence, we conclude that G satis�es (C5).

This concludes the proof of Lemma 7. 2

We now prove Theorem 4, which is restated below.

Theorem 4: For any S = (C;P; V) with access-contention c > 1 that solves the minimal mutual exclusion

problem, if each event accesses at most v remote variables, then there exists an i-computation in C contain-

ing no Eat i event in which
(log
vc
N) distinct remote variables are accessed.

Proof: hi is a P -computation and satis�es (C2), (C4), and (C5). By repeatedly applying Lemma 7, this

implies that there exists a computation F in C that satis�es (C4) and (C5) (and hence C(1)) and that

contains
(log
vc
N) expanding remote events of some process i in P . By Lemma 2, Fi 2 C holds, from

which the theorem follows. 2

Corollary 3: For any system S satisfying the conditions of Theorem 4, there exist
(N) processes i in P

for which the conclusion of the theorem holds. 2

Observe that the minimal mutual exclusion algorithm based on the extended test-and-set operation

mentioned after Corollary 2 has time complexity �(log
vc
N). This implies that the lower bound of Theorem

4 is asymptotically tight for the minimal mutual exclusion problem for any values of v and c.

Also, note that the tree-based mutual exclusion algorithms mentioned after Corollary 2 have time com-

plexity �(log
c
N). Thus, for the mutual exclusion problem, the lower bound of Theorem 4 is asymptotically

tight for any value of c, if v is taken to be a positive constant.

In the remainder of this section, we prove a lower bound on the number of distinct remote variable

accesses required for solving the minimal mutual exclusion problem with write-contention w.

The next lemma is a variation of Lemma 5 that deals with critical remote events. Suppose that S =

(C;P; V) solves the minimal mutual exclusion problem and let i 2 P and H 2 C. Corresponding to the

de�nition prior to Lemma 5, we say that i has a critical remote event after H i� the following holds: there

exists a remote event e of process i, and an i-computation L consisting of local events, each di�ering from

Eati, such that H � L � e 2 C holds, where e is critical in H � L � e.

Lemma 8: Suppose that S = (C;P; V) solves the minimal mutual exclusion problem. Let Z � P be a set

of n processes, and let H be a Z-computation in C satisfying (C1), (C2), (C3), and (C4). Then, there exists

a Z-computation H0 in C satisfying (C1), (C2), (C3), and (C4) such that H0 contains all events contained

in H and at least n � 1 processes in Z have a critical remote event after H0.

Proof: Lemma 5 implies that at least n� 1 of the processes in Z have a remote event after H. If all n� 1

of these remote events are critical after H, then the conclusion of the lemma holds. So, assume that one of

these events is noncritical after H. Then, there exists a process p in Z and a computation

H � L � hei 2 C ; (9)

where L is a p-computation consisting of only local events, and e is a noncritical remote event of p in

H � L � hei. Because e is noncritical, we have

H � L � hei = X � hfi � Y � L � hei ; (10)

18

where f is the predecessor of e in H � L � hei, and Y contains no expanding write by p.

Let G � X �hfi�Yp �L�hei�(Y �Yp). Observe that G is a Z-computation. In the following paragraphs,

we show that G 2 C holds, and then show that G satis�es (C1) through (C4). Observe that G contains all

events contained in H and more remote events than H. By the Progress requirement, this implies that we

can apply this argument only a �nite number of times, i.e., if we repeatedly apply Lemma 5 and construct

a new computation in the manner in which G is constructed, then we eventually obtain a computation H0

such that applying Lemma 5 yields n � 1 processes in Z, each of which has a critical remote event after

H0. By our construction, H0 is a computation in C, satis�es (C1) through (C4), and contains all events

contained in H.

To begin the construction of G, note that, because H 2 C, (10) impliesH = X�hfi�Y 2 C. Furthermore,

by assumption, H satis�es (C1). Hence, by Lemma 2, we have the following.

X � hfi � Yp 2 C (11)

We now apply Lemma 3 to prove that X � hfi � Yp � L 2 C holds. In applying Lemma 3, we use the

following assertions.

X � hfi � Y [p] X � hfi � Yp (12)

X � hfi � Y � L 2 C (13)

(12) holds by de�nition, and (13) follows from (9), (10), and (P1).

Because H satis�es (C2), by (10), both X � hfi � Y and X � hfi � Yp also satisfy (C2). Also, recall that

L is a p-computation consisting of local events and that p is active in H. Thus, no event in L accesses a

variable that is written by processes other than p in either X � hfi � Y or X � hfi �Yp. Hence, by (11), (12),

(13), and Lemma 3, the following holds.

X � hfi � Yp � L 2 C (14)

The next step in the proof is to use (P2) to establish that X � hfi � Yp � L � hei is in C, where e is as

de�ned at the beginning of the proof. Let e = [Rp;Wp; p]. The following assertion follows from (10).

X � hfi � Yp � L [p] H � L (15)

Because H � L � hei satis�es (C1), for all x 2 Rp:var, the following holds.

value(x; X � hfi � Yp � L) = value(x; H � L) (16)

By (9), (14), (15), (16), and (P2), it follows that

X � hfi � Yp � L � hei 2 C : (17)

We now show that G is in C by establishing the following claim.

Claim 2: X � hfi � Yp � L � hei � (Y � Yp) 2 C.

Proof: Let (Y � Yp) = he0; e1; : : : ; emi. The proof is by induction on jY � Ypj.

Induction Base. By (17), X � hfi � Yp � L � hei 2 C holds.

Induction Hypothesis. Suppose that X � hfi � Yp � L � hei � he0; e1; : : : ; em�1i 2 C holds.

19

Induction Step. We prove that X � hfi � Yp �L � hei � he0; e1; : : : ; emi 2 C holds. Without loss of

generality, assume that Y = Q � hemi � T . Then, by (P1), (13) implies that the following holds.

X � hfi �Q � hemi 2 C (18)

Let em = [R;W; i] for some i 6= p. Because i 6= p, the following holds.

X � hfi � Yp � L � hei � he0; e1; : : : ; em�1i [i] X � hfi �Q (19)

Let x 2 R:var. We now show that x is not written by any event in Yp, L, or hei. Suppose that x

is written by e or by an event in Yp. e is noncritical and hence is not an expanding write. Also,

Yp does not contain any expanding write by p. Thus, by (10), x is also written by p in X � hfi.

Because i 6= p, this implies that H does not satisfy (C1), which is a contradiction.

Now, suppose that x is written by an event in L. Recall that L consists only of local events

of p. Thus, event em = [R;W; i], which is in H, reads a local variable of process p 6= i. Because

p is active in H, this implies that H does not satisfy (C2), which is a contradiction. Thus, we

conclude that x is not written by any event in Yp, L, or hei. This implies that, for each x in

R:var, writer(x; X � hfi � Yp � L � hei � he0; e1; : : : ; em�1i) = writer(x; X � hfi � Q) holds. By

Lemma 1, this implies that the following holds.

value(x; X � hfi � Yp � L � hei � he0; e1; : : : ; em�1i) = value(x; X � hfi �Q) (20)

By the induction hypothesis, (18), (19), (20), and (P2), X �hfi�Yp �L�hei�he0; e1; : : : ; emi 2 C.

2

Having shown that G is in C, we now show that G satis�es (C1) through (C4). Observe that the events

in L � hei are the only events in G that are not in H. L consists only of local events of process p, none of

which are Eatp. Also, e, being a noncritical remote event, does not access any remote variable that p does

not access in H. Hence, because H satis�es (C2) through (C4), it follows that G also satis�es (C2) through

(C4).

As for (C1), our proof obligation is to show that no event in G reads a variable previously written by

another process. Because H satis�es (C1), by (10), no event in X � hfi � Yp reads a variable previously

written by another process.

Now, consider events in L � hei � (Y �Yp). Observe that L consists only of local events of p, p is active in

H, and H satis�es (C2). Hence, no event in L reads a variable that is previously written by another process

in G.

If e reads a variable that is previously written by another process in G, then that variable is written in

X, because hfi �Yp �L consists of events by p. If e reads a variable that is written by another process in X,

then, by the de�nition of a predecessor, there exists an event in hfi � Yp that accesses that same variable.

However, this implies that H violates (C1) or (C3), which is a contradiction.

Finally, because H satis�es (C1), no event in Y � Yp reads a variable written by another process in

X � hfi � Yp. By the reasoning at the end of the proof of Claim 2, no event in Y � Yp reads a variable that

is written by p in Yp � L � hei. We conclude that G satis�es (C1).

We have shown that if some process in Z has a next remote event after H that is noncritical, then there

exists a Z-computation in C satisfying (C1), (C2), (C3), and (C4) that contains more remote events than

H. As noted previously, if this argument could be applied repeatedly, then it would be possible to construct

a computation in C that violates the Progress requirement. This proves the lemma. 2

20

The next lemma is a stronger version of Lemma 6 in which only critical remote events are counted rather

than all remote events.

Lemma 9: Let S = (C;P; V) be a shared-memory system with write-contention w that solves the minimal

mutual exclusion problem. Let Y � P be a set of n processes, and let H be a Y -computation in C satisfying

(C1), (C2), (C3), and (C4) such that each process in Y executes r critical remote events in H. Suppose that

each event accesses at most v remote variables. Then, there exist Z � Y , where jZj = d(n�1)=(2v+1)2vwe,

and a Z-computation G in C satisfying (C1), (C2), (C3), and (C4) such that each process in Z executes

r + 1 critical remote events in G.

Proof: Lemma 8 implies that there exists Y 1 � Y , where jY 1j � n � 1, such that the following holds: for

any i 2 Y 1, there exists an i-computation L(i) consisting of local events, such that H �L(i) � [Ri;Wi; i] 2 C,

where [Ri;Wi; i] is a critical remote event in H � L(i) � [Ri;Wi; i]. The rest of the proof is identical to that

of Lemma 6. 2

We now prove Theorem 5, which is restated below. According to this theorem, among the
(log
vw

N)

remote events mentioned in Theorem 3,
(
p
log

vw
N) distinct remote variables are accessed.

Theorem 5: For any S = (C;P; V) with write-contention w > 1 that solves the minimal mutual exclusion

problem, if each event accesses at most v remote variables, then there exists an i-computation in C containing

no Eat i event in which
(
p
log

vw
N) distinct remote variables are accessed.

Proof: hi is a P -computation and satis�es (C1), (C2), (C3), and (C4). By repeatedly applying Lemma 9,

this implies that there exists a computation F in C that satis�es (C1) and (C4) and that contains
(log
vw

N)

critical remote events of some process i in P . By Lemma 2, Fi 2 C. Let W denote the number of expanding

writes in Fi, let R denote the number of expanding reads in Fi, and let E denote the number of nonexpanding

critical remote events in Fi. Then, because Fi contains
(logvwN) critical remote events,

(W + R+E) � c � log
vw

N (21)

holds for some positive constant c. Let D denote the number of distinct remote variables accessed in Fi.

Observe that D is at least as big as W and R. Also, D is at least as big as the number of distinct remote

variables accessed by events in E. The following claim provides an upper bound on the number of events in

E.

Claim 3: There are at most D nonexpanding critical events between two successive expanding

writes in Fi.

Proof: Let x and y denote two successive expanding writes in Fi, and let Fi = X � hxi � Y �

hyi � Z. By assumption, Y does not contain an expanding write. Let e0; e1; : : : ; em denote the

nonexpanding critical events in Y . By the de�nition of a critical event, their predecessors in Fi

appear in X. We claim that each ej, where 1 � j � m, accesses a remote variable that is not

accessed in e0; : : : ; ej�1. Otherwise, the predecessor of ej in Fi is not an event in X, which is

a contradiction. Because e0 accesses at least one remote variable, e0; e1; : : : ; em access at least

m+ 1 distinct remote variables. Thus, m < D holds, which proves the claim. 2

By Claim 3, at most D nonexpanding critical events may occur between an expanding write and the next

expanding write (if any). In addition, by the de�nition of a critical event, no nonexpanding critical remote

21

events may exist before the �rst expanding write. Thus, we have at most D nonexpanding critical remote

events per expanding write, i.e., E � DW . Because D � W and D � R hold, this implies that

D �max(W;R;E=W) : (22)

We now show that D � m �
p
log

vw
N for some positive constant m. Assume, to the contrary, that

D < m �
p
log

vw
N . Then, by (22), we have W < m �

p
log

vw
N and R < m �

p
log

vw
N . By (21), this implies

that
E

W
>
c � log

vw
N � 2m �

p
log

vw
N

m �
p
log

vw
N

:

By (22), this inequality implies that D � s �
p
log

vw
N for some positive constant s. 2

Corollary 4: For any system S satisfying the conditions of Theorem 5, there exist
(N) processes i in P

for which the conclusion of the theorem holds. 2

6 Concluding Remarks

In this paper, we have shown that, for any N -process minimalmutual exclusion algorithm, if write-contention

is w, and if each atomic operation accesses at most v remote variables, then there exists an execution

involving only one process in which that process executes
(log
vw

N) remote operations for entry into its

critical section. We have also shown that, among these operations,
(
p
log

vw
N) distinct remote variables

are accessed. For algorithms with access-contention c, we have shown that the latter bound can be improved

to
(log
vc
N).

These time bounds establish that trade-o�s exist both between time complexity and write- and access-

contention, and between time complexity and atomicity. Because any algorithm that solves the leader

election or mutual exclusion problems also solves the minimal mutual exclusion problem, these trade-o�s

apply to these problems as well. It is interesting to note that our bounds also apply when using other means

of measuring the time complexity of busy-waiting. For example, a spin-loop of a process might be counted

as one time unit. Because our bounds are obtained in the absence of competition, they still hold for this

model.

Although the time bounds we establish are oriented towards programs that busy-wait, they also have

implications regarding mutual exclusion mechanisms that are based on blocking. In particular, while blocking

can be used to synchronize multiple processes on a single processor, busy-waiting is still fundamental for

synchronization across processors [13]. Our bounds imply that tradeo�s exist between contention and time

complexity and between atomicity and time complexity in any multiprocessor setting, even if blocking is

used for synchronization within a processor.

For wait-free algorithms, Herlihy has characterized synchronization primitives by consensus number [9].

Such a characterization is not applicable when waiting is introduced. One way of determining the power

of synchronization primitives in this case is to compare the time complexity of mutual exclusion using such

primitives. For instance, it is possible to solve the mutual exclusion problem with O(1) time complexity using

load-and-store or fetch-and-add, while the best-known upper bound for read/write algorithms is O(log2N)

[19]. If a lower-bound result could be proved showing that this gap is fundamental, then this would establish

that reads and writes are weaker than read-modify-writes from a performance standpoint. This would

provide contrasting evidence to Herlihy's hierarchy, from which it follows that reads and writes are weaker

than read-modify-writes from a resiliency standpoint. It is interesting to note that there exist read/write

mutual exclusion algorithms with write-contention N that have O(1) time complexity in the absence of

22

competition [1, 12, 19]. Thus, establishing the above-mentioned lower bound for read/write algorithms will

require proof techniques that di�er from those given in this paper.

We do not know whether the bound given in Theorem 5 is tight. We conjecture that this bound can be

improved to
(log
vw

N), which has a matching algorithm when v is taken to be a constant [19].

One may be interested in determining the e�ect of contention on space requirements. It is quite easy

to show that solving the minimal mutual exclusion problem with write-contention w requires at least N=w

variables. In particular, it can be shown that every process writes a variable before eating. So, consider

the computation in which every process is enabled to perform its �rst write. Because write-contention is w,

the total number of variables enabled to be written is
(N=w). It can be shown that this bound is tight;

it is possible to obtain a deadlock-free solution to mutual exclusion with write-contention w by arranging

test-and-set variables in a balanced w-ary tree with dN=we leaves.

In conclusion, it is our belief that the most important contribution of this paper is to show that meaningful

time bounds can be established for concurrent programming problems for which busy-waiting is inherent.

We hope that our work will spark new work on time complexity results for such problems.

Acknowledgements: We would like to thank Gadi Taubenfeld for prompting us to consider the bounds for cache-

coherence presented in Section 5. We would like to thank Faith Fich and Samir Khuller for informing us of Tur�an's

theorem. By using this theorem, we were able to obtain slightly better bounds than we originally reported in [20].

We would also like to thank Sanglyul Min for his helpful comments on an earlier draft of this paper.

Appendix: Additional Proofs

In this section, we give full proofs of Lemmas 2, 3, 4, and 5.

Proof of Lemma 2: As in the statement of the lemma, assume that G�H is a computation in C satisfying

(C1), and Y � P . We prove that G �HY 2 C by induction on the length of HY .

Induction Base. Because G �H 2 C holds, by (P1), G 2 C holds.

Induction Hypothesis. Suppose that Lemma 2 holds for HY if jHY j = m.

Induction Step. We now consider HY of length m+1. Let HY = he0; e1; : : : ; em�1; emi. Let H = H0 � hemi �

H00.

By (P1), G �H0 2 C. Observe that G �H0
Y
= G � he0; e1; : : : ; em�1i. Hence, by the induction hypothesis,

G �H0
Y
2 C. Next, we prove G �HY 2 C by considering two cases. Let em = [R;W; i] for some i 2 Y .

Because G�H0�hemi is a pre�x of G�H, by (P1), G�H0�hemi 2 C. Note that G�H0 [Y] G�H0
Y
. Thus,

to prove that G �HY 2 C, it su�ces to prove that, for any x 2 R:var, value(x;G �H0) = value(x;G �H0
Y
).

In particular, if the latter holds, then (P2) implies that G �HY = G �H0
Y
� hemi 2 C also holds. If R = fg,

then this remaining proof obligation is vacuous, so in the remainder of the proof, assume that R 6= fg.

We consider two cases according to whether x is written in G � H0. If writer(x;G � H 0) = ?, then

writer(x;G�H0
Y
) = ?, and by Lemma 1, value(x;G�H0) = value(x;G�H0

Y
). If writer(x;G�H0) = [L;U; j],

then because G � H satis�es (C1), j = i. It follows that writer(x;G � H 0
Y
) = [L;U; j], and by Lemma 1,

value(x;G �H0) = value(x;G �H0
Y
). This concludes the proof of Lemma 2. 2

Proof of Lemma 3: As in the statement of the lemma, assume the following: (i) F is an i-computation;

(ii) no event in F accesses a variable that is written by processes other than i in either G or H; (iii) H 2 C;

23

(iv) G[i]H; and (v) G � F 2 C. We prove that H � F 2 C by induction on the length of F .

Induction Base. If jF j = 0, then H � F = H. By assumption (iii), H 2 C holds.

Induction Hypothesis. Suppose that Lemma 3 holds when jF j = m.

Induction Step. We now consider F of length m + 1. Let F = he0; e1; : : : ; emi. We use (P2) to prove that

H � he0; e1; : : : ; emi 2 C. By assumption (v),

G � he0; e1; : : : ; em�1i � hemi 2 C : (23)

By (P1), (23) implies that G � he0; e1; : : : ; em�1i 2 C holds. Thus, by the induction hypothesis, we have the

following.

H � he0; e1; : : : ; em�1i 2 C (24)

By assumption (iv), G[i]H holds, so the following holds.

G � he0; e1; : : : em�1i [i] H � he0; e1; : : : em�1i (25)

Let em = [R;W; i]. By assumption (ii), [R;W; i] does not access a variable that is written by processes

other than i in either G or H. Thus, each x in R:var is not written by other processes in either G or H.

Thus, G[i]H implies that writer(x;G) = writer(x;H), which implies that writer(x;G � he0; e1; : : : em�1i) =

writer(x;H � he0; e1; : : : em�1i). By Lemma 1, this implies that the following holds.

value(x;G � he0; e1; : : : em�1i) = value(x;H � he0; e1; : : :em�1i) (26)

Thus, by (23), (24), (25), (26), and (P2), we have H � he0; e1; : : : ; emi 2 C. 2

Proof of Lemma 4: Let Q,H, and L(j) be de�ned as in the statement of the lemma. In particular, we have

the following: (i) L(j) is a j-computation; (ii) H �L(j) 2 C; and (iii) no event in L(j) accesses any variable

that is accessed by other processes inH�L(1)�L(2)�� � ��L(jQj). We prove thatH�L(1)�L(2)�� � ��L(jQj) 2 C

by induction on jQj.

Induction Base. By (P1) and assumption (ii), H 2 C.

Induction Hypothesis. Assume that H � L(1) � L(2) � � � � � L(j � 1) 2 C, where 1 � j � jQj.

Induction Step. We use Lemma 3 to prove that H � L(1) � L(2) � � � � � L(j) 2 C. By assumption (i),

H [j] H � L(1) � L(2) � � � � � L(j � 1) : (27)

By (27), the induction hypothesis, and assumptions (i), (ii), and (ii), Lemma 3 implies that H �L(1)�L(2)�

� � � � L(j) 2 C holds. 2

Proof of Lemma 5: Let H and Y be as de�ned in the statement of the lemma, i.e., Y � P , jY j = n, and

H is a Y -computation in C satisfying (C1), (C2), and (C4). We show that at least n�1 processes in Y have

a remote event after H.

Assume to the contrary that fi; jg � Y have no remote event after H. Because H satis�es (C1), by

Lemma 2, Hi 2 C. Also, because H satis�es (C4), Hi satis�es (C4). Hence, because S satis�es the Progress

requirement, there exists an i-computation G such that Hi �G � hEatii 2 C, and G does not contain Eati.

Similarly, there exists a j-computation G0 such that Hj � G0 � hEatji 2 C, and G0 does not contain Eatj.

We consider three cases.

24

Case 1 . G contains a remote event. Let G = F � h[R;W; i]; : : :i, where [R;W; i] is the �rst remote event in

G. We prove that i has a remote event after H, which is a contradiction to our assumption. In particular,

we use (P3) to prove that H � F � h[R0;W 0; i]i 2 C, where R0:var = R:var and W 0:var = W:var. Because

Hi �G � hEatii 2 C holds, by (P1), we have the following.

Hi � F � h[R;W; i]i 2 C (28)

We now use Lemma 3 to prove that H � F 2 C. The following assertions are used in applying Lemma 3.

H 2 C (29)

Hi [i] H (30)

Hi � F 2 C (31)

(29) holds by the de�nition of H, (30) holds by the de�nition of [i], and (31) follows from (28) and (P1).

Observe that F is an i-computation consisting of local events. Thus, because i is active in H and Hi, and

because both H and Hi satisfy (C2), no event in F accesses a variable that is written by processes other

than i in either H or Hi. Hence, by (29), (30), (31), and Lemma 3, the following holds.

H � F 2 C (32)

Observe that (30) implies that the following holds.

H � F [i] Hi � F (33)

By (28), (32), (33), and (P3), H �F �h[R0;W 0; i]i 2 C, where R0:var = R:var and W 0:var =W:var. Because

H � F � h[R0;W 0; i]i 2 C, i has a remote event after H, which is a contradiction.

Case 2 . G0 contains a remote event. We can prove that j has a remote event after H. The proof is similar

to that of Case 1, and hence is omitted.

Case 3 . G and G0 do not contain any remote event. We prove that S does not solve the minimal mutual

exclusion problem.

We �rst use Lemma 3 to prove that H �G � hEat ii 2 C holds. By assumption, we have the following.

Hi �G � hEat ii 2 C (34)

Observe that G � hEat ii is an i-computation consisting of local events. Thus, because i is active in H and

Hi, and because H and Hi both satisfy (C2), no event in G � hEat ii accesses a variable that is written by

processes other than i in either H or Hi. Hence, by (29), (30), (34), and Lemma 3, H � G � hEatii 2 C.

Similarly,H �G0 � hEatji 2 C.

Let F = H � G � hEatii � G
0 � hEatji. It is straightforward to use Lemma 4 to prove that F 2 C. (Let

L(1) = G � hEatii and let L(2) = G0 � hEatji.) Note that value(i:dine; F) = eat ^ value(j:dine; F) = eat

holds, which implies that S does not solve the minimal mutual exclusion problem. 2

References

[1] R. Alur and G. Taubenfeld, \Results about Fast Mutual Exclusion", Proceedings of the Thirteenth IEEE

Real-Time Systems Symposium, December, 1992, pp. 12-21.

25

[2] J. Anderson, \A Fine-Grained Solution to the Mutual Exclusion Problem", Acta Informatica, Vol. 30,

No. 3, 1993, pp. 249-265.

[3] T. Anderson, \The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors", IEEE

Transactions on Parallel and Distributed Systems, Vol. 1, No. 1, January, 1990, pp. 6-16.

[4] J. Burns and N. Lynch, \Bounds on Shared Memory for Mutual Exclusion", Information and Compu-

tation, Vol. 107, 1993, pp. 171-184.

[5] K. Chandy and J. Misra, \How Processes Learn", Distributed Computing , Vol. 1, No. 1, 1986, pp. 40-52.

[6] E. Dijkstra, \Solution of a Problem in Concurrent ProgrammingControl",Communications of the ACM ,

Vol. 8, No. 9, 1965, pp. 569.

[7] C. Dwork, M. Herlihy, and O. Waarts, \Contention in Shared Memory Algorithms", Proceedings of the

25th ACM Symposium on Theory of Computing , May, 1993, pp. 174-183.

[8] G. Graunke and S. Thakkar, \Synchronization Algorithms for Shared-Memory Multiprocessors", IEEE

Computer , Vol. 23, No. 6, June 1990, pp. 60-69.

[9] M. Herlihy, \Wait-Free Synchronization", ACM Transactions on Programming Languages and Systems,

Vol. 13, No. 1, 1991, pp. 124-149.

[10] M. Herlihy, B-H. Lim, and N. Shavit, \Low Contention Load Balancing on Large-Scale Multiprocessors",

Proceedings of the 3rd ACM Symposium on Parallel Algorithms and Architectures, July, 1992, pp. 219-

227.

[11] M. Herlihy, N. Shavit, and O. Waarts, \Low Contention Linearizable Counting", Proceedings of the 32nd

IEEE Symposium on Foundations of Computer Science, October, 1991, pp. 526-535.

[12] L. Lamport, \A Fast Mutual Exclusion Algorithm", ACM Transactions on Computer Systems, Vol. 5,

No. 1, February, 1987, pp. 1-11.

[13] B.-H. Lim and A. Agarwal, \Waiting Algorithms for Synchronization in Large-Scale Multiprocessors",

ACM Transactions on Computer Systems, Vol. 11, No. 3, August, 1993, pp. 253-294.

[14] N. Lynch and N. Shavit, \Timing-Based Mutual Exclusion", Proceedings of the Thirteenth IEEE Real-

Time Systems Symposium, December, 1992, pp. 2-11.

[15] J. Mellor-Crummey and M. Scott, \Algorithms for Scalable Synchronization on Shared-Memory Multi-

processors", ACM Transactions on Computer Systems, Vol. 9, No. 1, February, 1991, pp. 21-65.

[16] M. Merritt and G. Taubenfeld, \Knowledge in Shared Memory Systems", Proceedings of the Tenth ACM

Symposium on Principles of Distributed Computing , August, 1991, pp. 189-200.

[17] G. P�ster and A. Norton, \Hot Spot Contention and Combining in Multistage Interconnection Net-

works", IEEE Transactions on Computers, Vol. C-34, No. 11, November, 1985, pp. 943-948.

[18] P. Tur�an, \On an extremal problem in graph theory" (in Hungarian), Mat. Fiz. Lapok , Vol. 48, 1941,

pp. 436-452.

26

[19] J.-H. Yang and J. Anderson, \Fast, Scalable Synchronization with Minimal Hardware Support", Pro-

ceedings of the Twelfth ACM Symposium on Principles of Distributed Computing , August, 1993, pp.

171-182. A revised version entitled \A Fast, Scalable Mutual Exclusion Algorithm" is scheduled to

appear in Distributed Computing .

[20] J.-H. Yang and J. Anderson, \Time Bounds for Mutual Exclusion and Related Problems", Proceedings

of the 26th Annual ACM Symposium on Theory of Computing , ACM, New York, pp. 224-233, May

1994.

27

