Energy-efficient synthesis of periodic task systems upon identical
multiprocessor platforms*

James H. Anderson

Sanjoy K. Baruah

The University of North Carolina at Chapel Hill

Abstract: Multiprocessor implementations of real-time
systems tend to be more energy-efficient than uniproces-
sor implementations. However several factors, including
the non-existence of optimal multiprocessor scheduling al-
gorithms, combine to prevent all the computing capacity of
a multiprocessor platform from being guaranteed available
for executing the real-time workload. In this paper, this
tradeoff — that while increasing the number of processors
results in lower energy consumption for a given computing
capacity, the fraction of the capacity of a multiprocessor
platform that is guaranteed available for executing real-time
work decreases as the number of processors increases —
is explored in detail. Algorithms are presented for syn-
thesizing multiprocessor implementations of hard-real-time
systems comprised of independent periodic tasks in such a
manner that the energy consumed by the synthesized sys-
tem is minimized.

1 Introduction

With the proliferation of portable and mobile em-
bedded systems, techniques for minimizing energy con-
sumption are becoming increasingly important. This
has led to significant recent research on design method-
ologies and scheduling algorithms that consider the
energy consumed by a system as a first-class con-
cept, on par with logical and temporal correctness
[14, 4, 8, 10, 11, 17].

Another topic of growing interest within the real-
time systems community is multiprocessor scheduling
theory. This research has been motivated both by the
advent of reasonably-priced multiprocessor systems,
and by a growth in computation-intensive real-time ap-
plications that have pushed beyond the capabilities of
single-processor systems. Multiprocessor platforms of-
ten have the added advantage of being more energy
efficient than comparable uniprocessor platforms. As
Wolf [16] has observed: The power consumption of a
CMOS circuit is proportional to the square of the power
supply voltage (V2). Therefore, by reducing the power
supply voltage to the lowest level that provides the re-

*Supported in part by the National Science Foundation
(Grant Nos. CCR-9988327, CCR-0204312, and CCR-0309825).

quired performance, we can significantly reduce power
consumption. We also may be able to add paral-
lel hardware and even further reduce the power
supply voltage while maintaining the required
performance. [Emphasis added.]

This would suggest that it is advantageous to always
use as many processors as possible. However, as pro-
cessors are added, most real-time scheduling schemes
suffer increasing schedulability loss, i.e., their ability to
make use of all available processing capacity declines.
Consequently a pertinent question that arises when de-
signing an energy-aware real-time application is: what
is the optimal number of processors to use if energy
consumption is to be minimized?

Static versus dynamic energy management. In
non-real-time systems, the term static power manage-
ment typically refers to mechanisms that are invoked
by a user to manage power consumption (e.g., a “hi-
bernate” mode invoked to save battery life while not
using a laptop). In real-time and embedded systems,
however, this term is more typically used to refer to
energy-management schemes that are applied prior to
run-time. In contrast, dynamic power management
schemes (which include dynamic-voltage-scaling tech-
niques) take actions to control power based upon the
run-time activities of the CPU; for example, the CPU
can automatically switch to a slower speed if it is con-
tinually underutilized.

Depending upon such factors as the criticality of
deadlines, the amount of computing overhead that can
be devoted to power management, characteristics of the
hardware being used, etc., energy management may be
performed at many levels:

§1. System synthesis: Particularly for relatively
simple, low-cost, low-power embedded systems that are
to be mass-produced, the best (and perhaps only) time
for performing energy optimizations may be during sys-
tem design time. Energy-consumption requirements
may greatly impact the choice of hardware compo-
nents, and the scheduling and resource-allocation al-
gorithms used. For mass-produced systems, it is worth
putting considerable effort into the design process if

even minor savings can be realized.

As a concrete example consider the Janus system [6,
7], a dual-core chip designed for controlling automotive
power-train applications. This chip will eventually be
deployed, with an identical task workload, in millions
of automobiles.

§2. Static power management: Such schemes
are particularly appropriate for embedded systems that
are (i) heavily loaded at run-time (and hence require
simple scheduling and energy-management schemes),
or (ii) are extremely critical and thus need to be ex-
tensively tested to ensure predictability. Such sys-
tems may be scheduled with table driven and time-
triggered [12] schedulers. In addition to providing
scheduling information, lookup tables can store the
(precomputed) voltage levels that should be supplied
to various system components.

§3. Dynamic power management: If a
system has the capability to dynamically adapt to
changes in workload by changing energy consump-
tion, then more sophisticated dynamic-voltage-scaling
(DVS) techniques are possible. While DVS schemes
may be able to save more energy, and work very well
for soft- and non-real-time systems, they have some
disadvantages in hard-real-time systems. First, there
is generally a relationship between how aggressive the
DVS algorithm can be (i.e., how much energy it is able
to save on average) and its computational complexity.
DVS algorithms that are able to make real-time per-
formance guarantees are typically quite complex, and
may themselves place too heavy a computational load
on simple embedded systems (such as Janus). Fur-
thermore, the time taken for a processor to respond
to changes in voltage supply can be on the order of
tens or hundreds of milliseconds, particularly in “com-
modity” multi-level-voltage microprocessors. Hence,
systems with widely varying real-time workloads com-
prised of jobs with tight deadlines may not allow suf-
ficient time for switching a processor between power
modes.

This paper. The discussion above suggests that
there is a tradeoff between the complexity and sophis-
tication of different energy management schemes, and
their benefits in different scenarios. In this paper,
we describe our research into energy-efficient synthe-
sis techniques for the construction of small embedded
systems such as Janus [6, 7]. Such systems typically
have very well-defined workloads. We will assume that
this workload is completely known at system design
time, and is comprised of a collection of periodic tasks
(the periodic task model is defined in Section 2). One
of the major design goals in determining a scheduling
strategy for such a system is simplicity: while it is ac-
ceptable to spend a considerable amount of time during

(off-line) system synthesis, it should not be computa-
tionally expensive to make scheduling decisions at run-
time. This requirement favors the use of simple on-line
scheduling algorithms such as the earliest-deadline first
scheduling algorithm (EDF), which are known to have
computationally efficient implementations. We impose
the following requirements on our run-time system:

e We require that all the processors comprising the
multiprocessor platform be provided the same sup-
ply voltage, resulting in them all being of equal
computing capacities. Such multiprocessor plat-
forms are referred to as identical multiprocessors.

e Due to additional constraints (such as those re-
ferred to above), it is necessary that we use an ef-
ficient run-time scheduling algorithm. We assume
that this scheduling algorithm is “EDF-like”, in the
sense that it is a fized-priority algorithm (see Sec-
tion 2.2). As we will see, one of the advantages of
such fixed-priority scheduling on identical multi-
processor platforms is that the number of preemp-
tions and interprocessor migrations can bounded
from above at the number of jobs being sched-
uled. (Upon multiprocessor systems in which dif-
ferent processors may have different speeds, imple-
mentations of EDF generally require a significantly
larger number of preemptions and interprocessor
migrations — hence our requirement above that
all processors be of equal computing capacities.)

Prior research on energy-aware multiproces-
sor scheduling. Much prior work has focused on
dynamic-voltage-scaling (DVS) techniques, and are
typically applicable either to uniprocessor systems, or
to relatively simple table-driven, frame-based multipro-
cessor ones. Our research differs from most of this prior
work in that we are considering the issues of system
synthesis and pre-run-time scheduling for significantly
non-trivial multiprocessor systems. While DVS tech-
niques could perhaps be used in conjunction with the
techniques we devise, they are not directly related to
our work and are in fact somewhat orthogonal to it.

Research is being conducted under several projects
on the issue of energy-aware system synthesis, our fo-
cus here. Particularly notable are the Power-aware
Multiprocessor Architecture (PUMA) [11, 15] and the
uwAMPS [4] projects. Our research differs from these
and other similar projects in that we are taking a
more scheduling-theoretic approach: we seek to adapt
the most recent results in multiprocessor real-time
scheduling theory for obtaining energy-aware system
designs, and to help drive the agenda in multiprocessor
scheduling research towards becoming more cognizant
of energy-efficiency considerations.

2 Model and Background

For our purposes, a hard-real-time job J =
(a,c,d) is characterized by three parameters: an ar-
rival time a, an execution requirement ¢, and a dead-
line d, with the interpretation that this job must re-
ceive ¢ units of execution over the interval [a,d). A
hard-real-time instance I is comprised of a collection
of such jobs. We assume that our scheduling model is
preemptive (i.e., an executing job may be interrupted
and its execution resumed later at no cost or penalty),
and may or may not allow for the interprocessor mi-
gration of jobs.

In many embedded applications, the jobs comprising
a real-time instance I are generated by a finite collec-
tion of periodic tasks'. A periodic task 7; = (C;,T})
is characterized by two parameters: an execution re-
quirement C; and a minimum inter-arrival separation
parameter T; (often referred to as the period of the
task). Such a periodic task generates an infinite num-
ber of jobs, each having an execution requirement of
C; and a deadline T; time units after its arrival time.
The first job may arrive at any time-instant; successive
arrivals are separated by at least T; time units. We use
the notation U(7;) to denote the wutilization of task ;
— U(r) = /T;. A periodic task system consists of
several such periodic tasks. Let 7 = {71, 72,..., 7}
denote a periodic task system. For any such periodic
task system 7, Usym(7) will denote the cumulative uti-
lizations of all tasks in 7 (Usym(7) = Y1, U(7;)), and
Umax(7) will denote the largest utilization of any task

in 7 (Umax(1) = max? , U(r;)). We will use the no-
tation I(7) to denote any real-time instance comprised
of jobs generated by the periodic tasks in periodic task

system 7.

2.1 How Multiprocessor Scheduling Relates to
Energy Consumption

In recent research, the effect of varying processor
voltage (and hence varying the processor’s energy con-
sumption) upon the processor’s computing capacity
has been thoroughly explored. The speed or comput-
ing capacity of a processor has been shown to be ap-
proximately directly related to its clock frequency f.:
(speed x f.). For CMOS (and related) technologies [5],
the Power consumed satisfies the following relationship:

Power oc V(V — VT)Q) , where V' denotes the voltage

supplied to the processor, and Vr denotes the thresh-
old voltage and is a property of the processor chip. Op-
erating at a lower supply voltage results in increased
circuit delay and consequently decreased speed. The
relationship here [9] is (speed o ((V — Vr)?)/V) .

INote that what we call a periodic task here is sometimes
referred to in the literature as a sporadic task.

When V7 € V, we have the approximate relation-
ships (Power oc V?) and (speed o V); i.e.,

Power o speed”® . (1)

This states that the power consumed by a processor is
approximately proportional to the cube of its speed or
computing capacity. That is, in obtaining a comput-
ing capacity of s on a uniprocessor platform, the power
consumed is k x s, where % is the constant of propor-
tionality. If we were to instead obtain the same cumu-
lative computing capacity by having m processors, each
of computing capacity s/m, executing in parallel, then
the total power consumption would be approximately
m-k-(s/m)® = (1/m?) - (k x s%).

Observe that the power consumption of a multipro-
cessor platform relative to that of a comparable unipro-
cessor platform approaches zero as m — oco. This may
suggest that we can reduce energy consumption to ar-
bitrarily low levels by making the number of processors
m as large as possible, with each processor of very low
computing capacity. However, as we will see in the
following sections, it follows from real-time scheduling
theory that the fraction of the computing capacity of
a multiprocessor platform that is available for making
real-time performance guarantees tends to decrease as
the number of processors increases. In implementing
energy-aware real-time systems on multiprocessor plat-
forms, the tradeoff is thus as follows: while increasing
the number of processors results in lower energy con-
sumption for a given computing capacity, the fraction
of that capacity that is guaranteed available for execut-
ing the real-time workload decreases as the number of
processors increases.

2.2 A classification of scheduling algorithms

Run-time scheduling is the process of determining,
during the execution of a real-time application system,
which job[s] should be executed at each instant in time.
Run-time scheduling algorithms for identical multipro-
cessor platforms are often categorized along two or-
thogonal axes: the priority-assignment axis and the
inter-processor migration axis.

§1: Priority assignment. Run-time scheduling al-
gorithms are typically implemented as follows: at each
time instant, assign a priority to each active job,
and allocate the available processors to the highest-
priority jobs. In fixed-priority scheduling, each job
is assigned exactly one priority throughout its lifetime.
(We distinguish between such fixed-priority algorithms
and static priority algorithms for recurring real-time
tasks — static priority scheduling algorithms are fixed-
priority algorithms with the additional constraint that

all the jobs generated by each recurring task have the
same priority.)

It can be shown that the total number of processor
preemptions (and interprocessor migrations, if permit-
ted) in a schedule generated by any fixed-priority al-
gorithm is bounded from above by the total number
of jobs being scheduled. Hence, the preemption and
migration costs in fixed-priority scheduled systems can
be amortized across all the jobs in the system, by sim-
ply inflating the execution requirement of each job by
the amount of work needed to perform one preemption
and one inter-processor migration — this is indeed a
very important advantage of fixed-priority scheduling
schemes over schemes that are not fixed-priority. In
this paper, we are concerned with application systems
in which it is important that the number of preemp-
tions (and inter-processor migrations, if permitted) be
bounded in this manner; hence in the remainder of this
paper we restrict our attention to fixed-priority
scheduling only.

§2: Interprocessor migrations. Under parti-
tioned scheduling, each task is assigned to a partic-
ular processor and all its jobs are only scheduled on
that processor. Each processor schedules jobs inde-
pendently from a local ready queue. Under global
scheduling, by contrast, all ready jobs are stored in
a single queue regardless of which job generated the
task. A single system-wide priority space is assumed;
the highest-priority job is selected to execute whenever
the scheduler is invoked by any processor. Thus, there
is no association between a job and a processor — a job
that has been preempted upon a particular processor
may later resume execution upon the same or a differ-
ent processor.

It is known that the utilization bound of any
partition-based algorithm — the largest utilization such
that all periodic task systems with utilization no larger
than this bound are guaranteed schedulable by that
algorithm — cannot exceed ((Z%f1) - speed) upon m
processors each of computing capacity speed; if it is
known that no individual task’s utilization exceeds

Umax(T), then a somewhat better bound of ((ﬁgﬂl) .

speed) was proven by Lopez et al. [13], where § =
|speed/Umax(T) |-

It has been shown [2] that (a variant of) EDF,
called Algorithm fpEDF, can be implemented as a fixed-
priority global scheduling algorithm to have a utiliza-
tion bound that is about the same as the bound for
partitioned EDF (see Figure 1):

m - speed — (m — 1) X Umax(7),

if Umax(7) <
2 x speed + Umax(T),

if Umax(7) > 5 X speed

X speed

M

2)

=

(Global scheduling schemes such as the Pfair schedul-

ing algorithms [3, 1] have been proposed that have a
utilization bound of m upon m unit-capacity proces-
sors; hence, these scheduling algorithms are optimal.
However, Pfair scheduling algorithms are not fixed-
priority algorithms: each job generated by a periodic
task may change its priority many times during its life-
time. One consequence of such priority-swapping is
that Pfair-scheduled systems tend to have a large num-
ber of processor preemptions and interprocessor migra-
tions. As stated above, we restrict our attention in this
paper to the study of fixed-priority algorithms only.)

The utilization bounds, as a function of an upper
bound Umax upon the largest individual utilization,
obtainable by fixed-priority multiprocessor scheduling
algorithms under the different migration restrictions
discussed above, are plotted as a function of Unax in
Figure 1; observe that the bounds for the restricted-
migration and global cases are identical.

Algorithm fpEDF. We now briefly describe the
global fixed-priority scheduling algorithm fpEDF. Ba-
sically, Algorithm fpEDF is a minor modification to
global EDF — it assigns highest priority to jobs of tasks
with large utilizations, and assigns priorities to jobs of
other tasks as EDF would.

Suppose that task system 7 is to be scheduled by Al-
gorithm fpEDF upon m unit-capacity processors, and
let {r,7,...,7,} denote the tasks in 7 indexed ac-
cording to non-increasing utilization: U(7;) > U(7;41)
foralli, 1 <i < n. Algorithm fpEDF first considers the
(m — 1) “heaviest” (i.e., largest-utilization) tasks in 7.
All the tasks from among these heaviest (m — 1) tasks
that have utilization greater than one-half are treated
specially in the sense that all their jobs are always as-
signed highest priority (note that this is implemented
trivially in an EDF scheduler by setting the deadline pa-
rameters of these jobs to —oc). The remaining tasks’
jobs —i.e., the jobs of the tasks from among the heavi-
est (m — 1) with utilization < one-half, as well as of the
(n —m + 1) remaining tasks — are assigned priorities
according to their deadlines (as in “regular” EDF).

3 Energy-optimized system synthesis

In this section, we present our algorithm for the
energy-optimized synthesis of fixed-priority scheduled
multiprocessor hard-real-time systems in which the
workload is comprised of periodic tasks only, and in
which all processors are required to execute at the
same speed. Since the utilization bounds of partitioned
scheduling is very close to that of global scheduling (ex-
cept for the “step” nature of the bound in the parti-
tioned case), we focus our attention on the utilization
bound for global scheduling as given in Equation 2.

Suppose that we are given a collection of periodic

Usum(7)
speed

Umax(T) /speed

1.0

>

>

Figure 1. Utilization bounds for an m-processor system, with each processor having computing capacity
speed. Utilization bounds are plotted on the y-axis, and the maximum utilization on the z-axis. For a
given workload (i.e., a given 7), moving to a slower platform would move us further right on the z-axis.
The solid line represents the bound for global scheduling; the dotted line, for partitioned scheduling.
(The focus of this paper is primarily on the bound represented by the solid line.) The equation for
the solid line is y=m— (m —1)z for t < 1, and y = 2 + z for £ > 1 (explained in Section 2.2).

tasks 7, and need to implement 7 on an identical mul-
tiprocessor system in the most energy-efficient manner
possible. We consider two separate cases (i) when there
is no a priori bound on number of processors that may
be used, and (ii) when there is a limit on the number of
processors that may be used. Our algorithm is given in
Figure 2, and briefly summarized below; proofs follow
in Sections 3.1 — 3.3.

(i) When the number of processors that may be used
is not a constraining factor, the most energy-
efficient implementation upon an identical mul-
tiprocessor platform has all processors executing
at a speed that is equal to (or somewhat greater
than) Umax(7). The optimal strategy would oper-
ate close to this point by choosing whichever of the
following two configurations consumes less energy:

1. Either m; = [2x (®(7) —1)] processors
at speed Usym(r) each, where &(r) =
Usum(T)/Umax(T)§

2. ormy = |2 x (®(7) — 1)] processors at speed
s(T,m2) each (where s(7,ms) is computed as
given by Equation 4 (Lemma 1).

(Note that if ®(7) is large, so is the number of
processors used. This agrees with our intuition
that, if Umax(7) is very small when compared to
Usum(7), it is more energy-efficient to use a large
number of processors.)

(ii) If other design considerations (such as limited
availability of processors) prohibit the use of this
many processors, then the best strategy is to use
the largest number of processors permissible —
let us denote this number as mmax — and exe-
cute each processor at a speed s(7, mmax) (Where
s(T,mmax) is again computed according to Equa-
tion 4 (Lemma 1).

We now prove these claims, in Sections 3.1 — 3.3 below.
3.1 Some preliminary results

Observe that an alternative way of writing the uti-
lization bound function Equation 2 is as follows:

max (m -speed — (m — 1) X Umax(7) , (3)
% - speed + Umax(T))

since the “max” would be equal to the first term
for Umax(1)/speed < i, and the second term for

Umax(7)/speed > 1 (see Figure 1).

Definition 1 Let 7 denote any periodic task system,
and m any positive integer. The function s(t,m) is
defined as follows:

s(r,m) % min s such that

[Usum(‘r) > max (mS — (m — 1) Umax(7), %S + Umax(ﬂ)]

Input Usym(7), Umax(7), and mmax, where

— 7 denotes the periodic task system to be synthesized, and
— max denotes the maximum number of processors available

1. Let ®(7) 2f Usum(r) qrge Equation 1 to compute the energy consumed by each of the following two configu-

. ~ Umax(7)"
rations:

def

(a) m1 = [2 x (®(7) — 1)] processors each operating at speed Umax(7); and

def

(b) my = |2 x (®(r) — 1)] processors each operating at a speed s(7,mz) as given by Equation 4 (Lemma 1).

2. If the lower-energy configuration from among these two uses < mmax processors, then this is the energy-
optimal configuration; else, the energy-optimal configuration uses mmax processors each operating at a speed

$(T, mmax) given by Equation 4 (Lemma 1).

Figure 2. Algorithm for energy-optimal synthesis.

That is, s(T,m) denotes the minimum speed at which
each processor in an m-processor identical multiproces-
sor platform must execute in order that the cumulative
utilization of T will fall within the utilization bound of
this platform according to Equation 3. B

Suppose that we are given a certain number of pro-
cessors m,, upon which to execute periodic task sys-
tem 7. At what minimum speed s(7,m,) should we
execute these processors in order to be able to guaran-
tee that all jobs of all tasks complete by their deadlines
according to our utilization-bound of Equation 27 This
question is addressed in the following lemma.

Lemma 1 Suppose that periodic task system T is to be
implemented upon m, identical processors. The mini-
mum speed s(T,m,) at which these processors need to
be executing is given by

s(t,mo) = @)
max [Umax(r), min (Umax(r) " Usum(‘r)n: Umax(‘r),

o

x (Usum (1) — Umax(T)))]

o

Proof: First, observe that it is necessary for reasons
of feasibility that the processors execute at a speed
> Umax(7); else, the task in 7 with utilization Umax(7)
cannot possibly meet its deadline. Hence the first term
in the “max” in Equation 4 above. It now remains to
justify the second term in the “max”.

If the utilization bound at speed = s(7,m,) is de-
fined by the first term in the “max” in Equation 3, then
we must have

Usum(7) < mo X $(T,mo) — (Mo — 1) X Umax(T)
Usum(T) + (mo — 1) X Umax(T)
mo
Usum(7) — Umax(7)
Mo

= s(r,mo) >

= s(1,m0) > Umax(T) +

(3)

If on the other hand the utilization bound at speed =
s(1,m,) is defined by the second term in the “max” in
Equation 3, then we must have

m,
Usum(7) < 70 X 8(T,mo) + Umax(T)

= s(1,mo) > 2 X (Usum(7) — Umax(7)) (6)

Mo
If either Inequality 5 or Inequality 6 is satisfied, Con-
dition 3 holds. Lemma 1 follows. H

3.2 Operating with speed < 2Umax(7)

First, observe from Figure 1 that for speed <
2Umax(7) (equivalently, (Umax(7)/speed) > 1), the
utilization bound increases with decreasing processor
speed (equivalently, with increasing Umax(7)/speed).
That is, the fraction of the cumulative computing
capacity of the platform that comprises the upper
bound for the utilization Ugym(7) of task system 7
increases, simultaneously with the total power con-
sumption decreasing. This argues in favor of operating
as close to the point (1.0,% 4 1) in the utilization-
bound curve (Figure 1) in order to obtain the most
energy-efficient implementation.

In order to operate at the point (1.0, % + 1) in the
utilization-bound curve, (Figure 1), we would set the
speed of each processor equal to Umax(T). How many
processors at this speed would we need in order to
be able to meet all deadlines? Recall that ®(7) de-
notes the ratio Usym(7)/Umax(7). From Figure 1, an
m-processor system operating at the point (1.0, % +1)
has a utilization bound (% + 1) - speed; thus to accom-
modate a cumulative workload equal to Usum(7T), we
would need

(2 +1) x speed > Usum(r)) =m > (@(r) = 1) x 2

Since the number of processors is integral, we must
have at least

my = [2 % (B(r) —1)] (7)

processors of speed Umax(7) each. The energy con-
sumed by such a platform is given by

E x my X Unax(7)® (8)

where k£ denotes the constant of proportionality in
Equation 1.

However, such a platform may have some extra com-
puting capacity due to the round-up error obtained in
taking the [] — this additional computing capacity
also consumes energy. Hence, we should also consider
the alternative system design obtained by taking

my = (2 x (B(7) — 1)] 9)

processors, each of speed somewhat greater than
Umax(7). The minimum speed per processor in this
platform such that the cumulative computing capac-
ity is > Usum(7) is given by s(7,m2) in Equation 4
(Lemma 1), and the energy consumed by this platform
is given by

E x my x (s(r,mz))* (10)

where (as above) k denotes the constant of proportion-
ality in Equation 1. The optimum platform is now
determined by comparing the energy consumption as
computed according to Equation 8 with the energy con-
sumption computed according to Equation 10. We il-
lustrate by a couple of examples.

Example 1 (i) Consider a periodic task system 7 with
Usum(7) = 2.1 and Umax(r) = 0.8. For this system,
®(7) =2.1/0.8 = 2.2625, and hence 2x (®(7)—1) = 3.25;
consequently, m1 and ms are 4 and 3 respectively.

1. If each processor is executed at speed Umax(7) =
0.9, then m; = 4 processors, each executing at speed
0.9, are needed; the energy consumed per unit time,
according to Equation 8, is

[kx4x08%] = kx2.048

2. If ma = 3 processors are instead used (i.e., the con-
figuration represented by Equation 10 is considered),
then each processor runs at speed s(7,3) = 0.9583,
and the energy consumed per unit time is

(kx3x0.8667°) = kx 1.9529

We thus see that the second configuration — 3 processors
of speed 0.8667 each — is the more energy-efficient one.

(ii) Consider a periodic task system 7 with Usum(7r) =
2.75 and Umax(7) = 0.8. For this system, ®(7) =
2.75/0.8 = 3.4375, and hence 2 x (®(7) — 1) = 4.875 ;
consequently, 1 and my are 5 and 4 respectively.

1. If each processor is executed at speed Umax(7) =
0.8, then m1 = 5 processors, each executing at speed
0.8, are needed; the energy consumed per unit time,
according to Equation 8, is

[k x5x0.8] = kx2.56
2. If mo = 4 processors are instead used (i.e., the con-
figuration represented by Equation 10 is considered),

then each processor runs at speed s(7,3) = 0.975,
and the energy consumed per unit time is

(kx4x0975%) = kx3.707

We thus see that the first configuration — 5 processors of
speed 0.8 each — is the more energy-efficient one in this
case.

u
3.3 Operating with speed > 2Umax(7)

In this section, we will show that the most energy-

efficient configuration does not occur for Umax(r) o 1
speed 2

(from this, it will follow that the configuration iden-
tified above in Section 3.2 is the most energy-efficient
one, and we will be done). To prove this, we will de-
rive a contradiction by assuming that the most energy-
efficient implementation occurs when all processors ex-
ecute at a speed s such that Umax(r) 1 1p that case,
it follows from Equation 2 that 7 will always meet all
deadlines on m processors of speed s each provided

Usum(7) <m -5 — (m — 1)Umax(7)

s Z Usum(T) T;Umax("') + UmaX(T) (11)

If all processors are run at this minimum speed the

total power consumed when 7 is implemented on m

identical processors satisfies

Usum(7) — Umax(7)
m

Power(m) o m X (+Umax(7))3- (12)

The value of m that minimizes the power consumed
can be obtained by taking the derivative of the right-
hand side of Expression (12) with respect to m, and
setting the resulting expression equal to zero. Solving
for m, we get

m=2x (Us”"‘(gl;g’)“axm> : (13)

Substituting this value of m 2 back in Equation 11, we
conclude that s — the value of speed that minimizes
the energy consumption — is equal t0 3-Umax(7) , from
which it follows that lhn+><(r) = % However, this con-
tradicts our assumption that the most energy-efficient
implementation occurs when all processors are execut-
ing at a speed s for which Un1+x("’) <i

4 Conclusions

One of the benefits of multiprocessor implementa-
tions of embedded real-time systems is energy effi-
ciency: since the energy consumed by a CMOS cir-
cuit is approximately proportional to the square of the

2We cannot always implement our system using exactly this
many processors, since the m in Equation 13 may not be an
integer. However, we show can show using the calculus that
Power(m) monotonically decreases for m between 1 and this
value, and increases for m beyond this value. Hence to deter-
mine the integral m minimizing value of Power(m), it suffices to
consider the two integers |m] and [m].

power supply voltage while the computing capacity is
approximately proportional to the supply voltage, the
total energy consumed by an m-processor multiproces-
sor platform is approximately # times the power con-
sumed by a uniprocessor platform of the same comput-
ing capacity. However, in contrast to the uniprocessor
case in which provably optimal run-time scheduling al-
gorithms (such as EDF) exist, not all the computing
capacity of a multiprocessor platform may be available
for executing a given real-time workload.

In this research, we have studied the problem of syn-
thesizing a multiprocessor real-time system to imple-
ment a given real-time workload, with the objective
of minimizing the energy consumed by the real-time
system during run-time. Our target real-time applica-
tions are mass-produced embedded systems in which
the real-time workloads are simply characterized and
the run-time control system needs to be kept simple.
Hence, we restricted our attention to

e workloads that are comprised of independent pe-
riodic tasks;

e multiprocessor platforms that are comprised of
several identical processors, and that use no dy-
namic energy management techniques (such as
Dynamic Voltage Scaling — DVS) during run-time;
and

e systems that are scheduled using fized-priority
scheduling algorithms.

For such systems, we have derived an algorithm for
optimally synthesizing multiprocessor implementations
of given real-time workloads such that the resulting
system minimizes the amount of energy consumed.

References

[1] J. Anderson and A. Srinivasan. Early release fair scheduling.
In Proceedings of the EuroMicro Conference on Real-Time
Systems, pages 35-43, Stockholm, Sweden, June 2000. IEEE
Computer Society Press.

[2] S.Baruah. Utilization bounds for the fixed-priority schedul-
ing of periodic task systems on identical multiprocessors.
Technical Report TR03-022, Department of Computer Sci-
ence, The University of North Carolina, June 2003.

[3] S. Baruah, N. Cohen, G. Plaxton, and D. Varvel. Propor-
tionate progress: A notion of fairness in resource allocation.
Algorithmica, 15(6):600-625, June 1996.

[4] M. Bhardwaj, R. Min, and A. Chandrakasan. Power-aware
systems. In Proceedings of the 34th Asilomar Conference
on Signals, Systems, and Computers, volume 2, pages 1695—
1701, Nov. 2000.

[5] A.P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-
power CMOS digital design. IEEE Journal of Solid-State
Circuits, 27(4):119-123, 1992.

[6] A. Ferrari, S. Garue, M. Peri, S. Pezzini, L. Valsecchi,
F. Andretta, and W. Nesci. The design and implemen-
tation of a dual-core platform for power-train systems. In
Convergence 2000, Detriot (MI), USA, October 2000.

[7]

(8]

10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

P. Gai, G. Lipari, and M. di Natale. Minimizing mem-
ory utilization of real-time task sets in single and multi-
processor systems-on-a-chip. In Proceedings of the IEEE
Real-Time Systems Symposium. IEEE Computer Society
Press, December 2001.

P. J. M. Havinga and G. J. M. Smith. Design techniques for
low-power systems. Journal of Systems Architecture, 46(1),
2000.

I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Sri-
vastava. Power optimization of variable voltage core-based
systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 18(12):1702-14, 1999.

I. Hong, M. Potkonjak, and M. B. Srivastava. On-line
scheduling of hard real-time tasks on a variable voltage pro-
cessor. In International Conference on Computer Aided De-
sign (ICCAD-98), pages 653-656, N. Y., Nov. 8-12 1998.
ACM Press.

D. Kang, S. Crago, and J. Suh. Power-Aware design synthe-
sis techniques for distributed Real-Time systems. In C. Nor-
ris and J. B. F. Jr., editors, Proceedings of the Workshop
on Languages, Compilers and Tools for Embedded Systems
(LCTES-01), volume 36, 8 of ACM SIGPLAN Notices,
pages 20-28, New York, June 22-23 2001. ACM Press.

H. Kopetz and G. Griinsteidl. TTP - A time-triggered pro-
tocol for fault-tolerant real-time systems. In J.-C. Laprie,
editor, Proceedings of the 23rd Annual International Sym-
posium on Fault-Tolerant Computing (FTCS ’93), pages
524-533, Toulouse, France, June 1993. IEEE Computer So-
ciety Press.

J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia. Worst-
case utilization bound for EDF scheduling in real-time mul-
tiprocessor systems. In Proceedings of the EuroMicro Con-
ference on Real-Time Systems, pages 25-34, Stockholm,
Sweden, June 2000. IEEE Computer Society Press.

T. Mudge. Power: A first class design constraint for future
architectures. IEEE Computer, 34(4):52-58, April 2001.

J. Suh, D.-I. Kang, and S. Crago. Dynamic power man-
agement of multiprocessor systems. In 16th International
Parallel and Distributed Processing Symposium, page 97,
Washington - Brussels - Tokyo, Apr. 2002. IEEE.

W. Wolfe. Computers as Components: Principles of Em-
bedded Computing Systems Design. Morgan Kaufmann
Publishers, 2000.

F. Yao, A. Demers, and S. Shenker. A scheduling model
for reduced CPU energy. In IEEE, editor, 36th Annual
Symposium on Foundations of Computer Science: October
23-25, 1995, Milwaukee, Wisconsin, pages 374-382, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1995. IEEE Computer Society Press.

