
Universal Constructions for Large Objects�

James H. Anderson

Department of Computer Science

The University of North Carolina

Chapel Hill, NC 27599

anderson@cs.unc.edu

Mark Moir

Department of Computer Science

The University of Pittsburgh

Pittsburgh, PA 15260

moir@cs.pitt.edu

June 1997; revised March 1999; accepted June 1999

Abstract

We present lock-free and wait-free universal constructions for implementing large shared objects. Most

previous universal constructions require processes to copy the entire object state, which is impractical

for large objects. Previous attempts to address this problem require programmers to explicitly fragment

large objects into smaller, more manageable pieces, paying particular attention to how such pieces are

copied. In contrast, our constructions are designed to largely shield programmers from this fragmentation.

Furthermore, for many objects, our constructions result in lower copying overhead than previous ones.

Fragmentation is achieved in our constructions through the use of load-linked, store-conditional, and

validate operations on a \large" multi-word shared variable. Before presenting our constructions, we

show how these operations can be e�ciently implemented from similar one-word primitives.

Keywords: concurrency, lock-free, non-blocking synchronization, shared objects, wait-free.

�Work supported by NSF grants CCR 9216421, CCR 9510156, and CCR 9732916, and by a Young Investigator Award from

the U.S. Army Research O�ce, grant number DAAH04-95-1-0323. The �rst author was also supported by an Alfred P. Sloan

research fellowship. The second author was also supported by a UNC Alumni Fellowship, by an NSF CAREER Award, CCR

9702767, and by an ORAU Junior Faculty EnhancementAward. A preliminary version of this work appeared in the Proceedings

of the Ninth International Workshop on Distributed Algorithms, September 1995.

1

1 Introduction

This paper extends recent research on universal lock-free and wait-free constructions of shared objects [7, 8].

An object implementation is wait-free if every operation by each process is guaranteed to complete after a

�nite number of steps of that process. An object implementation is lock-free if some operation is guaranteed

to complete after a �nite number of steps of any operation. Universal constructions can be used to implement

any object in a lock-free or a wait-free manner, and thus can be used as the basis for a general methodology

for constructing highly-concurrent objects. Unfortunately, the generality of universal constructions often

comes at a price, speci�cally space and time overhead that is excessive for many objects. A particular

source of ine�ciency in previous universal constructions is that they require processes to copy the entire

object state, which is impractical for large objects. In this paper, we address this shortcoming by presenting

universal constructions that can be used to implement large objects with low space overhead.

We take as our starting point the lock-free and wait-free universal constructions presented by Herlihy in

[8]. In these constructions, operations are implemented using \retry loops". In Herlihy's lock-free universal

construction, each process's retry loop consists of the following steps: �rst, a shared object pointer is read

using a load-linked (LL) operation, and a private copy of the object is made; then, the desired operation is

performed on the private copy; �nally, a store-conditional (SC) operation is executed to attempt to modify

the shared object pointer so that it points to the private copy. (See Section 2 for formal de�nitions of LL

and SC.) The SC operation may fail, in which case these steps are repeated. This algorithm is not wait-free

because the SC of each loop iteration may fail. To ensure termination, Herlihy's wait-free construction

employs a \helping" mechanism, whereby each process attempts to help other processes by performing their

pending operations together with its own. This mechanism ensures that if a process is repeatedly unsuccessful

in modifying the shared object pointer, then it is eventually helped by another process (in fact, after at most

two loop iterations).

As Herlihy points out, these constructions perform poorly if used to implement large objects. To overcome

this problem, he discusses techniques for implementing large objects. The basic idea is to fragment a large

object into blocks linked by pointers. Operations are implemented so that blocks are copied only if they are

modi�ed. Herlihy illustrated these large-object techniques by presenting an implementation of an example

object, a skew heap.

Herlihy's lock-free approach for implementing large objects su�ers from three shortcomings. First, the

required fragmentation is left to the programmer to determine, based on the semantics of the implemented

object. The programmer must also explicitly determine how copying is done. Second, Herlihy's large-

object approach is di�cult to apply in wait-free implementations. In particular, directly combining it with

the helping mechanism of his wait-free construction results in excessive space overhead. Third, Herlihy's

large-object approach reduces copying overhead only if long chains of linked blocks are avoided. Consider,

for example, a large shared queue that is fragmented as a linear sequence of blocks (i.e., in a linked list).

Replacing the last block actually requires the replacement of every block in the sequence. In particular,

linking in a new last block requires that the pointer in the previous block be changed. Thus, the next-to-last

block must be replaced. Repeating this argument, it follows that every block must be replaced.

Our approach for implementing large objects is also based upon the idea of fragmenting an object into

blocks. However, it di�ers from Herlihy's in that it is array-based rather than pointer-based, i.e., we view

a large object as a long array that is fragmented into blocks. In its retry loop, a process accesses only the

blocks that must be read or written to perform the operation(s) it is attempting to apply. Each block that

contains an array location that must be written is copied to a private block, and the copy is written, rather

than the block that is still part of the array. These writes are made to take e�ect globally by atomically

updating a collection of shared block pointers so that the newly-written blocks become part of the array.

Unlike Herlihy's approach, the fragmentation in our approach is determined by our constructions, and is not

visible to the user. Also, copying overhead in our approach is often much lower than in Herlihy's approach.

Our constructions are similar to Herlihy's in that operations are performed using retry loops. However,

2

while Herlihy's constructions employ only a single shared object pointer, we need to manage a collection of

such pointers, one for each block of the array. We deal with this problem by employing LL, SC, and validate

(VL) operations that access a large shared variable that contains all of the block pointers. This large variable

is stored across several memory words.
1
In the �rst part of the paper, we show how to e�ciently implement

these operations using the usual single-word LL, SC, and VL primitives. We present an implementation

in which LL and SC operations on a W -word variable take O(W) time and VL takes constant time. Our

implementation allows LL to return a special value that indicates that a subsequent SC will fail | we call this

a weak-LL. This relaxed requirement admits simpler and more e�cient implementations because weak-LL

does not have to return a consistent multi-word value in the case of interference by a concurrent SC. Also,

weak-LL can be used to avoid unnecessary work in universal algorithms (there is no point in completing a

retry-loop iteration if the SC of that loop iteration is certain to fail). For these reasons, we use weak-LL

in our universal constructions. (Elsewhere, we have presented a similar implementation that provides the

\normal" semantics for the LL operation [3]. That implementation has the same asymptotic time complexity

as the one presented here, but is more complicated and therefore likely to perform worse. It also requires

O(N2W) space to implement a W -word variable for N processes, while the one presented here requires only

O(NW) space.)

To avoid the excessive space requirements of previous wait-free universal constructions, our wait-free

construction imposes an upper bound on the number of private blocks each process may have. This bound

is assumed to be large enough to accommodate any two operations. The bound a�ects the manner in

which processes may help one another. Speci�cally, if a process attempts to help too many other processes

simultaneously, then it runs the risk of using more private space than is available. We solve this problem

by having each process help as many processes as possible with each operation, and by choosing processes

to help in such a way that all processes are eventually helped. If enough space is available, all processes can

be helped by one process at the same time | we call this parallel helping. Otherwise, several \rounds" of

helping must be performed, possibly by several processes | we call this serial helping. The tradeo� between

serial and parallel helping is one of time versus space.

We are aware of only two other wait-free universal constructions that do not copy the entire object for

each operation. The �rst one is due to Afek et al. [1], and the second is due to Moir [11]. The main

feature of the construction of Afek et al. is that its worst-case time complexity is dependent on the level

of contention (i.e., the number of processes that access the object simultaneously), rather than the total

number of processes in the system. The main feature of Moir's construction is that it allows operations to

execute in parallel where possible. While these constructions represent important progress, they both make

heavy use of the LL and SC synchronization operations and are quite complicated. The construction of [1]

has not been implemented. As discussed in Section 7, simulation results presented in [5] suggest that the

complexity of the construction in [11] causes it to perform worse than ours at least for some objects.

The remainder of this paper is organized as follows. In Section 2, we outline our model of computation

and the correctness conditions for our results. In Section 3, we present implementations of the weak-LL, SC,

and VL operations for large variables discussed above. We then present our lock-free and wait-free universal

constructions in Sections 4 and 5, respectively. Finally, we discuss performance results in Section 6, and end

the paper with concluding remarks in Section 7. Formal correctness proofs have been published elsewhere

[10], and are long and tedious, so we do not present them again here. However, we do give a high-level,

intuitive proof sketch in an appendix.

1The multi-word operations considered here access a single variable that spans multiple words. The multi-word operations

considered in [2, 4, 9, 13] are more general: they can accessmultiple variables, each stored in a separate word. These operations

could therefore be used to implement the operations we require. However, we implement the single-variable, multi-word oper-

ations used by our construction directly because they admit simpler and more e�cient implementations than those considered

in [2, 4, 9, 13].

3

2 Preliminaries

Our algorithms are designed for use in shared-memorymultiprocessors that provide load-linked (LL), validate

(VL), and store-conditional (SC) instructions. We assume that the SC operation does not fail spuriously.

(In some hardware implementations if LL and SC, SC can fail even when the semantics of LL and SC |

given below | dictates that it should succeed. We call such failures spurious failures.) As shown in [2, 11],

algorithms based on these assumptions are applicable in machines that provide either compare-and-swap, or

a limited form of LL and SC that is commonly available in hardware. The semantics of LL, VL, and SC are

shown by equivalent atomic code fragments below.

LL(X) � validX [p] := true;

return X

VL(X) � return validX [p]

SC (X; v) � if validX [p] then

X := v;

for i := 0 to N � 1 do validX [i] := false od;

return true

else return false

�

These code fragments are for process p. validX is a shared array of booleans associated with variable X.

i is a private variable of process p. N is the total number of processes. The semantics of VL and SC are

unde�ned if process p has not executed a LL instruction since p's most recent SC.

3 LL and SC on Large Variables

In this section, we implement weak-LL, VL, and SC operations for a W -word variable V, where W > 1,

using the standard, one-word LL, VL, and SC operations. Recall that weak-LL can return a failure value

| instead of a correct value of the implemented variable | in the case that a subsequent SC operation will

fail. Nonetheless, weak-LL is suitable for many applications. In particular, in most lock-free and wait-free

universal constructions (including the ones presented in Sections 4 and 5), LL and SC are used in pairs in

such a way that if a SC fails, then none of the computation since the preceding LL has any e�ect on the

object. By using weak-LL, we can avoid such unnecessary computation.

In the implementation presented in this section, if a subsequent SC is guaranteed to fail, then weak-LL

returns the process identi�er of some process that performed a successful SC during the execution of the

weak-LL operation. We call this process a witness of the failed weak-LL. As we will see in Section 5, the

witness of a failed weak-LL provides useful information that held during the execution of that weak-LL.

Our implementation of weak-LL, VL, and SC for large variables is shown in Figure 1.
2
The Long Weak LL

and Long SC procedures implement weak-LL and SC operations on a W -word variable V. Values of V are

stored in bu�ers, and a shared variable X indicates which bu�er contains the current value of V. The current

value of V is the value written to V by the most recent successful SC operation, or the initial value of V

if there is no preceding successful SC. We call the bu�er that contains the current value of V the current

bu�er. The VL operation for V is implemented by simply validating X.

A SC operation on V is achieved by writing the W -word variable to be stored into a bu�er, and then

using a one-word SC operation on X to make that bu�er current. To ensure that a SC operation does

not overwrite the contents of the current bu�er, the SC operations of each process p alternate between two

bu�ers, BUF [p; 0] and BUF [p; 1]. To see why this ensures that the current bu�er is not overwritten, observe

that, if BUF [p; 0] is the current bu�er, then process p will attempt a SC operation using BUF [p; 1] before it

modi�es BUF [p; 0] again. If p's SC succeeds, then BUF [p; 0] is no longer the current bu�er. If p's SC fails,

then some other process has performed a successful SC, which also implies that BUF [p; 0] is no longer the

current bu�er.

2Private variables in all �gures are assumed to retain their values between procedure calls.

4

shared variable X: record pid : 0::N � 1; tag : 0::1 end;

BUF : array[0::N � 1;0::1] of array[0::W � 1] of wordtype

initially X = (0;0) ^ BUF [0;0] = initial value of the implemented variable V

private variable curr : record pid : 0::N � 1; tag: 0::1 end; i: 0::W � 1; side: 0::1

initially side = 0

procedure Long Weak LL(var r : array[0::W � 1]

of wordtype) returns 0::N

1: curr := LL(X);

for i := 0 to W � 1 do

2: r[i] := BUF [curr :pid; curr :tag][i]

od;

3: if VL(X) then return N

4: else return X.pid

�

procedure Long SC (val : array[0::W � 1] of wordtype)

returns boolean

4: side := 1� side;

for i := 0 to W � 1 do

5: BUF [p; side][i] := val [i]

od;

6: return SC(X; (p; side))

Figure 1: W -word weak-LL and SC using 1-word LL, VL, and SC. W -word VL is implemented by validating X.

A process p performs a weak-LL operation on V in three steps: �rst, it executes a one-word LL operation

on X to determine which bu�er contains the current value of V ; second, it reads the contents of that bu�er;

and third, it performs a VL on X to check whether that bu�er is still current. If the VL succeeds, then the

bu�er was not modi�ed during p's read, and the value read by p from that bu�er can be safely returned.

(Note that this value is returned by means of the var parameter r. This avoids redundant copying of the

returned values.) In this case, weak-LL returns N (which is not a valid witness process identi�er) to indicate

that it has obtained a consistent value of the implemented variable. If the VL fails, then the weak-LL

re-reads X at line 4 in order to determine the identity of the last process to perform a successful SC; this

process identi�er is then returned. Note that if the VL of line 3 fails, then a subsequent SC by p will fail.

The implementations of the weak-LL, VL, and SC operations for a W -word variable shown in Figure 1 have

time complexity �(W), �(1), and �(W), respectively, and space complexity �(NW).

4 Lock-Free Universal Construction for Large Objects

The lock-free construction presented in this section provides the object programmer with a general framework

for the implementation of lock-free shared objects. To use this construction, a programmer writes for each

required operation a sequential procedure that treats the object as if it were stored in a contiguous array. In

order to invoke an operation, the programmer then passes a pointer to the procedure to our construction (by

means of the LF Op procedure presented later). Our construction calls the programmer-supplied procedure

and intercepts each access to the array in order to maintain the data structures required to make the

operation lock-free. Unlike Herlihy's small-object constructions, the array that stores object values is not

actually stored in contiguous locations of shared memory. Instead, we provide the illusion of a contiguous

array, which is in fact partitioned into blocks. Our construction replaces only the blocks modi�ed by the

invoked operation, and thus avoids copying the whole object. Before discussing our lock-free construction in

detail, we explain below how we provide the illusion of a contiguous array without copying the whole array.

Figure 2 shows an array MEM , which is divided into B blocks of S words each. Memory words MEM [0]

to MEM [S� 1] are stored in the �rst block, words MEM [S] to MEM [2S� 1] are stored in the second block,

and so on. A \bank" of pointers (called BANK), one to each block of the array, is maintained in order

to record which blocks are currently part of the array. (As will be seen later, these \pointers" are really

array indices.) While performing an operation, a process p maintains a logical view of the current array.

This logical view is represented by a private array of pointers ptrs. At the beginning of the operation, ptrs

contains the same pointers that the BANK array contains. However, if p's operation changes the contents of

the array, then p makes a copy of each block to be changed, installs the copies into its logical view, and then

5

B blocks

Process p’s replacement
for last object block

MEM array made up
of S−word blocks

Bank of pointers to current blocks (BANK) Process p’s logical view (p.ptrs)

Figure 2: Implementation of the MEM array for large-object constructions.

modi�es the copied blocks, rather than the blocks that are part of the current array. Having completed its

operation, process p then attempts to make its logical view of the array become the current view by writing

the values in ptrs to BANK. (The BANK array is implemented through the use of the weak-LL and SC

operations for large variables presented in Section 3. Thus, BANK is not a real variable, but rather a name

for the set of values in the current bu�er of the weak-LL and SC implementation. We present the algorithm

this way because we think it aids intuition to separate the concerns of the weak-LL and SC implementation,

and the algorithms that use it.) In Figure 2, process p's operation modi�es the last block, but no others.

Thus, the bank of pointers to be written by p is the same as the current bank, except that the last pointer

points to p's new last block.

When an operation by process p accesses a word in the array, say MEM [k], the block that currently

contains MEM [k] must be identi�ed. If p's operation modi�es MEM [k], then p must replace that block. In

order to hide the details of identifying blocks and of replacing modi�ed blocks, some address translation and

record-keeping is necessary. This work is performed by special Read and Write procedures, which are called

by the sequential operation in order to read or write the MEM array. Because sequential object code must

call these procedures, our constructions are not completely transparent to the sequential object designer.

For example, instead of writing \MEM [1] :=MEM [10]", the designer would write \Write(1;Read(10))".

As a more concrete example of how a programmer would write the sequential code for an operation,

consider Figure 3, which contains the actual code we used to implement a FIFO queue using our constructions.

As seen in the �gure, this code is very similar to the \normal" sequential code for a queue. Indeed, the

di�erences between the sequential code and the code used with our constructions are syntactic in nature, so

it should be easy to develop a preprocessor or compiler that automatically generates code for use with our

constructions from sequential code. This would make the use of our constructions entirely transparent.

The code for our lock-free construction is shown in Figure 4.
3

Before explaining this code in detail,

we �rst describe the data structures used, and present a simple example that illustrates how each process

maintains a logical view of the object during the execution of operations.

As mentioned above, we assume that the object to be implemented �ts into an array that is made up of

B blocks of S words each. We also assume an upper bound T on the number of blocks modi�ed by each

operation. Each process has T \copy blocks", which it uses to maintain its logical view of the object during

3An extra parameter (the �rst one) has been added to the procedures of Section 3 to explicitly indicate that these procedures

are being used to update the bank of pointers. memcpy is a standard C library call, which copies the values from one area of

memory to another. This copying is not necessarily executed atomically.

6

int enqueue(item)

int item;

{

int newtail; /* int newtail; */

Write(Read(tail),item); /* MEM[tail] = item; */

newtail = (Read(tail)+1)%n; /* newtail = (tail+1) % n; */

if (newtail == Read(head)) /* if (newtail == head) */

return FULL; /* return FULL; */

Write(tail,newtail); /* tail = newtail; */

return SUCCESS; /* return SUCCESS; */

}

Figure 3: C code used for the enqueue operation of an array-based queue implementation. n is the maximum size of

the queue. head and tail are constants that are de�ned to be n and n+1, respectively. Thus, these variables denote

array locations outside the area used for data elements. Comments show \normal" enqueue code.

constant

N = number of processes

B = number of blocks in shared object

S = block size in words

T = maximum number of blocks modi�ed by an operation

type

blktype = array[0::S � 1] of wordtype

shared variable

BANK : array[0::B� 1] of 0::B +N � T � 1; =� Bank of pointers to array blocks �=

BLK : array[0::B+N � T � 1] of blktype =� Array and copy blocks �=

initially (8n : 0 � n < B :: BANK [n] = N � T + n ^ BLK [N � T + n] = (nth block of initial value))

private variable

copy, oldlst : array[0::T � 1] of 0::B + N � T � 1; ptrs: array[0::B � 1] of 0::B + N � T � 1; dirty: array[0::B � 1] of

boolean; dcnt: 0::T ; i, blkidx : 0::B � 1; v: wordtype; ret: objrettype

initially (8n : 0 � n < T :: copy [n] = p � T + n)

procedure Read(addr : 0::B � S � 1) returns wordtype

1: v := BLK [ptrs[addr div S]][addr mod S];

2: if :VL(BANK) then goto 11 else return v �

procedureWrite(addr : 0::B � S � 1; val: wordtype)

3: blkidx := addr div S;

4: if :dirty[blkidx] then

5: memcpy (BLK [copy [dcnt]]; BLK [ptrs[blkidx]];

sizeof (blktype));

6: dirty [blkidx] := true;

7: oldlst [dcnt] := ptrs:blks [blkidx];

8: ptrs :blks[blkidx] := copy [dcnt];

9: dcnt := dcnt + 1

�;

10: BLK [ptrs[blkidx]][addr mod S] := val

procedure LF Op(op: optype; pars: paramtype)

while true do

11: if Long Weak LL(BANK ; ptrs) = N then

12: for i := 0 to B � 1 do dirty[i] := false od;

13: dcnt := 0;

14: ret := op(pars);

15: if dcnt = 0 ^ Long VL(BANK) then return ret �;

16: if Long SC (BANK ; ptrs) then

17: for i := 0 to dcnt � 1 do copy [i] := oldlst[i] od;

18: return ret

�

�

od

Figure 4: Lock-free implementation for a large object.

an operation. Thus, a total of B + NT blocks are required. These blocks are stored in the BLK array.

BLK [NT] to BLK [NT +B � 1] are the initial array blocks, and BLK [pT] to BLK [(p+ 1)T � 1] are process

p's initial copy blocks. The blocks that make up the current value of the array are recorded in the B-word

shared variable BANK , and the copy blocks for each process p are stored in p's private copy array.

7

a

b

c

d

e

f

0

6

0 1 2 3 4 5 6 7

0

1Pr
oc

es
s

ptrs copy oldlst dcnt

0 1 2 3 4 5 6 7

0

1Pr
oc

es
s

ptrs copy oldlst dcnt

(a) (b)

BANK

0 1 2 3 4 5 6 7

0

1Pr
oc

es
s

ptrs copy oldlst dcnt

BANK

0 1 2 3 4 5 6 7

0

1Pr
oc

es
s

ptrs copy oldlst dcnt

(c) (d)

0 1 2 3 0 1 2 3

a

b

c

d

e

f

0

6

e

f

g

e

f

a

b

c

d

0

6

e

f

g

e

f

h0

7

0

7

a

b

c

d

e

f

h 0

7

2

2

1

BLK BLK

BLK BLK

BANK BANK
0 1 2 3 0 1 2 3

4 5 6 7 4 5 6 7

4 5 6 7 4 62 3

0 1

2 3

0 1

2 3

4 0 6 7

4 0 6 1 0 1

2 3

0 1

4 2 6 3

5 7

5 7 5 7

5

Figure 5: Example execution showing two concurrent enqueue operations on a FIFO queue.

Figures 5(a) through 5(d) show several states of the variables used by our construction when implementing

a lock-free FIFO queue for two processes. In this example, the queue is represented by four blocks of four

locations each. The last two locations are used for head and tail pointers. These locations denote the position

of the �rst element in the queue, and the position of the next element to be enqueued, respectively. The

queue initially contains fa; b; c; d; e; fg. Figure 5(a) shows the initial state. Blocks 4 through 7 of BLK are

the initial blocks representing the queue, BANK points to these blocks, and the copy arrays record that the

initial copy blocks of process 0 are blocks 0 and 1, and the initial copy blocks of process 1 are blocks 2 and

3. However, the roles of these blocks are not �xed. In particular, if an operation by process p replaces a set

of array blocks with some of its copy blocks, then, as explained below, p reclaims the replaced array blocks

as copy blocks. Thus, the copy blocks of one process may become blocks of the array, and later become copy

blocks of another process. This is illustrated by the example execution shown in Figures 5(b) through 5(d).

In Figure 5(b), process 0 begins an enqueue(g) operation. It �rst reads the BANK array into its private

ptrs array; this has the e�ect of setting process 0's logical view to be the current object value. It then begins

8

executing its enqueue operation. As shown in Figure 3, the enqueue operation �rst reads the tail location

and then inserts the new item g into the location pointed to by tail. As described below, our construction

does the address-translation necessary to allow the read of tail to access the correct block. Also, when

the enqueue operation writes g into logical array location 6, our construction intervenes and makes a copy

of the a�ected block (block 5) in one of process 0's copy blocks (block 0), and modi�es that block instead

of block 5, which is still part of the current value of the object (as recorded by BANK). Our construction

then records in process 0's dcnt variable that a block has been copied (dcnt counts blocks that have become

\dirty" due to being written), records which block has been replaced in process 0's oldlst array, and updates

process 0's logical view of the object by changing the second position of process 0's ptrs array. This results

in the state shown in Figure 5(b). Now process 0's view of the object shows that g has been inserted into

the second array block. However, this change has not yet been re
ected in the current value of the object,

which still has block 5 as its second block.

In Figure 5(c), process 0 has completed its sequential operation by updating the tail variable (stored in

the last location of the logical array). As a result, a copy of the last array block has been made, and process

0's logical view has been updated as before. Also, process 1 has begun an enqueue(h) operation, and has

made similar changes as process 0. Now, each process's logical view re
ects the operation of that process,

but BANK still records that blocks 4 through 7 are the current array blocks, so neither operation has taken

e�ect yet.

Next, process 1 successfully writes the values in its ptrs array into BANK , thereby making its operation

take e�ect. (See Figure 5(d).) Speci�cally, the BANK array now indicates that the second and fourth

blocks of the current array are blocks 2 and 3 respectively; thus process 1's enqueue of h has taken e�ect.

Furthermore, process 1 has \reclaimed" the blocks it displaced (blocks 5 and 7) as its new copy blocks.

Because the BANK variable is modi�ed by means of a Long SC operation, when process 0 attempts to make

its operation take e�ect (thereby potentially corrupting the object), it will fail to do so on account of process

0's successful SC. Process 0 will then start the operation again from the beginning. Having given an overview

of our lock-free construction, we now describe its code, shown in Figure 4, in detail.

Process p performs a lock-free operation by calling the LF Op procedure. The loop in the LF Op

procedure repeats until the SC at statement 16 succeeds. (Actually, read-only operations return from

statement 15 because they do not need to modify any pointers, and they do not need to reclaim any copy

blocks. This optimization allows read-only operations to execute in parallel with other operations because

they do not perform the SC operation at statement 16, and therefore do not cause the SC operations of

other processes to fail.) In each iteration, process p �rst reads BANK into p's private variable ptrs using

a B-word weak-LL (statement 11). Recall from Section 3 that the weak-LL can return a process identi�er

from f0; :::; N � 1g if the following SC is guaranteed to fail. In this case, there is no point in attempting

to apply p's operation, so the loop is restarted. Otherwise, p records in its dirty array that no block has

yet been modi�ed by its operation (statement 12), and initializes its dcnt counter to zero (statement 13).

Process p uses its dirty array and its dcnt counter to record which blocks of its logical view are not part of

the current array.

Next, p calls the op procedure provided as a parameter to LF Op (statement 14). The op procedure

performs the sequential operation by reading and writing the elements of the BLK array. (The programmer

thinks of the operation as if it were modifying the implemented MEM array; as explained below, the con-

struction determines which of the blocks in BLK currently represents the block of MEM being accessed, and

modi�es that block.) This reading and writing is performed by invoking the Read and Write procedures

shown in Figure 4. The Read procedure simply computes which block currently contains the word to be

accessed, and returns the value from the appropriate o�set within that block. In order to perform a write

to a word of MEM , the Write procedure �rst computes the index blkidx of the block containing the word to

be written (statement 3). Then, if it has not already done so (statement 4), the Write procedure copies the

contents of the old block to one of p's copy blocks (statement 5) and records that the block is \dirty" | i.e.,

has been modi�ed (statement 6). Then, the displaced block is recorded in oldlst for possible reclaiming later

9

(statement 7), the copy block is linked into p's ptrs, making that block part of p's logical view of the MEM

array (statement 8), and p's dcnt variable is incremented in order to count the number of blocks replaces

(statement 9). Finally, the appropriate word of the new block is modi�ed to contain the value passed to the

Write procedure (statement 10).

If BANK is not modi�ed by another process after p's weak-LL, then the object contained in p's version

of the MEM array (pointed to by p's ptrs array) is the correct result of applying p's operation. Therefore,

p's SC successfully installs a copy of the object with p's operation applied to it. After the SC, p reclaims the

displaced blocks (recorded in oldlst) to replace the copy blocks it used in performing its operation. On the

other hand, if another process does modify BANK between p's weak-LL and SC, then p's SC fails. In this

case, some other process completes an operation. Therefore, the implementation is lock-free.

Before concluding this section, one further complication bears mentioning. If the BANK variable is

modi�ed by another process while p's sequential operation is being executed, then it is possible for p to

read inconsistent values from the MEM array. Observe that this does not result in p installing a corrupt

version of the object, because p's subsequent SC fails. However, there is a risk that p's sequential operation

might cause an error, such as a division by zero or a range error, because it reads an inconsistent state of

the object. This problem can be solved by ensuring that, if BANK is invalidated, control returns directly

from the Read procedure to the LF Op procedure, without returning to the sequential operation. The Unix

longjmp command can be used for this purpose. (We model this behavior using a goto statement.) This

eliminates the possible error conditions mentioned above, and also avoids unnecessary work, because the

subsequent SC will fail, and the operation will have to retry anyway.

The space overhead
4
(in terms of words) of the shared variables in the algorithm in Figure 4 is �(B +

N � T � S), and the space complexity of the private variables for each of N processes is �(B + T). Thus, the

overall space complexity of the algorithm is �(N � B + N � T � S). Because this algorithm is lock-free and

not wait-free, the worst-case time for an operation to complete is unbounded. However, it is interesting to

compare the contention-free time complexity of lock-free algorithms. The contention-free time complexity is

the time taken to complete one operation if no other process is executing an operation. (The de�nition of

lock-freedom requires termination in this case.) As shown in Section 3, the time complexity of executing

one Long Weak LL, one Long VL, and one Long SC operation, is �(B). Because each operation is assumed

to modify at most T blocks, statement 5 is executed at most T times during one operation, and the loop at

statement 17 executes at most T iterations. Thus we have the following theorem.

Theorem 1: Suppose a sequential object OBJ can be implemented in an array of B S-word blocks such

that any operation modi�es at most T blocks and has worst-case time complexity C. Then, OBJ can

be implemented in a lock-free manner with space overhead �(N � B + N � T � S) and contention-free time

complexity �(B + C + T � S). 2

These complexity �gures compare favorably with those of Herlihy's lock-free construction. Consider

the implementation of a queue. Using the arrangement shown in the example of Figure 5, an enqueue or

dequeue operation can be performed in our construction by copying only two blocks: the block containing

the head or tail pointer to update, and the block containing the array slot pointed to by that pointer. Thus,

for our construction, T = 2, and space overhead is �(N � B + N � S). Contention-free time complexity is

�(B+C+S), which is only �(B+S) greater than the time for a sequential enqueue or dequeue. In contrast,

as mentioned earlier, each process in Herlihy's construction must actually copy the entire queue, even when

using his large-object techniques. Thus, space overhead is at least N times the worst-case queue length,

i.e.,
(N �B � S). Also, contention-free time complexity is
(B � S + C), since
(B � S) time is required to

copy the entire queue in the worst case. It might seem possible that our construction would su�er similar

disadvantages for di�erent objects. In fact, this is not the case, because using our construction, an operation

copies a part of the object only if the sequential version of the operation modi�es that part of the object.

4By space overhead, we mean space complexity beyond that required for the sequential object.

10

5 Wait-Free Universal Construction for Large Objects

In this section, we present our wait-free construction for large objects, which is shown in Figures 6 and 7.

The basic structure of this algorithm is similar to that of the lock-free construction presented in the previous

section. In particular, this algorithm provides the illusion of a contiguous array by maintaining a bank of

pointers to the blocks that make up that array, and by allowing processes to perform operations on logical

views that share blocks with the current array. As before, operations performed using this construction use

the Read and Write procedures to access these logical views. Also, the mechanisms for using copy blocks

and reclaiming displaced blocks are exactly the same as in the lock-free construction. However, as explained

below, each process has su�cient copy blocks in this algorithm to perform the operation of at least one other

process together with its own. Therefore, each process has M � 2T private copy blocks. (Recall that T is

the maximum number of blocks modi�ed by a single operation.)

The principal di�erence between our lock-free and wait-free constructions is that processes in the wait-

free construction \help" each other in order to ensure that each operation by each process is eventually

completed. The overall structure of our helping mechanism is similar to that of Herlihy's helping mechanism

[8]. Speci�cally, helping is achieved by having each process p \announce" its operation in ANC [p] before

entering a loop that attempts to perform its own operation, possibly together with the operations of other

processes. This loop is repeated until either p executes a successful SC or p detects that its operation has

been helped by another process. Despite the similarities in structure between our helping mechanism and

Herlihy's, the details are quite di�erent. The reason is that Herlihy's helping mechanism requires that a

process be able to help the operations of all other processes at once, which may require excessive space.

Our helping mechanism overcomes this problem because it only requires each process to have su�cient copy

space to apply two operations (its own and one other). In the paragraphs below, we explain our helping

mechanism in detail, as well as the mechanisms used for detecting termination and communicating return

values.

Our helping mechanism. To facilitate helping in our wait-free construction, two new �elds | help and

ret | are added to the BANK variable of the lock-free construction presented earlier. The help �eld records

the next process to be helped, and the ret �eld points to a block that contains operation return values and

information that allows processes to detect completion of their operations.

We �rst describe the use of the new help �eld of BANK. In Herlihy's construction, each time a process

performs an operation, it also performs the pending operations of all other processes. However, in our

construction, the restricted amount of private copy space might prevent a process from simultaneously

performing the pending operations of all other processes. (Recall that our construction is designed to

obviate the need for each process to have enough space to copy the entire object.) Therefore, each process

helps only as many other processes as it can without violating its space constraints. The help counter, which

is used to ensure that each process is eventually helped, indicates which process should be helped next.

A process performs its own operation (statement 36 of Figure 7) and helps operations of other processes

(statement 40) by calling the Apply procedure, passing as a parameter the process to be helped. The Apply

procedure is described in detail later. Each time process p performs an operation, p helps as many processes

as its space constraints permit, starting with the process stored in the help �eld. This is achieved by helping

processes until too few private copy blocks remain to accommodate another operation (statements 39 to 42).

(Observe that the Write procedure increments dcnt whenever a new block is modi�ed.) Process p updates

the help �eld so that the next process to successfully perform an SC starts helping where p stops (statements

44 and 45). Because we assume that each process has enough copy space to accommodate at least two

operations, each successful SC operation advances the help �eld by at least one process. Thus, if some

process repeatedly fails to perform its own operation, the help �eld eventually ensures that the operation of

that process is performed.

11

constant

N = number of processes

B = number of blocks in shared object

S = block size in words

T = maximum number of blocks modi�ed by an operation

M = number of copy blocks per process (M � 2T)

type

anctype = record op: optype; pars: paramtype; seq: 0::2 end;

retblktype = array[0::N � 1] of record val : objrettype; applied, copied: 0::2 end;

blktype = array[0::S � 1] of wordtype;

banktype = record blks: array[0::B� 1] of 0::B+N �M � 1; help: 0::N � 1; ret : 0::N end;

tupletype: record pid: 0::N � 1; op: optype; pars: paramtype; val: objrettype end

shared variable

BLK : array[0::B+N �M � 1] of blktype; =� Array and copy blocks �=

ANC : array[0::N � 1] of anctype; =� Announce array �=

RET : array[0::N] of retblktype; =� Blocks for operation return values �=

LAST : array[0::N � 1] of 0::N ; =� Last RET block updated by each process �=

BANK : banktype =� Bank of pointers plus help counter and return block indicator�=

initially

BANK :ret = N ^ BANK :help = 0 ^ (8p :: ANC [p]:seq = 0 ^ RET [N][p]:applied = 0 ^ RET [N][p]:copied = 0 ^

(8n : 0 � n < B :: BANK :blks[n] = N �M + n ^ BLK [N �M + n] = (nth block of initial object value))

private variable

copy, oldlst: array[0::M�1] of 0::B+N �M�1; ptrs: banktype; dirty: array[0::B�1] of boolean; dcnt: 0::M ; rb, oldrb:

0::N ; match, a, seq : 0::2; applyop: optype; applypars: paramtype; rv: objrettype; tmp, b: 0::N ; done, loop: boolean; i:

0::B� 1; side: 0::1; curr : record pid: 0::N � 1; tag: 0::1 end; try : 0::N � 1; m: 0::M � 1; j; h: 0::N � 1; k : 0::S � 1

initially (8n : 0 � n < M :: copy [n] = pM + n) ^ rb = p ^ side = 0 ^ ptrs:help = 0 ^ try = 0 ^ dcnt = 0 ^ seq = 0

Figure 6: Wait-free large object construction (continued in Figure 7).

Return blocks. To enable a process to detect that its operation has been applied, and to determine the

return value of the operation, we use a set of \return" blocks. There are N + 1 return blocks, RET [0],

..., RET [N]; at any time, one of these blocks is \current" (and is indicated by the ret �eld in the BANK

variable) and each process exclusively \owns" one of the other return blocks. The current return block

contains, for each process p, the return value of p's most recent operation, along with two 3-valued control

�elds: applied and copied . Together with ANC [p]:seq, these two �elds determine the state of p's current

operation (if any). When p is not performing an operation (i.e., p is between calls to WF Op), the values of

ANC [p]:seq and p's applied and copied �elds in the current return block are all equal. When p announces a

new operation (statement 22), it also increments (modulo 3) ANC [p]:seq, thereby making it di�erent from

its applied and copied �elds. As explained below, this indicates that p now has an outstanding operation.

Each time a successful SC operation is performed (thereby applying one or more operations), a new return

block is installed (that is, a new value is written to BANK.ret). The new return block is obtained by �rst

making a copy of the previous one (see statement 31) and by then making the following changes: the applied

�eld is copied to the copied �eld for each process (statements 33 through 35), and for each process p that

has been helped, p's return value is recorded (statement 19) and ANC [p]:seq is copied to p's applied �eld

(statement 20). The reasons for these modi�cations are explained below.

Applying operations. When a process q attempts to apply an operation of process p by calling Apply(p),

it �rst checks whether process p has an outstanding operation by comparingANC [p]:seq to the current applied

�eld for process p (statements 14 and 15). (More accurately, it compares ANC [p]:seq to p's applied �eld in

a copy of the current return block. As mentioned above, this copy is made by process q in statement 31. In

the correctness proof presented in [10], it is shown that, if p's applied �eld in this copy is di�erent from that

12

procedure Read(addr : 0::B � S � 1)

returns wordtype

1: v := BLK [ptrs:blks[addr div S]][addr mod S];

2: if :VL(BANK) then goto 43 else return v �

procedureWrite(addr : 0::B � S � 1; val: wordtype)

3: blkidx := addr div S;

4: if :dirty[blkidx] then

5: memcpy (BLK [copy [dcnt]];

BLK [ptrs:blks[blkidx]]; sizeof (blktype));

6: dirty [blkidx] := true;

7: oldlst [dcnt] := ptrs:blks [blkidx];

8: ptrs :blks[blkidx] := copy [dcnt];

9: dcnt := dcnt + 1

�;

10: BLK [ptrs:blks[blkidx]][addr mod S] := val

procedure Return Block() returns 0::N

11: tmp := Long Weak LL(BANK ;ptrs);

12: if tmp 6= N then return LAST [tmp]

13: else return ptrs:ret

�

procedure Apply(pr : 0::N � 1)

14: match := ANC [pr]:seq;

15: if RET [rb][pr]:applied 6= match then

16: applyop := ANC [pr]:op;

17: applypars := ANC [pr]:pars;

18: rv := applyop(applypars);

19: RET [rb][pr]:val := rv ;

20: RET [rb][pr]:applied := match

�

procedureWF Op(op: optype; pars: paramtype)

21: seq := (seq + 1) mod 3;

22: ANC [p] := (op; pars ; seq);

23: done := false;

24: b := Return Block ();

25: while :done ^ RET [b][p]:copied 6= seq do

26: if Long Weak LL(BANK ; ptrs) = N then

27: for i := 0 to B � 1 do dirty [i] := false od;

28: dcnt := 0;

29: oldrb := ptrs:ret;

30: ptrs:ret := rb;

31: memcpy (RET [rb]; RET [oldrb]; sizeof (retblktype));

32: if VL(BANK) then

33: for j := 0 to N � 1 do

34: a := RET [rb][j]:applied ;

35: RET [rb][j]:copied := a

od;

36: Apply (p);

37: try := ptrs:help;

38: loop := false;

39: while dcnt + T � M ^ :loop do

40: if try 6= p then Apply(try) �;

41: try := (try + 1) mod N ;

42: if try = ptrs:help then loop := true �

od;

43: LAST [p] := rb;

44: ptrs:help := try ;

45: if Long SC(BANK ; ptrs) then

46: for m := 0 to dcnt � 1 do

47: copy [m] := oldlst[m]

od;

48: rb := oldrb;

49: done := true

�;
�

�

50: b := Return Block ()

od;

51: b := Return Block ();

52: RET [b][p]:copied := seq ;

53: return RET [b][p]:val

Figure 7: Wait-free large object construction (continued from Figure 6).

in the current return block, then q's subsequent SC will fail, so q will not incorrectly apply an operation.)

If these two �elds are di�erent, then q performs p's operation (statement 18), records the return value of

the operation in its copy of the return block (statement 19), and copies the value read from ANC [p]:seq

to p's applied �eld in q's copy of the return block (statement 20). Later, if q's SC is successful, then q's

copy of the return block becomes part of the current object state. Thus, p's operation is not subsequently

reapplied by another process, because that process �nds that p's applied �eld in the current return block

equals ANC [p]:seq.

An example that demonstrates the use of the return blocks is shown in Figure 8. Figure 8(a) shows ANC

and the RET blocks in the initial state. (In the example there are two processes, so there are three RET

blocks.) In this state, the current return block is RET[2], as indicated by BANK.ret. The seq �eld of ANC is

0 for both processes, and the applied and copied �elds of the current return block are also 0. This indicates

that neither process has an outstanding operation. Also, process 0's return block is RET [0], and process 1's

is RET [1].

13

(a)

(b)

(c)

(d)

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s 0

1

0

1

0

1

0

1

ANC

op pars

BANK.ret=2,
process 0: rb=0,
process 1: rb=1.

BANK.ret=2,
process 0: rb=0,
process 1: rb=1.

RET[0] RET[2]RET[1]

0 0

0 0

0 0

0 00 0

1 1successenqueue g 1 BANK.ret=0,
process 0: rb=2,
process 1: rb=1.

0 0

1 1success a 2

1 0

dequeue 2

enqueue h 1

enqueue j 0 success

success

2 2

1 1

a 2

1 0

success

successenqueue h 1

BANK.ret=0,
process 0: rb=2,
process 1: rb=1.

0

0

0

2

2

val ap
pli

ed

co
pie

d

val ap
pli

ed

co
pie

d

val ap
pli

ed

co
pie

d

seq

Figure 8: Example showing use of applied and copied �elds.

Figure 8(b) shows the result of process 0 executing an enqueue(g) operation. Observe that process 0 has

written its operation and parameters to ANC [0] and has incremented ANC [0].seq (statements 21 and 22).

Process 0 has also copied the current return block into its own return block, performed its own operation,

and made its own return block current. When it performed its own operation, process 0 copied ANC [0].seq

to RET [0][p]:applied (statement 20). Also, when a process successfully performs its own operation, it writes

the value from the seq �eld of its ANC entry to its copied �eld in the current return block (statement 52).

Process 0 has also reclaimed the previous return block (RET [2]) as its own return block for use in subsequent

operations.

Figure 8(c) shows the result of process 0 executing a dequeue operation. Again, process 0 has announced

and performed its own operation, and replaced the current return block with an appropriately modi�ed copy.

In this case, however, process 0 has also detected that process 1 has an outstanding enqueue(h) operation

(by seeing that ANC [1]:seq 6= RET [0][1]:applied), and has performed this operation on behalf of process

1. As a result, process 1's entry in the new current return block (RET[2]) contains a return value for the

enqueue operation, and also contains 1 in the applied �eld.

Finally, Figure 8(d) shows the result of process 0 executing another enqueue operation, this time with

a parameter of j. This time, process 0 does not execute an operation for process 1 (because ANC [1]:seq =

RET [2][1]:applied), but it does copy process 1's applied �eld of the return block to its copied �eld. As

explained below, this allows process 1 to detect that its operation has been completed.

Detecting termination. The copied �eld for process q in the current return block is used by q to detect

when its operation has been completed. In statements 33 to 35, the applied �eld is copied to the copied �eld

for each process. Thus, the value in q's copied �eld of the current return block does not equal ANC [q]:seq

until the successful SC after the one that applies q's operation (described above). To see why both applied

and copied are needed to detect whether q's operation is complete, consider the two scenarios shown in Figure

9. In this �gure, process 0 performs three operations. In the �rst operation, process 0's SC is successful, and

process 0 replaces RET [2] with RET [0] as the current return block at statement 45. In Scenario 1, process

1 starts an operation during process 0's �rst operation. However, process 1 starts this operation too late

to be helped by process 0. Before process 0's execution of statement 45, process 1 determines that RET [2]

is the current return block (statement 26). Now, process 0 starts a second operation. Because process 0

14

process 0

process 1,
scenario 1

process 1,
scenario 2

BANK.ret=2

RET[2][1].applied := 1

RET[2][1].applied = 1

BANK.ret:=0 BANK.ret:=2 BANK.ret:=0

BANK.ret=2

BANK.ret=0

RET[0][1].copied := 1

RET[0][1].copied = 1

ANC[1].seq := 1

ANC[1].seq := 1

26

26

26 26

26 25

25

45 45 45

22

22

20 35

Figure 9: Scenario 1: process 1 prematurely detects that its applied �eld equals ANC [1]:seq. Scenario 2: process 1

detects that its copied �eld equals ANC [1]:seq. Points in time are labeled with statement numbers from Figure 7.

previously replaced RET [2] as the current return block, RET [2] is now process 0's private return block, so

its second operation uses RET [2] to record the operations it helps. Process 0 changes process 1's applied

�eld to indicate that it has applied process 1's operation (statement 20). Note that, at this stage, process 1's

operation has only been applied to process 0's private object copy, and process 0 has not yet performed its

SC. However, if process 1 reads the applied �eld of RET [2] at statement 25 instead of the copied �eld, then

it incorrectly concludes that its operation has been applied to the object, and terminates prematurely. (Note

that process 1 previously determined RET [2] to be the current return block.) In the linearizability proof

presented in [10], each operation is linearized to the successful SC that completes the operation. Therefore,

the premature termination of process 1 would violate linearizability. As explained below, the use of the

second �eld (copied) prevents this from happening.

As shown in Scenario 2 of Figure 9, it is similarly possible for process 1 to detect that its copied �eld in

a return block equals ANC [1]:seq before the SC (if any) that makes that block current. However, because

process 1's copied �eld is updated only after its applied �eld has been successfully installed as part of the

current return block, it follows that some process must have previously applied process 1's operation. Thus,

the use of the copied �eld ensures that process 1 terminates correctly.

Identifying the current return block. It remains to describe how process q determines which return

block contains the current state of q's operation. It is not su�cient for q to perform a weak-LL on BANK

and read the ret �eld, because the weak-LL is not guaranteed to return a value of BANK if a successful SC

operation interferes. In this case, the weak-LL returns the identi�er of a \witness" process that performs

a successful SC on BANK during the weak-LL operation. In preparation for this possibility, process p

records the return block it is using in LAST [p] (statement 43) before attempting to make that block current

(statement 45). When q detects interference from a successful SC, q uses the LAST entry of the witness

process to determine which return block to read (statement 12). The LAST entry contains the index of a

return block that was current during q's weak-LL operation. If that block is subsequently written after being

current, then it is a copy of a more recent return block, so its contents are still valid.

Suppose a sequential object OBJ whose return values are at mostRwords can be implemented in an array

of B S-word blocks such that any operation modi�es at most T blocks and has worst-case time complexity

C. Then, the worst-case cost of one iteration of the loop at statements 25 to 50 is �(B+N (R+C)+M �S).

Also, because each sequential operation modi�es at most T blocks, and because each process has M local

copy blocks available, each successful operation is guaranteed to advance the help pointer by min(N; bM=T c).

15

Therefore, if process p's SC fails dN=min(N; bM=T c)e times, then p's operation is helped. Thus, we have

the following theorem.

Theorem 2: Suppose a sequential object OBJ whose return values are at mostR words can be implemented

in an array of B S-word blocks such that any operation modi�es at most T blocks and has worst-case time

complexity C. Then, for any M � 2T , OBJ can be implemented in a wait-free manner with space overhead

�(N �(N �R+M �S+B)) and worst-case time complexity �(dN=min(N; bM=T c)e(B+N �(R+C)+M �S)).5 2

6 Performance Comparison

In this section, we describe the results of performance experiments that compare the performance of Herlihy's

lock-free construction for large objects to our two constructions on a 32-processor KSR-1 multiprocessor.

The results of one set of experiments are shown in Figure 10(a). In these experiments, LL and SC

primitives were implemented using the standard spin-locking primitives provided by the KSR. Each of 16

processors performed 1000 enqueues and 1000 dequeues on a shared queue. Each point in the performance

graphs presented in this section represents the average time taken to execute these operations over �ve runs.

However, the variance in these times was small enough that taking these averages did not have a signi�cant

e�ect on the performance results presented.

Our large-object constructions give rise to a tradeo� between the block size S and the number of blocks B.

Speci�cally, if S is large, then it is expensive to copy one block, but if S is small, then B must be large, which

implies that the Long Weak LL and Long SC procedures will be expensive. For testing our constructions,

we chose B (the number of blocks) and S (the size of each block) to be approximately the square root of the

total object size. This minimizes the sum of the block size and the number of blocks. (This is somewhat

simplistic as we have not done extensive experiments to determine the relative costs of block copying and

the Long Weak LL and Long SC procedures. It is conceivable that further tuning of these parameters could

result in better performance.) Also, we chose T = 2 because each queue operation accesses only two words.

For the wait-free construction, we chose M = 4. This is su�cient to guarantee that each process can help at

least one other operation. In fact, because two consecutive enqueue (or dequeue) operations usually access

the same block, choosing M = 4 is su�cient to ensure that a process often helps all other processes each

time it performs an operation. These choices for M and T result in very low space overhead compared to

that required by Herlihy's construction.

As expected, both our lock-free and wait-free constructions signi�cantly outperform Herlihy's construction

as the queue size grows. This is because an operation in Herlihy's construction copies the entire object, while

ours copy only small parts of the object. It is interesting to note that our wait-free construction outperforms

our lock-free one. We believe that this is because the cost of recopying blocks in the event that a SC fails

dominates the cost of helping.

In Herlihy's performance experiments on small objects [8], exponential backo� played an important role

in improving performance. Exponential backo� is implemented by introducing a random delay after each

failed SC operation. The length of this delay is chosen from a uniform, random distribution between zero

and a maximum delay. The duration of the maximumdelay doubles (up to a set limit) with each successive

failed SC, and is reset to a very small value at the beginning of each operation. The limit on the length

of the maximum delay is an important parameter for achieving good performance: if it is set too low,

then the bene�ts of backo� are not realized, and if it is set too high, processes can wait too long before

retrying. The data shown for constructions with backo� represent the best performance we could achieve

by tuning the backo� delay limit and repeating these experiments. This highlights the advantage of our

5When considering these bounds, note that for many objects, R is a small constant. Also, for many linear structures,

including queues and stacks, C and T are constant, and for balanced trees, C and T are logarithmic in the size of the object.

Finally, becauseM � 2T , dN=min(N; bM=T c)e is at most N=2.

16

0

50

100

150

200

250

300

20 40 60 80 100 120 140 160 180 200

T
im

e
(s

)
fo

r
10

00
 e

nq
ue

ue
s

an
d

10
00

 d
eq

ue
ue

s
pe

r
pr

oc
es

s

Queue Size

"Lock_Free_Queue"
"Lock_Free_Queue_Backoff"

"Wait_Free_Queue"
"Wait_Free_Queue_Backoff"
"Herlihy_Lock_Free_Queue"

"Herlihy_Lock_Free_Queue_Backoff"

0

10

20

30

40

50

60

70

20 40 60 80 100 120 140 160 180 200
T

im
e

(s
)

fo
r

10
00

 in
se

rt
s

an
d

10
00

 d
el

et
es

 p
er

 p
ro

ce
ss

Skew Heap Size

"Herlihy_Lock_Free_Skew_Heap"
"Herlihy_Lock_Free_Skew_Heap_Backoff"

"Lock_Free_Skew_Heap"
"Lock_Free_Skew_Heap_Backoff"

"Wait_Free_Skew_Heap"
"Wait_Free_Skew_Heap_Backoff"

(a) (b)

Figure 10: Comparison of our implementation to Herlihy's on a KSR multiprocessor. (a) FIFO queue implementation.

(b) Skew heap implementation.

wait-free construction, which, without resorting to using exponential backo�, outperforms the pure lock-free

constructions, and performs comparably with the lock-free constructions with backo�.

We should point out that we deliberately chose the queue object to show the advantages of our con-

structions over Herlihy's. The queue represents an extreme case, for which Herlihy's construction necessarily

copies the entire object, while ours do not. To consider an object more favorable to Herlihy's constructions,

we also implemented a skew heap | the object considered by Herlihy in [8]. Skew heap operations usually

modify only a few nodes near the root of a tree, and therefore avoid the long copying chains exhibited by

Herlihy's construction when used to implement a queue.

As a �rst step towards implementing a skew heap, we implemented a dynamic memory allocation mecha-

nism on top of our large object construction. This provides a more convenient interface for objects (including

skew heaps) that are naturally represented as nodes that are dynamically allocated and released. There are

well-known techniques for implementing dynamic memory management in an array. However, several issues

arise from the design of dynamic memory management techniques in the context of our constructions. First,

the dynamic memory allocation procedures must modify only a small number of array blocks, so that the

advantages of our constructions can be preserved. Second, fragmentation complicates the implementation

of allocate and release procedures. For example, after many allocate and release calls, the available free

space can be distributed throughout memory, and it might be time-consuming, or even impossible, to �nd a

contiguous block that is su�ciently large to satisfy a new allocate request. These complications can make the

procedures quite ine�cient, and can even cause the allocate procedure to incorrectly report that insu�cient

memory is available. Both of these problems are signi�cantly reduced if the size of allocation requests is

�xed in advance. For many objects, this restriction is of no consequence. This is true in the case of a skew

heap, because all of the nodes in a skew heap are of the same size. We took advantage of this fact to simplify

the design of our dynamic memory allocation library.

Having implemented dynamic memory allocation, we then implemented a large skew heap, and conducted

17

performance experiments similar to those we conducted for the queue. The results of these experiments can

be seen in Figure 10(b). As this �gure shows, our constructions performed about the same as they did when

used to implement a queue. (Note that the time scales on these two graphs are not the same.) However,

Herlihy's construction performed much better than before, because unlike the queue operations, skew heap

operations do not need to modify blocks that are at the end of long \chains" of blocks. In fact, Herlihy's lock-

free construction slightly outperforms ours in this case. Recall that, in order to use Herlihy's construction,

a programmer must determine, based on the semantics of the implemented object, which parts of the object

must be copied by each operation. Thus, the implementation using Herlihy's construction is hand-crafted to

perform exactly the right amount of copying; our construction does not rely on the programmer to provide

this information. In other words, our construction sacri�ces performance slightly in order to provide a

transparent interface to the programmer.

7 Concluding Remarks

Our constructions improve the space and time e�ciency of lock-free and wait-free implementations of large

objects. Also, in contrast to similar previous constructions, ours do not require programmers to determine

how an object should be fragmented, or how the object should be copied. However, they do require the

programmer to use special Read and Write functions, instead of the variable references and assignment

statements used in conventional programming. Nonetheless, as demonstrated by Figure 3, the resulting code

is very close to that of an ordinary sequential implementation. Our construction could be made completely

seamless by providing a compiler or preprocessor that automatically translates assignments to and from

MEM into calls to the Read and Write functions.

The sequential code we used to implement operations for a skew heap object is based on dynamic

allocation of heap nodes. To support this implementation, we also implemented a simple dynamic memory

allocation mechanism. The applicability of our constructions can be further improved by providing the code

for our dynamic memory allocation mechanism to programmers in a library. This would simplify the use of

our constructions in implementing objects, such as trees, that are naturally implemented as blocks that are

dynamically allocated and released.

One drawback of our constructions is that they are subject to a tradeo� between block size and the

number of blocks. One of these must be at least the square root of the total object size. Furthermore, our

constructions do not allow parallel execution of operations, even if the operations access disjoint sets of blocks.

For example, in our shared queue implementations, an enqueue operation might unnecessarily interfere with a

dequeue operation. In [2], we addressed similar concerns when implementing wait-free operations on multiple

objects. More recently, Moir has developed new lock-free and wait-free constructions that support general

transactions, are not subject to the tradeo� mentioned above, and allow parallel execution of transactions

that do not con
ict with each other [12]. While these constructions do in principle have some advantages over

the ones presented here, they are somewhat more complicated. We therefore believe that our constructions

will outperform the new ones in some applications, especially those in which objects do not admit much

parallelism, or contention for objects is not su�cient to allow parallel execution of transactions to o�er

any advantage. Simulations carried out by Christopher Filachek [5] have con�rmed that, at least for some

objects, the constructions presented here outperform those presented in [12].

Acknowledgement: We would like to thank Lars Nyland for his help with the performance studies in Section 6.

References

[1] Y. Afek, D. Dauber, and D. Touitou, \Wait-free Made Fast (Extended Abstract)", Proceedings of the

27th Annual ACM Symposium on Theory of Computing, 1995, pp. 538-547.

18

[2] J. Anderson and M. Moir, \Universal Constructions for Multi-Object Operations", Proceedings of the

14th Annual ACM Symposium on Principles of Distributed Computing , 1995, pp. 184-194.

[3] J. Anderson and M. Moir, \Universal Constructions for Large Objects", Proceedings of the Ninth Inter-

national Workshop on Distributed Algorithms, 1995, pp. 168-182.

[4] G. Barnes, \A Method for Implementing Lock-Free Shared Data Structures", Proceedings of the Fifth

Annual ACM Symposium on Parallel Algorithms and Architectures, 1993, pp. 261-270.

[5] C. Filachek, Evaluation and Optimization of Lock-Free and Wait-Free Universal Constructions for Large

Objects, Master's thesis, Department of Computer Science, University of Pittsburgh, 1997.

[6] M. Herlihy and J. Wing, \Linearizability: A Correctness Condition for Concurrent Objects", ACM

Transactions on Programming Languages and Systems, 12(3), 1990, pp. 463-492.

[7] M. Herlihy, \Wait-Free Synchronization", ACM Transactions on Programming Languages and Systems,

Vol. 13, No. 1, 1991, pp. 124-149.

[8] M. Herlihy, \A Methodology for Implementing Highly Concurrent Data Objects", ACM Transactions

on Programming Languages and Systems, Vol. 15, No. 5, 1993, pp. 745-770.

[9] A. Israeli and L. Rappoport, \Disjoint-Access-Parallel Implementations of Strong Shared Memory Prim-

itives", Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing , ACM,

New York, August 1994, pp. 151-160.

[10] M. Moir, E�cient Object Sharing in Shared-Memory Multiprocessors, Ph.D. thesis, University of North

Carolina at Chapel Hill, 1996. UMI Dissertation Services, 1996.

[11] M. Moir, \Practical Implementations of Synchronization Primitives", Proceedings of the 16th Annual

ACM Symposium on Principles of Distributed Computing, 1997, pp. 219-228.

[12] M. Moir, \Transparent Support for Wait-Free Transactions", Proceedings of the 11th Annual Interna-

tional Workshop on Distributed Algorithms, 1997, pp. 305-319.

[13] N. Shavit and D. Touitou, \Software Transactional Memory", Proceedings of the 14th Annual ACM

Symposium on Principles of Distributed Computing , 1995, pp. 204-213.

19

A Correctness of Wait-Free Algorithm

In this section, we give high-level, intuitive linearizability and wait-freedom proof sketches for our wait-free

algorithm. For more rigorous and detailed proofs, the reader is referred to [10].

Linearizability [6] essentially requires that, in any execution, each operation \appears" to be applied to

the shared object atomically at some point within its execution (i.e., after it is invoked, and before it returns).

We prove that our algorithm has this property by de�ning a linearization point for invocations. When a

process q performs a successful SC (within the Long SC procedure), we linearize all the operations that q

has applied since its previous call to Long Weak LL, in the order they were applied. (We say that process

q applies an invocation of process p if it executes statements 16 through 20 with pr = p.) It is easy to see

that this is the order in which operations are applied. However, it is not so easy to see that every operation

is applied exactly once, or that it is applied within its execution. The following lemmas establish these

properties. We prove these lemmas by inductively assuming that they have not been violated previously,

and then showing that they hold for any given operation under this assumption. For convenience, we �rst

introduce some notation.

ANC (p) � ANC [p]:seq

AV (p) � RET [BANK :ret][p]:applied

CV (p) � RET [BANK :ret][p]:copied 2

Thus, ANC (p) is p's \announced" sequence number, AV (p) is p's applied �eld in the current return block,

and CV (p) is p's copied �eld in the current return block. We also use the notation p:i to refer to statement

i of process p. In the following lemmas, x is universally quanti�ed over f0; 1; 2g.

Lemma 1: If p is between invocations, and ANC (p) = x ^ AV (p) = x ^ CV (p) = x, then this continues

to hold until the execution of statement p:22, immediately after which ANC (p) = (x+1) mod 3 ^ AV (p) =

x ^ CV (p) = x holds.

Proof: It is easy to see that if statement p:22 is executed while ANC (p) = x ^ AV (p) = x ^ CV (p) = x

holds for some x, then ANC (p) = (x+ 1) mod 3 ^ AV (p) = x ^ CV (p) = x holds afterwards. It remains

to show that no other statement falsi�es ANC (p) = x ^ AV (p) = x ^ CV (p) = x while p is between

invocations.

First, we observe that only statement p:52 can modify RET [b][p] while BANK :ret = b. (All other

modi�cations to RET blocks are made to blocks that are not current. Too see why, observe that when a

process performs a successful SC, it \claims" the previously current return block for use as its next return

block (see statements 29 and 48). Because this happens only upon a successful SC, each process always uses

a distinct RET block in which to prepare values that will be current when and if this process executes a

successful SC.) Thus, we need only consider the case in which a successful SC operation by some process

q changes BANK.ret. In this case, because the SC succeeds, it follows that the current return block has

not changed since q copied it (at statement 31). Therefore, q copied x to both the applied �eld and the

copied �eld of RET [rb][p], where rb is q's return block (which becomes current upon q's successful SC). Also,

because these �elds both have the same value, the copied �eld is not modi�ed by statement q:35. Finally,

by the inductive assumption that Lemmas 1 through 5 held for previous invocations, it follows that there

was a successful SC during p's previous invocation (if there was such an invocation), which implies that

q's LL must have occurred after p's previous invocation. This in turn implies that if q read ANC [p]:seq at

statement q:14, then it read x, and therefore did not execute statements q:16 through q:20, and therefore

did not modify RET [rb][p] here either. Thus, when q's SC causes RET [rb] to become the current block, the

values of AV (p) and CV (p) do not change. 2

Lemma 2: Process p cannot exit the loop at statements 25 through 50 while ANC (p) = (x + 1) mod 3 ^

AV (p) = x ^ CV (p) = x holds.

20

Proof: Process p can exit the loop at statements 25 through 50 either by executing a successful SC (see

statement 49), or by detecting that its copied �eld in a RET block determined by Return Block is equal to

ANC (p) (see statements 25 and 50).

In the �rst case, as in Lemma 1, p copies x to both p's applied and copied �elds of its return block. Also,

because p calls Apply with p as a parameter (statement 36), and because ANC (p) = (x + 1) mod 3 and

p's applied �eld is x, p executes statement p:20. Thus, when p's return block becomes current, ANC (p) =

(x+ 1) mod 3 ^ AV (p) = x ^ CV (p) = x no longer holds, so the lemma holds in this case.

In the second case, p calls Return Block to determine a return block b, which it then checks to see

if RET [b][p]:copied = x. Return Block returns a block index that either is current or has been current

\recently" (i.e., since p called Return Block), or has been copied from a block that is current or has been

current recently. To see this, note that if the Long Weak LL in Return Block returns N , then the value

returned by statement p:13 is the current block. In this case, because CV (p) = x holds, p does not exit

the loop. Otherwise, Return Block returns the last RET block used by some process q that performed a

successful SC while p was executing Long Weak LL. Whether this block was current, or was copied from a

block that was current, p's copied �eld in this block contains x, so p does not exit the loop. (Note that it

is possible that this block has been copied from the current block, but has not itself become current. This

can happen if q has executed statement q:43, thereby making the block available as the \last" block used by

q, but has either not reached the SC, or the SC has failed. Nonetheless, because this block has been copied

from the current block, and because ANC (p) = (x+ 1) mod 3 ^ AV (p) = x ^ CV (p) = x holds, it is not

possible that q has modi�ed p's copied �eld in this block.) 2

Lemma 3: If p is executing the loop at statements 25 through 50, and ANC (p) = (x+1) mod 3 ^ AV (p) =

x ^ CV (p) = x holds, then this continues to hold until some process that has applied p's operation performs

a successful SC, after which ANC (p) = (x+ 1) mod 3 ^ AV (p) = (x + 1) mod 3 ^ CV (p) = x holds.

Proof: As in Lemma 1, ANC (p) = (x + 1) mod 3 ^ AV (p) = x ^ CV (p) = x can only be falsi�ed

by a successful SC making a new RET block current. Also, if a process q's SC is successful, then the

values it copied to RET [rb][p]:applied and RET [rb][p]:copied at statement q:31 are the current values of

AV (p) and CV (p), namely x. Thus, when q copied p's applied �eld to its copied �eld in statements q:34

and q:35, the copied �eld did not change. There are two cases. If q applied p's operation, then it also set

RET [rb][p]:applied to (x+ 1) mod 3, in which case installing RET [rb] as the current copy block establishes

ANC (p) = (x + 1) mod 3 ^ AV (p) = (x + 1) mod 3 ^ CV (p) = x, so the lemma holds. Otherwise,

q did not apply p's operation, so installing RET [rb] as the current copy block does not falsify ANC =

(x+ 1) mod 3 ^ AV (p) = x ^ CV (p) = x. 2

Lemma 4: If p is executing the loop at statements 25 through 50, and ANC (p) = (x+1) mod 3 ^ AV (p) =

(x+ 1) mod 3 ^ CV (p) = x holds, then p does not return from WF Op until ANC (p) = (x+ 1) mod 3 ^

AV (p) = (x+ 1) mod 3 ^ CV (p) = (x+ 1) mod 3 holds.

Proof: First, observe that any successful SC executed by a process q while ANC (p) = (x + 1) mod 3 ^

AV (p) = (x+1) mod 3 ^ CV (p) = x holds establishes ANC (p) = (x+1) mod 3 ^ AV (p) = (x+1) mod 3 ^

CV (p) = (x+ 1) mod 3. This is because process q copies the current values of AV (p) and CV (p), namely

(x+1) mod 3 and x, to p's applied and copied �elds of q's new return block (statement q:31) and then copies

the applied �eld to the copied �eld (statements q:34 and q:35). Furthermore, because ANC (p) = AV (p), q

does not apply p's operation, and therefore does not modify p's applied �eld at statement q:20. Thus, when

q's SC succeeds, it establishes ANC (p) = (x+1) mod 3 ^ AV (p) = (x+1) mod 3 ^ CV (p) = (x+1) mod 3,

as required.

Finally, observe that, before p returns fromWF Op, it �rst calls Return Block in order to try to identify

the current return block. Then, process p updates its copied �eld in this block to (x + 1) mod 3. If this

block is still the current block, then this establishes ANC (p) = (x+ 1) mod 3 ^ AV (p) = (x+ 1) mod 3 ^

CV (p) = (x + 1) mod 3, as required. Otherwise, there has been a successful SC, so, as argued above,

21

ANC (p) = (x+1) mod 3 ^ AV (p) = (x+1) mod 3 ^ CV (p) = (x+1) mod 3 has already been established.

2

Lemma 5: If process q executes a successful SC having applied an operation by process p, then ANC (p) 6=

AV (p) holds immediately before it does so, and ANC (p) = AV (p) holds immediately afterwards.

Proof: Process q applies process p's operation only if the value of ANC (p) it reads at statement q:14 di�ers

from the value of p's applied �eld that q copied from the current RET block (see statement q:15). Because

process q's SC is successful, this value is the current value of AV (p) throughout the interval between q's LL

and q's SC. Thus, at the point when q executes statement q:14, ANC (p) 6= AV (p). By Lemmas 2, 3, and 4,

p does not return from WF Op between this point and the point at which q executes its successful SC, and

therefore ANC (p) does not change in this interval. (Note that if some other process performed a successful

SC in this interval, then q's SC would fail, a contradiction.) Thus, ANC (p) 6= AV (p) holds immediately

before q's SC. Also, because q copies the value read from ANC (p) to p's applied �eld in its return block

(statement q:20), ANC (p) = AV (p) holds after the SC. 2

Lemma 6: (Linearizability) Each invocation by each process is applied at most once; an invocation is

applied only after it is invoked and before it returns; and if the invocation returns, then it is applied at least

once.

Proof: Lemmas 1 through 4 show that each process cycles through three \phases". In the �rst phase,

ANC (p) = x ^ AV (p) = x ^ CV (p) = x for some x 2 f0; 1; 2g (note that this holds initially). Lemma

1 shows that this phase is ended only by process p invoking an operation, and that this begins the second

phase, during which ANC (p) = (x + 1) mod 3 ^ AV (p) = x ^ CV (p) = x holds. Lemma 2 shows that p

cannot return from its invocation during the second phase. Lemma 3 shows that the second phase is ended

only by some process successfully applying p's operation, and that this begins the third phase, during which

ANC (p) = (x+ 1) mod 3 ^ AV (p) = (x + 1) mod 3 ^ CV (p) = x holds. It follows that p's operation is

linearized at least once before p returns from its invocation. Lemma 5 shows that an operation of process

p can only be linearized at the end of the second phase, which implies that each operation is linearized at

most once. Finally, Lemma 4 shows that process p's third phase ends and that the variables are initialized

to begin the �rst phase for the next invocation (thus the above argument can be used inductively to show

that all invocations are linearized exactly once). This completes our linearizability proof sketch. 2

Lemma 7: (Wait-freedom) Every operation invoked by process p returns after a �nite number of p's

steps.

Proof: It is easy to see that if p performs a successful SC, then p's operation returns (see statement p:49).

Therefore, let us assume that p's SC fails repeatedly. This implies that other processes repeatedly perform

successful SC operations. Because of our assumption that each process has su�cient space to perform any

two operations, each process that performs a successful SC executes the loop at statements 39 through 42

at least once. Thus, each successful SC increases (modulo N) the value of BANK :help by at least one (see

statements 37, 41, and 44). Therefore, p can perform failing SC operations only a �nite number of times

before some process successfully applies p's operation. By Lemma 3, ANC (p) = (x+ 1) mod 3 ^ AV (p) =

(x+ 1) mod 3 ^ CV (p) = x holds immediately after this occurs. As argued in the proof of Lemma 4, any

successful SC executed by a process q while ANC (p) = (x+1) mod 3 ^ AV (p) = (x+1) mod 3 ^ CV (p) = x

holds establishes ANC (p) = (x+1) mod 3 ^ AV (p) = (x+1) mod 3 ^ CV (p) = (x+1) mod 3. Thus, after

p's next SC (whether successful or not), ANC (p) = (x+ 1) mod 3 ^ AV (p) = (x + 1) mod 3 ^ CV (p) =

(x + 1) mod 3 holds. By Lemma 1, this continues to hold until p's next invocation. Therefore, after this

point, whether Return Block returns the current RET block, or a recently-current block, this block will have

(x + 1) mod 3 in p's copied �eld, so p will detect that its operation has been applied and return. This

completes our wait-freedom proof sketch. 2

22

