
Desynchronized Pfair Scheduling on Multiprocessors∗

UmaMaheswari C. Devi and James H. Anderson
Department of Computer Science, The University of North Carolina, Chapel Hill, NC

Abstract

Pfair scheduling, currently the only known way of optimally scheduling recurrent real-time tasks
on multiprocessors, imposes certain requirements that may limit its practical implementation. In this
paper, we address one such limitation — which requires processor time to always be allocated in units
of fixed-sized quanta that are synchronized across processors — and determine the impact of relaxing
it. We show that if this requirement is relaxed, then under an otherwise-optimal Pfair scheduling algo-
rithm, deadlines are missed by at most one quantum only, which is sufficient to provide soft real-time
guarantees. This result can be shown to extend to most prior work on Pfair scheduling: In general,
tardiness bounds guaranteed by previously-proposed suboptimal Pfair algorithms are worsened by at
most one quantum only.

∗Work supported by NSF grants CCR 0204312, CCR 0309825, and CCR 0408996.

1 Introduction

A real-time system, unlike a non-real-time sys-
tem, has to meet certaintiming constraintsto
be correct. Such timing constraints are typically
specified as deadline requirements. Tasks in a
real-time system are often recurrent in nature.
For example, in the well-studied periodic task
model [12], each taskT is characterized by two
parameters, a worst-case execution time (WCET)
T.e, and a periodT.p: an instance orjob of T that
requires up toT.e time to execute is released ev-
eryT.p time units, and each such job must finish
execution before the next job ofT is released.

Timing constraints (or deadlines) in a real-
time system may be classified as either hard or
soft. Hard deadlines cannot be missed, while soft
deadlines may occasionally be missed, if the ex-
tent of the miss is bounded. A real-time sys-
tem may either be exclusively comprised of ei-
ther hard real-time tasks or soft real-time tasks,
or be a combination of the two.

In work on real-time systems, multiproces-
sor designs are becoming increasingly common.
This is due both to the advent of reasonably-
priced multiprocessor platforms and to the preva-
lence of computationally-intensive real-time ap-
plications that have pushed beyond the capabil-
ities of single-processor systems. Examples of
such applications include systems that track peo-
ple and machines, many computer-vision sys-
tems, and signal-processing applications such
as synthetic aperture imaging (to name a few).
Given these observations, efficient scheduling al-
gorithms for multiprocessor real-time systems
are of considerable value and interest.

In this paper, we consider the scheduling of re-
current real-time task systems on multiprocessor
platforms comprised ofM identical processors.
Pfair scheduling, introduced by Baruahet al. [6],
is the only known way ofoptimally scheduling
such task systems on multiprocessors. The term
“optimal” means that such algorithms are capa-
ble of scheduling onM processors any task sys-
tem with total utilization not exceedingM . Un-

der other approaches, only task sets with total
utilization not exceeding a value that is slightly
higher thanM/2 may be scheduled correctly, in
the worst case [13, 5, 4].

Under Pfair scheduling, each task is subdi-
vided into quantum-lengthsubtasksthat are sub-
jected to intermediate deadlines, calledpseudo-
deadlines. Subtasks are then scheduled on an
earliest-pseudo-deadline-first basis, with dead-
line ties among subtasks resolved using tie-
breaking rules. When scheduling periodic tasks,
pseudo-deadlines are assigned to subtasks in a
way that ensures that all job deadlines are met.
An example is provided in Sec. 2.

To ensure optimality, Pfair scheduling imposes
certain requirements that may limit its practical
implementation. One such limitation is the re-
quirement that tasks be allocated processor time
in fixed-sized quanta and align across all pro-
cessors. It is known that if this requirement is
not satisfied, then deadlines can be missed un-
der an otherwise-optimal Pfair scheduling algo-
rithm [10]. Fig. 2(b) gives an example, a detailed
explanation of which is provided in Sec. 3. In
this paper, we determine the impact of relaxing
this limiting requirement.

We call the Pfair model that imposes the above
restriction as thesynchronized and fixed-sized
quantum(SFQ) model. We consider this model
to be limiting for the following four reasons.
• First, it requires periodic timer interrupts

that delineate quanta to be synchronized
across all processors and drifts in the tim-
ing of interrupts on any one processor to be
propagated to other processors as well.

• Second, because WCET estimates are gen-
erally pessimistic, many task invocations
(i.e., jobs) will execute for less than their
WCETs. When a job completes before
the next quantum boundary, the rest of that
quantum (on the associated processor) is
wasted.

• Third, at the start of each quantum, the SFQ
model idles all processors until scheduling
decisions are made for allM processors.

1

This idling can be reduced if the quanta are
desynchronized and each processor sched-
uled independently.

• Finally, the SFQ model does not mesh
well with general-purpose operating sys-
tems, which are characterized by event-
driven scheduling, and hence, variable-sized
quanta. Moreover, real-time applications
deployed on such systems typically have
only soft real-time requirements, and hence,
bounded deadline misses may be tolerable.

We refer to the model of Pfair scheduling in
which quanta may vary in size up to some max-
imum and need not align across processors as
the desynchronized and variable-sized quantum
(DVQ) model. In this paper, we show that under
the DVQ model and an otherwise-optimal Pfair
scheduling algorithm, the amount by which dead-
lines can be missed is bounded. In particular, we
show that deadlines are missed by at most the
maximum size of one quantum only. The fact
that deadlines are known to be missed under the
DVQ model implies that our result is tight. Fur-
thermore, this result can also be shown to extend
to most prior results on Pfair scheduling.

Limitations of the SFQ model were first ad-
dressed by Chandraet al., who proposed the
Deadline Fair Scheduling (DFS) policy as a so-
lution [8]. In addition to supporting the DVQ
model, DFS uses an auxiliary scheduler to allo-
cate time that would otherwise go idle to ineli-
gible, but runnable tasks. However, the work of
Chandraet al. was entirely empirical, and real-
time guarantees that can be provided were not
derived. Also, the early-release model of Pfair
scheduling [1] provides a less-expensive and sim-
pler alternative to using an auxiliary scheduler.

In other related work, Holman and Anderson
proposed thestaggeredmodel [11], which is a
slight variant of the SFQ model. Their objective
was to reduce bus contention that results due to
the simultaneous scheduling of all processors ne-
cessitated by a strict alignment of quanta, on a
symmetric shared-memory multiprocessor. They

accomplished this by providingfixedoffsets be-
tween the times at which quanta start on succes-
sive processors. In other words, quantum starting
points are distributed on different processors uni-
formly over the interval of each quantum. All
quanta are still restricted to be uniform in size,
and the quanta on different processors are still
synchronized, though not aligned.

The rest of this paper is organized as follows.
Background on Pfair scheduling is provided in
Sec. 2. Then, the DVQ model is presented and
the main result of this paper proved in Sec. 3.
Sec. 4 concludes.

2 Background on Pfair Scheduling
This section provides a brief overview of Pfair

scheduling [1, 2, 3, 6, 14] under the SFQ model.
In introducing Pfair scheduling concepts, we ini-
tially assume that only periodic tasks that begin
execution at time 0 are to be scheduled. Such a
taskT has an integerperiodT.p, an integer (per-
job) execution costT.e, and aweight wt(T) =
T.e/T.p in the range(0, 1].

Pfair algorithms allocate processor time in dis-
crete quanta that are uniform in size. The quan-
tum size is the largest amount of time that a task
is guaranteed execution without preemption. It is
required that T.e andT.p both be expressed as
multiples of the quantum size. For simplicity, we
henceforth assume that the quantum size is one
time unit. The time interval[t, t + 1), wheret
is a nonnegative integer, is calledslot t. Time t
refers to the beginning of slott and is also called
a slot boundary. To ensure that all quanta are
uniform in size, scheduling decisions are made
at slot boundaries only. Hence, at most one task
may execute on a given processor in any slot. A
task may be allocated time on different proces-
sors, but not in the same slot,i.e., interprocessor
migration is allowed but parallelism is not. The
sequence of allocation decisions over time slots
defines ascheduleS. Formally,

S : τ ×N 7→ {0, 1}, (1)

whereτ is a task set andN is the set of non-

2

0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5

T1

T2

T3

T1 T1

T3
T3

T2

(a) (c)(b)

Figure 1. (a) Windows of the first job of a peri-
odic taskT with weight3/4. This job consists
of subtasksT1, T2, andT3, each of which must
be scheduled within its window. (This pattern
repeats for every job.)(b) The Pfair windows
of an IS task. SubtaskT3 becomes eligible one
time unit late. (c) The Pfair windows of a GIS
task. SubtaskT2 is absent and subtaskT3 be-
comes eligible one time unit late.

negative integers.S(T, t) = 1 iff T is scheduled
in slot t. On M processors,

∑
T∈τ S(T, t) ≤ M

holds for allt.
To facilitate quantum-based scheduling, each

task T is broken into a potentially infinite se-
quence of quantum-lengthsubtasks. Theith sub-
task of taskT is denotedTi, wherei ≥ 1. Each
subtaskTi is associated with apseudo-release
r(Ti) and a pseudo-deadlined(Ti) as follows.

r(Ti) =

⌊
i− 1

wt(T)

⌋
∧ d(Ti) =

⌈
i

wt(T)

⌉
(2)

The intervalw(Ti) = [r(Ti), d(Ti)) is termed the
windowof Ti. For example, in Fig. 1(a), for sub-
task T1, we haver(T1) = 0, d(T1) = 2, and
w(T1) = [0, 2). For a Pfair schedule to be valid,
each subtask must be scheduled within its win-
dow. This is sufficient to ensure that the dead-
lines of all subtasks, and hence all jobs, are met.

Pfair scheduling algorithms schedule tasks by
choosing subtasks to execute at the beginning of
every slot. If a scheduled subtask does not ex-
ecute for a full quantum, then the processor on
which it was scheduled remains idle until the
next slot boundary. At present, three optimal
Pfair scheduling algorithms — PF [6], PD [7],
and PD2 [3] — and one suboptimal algorithm
— earliest pseudo-deadline first (EPDF) [3] —
are known. In all the above algorithms, a sub-
task with an earlier deadline has higher priority

than a subtask with a later deadline. For optimal-
ity, the optimal algorithms use additional rules
to resolve ties among subtasks with the same
deadline. In fact, the three optimal algorithms
mentioned above differ only in their tie-breaking
rules. PD2 is the most efficient of the three and
its tie-breaking rules form a subset of those of the
other two algorithms; the suboptimal EPDF algo-
rithm uses no tie-breaking rules.

Task models. Pfair scheduling may be used
for schedulingintra-sporadic (IS) task systems
and generalized-intra-sporadic(GIS) task sys-
tems [2, 14] also, in addition to periodic task sys-
tems. The IS and GIS task models provide a gen-
eral notion of recurrent execution that subsumes
that found in the well-studied periodic and spo-
radic task models. Thesporadicmodel general-
izes the periodic model by allowing jobs to be
released “late”; the IS model generalizes the spo-
radic model by allowing subtasks to be released
late, as illustrated in Fig. 1(b). More specifically,
the separation betweenr(Ti) and r(Ti+1) is al-
lowed to exceedbi/wt(T)c − b(i − 1)/wt(T)c,
which would be the separation ifT were peri-
odic. Thus, an IS task is obtained by allowing
a task’s windows to be right-shifted from where
they would appear if the task were periodic.

Let θ(Ti) denote theoffsetof subtaskTi, i.e.,
the amount by whichw(Ti) has been right-
shifted. Then, by (2), we have the following.

r(Ti) = θ(Ti) +
⌊

i− 1
wt(T)

⌋
(3)

d(Ti) = θ(Ti) +
⌈

i

wt(T)

⌉
(4)

The offsets are constrained so that the separation
between any pair of subtask releases is at least
the separation between those releases if the task
were periodic. Formally, the offsets satisfy the
following property.

k > i ⇒ θ(Tk) ≥ θ(Ti). (5)

Each IS subtaskTi has an additional param-
eter e(Ti), which specifies the first time slot in

3

which it is eligible to be scheduled. In particular,
a subtask can become eligible before its “release”
time. The following is required to hold.

(∀Ti :: e(Ti) ≤ r(Ti) ∧ e(Ti) ≤ e(Ti+1)) (6)

The intervals[r(Ti), d(Ti)) and[e(Ti), d(Ti)) are
called thePF-windowand IS-windowof Ti, re-
spectively.

Generalized intra-sporadic task systems. A
generalized intra-sporadic task system is ob-
tained by removing subtasks from a correspond-
ing IS task system. Specifically, in a GIS task
system, a taskT , after releasing subtaskTi, may
release subtaskTk, wherek > i + 1, instead of
Ti+1, with the following restriction:r(Tk)−r(Ti)

is at least
⌊

k−1
wt(T)

⌋
−

⌊
i−1

wt(T)

⌋
. In other words,

r(Tk) is not smaller than what it would have been
if Ti+1, Ti+2, . . . ,Tk−1 were present and released
as early as possible. Fig. 1(c) shows an example.

If Ti is the most recently released subtask ofT ,
thenT may releaseTk, wherek > i, as its next

subtask at timet, if r(Ti)+
⌊

k−1
wt(T)

⌋
−

⌊
i−1

wt(T)

⌋
≤ t.

If a taskT , after executing subtaskTi, releases
subtaskTk, thenTk is called thesuccessorof Ti

andTi is called thepredecessorof Tk. Every sub-
task ofT that is released beforeTi is called an
ancestorof Ti and every subtask that is released
after Ti is called adescendentof T . Note that
a subtask can have at most one predecessor and
one successor only, but may have multiple ances-
tor and descendant subtasks.

A correct schedule in which no subtask misses
its deadline exists for a GIS task systemτ on M
processors iff its total utilization is at mostM ,
i.e.,

∑
T∈τ wt(T) ≤ M holds [2]. A task sys-

tem with total utilization at mostM is said to be
feasibleonM processors.

Soft real-time systems and tardiness. As
mentioned earlier, the jobs (and subtasks) of a
soft real-time system may occasionally miss their
deadlines, if the amount by which a subtask
misses its deadline, referred to as itstardiness,

deadline
MissedMissed

deadline

Proc. 1 Proc. 2

PD2 and SFQ PD2 and DVQ

0 1 2 3 4 5

(c)

Quantum 3 starts
before time 2

2−δ

0 1 2 3 4 5

(b)
0 1 2 3 4 5

quantum
partially−wasted

partially−wasted
quantum

δ (a)

(δ −> 0)

1/6A

1/6B

1/6C

1/2D

1/2E

1/2F

A1

B1

C1

D1

D2

E1

E2

F1

F2

D3

F3

E3

Tasks and
weight s

PDB and SFQ

Figure 2. Difference between(a) the SFQ model

and (b) the DVQ model under PD2. (c) A possi-

ble schedule under PDB in the SFQ model, obtained

by postponing the allocations in (b) that do not com-

mence on a slot boundary to the next slot boundary.

is bounded. Formally, the tardiness of a subtask
Ti in scheduleS is defined as

tardiness(Ti,S) = max(0, t− d(Ti)), (7)

wheret is the time at whichTi completes exe-
cuting inS andd(Ti) is its deadline. We some-
times omit specifying the schedule if it is clear
from the context. The tardiness of a task sys-
tem τ under scheduling algorithmA, denoted
tardiness(τ,A), is defined as the maximum tar-
diness of any subtask inτ under any valid sched-
ule underA. If κ is the maximum tardiness of
any task system underA, thenA is said toen-
sure a tardiness bound ofκ.

3 Pfair in the DVQ Model

In this section, we describe the DVQ model
in detail and show that under this model and the
PD2 scheduling algorithm, tasks may miss their
deadlines by at most one quantum only. (Recall
that PD2 is optimal under the SFQ model.) This
result also extends to most prior work on Pfair

4

scheduling; in general, tardiness bounds guaran-
teed under most previously-proposed suboptimal
Pfair algorithms and schemes are worsened by at
most one quantum only.

The DVQ model. The DVQ model differs
from the SFQ model in when subtasks are allo-
cated processor time and for how long; the char-
acterization of tasks,i.e., the task model, is un-
altered. The SFQ model requires all quanta to
be of uniform size and aligned across all proces-
sors. This tight synchrony is maintained by forc-
ing the scheduler to be non-work-conserving in
that, if a subtask does not execute for the dura-
tion of an entire quantum,i.e., yields an inter-
val of timeδ before the end of its quantum, then
part of the quantum allocated to it is unused. The
DVQ model is a work-conserving variant that re-
claims this wastage by allowing the quanta to
vary in size in the range(0, 1] and by not requir-
ing the quanta on different processors to be syn-
chronized. In particular, if a task yields before
executing for a full quantum, then a new quan-
tum begins on the associated processor immedi-
ately. Fig. 2 illustrates the difference between the
SFQ and DVQ models with an example. In this
example, tasksA, B, andC of weight1/6 each,
and tasksD, E, andF of weight1/2 each, with
a total utilization two are scheduled on two pro-
cessors. SubtasksA1 andF1 scheduled att = 1
execute for an interval1− δ only and yield their
respective processors att = 2 − δ. Both pro-
cessors idle untilt = 2 to start the next quantum
under the SFQ model, whereas a new quantum
begins immediately under the DVQ model. Be-
cause the next subtasks of tasksD, E, andF are
not eligible untilt = 2, the two processors are as-
signed to subtasksB1 andC1 at t = 2 − δ under
the DVQ model.

As seen in Fig. 2, scheduling decisions in the
DVQ model may be made at non-integral times.
Thus, the function in (1) is not adequate to fully
define a schedule. We deal with this issue by
overloading this function to denote the time at
which a subtaskcommences execution. For-

mally, if S is a schedule for a task setτ , then
S : {subtasks inτ} 7→ Q, whereQ is the set
of all rational numbers. For schedules that con-
form to the SFQ model,S(Ti) is integral, for ev-
ery subtaskTi. We also associate with each sub-
taskTi its actual execution cost, denotedc(Ti).
It is required thatc(Ti) ≤ 1 hold. In the exam-
ple in Fig. 2(b),S(A1) = S(B1) = 2 − δ and
c(A1) = c(B1) = 1− δ.

In the discussion that follows, we refer to sub-
tasks as being “scheduled at” or “executing at”
some timet, wheret need not be integral. When
we say thatTi is scheduled att, we mean thatTi

commences execution att, i.e., S(Ti) = t holds.
On the other hand, if we say thatTi is executing
at t, then we mean thatt− 1 < S(Ti) ≤ t holds,
i.e., Ti is scheduled somewhere in the interval
(t − 1, t]. We henceforth assume that preemp-
tion and migration costs are zero. (Such costs
can be easily accounted for by inflating task exe-
cution costs appropriately [10].) We say that a
subtaskTi is ready at time t, if (i) e(Ti) ≤ t
holds, (ii) Ti has not been scheduled beforet,
and (iii) Ti’s predecessor, if any, completes ex-
ecution at or beforet. As noted earlier, the task
model remains the same under the DVQ model.
Therefore, the release time, eligibility time, and
deadline of each subtask are the same as their
corresponding values under the SFQ model, and
hence, remain integral. Also, the notion of aslot
is also unchanged: the term “slott” still refers to
the interval[t, t + 1) on the real time line.

Establishing bounded tardiness under the
DVQ model. In the process of making the
scheduler work-conserving, the DVQ model also
introduces “priority inversions,” which can lead
to deadline misses. Apriority inversion oc-
curs whenever a lower-priority subtask (or job)
executes, while a ready, higher-priority subtask
waits. Under such conditions, the waiting higher-
priority subtask is said to beblocked.

Fig. 2(b) shows that deadline misses are pos-
sible under PD2 in the DVQ model. Our goal is
to show that such misses are at most the maxi-

5

mum size of one quantum only. To avoid rea-
soning directly in the DVS model, which can be
quite cumbersome, and to leverage analysis tech-
niques and results presented previously for the
SFQ model, we establish the tardiness bound for
the DVQ model in the following four steps.
• We consider allocations in the DVQ model

when subtasks execute for a duration of1−δ
in the limit δ → 0, and thus reduce them to
allocations that conform to the SFQ model.
For example, in the limitδ → 0, the alloca-
tions in Fig. 2(b) reduce to those in Fig. 2(c).

• We then identify a scheduling algorithm that
makes the corresponding scheduling deci-
sions in the SFQ model. We will denote this
algorithm PDB (the ‘B’ stands forblocking).

• Next, we show that the tardiness of PD2 in
the DVQ model is bounded by the tardiness
of PDB in the SFQ model.

• Finally, we show that PDB ensures a tar-
diness bound of at most one quantum in
the SFQ model, which in turn establishes a
bound for PD2 in the DVQ model.

These four steps are elaborated on in the subsec-
tion that follows. In the rest of this paper, unless
otherwise mentioned, all references to PDB are
with respect to the SFQ model only. Also, for
brevity, we refer to PD2 invoked under the DVQ
model as PD2-DVQ; invocations under the SFQ
model shall simply be referred to as PD2.
3.1 Worst-case Scenario for PD2-DVQ

In this subsection, we devise algorithm PDB,
which represents a worst case for PD2-DVQ, as
far as subtask tardiness is concerned. Before pre-
senting the algorithm, we explain the priority in-
versions that are possible in PD2-DVQ in detail.
One type of priority inversion is exemplified in
Fig. 2(b). Here, allowing a new quantum to be-
gin at time2 − δ on both the processors leads to
B1 andC1 being scheduled at time2−δ. Because
B1 andC1 execute for an entire quantum, no pro-
cessor is available at time 2, when subtasksD2

andE2 become eligible. (Note thatD2 andE2

have an earlier deadline, and hence, a higher pri-
ority thanB1 andC1. B1 andC1 have deadlines
at time 6.) Therefore, at time 2,D2 andE2 are
blocked by lower-priority subtasksB1 andC1, re-
spectively. Their blocking time would be maxi-
mized, if subtasksA1 andF1 yield at time2− ε,
whereε is arbitrarily small. From this discussion,
we have the following.

A higher-priority subtaskTi may be
blocked for an entire quantum in the
first slott of its IS-window (which im-
plies thate(Ti) = t holds), if some pro-
cessor becomes available within slot
t − 1 (in (t − 1, t), just before the el-
igibility time of Ti), and the processor
is allocated to a lower-priority subtask.

If a subtask is blocked in this manner, then we
say that it iseligibility-blocked.

Another subtle priority inversion that is possi-
ble in PD2-DVQ is illustrated in Fig. 3(a). In this
example, subtasksD2 andF3, which are sched-
uled in slot 2, yield before the end of that slot and
the processors they executed upon are promptly
allocated to the highest priority subtasks that are
also eligible in the second slot, which areC2 and
A1. However, subtaskB1, also scheduled in slot
2, executes for an entire quantum, and hence,
processor 3 does not become available until time
3. At time 3, processor 3 is allocated to sub-
task D3, which has a higher priority thanB1’s
successorB2, under PD2. (ThoughB2 andD3

have equal deadlines,D3 has a higher priority by
PD2’s tie breaking rules.) In this example, the
deadline ofA1 is at time 30. Therefore,B2 has a
higher priority thanA1, and hence, suffers block-
ing at time 3 in this schedule. Also note thatB2

is eligible before time 3, but is constrained by
its predecessor not completing execution before
time 3. Thus, the blocking thatB2 suffers is dif-
ferent from the eligibility blocking described ear-
lier. HadF3 not yielded early, but executed until
the end of slot 2, then as shown in Fig. 3(b),B2

would have been scheduled at time 3 in the place

6

1/30

2/5

2/5

2/3

3/4

3/4

0 1 2 3 4 5

Proc. 2 Proc. 3 Intra−sporadic delay for E 3

F

E

D

C

B

0 1 2 3 4 5 0 1 2 3 4 5

(a) (b) (c)

0 1 2 3 4 5

(d)

Allocations on Proc. 1

A1

B1

B2

C1

C2

D1

D2

D3

E1

E2

E3

F1

F2

F3

Tasks

A
and weights

Figure 3. Illustration of the conditions under which a a subtask may bepredecessor blockedat time t under

PD2-DVQ. (a) SubtaskB2 is predecessor blocked at time 3 by subtaskA1. (b) B2 would not be blocked ifF3

does not yield before time 3, or(c) B1 yields early. However, ifB1 yields early, thenD2 is eligibility blockedat time

3. (d) A schedule for the same task set under PDB .

of A1, andA1’s execution would have been post-
poned to some later time. On the other hand, had
B1 yielded early, before time 3, as in Fig. 3(c),
thenB2 would have started executing beforeD3,
which is not eligible until time 3;D3 has a higher
priority than B2 under PD2, and hence, would
have been eligibility-blocked at time 3. Thus,
on the whole, in the scenario in inset (a),B2 is
blocked byA2 because a processor became avail-
able before its predecessor completed executing.
Thus, we have the following.

A subtaskTi may be blocked in a slott
that is not the first slot of its IS-window,
if Ti’s predecessor executes up to timet
on processorPk, some other processor
Pl becomes available before timet and
is allocated to a ready subtask with a
lower priority thanTi, and at timet, Pi

is allocated to a higher-priority subtask

Uj, wheree(Uj) = t.

We call this type of blocking by a subtask
in a slot that is not the first in its IS-window
predecessor blocking. Note that, in our example,
for B2 to be predecessor-blocked at timet,
it is necessary for the processorB1 executes
on to be unavailable until timet, and for
the higher-priority subtaskD3 to be released at
t. This observation can be generalized as follows.

Property PB: LetU denote the set of all subtasks
that are predecessor-blocked att in some sched-
uleS under PD2-DVQ. Then, there exist another
set of subtasksV and a set of processorsP such
that the following holds.

|P| ≥ |U| ∧ |V| ≥ |U| ∧ (∀P ∈ P :: P makes

a scheduling decision at timet in S) ∧
(∀Vk ∈ V :: e(Vk) = t ∧ S(t) = t) (8)

7

Property PB says that predecessor blocking can
occur only under specific circumstances; these
circumstances are exploited in the proof that es-
tablishes the tardiness bound of PD2-DVQ.

Algorithm PD B. Having given some insight
into the timing anomalies of PD2-DVQ, we now
explain algorithm PDB in detail. PDB is based on
PD2. In describing PDB, we use the precedence
operators≺, �, �, and� to indicate the rela-
tive priority between two subtasks with respect
to PD2, as follows: IfTi andUj are any two sub-
tasks, thenTi≺Uj (Ti�Uj) denotes that the prior-
ity of Ti is strictly greater (less) than that ofUj;
�(�) will be used if they may be equal. To indi-
cate the relative priority with respect to PDB we
use symbols@,v, A, andw.

As mentioned earlier, PDB mimics, in the SFQ
model, blockings that subtasks may be subjected
to under PD2-DVQ due to priority inversions;
hence, all times in this discussion are integral, un-
less stated otherwise. As described above, a sub-
taskTi may be blocked in slott if eithere(Ti) = t
holds orTi’s predecessorTh completes execution
at t. Therefore, at any timet, PDB partitions the
set of all subtasks that areready att, into three
disjoint subsetsEB, PB, andDB, based on sub-
task eligibility times, as follows.

EB(t) def= {Ti | e(Ti) = t} (9)

PB(t) def= {Ti | e(Ti) < t ∧ Ti

could be predecessor-blocked att} (10)

DB(t) def= {Ti | e(Ti) < t ∧ Ti /∈ P(t)} (11)

A subtask inEB(t) is not eligible untilt, and
hence, couldpotentiallybe eligibility-blocked at
t under PD2-DVQ, and a subtask inPB(t) could
potentiallybe predecessor-blocked.DB(t) is the
set of all subtasks that definitely do not block
at t. For an illustration of how ready subtasks
are classified at any timet, consider the PDB

schedule in Fig. 2(c). In this example, at time 2,
{B1, C1, D2, E2, F2} is the set of all subtasks that
are ready. Of these subtasks,D2, E2, and F2

are inEB(2), and the remaining are inDB(2).
In the schedule in Fig. 3(d), the set of subtasks

{A1, B2, C2, D3, E3} is ready at time 3. Of these
subtasks,D3 andE3 are inEB(3), andA1 andC2

are inDB(3). BecauseB1 executes until timet,
B2 cannot be scheduled at any time beforet, even
thoughe(B2) < t holds, and hence, is inPB(3).

Within each subset, subtasks are prioritized in
accordance with PD2 and are scheduled in this
order. Like PD2, PDB schedules at mostM sub-
tasks in every slot. The subtask chosen in each
scheduling decision is from one of the three sub-
sets and has the highest priority within that sub-
set. Subtasks inDB(t) are unconstrained by sub-
tasks in the other two subsets, and hence, do not
experience any blocking anywhere in time slott,
under PD2-DVQ. Therefore, under PDB, a sub-
taskTi in EB(t) or PB(t) cannot be scheduled
at t, if some subtaskUj in DB(t) has not yet
been scheduled att andUj≺Ti holds. However,
to mimic eligibility blocking, a subtaskUj from
DB(t) may be scheduled prior to a subtaskTi

from EB(t), even ifTi≺Uj holds.
To mimic predecessor blocking, PDB allows

a subtaskUj from DB(t) to be scheduled prior
to a subtaskVk in PB(t), even ifVk≺Uj holds.
However, for every suchVk blocked, by Property
PB, PDB ensures that a subtaskWl in EB(t) is
scheduled such thatWl�Vk holds. Note that be-
causeVk≺Uj holds, we also haveWl≺Uj. That
PD2-DVQ exhibits such behavior was stated ear-
lier in Property PB, and is proved formally later
in Lemma 1. We now give the priority rules for
PDB.

PDB priorities. Let EB(t, r), PB(t, r), and
DB(t, r) be equal toEB(t), PB(t), andDB(t)
as defined in (9), (10), and (11), respectively,
with the subtasks selected in the firstr − 1
scheduling decisions for time slott removed.
p = |PB(t)| denotes the number of subtasks that
could potentially be predecessor-blocked att un-
der PD2-DVQ, and hence, denotes the maximum
number of processors that subtasks inPB(t)
could contend for. Therefore, the remaining
M − p processors can be freely allocated to sub-
tasks inEB(t) andDB(t), and hence, a subtask

8

in PB(t) may be assigned a lower priority in the
first M − p scheduling decisions than every sub-
task that is not inPB(t). Recall that, by Prop-
erty PB,p is also the minimum number of pro-
cessors (i.e., there are at leastp processors) that
make scheduling decisions at timet under the
DVQ model. Furthermore, in that model, sub-
tasks inPB(t) andEB(t) are ready during these
decisions, and hence, at leastp highest-priority
subtasks cannot be blocked at timet. To mimic
this correctly, scheduling is strictly by PD2 dur-
ing the finalp scheduling decisions (or the final
p processors) under PDB. Referring back to the
example in Fig. 4(a),B2 is predecessor-blocked
at time 3 because its predecessor executed until
time 3 on processor 3; hence, a scheduling deci-
sion is made at time 3 for that processor, during
which B2 is ready. SubtasksD3 andE3, which
are inEB(3), are also ready at time 3. The sub-
task with the highest priority among the unsched-
uled ready tasks,D3, is scheduled at time 3.

Thus, the relative priority between subtasksTi

andUj at timet depends on the sets the subtasks
belong to and the number of the scheduling deci-
sion, and is given by Table 1. Rows and columns
in the table indicate the sets thatTi andUj be-
long to, respectively. Entries in the cells indicate
the conditions under whichTivUj holds (the pri-
ority of Ti is at least that ofUj), for scheduling
decisionr, where1 ≤ r ≤ M , at timet. Ti@Uj

would hold iff TivUj ∧ Uj 6vTi holds. Similarly,
TiAUj would hold iff Ti 6vUj ∧ UjvTi holds. (In
the table entries,� is with respect to PD2.)

As mentioned earlier, subtasks within each
subset are scheduled by their PD2 priority; the
entries along the main diagonal confirm this. Re-
call that a subtask inDB(t) cannot be blocked
and note that the entries in the last row and col-
umn of the table ensure this. Eligibility block-
ing is mimicked by not giving a higher priority
to subtasks inEB(t) than a subtask inDB(t) in
the firstM−p scheduling decisions regardless of
their PD2 priorities. For example, ifr ≤ M − p,
Ti ∈ EB(t, r), Uj ∈ DB(t, r), andTi≺Uj holds,

Table 1. PDB priority definition.

Conditions forTivUj to hold,
for scheduling decisionr, where1 ≤ r ≤ M , at t.

Uj

Ti EB(t, r) PB(t, r) DB(t, r)
EB(t, r) Ti�Uj Ti�Uj ∨ Ti�Uj

r ≤ M − p
PB(t, r) Ti�Uj ∧ Ti�Uj Ti�Uj ∧

r > M − p r > M − p
DB(t, r) Ti�Uj ∨ Ti�Uj ∨ Ti�Uj

r ≤ M − p r ≤ M − p

then by Table 1, bothTivUj andUjvTi hold for
the rth scheduling decision. So, ifUj is sched-
uled beforeTi, thenTi may be blocked (if it does
not get selected in a later scheduling decision for
t). On the other hand, ifUj≺Ti holds, then only
UjvTi will hold, to ensure that a subtask with
a lower priority in EB(t) does not get sched-
uled before a higher-priority subtask inDB(t).
However, if Ti≺Uj andr > M − p hold, then
only TivUj will hold. This ensures that the final
p scheduling decisions are by PD2, as explained
earlier.

We claim the following before elaborating on
how predecessor blocking is mimicked.
Claim 1 LetTi ∈ DB(t, r), Uj ∈ PB(t, r), and
let Uj≺Ti hold. Let Ti be the subtask that is
scheduled under PDB in scheduling decisionr
for slot t, wherer ≤ M − p. Then, the following
holds: (∀Vk ∈ DB(t, s), r < s ≤ M :: Uj≺Vk).

Proof: Because subtasks inDB(t) are scheduled
by their PD2 priority, Ti�Vk holds, withVk as
defined in the claim. Therefore, becauseUj≺Ti

holds,Uj≺Vk holds, as well. 2

Claim 2 LetTi ∈ EB(t, r), Uj ∈ PB(t, r), and
let Uj≺Ti hold. Let Ti be the subtask that is
scheduled under PDB in scheduling decisionr
for slot t, wherer ≤ M − p. Then, the follow-
ing holds: (∀Vk ∈ DB(t, s) ∪ EB(t, s), r < s ≤
M :: Uj≺Vk).

Proof: Similar to the proof of Claim 1. �

9

Predecessor blocking is mimicked by exclud-
ing thep subtasks inPB(t) in the initial M − p
scheduling decisions, as given by the entries in
the middle row and column. This gives an op-
portunity for a subtaskTi in DB(t) with a lower
priority than the lowest-priority subtaskUj in
PB(t) to be scheduled. The finalp decisions are
in strict PD2 order among the remaining unsched-
uled subtasks. Therefore, if one or more subtasks
in EB(t) have higher priority thanUj, thenUj

will experience blocking. By Claim 1, no sub-
task remaining inDB(t) will have higher prior-
ity thanTi, and henceUj, in the finalp schedul-
ing decisions. By Claim 2, if a subtask inEB(t)
with a lower priority thanUj is scheduled in the
initial M − p scheduling decisions, then no sub-
task remaining inEB(t) or DB(t) would have
higher priority thanUj, and hence, any subtask in
PB(t), during the finalp scheduling decisions.

We now formally prove Property PB.

Lemma 1 LetS be a schedule under PD2-DVQ
for a task systemτ . LetTi be a subtask,U , a set
of subtasks inτ , andt, an integral time, such that
the following hold.

e(Ti) ≤ t− 1 (12)

(∀Uj ∈ U :: e(Uj) ≤ t− 1 ∧
Uj is ready at or beforet) (13)

(∀Uj ∈ U :: Uj≺Ti) (14)

Ti is executing att (15)

(∀Uj ∈ U :: S(Uj) > t) (16)

Then, each of the following holds.

(a) (∀Uj ∈ U :: the predecessor ofUj exists and does
not complete executing until timet, i.e., Uj is not
ready untilt).

(b) There exists a setV of subtasks such that|V| ≥
|U|, (∀Vk ∈ V :: e(Vk) = t ∧ S(Vk) = t ∧
(∀Vk ∈ V, Uj ∈ U :: Vk�Uj) hold.

Proof: BecauseS is a PD2-DVQ schedule, not
all times referred to in this proof are integral. Let
tr be the time at whichTi is scheduled inS, i.e.,
S(Ti) = tr. Then, by (15),t− 1 < tr ≤ t holds.

This implies that no subtask that is ready in
(t − 1, tr] and is not scheduled attr has a higher
priority thanTi, i.e., we have

(∀Wl :: Wl is ready attr ∧ S(Wl) > tr ⇒ Ti�Wl).
(17)

Proof of (a): Let Uj be any subtask inU , andUb

its predecessor. By (13) and (16),Uj is ready
by time t. Therefore, becauseUj≺Ti holds,
PD2-DVQ would not preferTi to Uj at time t.
Hence,

t− 1 < tr < t (18)

holds, i.e., Ti is scheduled in the middle of slot
t − 1 (recall thatt is an integer), andUj is not
ready attr. Becausee(Uj) ≤ t − 1 holds, this
implies thatUj is not ready at timetr, due toUb

executing attr. We claim the following.
Claim 3 For every subtaskWl that is ready at or
before timets, wherets < t, and is not scheduled
beforet, Ti�Wl holds.

Proof: By (17), for every subtaskWl that is ready
at or before timetr, and is not scheduled before
tr, Ti�Wl holds.

By (18), and since the eligibility time of a
subtask is integral, every subtask that becomes
ready atts, where tr < ts < t, does so be-
cause its predecessor completes execution atts.
Let t1, t2, · · · , tn, wheretr < t1, tn < t, and
tk < tk+1, for all 1 ≤ k < n, denote all the
distinct times at which one or more subtasks be-
come ready in(tr, t). Let tn+1 = t. Then, to
establish the claim, it is sufficient to show that
for every subtaskWl that is ready before timetk,
i.e., is ready in[0, tk), and is not scheduled before
tk, Ti�Wl holds, for allk, where1 ≤ k ≤ n + 1.
We show this by induction onk.

By the way we definedt1 · · · tn+1, no subtask
that is not ready attr is ready in(tr, t1). Hence,
by (17), for every subtaskWl that is ready before
t1 and is not scheduled beforet1, Ti�Wl holds.
Thus,k = 1 forms the base case. LetW denote
the set of all subtasks that are ready beforetk and
are not scheduled beforetk, where1 ≤ k ≤ n.
For the induction hypothesis, assume that for ev-
ery subtaskWl in W, Ti�Wl holds.

10

We next show thatTi�Rq holds for every sub-
task Rq that becomes ready before timetk+1

and is not scheduled beforetk+1.If Rq in fact
becomes ready beforetk, then Ti�Rq follows
by the induction hypothesis. Otherwise,Rq be-
comes ready attk, the only time in the inter-
val [tk, tk+1) that some subtask becomes ready.
LetR denote the set of all subtasks that become
ready attk, and letm = |R|. Because the pre-
decessors of subtasks inR complete execution
at time tk, the m ≤ M processors on which
they executed become available attk, for which
PD2-DVQ makes scheduling decisions at timetk.
Thus, becauseRq (which is inR) is not sched-
uled attk, some other subtask that is ready be-
fore tk, and not scheduled beforetk, i.e., a sub-
taskWl ∈ W, is scheduled instead, which in turn
implies thatWl�Rq holds. By the induction hy-
pothesis,Ti�Wl holds, from whichTi�Rq fol-
lows. 2

By the claim above, and (14) and (16), it fol-
lows thatUj is not ready until timet.
Proof of (b): Let u = |U|, and letUj be the sub-
task with the highest priority inU . By part (a),
Uj is ready only at timet. By Claim 3,Ti�Xm

holds for every subtaskXm that is ready before
t and remains unscheduled until timet. Because
the predecessors of subtasks inU complete exe-
cuting at timet, u processors become available
at t. Let m denote the number of subtasks that
become ready att, have their predecessors exe-
cuting untilt, and are not inU . That is, let

m = |{Wl | The predecessor ofWl completes

executing att ∧ Wl /∈ U}|. (19)

Then, at leastu+m processors become available
at t, for which scheduling decisions are made at
time t. Therefore, ifUj is not scheduled at timet,
then by (14) and Claim 3, it implies that at least
u+m subtasks with priority at least that ofUj that
are not ready until timet are scheduled att. LetV
denote the set of all such subtasks. Then, by (19),
only m subtasks inV can have their predecessors
executing untilt. Hence, at leastu subtasks inV
are not ready untilt because they are not eligible

until t. �

Following is the counterpart of the above
lemma for PDB, proved in [9].

Lemma 2 LetS be a schedule under PDB for a
task systemτ . Let Ti be a subtask inτ , U , a set
of subtasks inτ , andt, an integral time, such that
the following hold.

e(Ti) ≤ t− 1 (20)

(∀Uj ∈ U :: e(Uj) ≤ t− 1 ∧
Uj is ready at or beforet) (21)

(∀Uj ∈ U :: Uj≺Ti) (22)

S(Ti) = t (23)

(∀Uj ∈ U :: S(Uj) > t) (24)

Then, we have the following: There exists a setV
of subtasks such that|V| ≥ |U| and (∀Vk ∈ V ::
e(Vk) = t ∧ S(Vk) = t ∧ (∀Vk ∈ V, Uj ∈ U ::
Vk�Uj) hold, andTi is scheduled in slott before ev-
ery subtask inV.

3.2 Tardiness Bound for PD2-DVQ

We now turn to showing that PDB represents
a worst case for PD2-DVQ. Towards this end,
we would like to show that the tardiness of ev-
ery feasible GIS task systemτ under PD2-DVQ
is at most the tardiness of some feasible GIS
task systemτ ′ under PDB. However, since
we later show that tardiness under PDB is at
most one quantum, it would suffice to show that
the tardiness ofτ under PD2-DVQ is at most
the ceiling of the tardiness ofτ ′ under PDB,
i.e., (∀τ : (∃τ ′ : tardiness(τ, PD2-DVQ) ≤
dtardiness(τ ′, PDB)e)) holds.

Let SDQ denote a schedule for some feasible
task systemτ under PD2-DVQ. Then, to estab-
lish our claim, it is sufficient to show that there
exists a corresponding valid schedule under PDB,
SB, for some task systemτ ′, such that the tardi-
ness of every subtask inSDQ is at most the ceiling
of that of some subtask inSB.

We begin by introducing some notation. Let
All denote the set of all subtasks inτ , Aligned ,
the subset of all subtasks inAll that commence

11

a c e g kb d f l

}

h, i, and j

0 1 2 3 4 5 6Slot
0 1 2 3 4 5 6 7Time

(b)

a b d lke g

0 1 2 3 4 5 6Slot
0 1 2 3 4 5 6 7Time

(a)

Aligned = {a,b,d,g}

Olapped = {e,k,l}

Free = {f,h,i,j}

Figure 4. (a) A partial schedule under PD2-DVQ on

a single processor. Each rectangular box represents

the execution of a subtask. For clarity, successive

subtasks are shown in alternate shades; no other re-

lation is implied by the shading. Subtasks in subsets

Aligned , Olapped , andFree are as indicated.(b)

An equivalent schedule for subtasks inAligned and

Olapped under the SFSQ model.

executing on a slot boundary (i.e., at some inte-
gral timet), andOlapped , the subset of all sub-
tasks thatneither commencenor complete exe-
cuting on a slot boundary but are in the middle of
execution at a slot boundary, inSDQ. Note that
subsetsAligned andOlapped are disjoint. For-
mal definitions are given below.

All = {Ti | Ti is a subtask inτ}
Aligned = {Ti | Ti ∈ All ∧ SDQ(Ti) is integral}
Olapped = {Ti | Ti ∈ All ∧ SDQ(Ti) is not integral

∧ (SDQ(Ti) + c(Ti)) is not integral

∧ SDQ(Ti) + c(Ti) = bSDQ(Ti)c+ 1}

We also define two other subsets:

Charged = Aligned ∪ Olapped
Free = All \ Charged

An example of this classification of subtasks is
shown in Fig. 4(a).

We next consider a task systemτ ′ comprised of
subtasks inCharged only, and construct a sched-
ule SB for τ ′ as follows. The actual execution
costc(Ti) of every subtaskTi in τ ′ remains the

same as inτ . Let the time at whichTi commences
its execution inSB beSDQ(Ti), if SDQ(Ti) is in-
tegral. Otherwise, postpone its commencement
time to the beginning of the next slot,i.e., to
dSDQ(Ti)e. In other words, defineSB as follows.

(∀Ti : Ti ∈ Aligned :: SB(Ti) = SDQ(Ti))
(∀Ti : Ti ∈ Olapped :: SB(Ti) = dSDQ(Ti)e)

The schedule so constructed for the subtasks in
Charged in Fig. 4(a) is shown in Fig. 4(b).

This construction ensures the following.
Lemma 3 The commencement time and comple-
tion time for every subtask inτ ′ in SB are at least
their respective values inSDQ.

We now prove the following lemma concern-
ing the tardiness of every subtask inτ in SDQ.

Lemma 4 Let Ti be some subtask inτ . Then
tardiness(Ti,SDQ) ≤ dtardiness(Uj,SB)e,
whereUj is some subtask inτ ′.

Proof: We consider two cases based on whether
Ti is in Charged or Free. If Ti is in Charged ,
then by Lemma 3, its completion time in
SDQ is at most its completion time inSB,
which, by (7), implies thattardiness(Ti,SDQ) ≤
tardiness(Ti,SB). Therefore, the lemma holds if
Ti is in Charged .

If Ti is in Free, then it should be scheduled in
the middle of some slott in SDQ, as shown in
Fig. 5. Let the completion time ofTi be t + δ,
where0 < δ ≤ 1. Let Uj be the subtask that
was executing at timet on the same processor in
the same schedule. Therefore,Uj is in Charged
(by the definition ofCharged). Hence, we have
SDQ(Uj) ≤ t, and let its completion time bet+ε.
BecauseTi executes afterUj on the same proces-
sor, we have0 < ε < δ. We consider two cases.
Case 1: Uj�Ti. In this case, we haved(Ti) ≥
d(Uj). Hence, by (7), the tardiness ofTi in SDQ

is given by

tardiness(Ti,SDQ)
= max(0, t + δ − d(Ti))
≤ max(0, t + δ − d(Uj)) ; d(Ti) ≥ d(Uj)
≤ max(0, t− d(Uj) + dδe)

12

t−1 t t+1 t+2t+ε t+δ

Uj iT

Figure 5. Lemma 4.Ti andUj are scheduled on the

same processor at the times indicated inSDQ. Ti is

in Free andUj is in Charged (and hence, inτ ′). We

determine the tardiness ofTi in SDQ in terms of the

tardiness ofUj in S ′
B .

= max(0, t− d(Uj) + dεe) ; 0 < δ, ε < 1
= max(0, dt + ε− d(Uj)e)
= dtardiness(Uj ,SDQ)e.

Therefore, the tardiness ofTi is at most the ceil-
ing of the tardiness ofUj in SDQ. BecauseUj is
in Charged , its tardiness inSB is at least its tar-
diness inSDQ, and hence, the tardiness ofTi in
SDQ is at most the ceiling of the tardiness ofUj

in SB.
Case 2:Ti≺Uj. The proof of this case is similar
to that of Case 1, and is omitted here due to page
limitations. �

We are left with showing thatSB is a valid
schedule forτ ′ under PDB. The following
lemma, proved in [9], shows that this is the case.
The lemma follows becauseSDQ is a valid sched-
ule for PD2-DVQ, and because PDB ’s priority
definition is designed to allow the blockings that
occur under PD2-DVQ.
Lemma 5 SB is a valid schedule forτ ′ under
PDB.

Thus, by our definition ofSDQ, the construc-
tion of SB, and Lemmas 5 and 4, we have the
following theorem.

Theorem 1 The tardiness of every feasible GIS
task system under PD2-DVQ is at most the ceil-
ing of the tardiness of some feasible task system
under PDB.

3.3 Tardiness Bound for PDB

In this subsection, we show that PDB ensures
a tardiness bound of one quantum for every fea-
sible GIS task system. To prove this result, let

τB be any feasible GIS task system, and letτ be
a corresponding task system obtained by shift-
ing the IS-window of every subtask inτB right
by one time slot. In other words, for every sub-
taskTi in τB, τ includes a subtaskT ′

i such that
e(T ′

i) = e(Ti) + 1, r(T ′
i) = r(Ti) + 1, and

d(T ′
i) = d(Ti) + 1. Let SB be a schedule un-

der PDB for τB, andS, a schedule under PD2

for τ . Then, because PD2 is optimal, no subtask
in τ misses its deadline inS, and ifS is viewed
as a schedule forτB, in which Ti is scheduled
in the place ofT ′

i , then no subtask inτB misses
its deadline by more than one quantum inS. S
would differ fromSB because subtasks are eligi-
ble one time slot earlier inτB, and hence, may be
scheduled earlier inSB, perhaps displacing other
subtasks in the process. Therefore, to prove that
PDB generates a “valid” schedule that ensures a
tardiness of at most one quantum for every sub-
task, it is sufficient to prove that no subtask in
τ misses its deadline under PDB, if the eligibil-
ity time of each subtask is decreased by one,i.e.,
e(T ′

i) = e(Ti) holds for every subtaskT ′
i in τ .

For this, we systematically convertS to SB by
decreasing the eligibility time of exactly one sub-
task at a time, scheduling it in accordance with
SB, and showing that the intermediate schedules
in this process remain valid. A schedule for a
task systemσ is said to bevalid in time slott if
(i) each subtaskTi in σ is scheduled in some slot
in the interval[e(Ti), d(Ti)), (ii) no two subtasks
of the same task are scheduled in slott, and(iii)
the number of subtasks scheduled att is at most
M . A schedule isvalid iff it is valid in every slot.

We first define an irreflexive total order on the
subtasks inτB by the sequence in which they
are scheduled inSB by PDB. (Subtasks that are
scheduled in the same slot are ordered by the
order in which they are selected for that slot.)
Let rank(Ti) denote the position of subtaskTi

in this total order. We then say thatτ̂ is k- com-
pliant to τB if the following hold: (i) there ex-
ists a bijective (one-to-one and onto) mapping
from subtasks inτB to subtasks in̂τ , (ii) for ev-
ery subtaskVk in τB, d(V ′

k) = d(Vk) + 1 and

13

r(V ′
k) = r(Vk)+1 hold for its imageV ′

k in τ̂ , (iii)
for every subtaskTi with rank at mostk in τB,
e(T ′

i) = e(Ti) holds for its imageT ′
i in τ̂ , (iv) for

every subtaskUj with rank greater thank in τB,
e(U ′

j) = e(Uj) + 1 holds for its imageU ′
j in τ̂ .

Fig. 6 shows an example. In this example, letting
τB be the task system in inset (a), inset (a) de-
picts a PDB schedule forτB. (The schedule has
been repeated twice for ease of comparison with
the schedules in insets (b) and (c).) In the task
system in inset (b), every subtask inτB is right-
shifted by one slot. Note that in inset (a), subtask
F2 misses its deadline by one quantum. However,
subtaskF ′

2 meets its deadline in the PD2 schedule
in inset (b) In the task system in inset (c), sub-
tasks with ranks 1 through 4 have their eligibility
times advanced by one time slot. The task system
here is4-compliant toτB.

ScheduleŜ for τ̂ is said to bek-compliant to
SB if (i) Ŝ is valid, (ii) for every subtask with
rank at mostk, T ′

i and Ti are scheduled in the
same slot inŜ andSB, respectively, and(iii) sub-
tasks with rank greater thank are scheduled ac-
cording to PD2 in Ŝ. The schedules in Fig. 6(b)
and (c) are 0-compliant and 4-compliant, respec-
tively, to the schedule in inset (a).

Let n denote the number of subtasks inτB. To
show that PDB ensures a tardiness of at most one
quantum toτB, we show that there exist a task
systemτ ′ and a scheduleS ′ for τ ′ that aren-
compliant toτB andSB, respectively, by induc-
tion on k-compliance. As explained earlier, the
task systemτ derived fromτB by right shifting
each subtask inτB by one slot is 0-compliant to
τB and the PD2 scheduleS for τ is 0-compliant
to SB. Thus,k = 0 forms the base case. For
the induction hypothesis, assume that there ex-
ists a task systemτ k, which isk compliant toτB,
and a scheduleSk for τ k, which isk-compliant to
SB, wherek ≥ 0. We then show that a(k + 1)-
compliant task system and schedule exist.

Lemma 6 There exist a task systemτ k+1 that is
(k +1)-compliant toτB, and a scheduleSk+1 for
τ k+1 that is(k + 1)-compliant toSB.

B

C

A

F

E

D

1/6

1/6

1/6

1/2

1/2

1/2

1/6

1/6

1/6

1/2

1/2

1/2

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7

(a)

(b) (c)

B

C

F

E

D

A’

’

’

’

’

’

deadline
miss

F2

F2
’ F2’

Figure 6. (a) A PDB scheduleSB for a task system

τB comprised of three tasks of weight1/6 each and

three other tasks of weight1/2 each. The ranks of

the subtasks inτB underSB are as indicated.(b) A

PD2 scheduleS for τ obtained fromτB by shifting

the IS-window of each subtask right by one slot.τ is

0-compliant toτB andS is 0-compliant toSB . (c)

A task systemτ ′ that is 4-compliant toτB , and a

schedule forτ ′ that is 4-compliant toSB .

The proof of this lemma is somewhat tedious and
is available in an appendix.

By our definition ofSB andk-compliance, and
Lemma 6, we have the following theorem.

Theorem 2 PDB ensures a tardiness of at most
one quantum to every feasible GIS task system.

Theorems 1 and 2 imply the following.

14

Theorem 3 PD2 under the DVQ model ensures
a tardiness of at most one quantum to every fea-
sible GIS task system.

4 Conclusion

We have addressed a limitation of Pfair
scheduling that requires processor allocations to
be in units of fixed-sized quanta and have de-
termined that relaxing this requirement worsens
the tardiness of Pfair algorithms by less than one
quantum only. This result enables the use of a re-
laxed Pfair scheduling model for providing both
hard and soft real-time guarantees, and thereby,
improves the practicality of Pfair scheduling. As
future work, we plan on investigating the impact
of relaxing another limitation of Pfair scheduling,
that which requires the execution cost of each
task to be expressed as an integral multiple of the
maximum size of a quantum.

References

[1] J. Anderson and A. Srinivasan. Early-release fair
scheduling. InProc. of the 12th Euromicro Confer-
ence on Real-time Systems, pages 35–43, June 2000.

[2] J. Anderson and A. Srinivasan. Pfair scheduling: Be-
yond periodic task systems. InProc. of the 7th In-
ternational Conference on Real-time Computing Sys-
tems and Applications, pages 297–306, Dec. 2000.

[3] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair
scheduling of asynchronous periodic tasks.Journal
of Computer and System Sciences, 68(1):157–204,
2004.

[4] B. Andersson and J. Jonsson. The utilization bounds
of partitioned and pfair static-priority scheduling on
multiprocessors are 50%. InProc. of the 15th Eu-
romicro Conference on Real-time Systems, pages 33–
40, July 2003.

[5] S. Baruah. Optimal utilization bounds for the fixed-
priority scheduling of periodic task systems on iden-
tical multiprocessors.IEEE Transactions on Comput-
ers. To appear.

[6] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel.
Proportionate progress: A notion of fairness in re-
source allocation.Algorithmica, 15:600–625, 1996.

[7] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast
scheduling of periodic tasks on multiple resources.
In Proc. of the 9th International Parallel Processing
Symposium, pages 280–288, Apr. 1995.

[8] A. Chandra, M. Adler, and P. Shenoy. Deadline fair
scheduling: Bridging the theory and practice of pro-
portionate fair scheduling in multiprocessor systems.
In Proc. of the 7th IEEE Real-time Technology and
Applications Symposium, pages 3–14, June 2001.

[9] U. Devi and J. Anderson. Desynchro-
nized Pfair scheduling on multiproces-
sors(extended version). Available at
http://www.cs.unc.edu/˜ anderson/papers.html,
October 2004.

[10] P. Holman.On the Implementation of Pfair Scheduled
Multiprocessor Systems. PhD thesis, University of
North Carolina at Chapel Hill, Aug. 2004.

[11] P. Holman and J. Anderson. Implementing pfairness
on a symmetric multiprocessor. InProc. of the 10th
IEEE Real-time Technology and Applications Sympo-
sium, pages 544–553, May 2004.

[12] C.L. Liu and J.W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environ-
ment.Journal of the Association for Computing Ma-
chinery, 20(1):46–61, 1973.

[13] J.M. Lopez, M. Garcia, J.L. Diaz, and D.F. Garcia.
Worst-case utilization bound for EDF scheduling on
real-time multiprocessor systems. InProc. of the 12th
Euromicro Conference on Real-time Systems, pages
25–34, June 2000.

[14] A. Srinivasan and J. Anderson. Optimal rate-based
scheduling on multiprocessors. InProc. of the 34th
ACM Symposium on Theory of Computing, pages
189–198, May 2002.

Appendix: Proof of Lemma 6

Lemma 6 There exist a task systemτ k+1 that is
(k +1)-compliant toτB, and a scheduleSk+1 for
τ k+1 that is(k + 1)-compliant toSB.
Proof: (In this proof, we let the eligibility time
function take a task system as a second parame-
ter. Hence,e(Ti, τ

k) gives the eligibility time of
Ti in τ k. If the task system under consideration is
unambiguous from the context, then the second
parameter will not be used.)

For each subtaskTi in τB, its image inτ k is
calledT ′

i . If h > 0 processors are idle in slott in

15

a schedule, then we say that there areh holesin t
in that schedule.

LetTi be the subtask with rankk+1 in the total
order described above, and letTi be scheduled at
time t in SB, i.e., let

SB(Ti) = t. (25)

Let τ k+1 be the task system obtained fromτ k

by decreasing the eligibility time ofT ′
i to e(Ti).

Therefore, we have the following.

e(T ′
i , τ

k) = e(Ti) + 1 ∧ e(T ′
i , τ

k+1) = e(Ti) (26)

Then,τ k+1 is (k + 1)-compliant toτB. If T ′
i is

scheduled att in Sk, then takeSk+1 to beSk. Oth-
erwise, let

Sk(T ′
i) = t′. (27)

Let Th denote the predecessor ofTi, if one ex-
ists. Then, we haveSB(Th) < t, and hence,
rank(Th) < k + 1 holds. Therefore, because
τ k andSk arek-compliant, we have

Sk(T ′
h) = SB(Th) < t. (28)

We first claim the following.

Claim 4 t′ > t.

Proof: The proof is quite simple, but omitted due
to space constraints.

We next claim the following.

Claim 5 There either is a hole int in Sk or there
exists a subtaskU ′

j scheduled att in Sk such that
e(U ′

j) ≤ t ∧ T ′
i�U ′

j holds, andUj is not scheduled
at t in SB.

Proof: Contrary to the claim, assume that there is no
hole int in Sk and that for every subtaskV ′

k scheduled
at t in Sk such thatVk is not scheduled att in SB,
V ′

k≺T ′
i holds. LetU ′

j be one such subtask. Then, the
following holds.

Sk(U ′
j) = t ∧ SB(Uj) 6= t ∧ Uj≺Ti ∧ U ′

j≺T ′
i (29)

BecauseUj and U ′
j are scheduled in different slots

in their respective schedules,rank(Uj) > k + 1
holds. Therefore, becauseτk+1 is (k + 1)-compliant,
e(U ′

j) = e(Uj) + 1 holds. BecauseSk(U ′
j) = t holds,

...

T i

Vm

...

...

subtasks in

subtasks in

set U

set V

...

...

subtasks in

set V

subtasks in
set U

t

T i

Uj

S B

S k

...

T i’

Uj’

(a) (b)

t

T i’

Uj’

Uj

...

Vm

...

’

k

k

Figure 7. Lemma 5. rank(Uj) > k + 1 holds.

Thus,e(U ′
j) = e(Uj) + 1. An arrow over a window

end point indicates that the end point could extend in

that direction.(a) Case 1.Ti ∈ EB(t). Hence,Ti

cannot block a higher-priority subtask. Hence, ifUj

exists, PDB would schedule it prior toTi. (b) Case

2. In this case, subtasks in setV, which are inEB(t)
are scheduled att in SB , while their images inτk

are not scheduled att in Sk. For each subtaskVm

in V, e(V ′
m) = e(Vm) + 1 holds. Subtasks in setU

are scheduled att in Sk, and|V| ≥ |U| holds. Thus,

there should exist at least one a subtaskWl such that

SB(Wl) 6= t ∧ Sk(W ′
l) = t ∧ Ti � Wl holds.

e(U ′
j) ≤ t, and hence,e(Uj) ≤ t− 1 holds. This can

be generalized as follows.

(∀Uj : SB(Uj) 6= t ∧ Sk(U ′
j) = t ::

e(U ′
j) ≤ t ∧ e(Uj) ≤ t− 1) (30)

Therefore,Uj is either inDB(t) or PB(t) in SB. By

16

the the priority definition of PDB in Table 1, a subtask
in DB(t) is not blocked in slott under PDB. There-
fore, if Uj ∈ DB(t) in SB, thenUj≺Ti cannot hold,
which contradicts (29). Hence,Uj ∈ PB(t). Because
Ti is scheduled att in SB, e(Ti) ≤ t holds. We con-
sider two cases.
Case 1:e(T ′

i , τk+1) = e(Ti) = t. This case is il-
lustrated in Fig. 7(a). In this case,Ti is in EB(t) in
SB. Let p denote the number of subtasks in|PB(t)|
before any scheduling decisions are made for slott.
SinceUj is in PB(t), by the priority definition of
PDB in Table 1,TivUj can hold only in the firstM−p
scheduling decision. Hence,Ti is scheduled in one
of the firstM − p scheduling decisions fort in SB.
Thus, by Claim 2, no subtask that remains inEB(t) or
DB(t) during the lastp scheduling decisions for the
same slot can have a higher priority thanUj . Hence,
PDB would have scheduledUj in t in one of the final
p scheduling decisions, contradicting (29).
Case 2: e(T ′

i , τk+1) = e(Ti) < t. This case is
illustrated in Fig. 7(b). LetU denote the set of all
subtasks that are eligible beforet, ready att, are not
scheduled att in SB, and have a higher priority than
Ti. Then, by Lemma 2, there exists a setV of subtasks
that are inEB(t) in SB such that

|V| ≥ |U| (31)

holds and every subtask inV is scheduled att in SB

and has equal or a higher priority than every subtask
in U . By the same lemma,Ti is scheduled in slott
before every subtask inV. Therefore, the rank of ev-
ery subtask inV is greater than that ofT , i.e., exceeds
k + 1. That is, we haveU andV as follows.

U = {Uj | e(Uj) ≤ t− 1 ∧ Uj is ready att in SB

∧ SB(Uj) > t ∧ Uj≺Ti} (32)

V = {Vk | e(Vk) = t ∧ rank(Vk) > k + 1 ∧
SB(Vk) = t ∧ (∀Uj ∈ U : Vk�Uj)} (33)

Let Vk be any subtask inV. Then, because
rank(Vk) > k + 1 ande(Vk) = t hold, andτk is
(k + 1)-compliant toτB, e(V ′

k, τk+1) = e(Vk) + 1 =
t + 1 holds. Therefore, no subtask inV is scheduled
in slot t in Sk.

Let T B andT k denote the set of all subtasks that
are scheduled att in SB andSk, respectively. LetUk

denote the set of all subtasksU ′
j in τk, whereUj is

in U . (Uk is the set of the images of subtasks inU .)
We next define a one-to-one mapping from subtasks
in T B to those inT k. Because there is no hole int
in Sk, such a mapping is possible. Let the preimage
of every subtask inUk that is inT k, be a subtask in
V. (If a′ is the image ofa under some mapping, then
a is the preimage ofa′.) By (31), such a mapping is
possible. Note that, by (32), no subtask inU is in T B,
and by (33), every subtask inV is in T B. Fig. 7(b)
shows an example. Apart from subtasks inV, at least
subtaskTi is in T B. Because every subtask inUk that
is in T k is the image of some subtask inV, it follows
thatTi should be mapped onto a subtaskW ′

l that is not
in Uk such thatSBWl > t holds. (SBWl > t holds
becauseSk is k-compliant.) Therefore,rank(Wl) >

k +1, and hence,e(W ′
l) = e(Wl)+1 holds. Because

Sk(W ′
l) = t holds, we havee(Wl) ≤ t−1. Therefore,

sinceWl is not inU , by (32), we haveTi�Wl. 2

By Claim 5, (27), Claim 4, and (26) one of the
following holds.

(C1) There is a hole att in Sk.

(C2) e(T ′
i , τ

k+1) = e(Ti) < t holds and a sub-
taskU ′

j with the same priority asT ′
i under

PD2 is scheduled att in Sk, but Uj is not
scheduled att in SB. (Claim 5 actually
implies thatT ′

i � U ′
j holds. However, by

(26), e(T ′
i , τ

k) ≤ t holds, and by (28),T ′
h

is scheduled beforet in Sk. Therefore, if
T ′

i � U ′
j holds, then PD2 would schedule

T ′
i at t in Sk, in preference toU ′

j.)

(C3) e(T ′
i) = e(Ti) = t holds and a subtaskU ′

j

such thatT ′
i�U ′

j holds is scheduled att in
Sk, butUj is not scheduled att in SB.

If there is a hole in slott in Sk, then we can easily
scheduleT ′

i in Sk and the resulting schedule will
be(k + 1)-compliant. Note that becauseSk is k-
compliant,Ti’s predecessor is guaranteed not to
be scheduled att in Sk. Therefore, for the rest of
this proof, assume that there is no hole int in Sk.

We next show that we can constructSk+1 from
Sk, by movingT ′

i into slot t andU ′
j (defined in

(C2) or (C3)) out. Because there are no holes in
t in Sk, we have the following.

17

(H) There are no holes int in Sk+1.
Letρ denote the set of all subtasks inτ k+1 with

rank higher thank. LetS ′
k andS ′

k+1 be the sched-
ules for ρ obtained fromSk and Sk+1, respec-
tively, by removing all subtasks not inρ (i.e., sub-
tasks with rank at mostk) and letting the remain-
ing subtasks be scheduled in the same slots as in
Sk andSk+1. Then, becauseSk isk-compliant for
τ k, all subtasks inρ, exceptT ′

i if (C3) holds, are
scheduled by their PD2 priority in Sk, and hence,
in S ′

k. Also, no subtask inρ misses its deadline
in Sk or S ′

k. Let r denote the number of subtasks
with rank greater thank that are scheduled in slot
t in Sk. Thus, we have the following:
(R1) S ′

k is a valid schedule forρ in which (i) no
subtask is scheduled in the firstt− 1 slots,
(ii) only r ≤ M subtasks are scheduled in
slot t, and (iii) every allocation except pos-
sibly that ofT ′

i is in accordance with PD2.

If (C2) holds, thenT ′
i�U ′

j holds. If (C3) holds,
thenTi ∈ EB(t) in SB. Therefore, from the pri-
ority definition for PDB, it can be seen that PDB

would scheduleTi at t in SB in preference toUj

only if Ti�Uj holds. If Ti�Uj holds, then by
the construction ofτ k, T ′

i�U ′
j holds. Thus, if ei-

ther (C2) or (C3) holds, then we haveT ′
i�U ′

j, and
hence, all subtasks inρ are scheduled by their
PD2 priorities in S ′

k+1. Let r denote the num-
ber of subtasks with rank greater thank that are
scheduled in slott in Sk. Then, by (H),r subtasks
are scheduled in slott in S ′

k+1.
Thus, we have the following:

(R2) S ′
k+1 is a schedule forρ in which (i) and (ii)

from (R1) hold, and (iii) every allocation is
in accordance with PD2.

Because (R1) and (R2) hold, it can be shown that
S ′

k+1 is also avalid schedule forρ. The proof is
essentially the same as the proof that establishes
the optimality of PD2 [14]. �

18

