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Abstract

Pfair scheduling, currently the only known way of optimally scheduling recurrent real-time tasks
on multiprocessors, imposes certain requirements that may limit its practical implementation. In this
paper, we address one such limitation — which requires processor time to always be allocated in units
of fixed-sized quanta that are synchronized across processors — and determine the impact of relaxing
it. We show that if this requirement is relaxed, then under an otherwise-optimal Pfair scheduling algo-
rithm, deadlines are missed by at most one quantum only, which is sufficient to provide soft real-time
guarantees. This result can be shown to extend to most prior work on Pfair schetiulgeneral,
tardiness bounds guaranteed by previously-proposed suboptimal Pfair algorithms are worsened by at
most one quantum only.

*Work supported by NSF grants CCR 0204312, CCR 0309825, and CCR 0408996.



1 Introduction der other approaches, only task sets with total
utilization not exceeding a value that is slightly

A rehal-tlme system, unlike a non-real-time sys- pioner thanif/2 may be scheduled correctly, in
tem, has to meet certaitiming constraintsto o'\ oot case 13 5, 4],

be correct. Such timing constraints are typically Under Pfair scheduling, each task is subdi-

specified as deadline requirements. Tasks in Qided into quantum-lengthubtaskshat are sub-

real-time system are often recurrent in nature.jected to intermediate deadlines, callggeudo-

For example, in the well-studied periodic task deadlines Subtasks are then scheduled on an
model [12], each task' is characterized by tWO _ oo jiest-pseudo-deadline-first basis, with dead-
parameters, a worst-case execution time (WCET)Iine ties among subtasks resolved using tie-

T.e, and a period.p: an instance gjob of 7" that

: h ; breaking rules. When scheduling periodic tasks,
requires up td.e time to execute is released ev-

: ) ) . . pseudo-deadlines are assigned to subtasks in a
eryT.p time units, and each such job mustfinish .. 14t ensures that all job deadlines are met.
execution before the next job @fis released. An example is provided in Sec. 2.
~ Timing constraints (or deadlines) in a real-  Tq ensure optimality, Pfair scheduling imposes
time system may be classified as either hard or¢ertain requirements that may limit its practical
soft. Hard deadlines cannot be missed, while SOftimpIementation. One such limitation is the re-
deadlines may occasionally be missed, if the ex-quirement that tasks be allocated processor time
tent of the miss is bounded. A real-time Sys- jn fixed-sized quanta and align across all pro-
tem may either be exclusively comprised of ei- cessors. It is known that if this requirement is
ther hard real-time tasks or soft real-time tasks,not satisfied, then deadlines can be missed un-
or be a combination of the two. der an otherwise-optimal Pfair scheduling algo-
In work on real-time systems, multiproces- rithm [10]. Fig. 2(b) gives an example, a detailed
sor designs are becoming increasingly common.explanation of which is provided in Sec. 3. In
This is due both to the advent of reasonably- this paper, we determine the impact of relaxing
priced multiprocessor platforms and to the preva-this limiting requirement.
lence of computationally-intensive real-time ap-  We call the Pfair model that imposes the above
plications that have pushed beyond the capabil-restriction as thesynchronized and fixed-sized
ities of single-processor systems. Examples ofquantum(SFQ) model. We consider this model
such applications include systems that track peo-to be limiting for the following four reasons.
ple and machines, many computer-vision sys- e First, it requires periodic timer interrupts
tems, and signal-processing applications such that delineate quanta to be synchronized

as synthetic aperture imaging (to name a few). across all processors and drifts in the tim-
Given these observations, efficient scheduling al- ing of interrupts on any one processor to be
gorithms for multiprocessor real-time systems propagated to other processors as well.
are of considerable value and interest. e Second, because WCET estimates are gen-
In this paper, we consider the scheduling of re- erally pessimistic, many task invocations
current real-time task systems on multiprocessor (i.e., jobs) will execute for less than their
platforms comprised of\/ identical processors. WCETs. When a job completes before
Pfair scheduling, introduced by Baruahal.[6], the next quantum boundary, the rest of that
is the only known way obptimally scheduling guantum (on the associated processor) is

such task systems on multiprocessors. The term  wasted.

“optimal” means that such algorithms are capa- e Third, at the start of each quantum, the SFQ
ble of scheduling o/ processors any task sys- model idles all processors until scheduling
tem with total utilization not exceedingy/. Un- decisions are made for all/ processors.



This idling can be reduced if the quanta are accomplished this by providinfixed offsets be-
desynchronized and each processor schedtween the times at which quanta start on succes-
uled independently. sive processors. In other words, quantum starting
points are distributed on different processors uni-
formly over the interval of each quantum. All
guanta are still restricted to be uniform in size,
and the quanta on different processors are still
synchronized, though not aligned.

The rest of this paper is organized as follows.
Background on Pfair scheduling is provided in
Sec. 2. Then, the DVQ model is presented and

the main result of this paper proved in Sec. 3.
We refer to the model of Pfair scheduling in Sec. 4 concludes.

which quanta may vary in size up to some max-
imum and need not align across processors ag Background on Pfair Scheduling
the desynchronized and variable-sized quantum This section provides a brief overview of Pfair
(DVQ) model. In this paper, we show that under scheduling [1, 2, 3, 6, 14] under the SFQ model.
the DVQ model and an otherwise-optimal Pfair In introducing Pfair scheduling concepts, we ini-
scheduling algorithm, the amount by which dead- tially assume that only periodic tasks that begin
lines can be missed is bounded. In particular, weexecution at time O are to be scheduled. Such a
show that deadlines are missed by at most thetask7 has an integeperiodT".p, an integer (per-
maximum size of one quantum only. The fact job) execution cosf.e, and aweight wt(7") =
that deadlines are known to be missed under thel.e/T.p in the rang€g0, 1].
DVQ model implies that our result is tight. Fur-  Pfair algorithms allocate processor time in dis-
thermore, this result can also be shown to extendcrete quanta that are uniform in size. The quan-
to most prior results on Pfair scheduling. tum size is the largest amount of time that a task
Limitations of the SFQ model were first ad- is guaranteed execution without preemption. It is
dressed by Chandrat al., who proposed the required that 7.e and T.p both be expressed as
Deadline Fair Scheduling (DFS) policy as a so- multiples of the quantum size. For simplicity, we
lution [8]. In addition to supporting the DVQ henceforth assume that the quantum size is one
model, DFS uses an auxiliary scheduler to allo-time unit. The time intervalt,t + 1), wheret
cate time that would otherwise go idle to ineli- is @ nonnegative integer, is callstbtz. Timet
gible, but runnable tasks. However, the work of refers to the beginning of sletand is also called
Chandraet al. was entirely empirical, and real- a slot boundary To ensure that all quanta are
time guarantees that can be provided were notuniform in size, scheduling decisions are made
derived. Also, the early-release model of Pfair at slot boundaries only. Hence, at most one task
scheduling [1] provides a less-expensive and sim-may execute on a given processor in any slot. A
pler alternative to using an auxiliary scheduler. task may be allocated time on different proces-
In other related work, Holman and Anderson SOrs, but not in the same slag., interprocessor
proposed thestaggeredmodel [11], which is a migration is allowed but parallelism is not. The
slight variant of the SFQ model. Their objective Ssequence of allocation decisions over time slots
was to reduce bus contention that results due todefines ascheduleS. Formally,
the s_imultaneous s_chedl_JIing of all processors ne- Sirx N {01}, (1)
cessitated by a strict alignment of quanta, on a
symmetric shared-memory multiprocessor. Theywherer is a task set andV is the set of non-

e Finally, the SFQ model does not mesh
well with general-purpose operating sys-
tems, which are characterized by event-
driven scheduling, and hence, variable-sized
guanta. Moreover, real-time applications
deployed on such systems typically have
only soft real-time requirements, and hence,
bounded deadline misses may be tolerable.
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I, _%‘ Tz_ﬁ—‘ y— than a subtask with a later deadline. For optimal-
T} e T} p—r T} pr ity, the optimal algorithms use additional rules
o s A S A A A S to resolve ties among subtasks with the same
@ ®) © deadline. In fact, the three optimal algorithms
mentioned above differ only in their tie-breaking
Figure 1. (a) Windows of the first job of a peri- rules. PD is the most efficient of the three and
odic taskT" with weight3/4. This job consists its tie-breaking rules form a subset of those of the

of subtasksly, Ty, and Ty, each of which must — gther two algorithms; the suboptimal EPDF algo-
be scheduled within its window. (This pattern rithm uses no tie-breaking rules

repeats for every job.Xb) The Pfair windows
of an IS task. Subtask; becomes eligible one Task models. Pfair scheduling may be used

time unit late. (c) The Pfair windows of a GIS for schedulingintra-sporadic (IS) task systems
task. Subtask? is absent and subtasks be- and generalized-intra-sporadi¢GIS) task sys-
comes eligible one time unit late. tems [2, 14] also, in addition to periodic task sys-

tems. The IS and GIS task models provide a gen-
negative integersS(7',t) = 1iff T is scheduled eral notion of recurrent execution that subsumes
in slott. On M processorsy ... S(T,t) < M  that found in the well-studied periodic and spo-
holds for allt. radic task models. Thgporadicmodel general-
To facilitate quantum-based scheduling, eachizes the periodic model by allowing jobs to be
task 7" is broken into a potentially infinite se- released “late”; the IS model generalizes the spo-
quence of quantum-lengubtasksThei' sub-  radic model by allowing subtasks to be released
task of taskl is denotedl;, where: > 1. Each late, as illustrated in Fig. 1(b). More specifically,
subtask?; is associated with @seudo-release the separation betweer{T;) andr(T;,,) is al-
r(7;) and a pseudo-deadlinkT;) as follows. lowed to exceedi/wt(T)| — (i — 1)/wt(T)],
. _ which would be the separation T were peri-
r(T) = V —1 J A d(T) = [ ! —‘ (2) odic. Thus, an IS task is obtained by allowing
wi(T) wt(T) a task’s windows to be right-shifted from where

. . they would appear if the task were periodic.
The intervakw(T;) = [r(T3), d(T5)) is termed the Let #(7;) denote theoffsetof subtaskT}, i.e.,

windowof 7;. For example, in Fig. 1(a), for sub- iha amount by whichw(T;) has been right-

task Ty, we haver(Ty) = 0, d(T1) = 2, and  gpjifted. Then, by (2), we have the following.
w(Ty) = [0,2). For a Pfair schedule to be valid,

each subtask must be scheduled within its win- r(T)) = 0(T}) + { i1 J (3)

dow. This is sufficient to ensure that the dead- wt(T)

lines of all subtasks, and hence all jobs, are met. d(T) = 6(T) + [ 1 W @)
Pfair scheduling algorithms schedule tasks by wi(T)

choosing subtasks to execute at the beginning C’fThe offsets are constrained so that the separation
every slot. If a scheduled subtask does not ex-hetween any pair of subtask releases is at least

ecute for a full quantum, then the processor onthe separation between those releases if the task

which it was scheduled remains idle until the ere periodic. Formally, the offsets satisfy the
next slot boundary. At present, three optimal following property.

Pfair scheduling algorithms — PF [6], PD [7], ,

and PO [3] — and one suboptimal algorithm k>i=0(Tx) 2 0(T)). ()
— earliest pseudo-deadline first (EPDF) [3] —

are known. In all the above algorithms, a sub- Each IS subtask; has an additional param-
task with an earlier deadline has higher priority etere(T;), which specifies the first time slot in
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Tasks and partially-wasted Quantum 3 starts

which it is eligible to be scheduled. In particular, (in o before time 2

a subtask can become eligible before its “release”a s | m [ | [
time. The following is required to hold. B e | s Il L in [
Coml__c L. L.
(VT e(T) <r(T) A e(T) <o) ©) el Ll Lo
The intervaldr(T;), d(T;)) and[e(T;), d(T;)) are my L L
called thePF-windowand IS-windowof T}, re- Eon m B om T m L
spectively. g 1 M N T

Generalized intra-sporadic task systems. A

. . . . | \ﬂ/y\% | | | | | | | | | | | | | | |
generalizedintra-sporadic task system is ob- L A A J s s s o 1 s s s s
tained by removing subtasks from a correspond- 3 @ 25— O ©
ing IS task system. Specifically, in a GIS task e Proc.2

PD2 and SFQ PD? and DVQ PDB and SFQ

system, a taslf’, after releasing subtask, may
release subtask;,, wherek > i + 1, instead of
T;+1, with the following restrictionr (T} ) —r(T;)

. o1 i1 Figure 2. Difference betweerfa) the SFQ model
Is at IeaStht(T)J B Lwt(T)J' In other words, and (b) the DVQ model under PB (c) A possi-

7(T}) is not smaller than what it would have been  ple schedule under Pbin the SFQ model, obtained
if Tir1, Tiyo, ... Tx—1 Were present and released  py postponing the allocations in (b) that do not com-
as early as possible. Fig. 1(c) shows an example. mence on a slot boundary to the next slot boundary.

If T} is the most recently released subtasK'of
thenT may releasd}, wherek > i, as its next IS bounded. Formally, the tardiness of a subtask

subtask at time, if (T})+ Mthl)J _ U;&)J <t T; in scheduleS is defined as

If a taskT’, after executing subtask;, releases tardiness(T;, S) = max(0,t — d(T;)), (7)

subtaskl},, thenTy, is called thesuccessopof T;

andT; is called thepredecessoof 7). Every sub-  wheret is the time at whicHl; completes exe-

task of I' that is released beforg is called an  cuting inS andd(T;) is its deadline. We some-

ancestorof T; and every subtask that is released times omit specifying the schedule if it is clear

after 7; is called adescendendf 7. Note that from the context. The tardiness of a task sys-

a subtask can have at most one predecessor anegm 7+ under scheduling algorithr¥, denoted

one successor only, but may have multiple ances+ardiness(r, A), is defined as the maximum tar-

tor and descendant subtasks. diness of any subtask inunder any valid sched-
A correct schedule in which no subtask missesule underA. If x is the maximum tardiness of

its deadline exists for a GIS task systermon M any task system unded, then A is said toen-

processors iff its total utilization is at most, sure a tardiness bound af

.8, > e, wt(T) < M holds [2]. A task sys-

tem with total utilization at mosd/ is saidtobe 3 Pfair in the DVQ Model

feasibleon M processors.

6—>0)

In this section, we describe the DVQ model
Soft real-time systems and tardiness. As in detail and show that under this model and the
mentioned earlier, the jobs (and subtasks) of aPD? scheduling algorithm, tasks may miss their
soft real-time system may occasionally miss their deadlines by at most one quantum only. (Recall
deadlines, if the amount by which a subtask that P} is optimal under the SFQ model.) This
misses its deadline, referred to astiisdiness  result also extends to most prior work on Pfair



scheduling; in general, tardiness bounds guaranmally, if S is a schedule for a task sef then
teed under most previously-proposed suboptimalS : {subtasks in} — Q, whereQ is the set
Pfair algorithms and schemes are worsened by aof all rational numbers. For schedules that con-
most one quantum only. form to the SFQ model§(T;) is integral, for ev-
ery subtask’;. We also associate with each sub-
The DVQ model. The DVQ model differs taskT; its actual execution cost, denote(l;).
from the SFQ model in when subtasks are allo- It is required that:(7;) < 1 hold. In the exam-
cated processor time and for how long; the char-ple in Fig. 2(b),S(4;) = S(B;) = 2 — ¢ and
acterization of taskg,e., the task model, is un- ¢(A;) =¢(B;) =1 —4.
altered. The SFQ model requires all quanta to In the discussion that follows, we refer to sub-
be of uniform size and aligned across all proces-tasks as being “scheduled at” or “executing at”
sors. This tight synchrony is maintained by forc- some timet, wheret need not be integral. When
ing the scheduler to be non-work-conserving in we say thaf} is scheduled at, we mean thaf;
that, if a subtask does not execute for the dura-commences execution ati.e., S(T7;) = ¢ holds.
tion of an entire quantumi,e., yields an inter-  On the other hand, if we say th#t is executing
val of time d before the end of its quantum, then at ¢, then we mean that— 1 < S(T;) < t holds,
part of the quantum allocated to it is unused. Thej.e, 7, is scheduled somewhere in the interval
DVQ model is a work-conserving variant that re- (t — 1,t]. We henceforth assume that preemp-
claims this wastage by allowing the quanta to tion and migration costs are zero. (Such costs
vary in size in the rangg), 1] and by not requir-  can be easily accounted for by inflating task exe-
ing the quanta on different processors to be syn-cution costs appropriately [10].) We say that a
chronized. In particular, if a task yields before subtask?] is ready at timet, if (i) e(7}) < t
executing for a full quantum, then a new quan- holds, (ii) 7; has not been scheduled befate
tum begins on the associated processor immediand (jii) 7;’s predecessor, if any, completes ex-
ately. Fig. 2 illustrates the difference between theecution at or before. As noted earlier, the task
SFQ and DVQ models with an example. In this model remains the same under the DVQ model.
example, tasksl, B, andC of weight1/6 each,  Therefore, the release time, eligibility time, and
and tasksD, F, andF' of weight1/2 each, with  deadline of each subtask are the same as their
a total utilization two are scheduled on two pro- corresponding values under the SFQ model, and
cessors. Subtasks$, and Fy scheduled at = 1 hence, remain integral. Also, the notion oflat
execute for an interval — ¢ only and yield their s also unchanged: the term “sigtstill refers to

respective processors at= 2 — 6. Both pro-  the intervallt,t + 1) on the real time line.
cessors idle untit = 2 to start the next quantum

under the SFQ model, whereas a new quantunEstablishing bounded tardiness under the
begins immediately under the DVQ model. Be- DVQ model. In the process of making the
cause the next subtasks of tagksE, andF are  scheduler work-conserving, the DVQ model also
not eligible untilt = 2, the two processors are as- introduces “priority inversions,” which can lead
signed to subtaskB; andC att =2 — j under  to deadline misses. Aoriority inversion oc-
the DVQ model. curs whenever a lower-priority subtask (or job)
As seen in Fig. 2, scheduling decisions in the executes, while a ready, higher-priority subtask
DVQ model may be made at non-integral times. waits. Under such conditions, the waiting higher-
Thus, the function in (1) is not adequate to fully priority subtask is said to blocked
define a schedule. We deal with this issue by Fig. 2(b) shows that deadline misses are pos-
overloading this function to denote the time at sible under PBin the DVQ model. Our goal is
which a subtaskcommences execution. For- to show that such misses are at most the maxi-
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mum size of one quantum only. To avoid rea- and E>; become eligible. (Note thab, and E;
soning directly in the DVS model, which can be have an earlier deadline, and hence, a higher pri-
quite cumbersome, and to leverage analysis techerity than B; andC;. B; and(C; have deadlines
niques and results presented previously for theat time 6.) Therefore, at time 2), and E, are
SFQ model, we establish the tardiness bound forblocked by lower-priority subtaski,; andC', re-

the DVQ model in the following four steps. spectively. Their blocking time would be maxi-

e We consider allocations in the DVQ model mized, if subtasksl; and F; yield at time2 — e,
when subtasks execute for a duration efs wherese is arbitrarily small. From this discussion,
in the limit § — 0, and thus reduce them to we have the following.
allocations that conform to the SFQ model.
For example, in the limi6 — 0, the alloca-
tions in Fig. 2(b) reduce to those in Fig. 2(c).

A higher-priority subtaskl; may be

blocked for an entire quantum in the

first slott of its IS-window (which im-

, , , , plies thate(7;) = ¢ holds), if some pro-

e We then identify a scheduling algorithm that cessor becomes available within slot
makes the corresponding scheduling deci- t —1(in (t — 1,1), just before the el-

sions in the SFQ model. We will denote this

i : igibility time of T;), and the processor
algorithm PD¥ (the ‘B’ stands foblocking.

is allocated to a lower-priority subtask.

the DVQ model is bounded by the tardiness SaY that it iseligibility-blocked
of PD? in the SFQ model. Another subtle priority inversion that is possi-

ble in PD*-DVQ is illustrated in Fig. 3(a). In this
diness bound of at most one quantum in example, subtask®, and F3, which are sched-
the SFQ model, which in turn establishes a Ul€d in slot 2, yield before the end of that slot and

bound for PB in the DVQ model. the processors they executed upon are promptly

These four steps are elaborated on in the subsec‘a-lllocat.e(.j to Fhe highest priority suptasks that are
tion that follows. In the rest of this paper, unless also eligible in the second slot, which eﬁgand
otherwise mentioned, all references toPBre 4. However, SUbtaSIBl.’ also scheduled in slot
with respect to the SFQ model only. Also, for 2, executes for an entire quantum, and hence,
brevity, we refer to PBinvoked under the D\’/Q processor 3 does not become available until time

model as PB-DVQ; invocations under the SFQ > kAlgtimeh?”hphrocesshQrs Is alllo‘catehdag,sub-
model shall simply be referred to as PD task s, which has a higher priority thar,; s

. successoiB,, under PB. (ThoughB, and D;
31 Worst-case Scenario for PDVQ have equal deadline$); has a higher priority by

In this subsection, we devise algorithm PD  PD?’s tie breaking rules.) In this example, the
which represents a worst case forPDVQ, as  deadline of4, is at time 30. Therefore}, has a
far as subtask tardiness is concerned. Before prehigher priority thanA;, and hence, suffers block-
senting the algorithm, we explain the priority in- ing at time 3 in this schedule. Also note thias
versions that are possible in PDVQ in detail.  is eligible before time 3, but is constrained by
One type of priority inversion is exemplified in its predecessor not completing execution before
Fig. 2(b). Here, allowing a new quantum to be- time 3. Thus, the blocking thds; suffers is dif-
gin at time2 —  on both the processors leads to ferent from the eligibility blocking described ear-
B; and( being scheduled at timie-9. Because lier. Had F3 not yielded early, but executed until
B; and(C; execute for an entire quantum, no pro- the end of slot 2, then as shown in Fig. 3(B),
cessor is available at time 2, when subtagks  would have been scheduled at time 3 in the place

e Finally, we show that PB ensures a tar-
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Figure 3. lllustration of the conditions under which a a subtask maypbelecessor blockedt time ¢ under
PD?-DVQ. (a) SubtaskB, is predecessor blocked at time 3 by subtask (b) B, would not be blocked ifF;
does not yield before time 3, ¢¢) B; yields early. However, i3, yields early, therD, is eligibility blockedat time
3. (d) A schedule for the same task set undePD

of A;, andA,;’s execution would have been post- U;, wheree(U;) = t.

poned to some later time. On the other hand, had

B, yielded early, before time 3, as in Fig. 3(c), We call this type of blocking by a subtask
then B, would have started executing befatg, in a slot that is not the first in its 1S-window
which is not eligible until time 3D has a higher ~ Predecessor blockindNote that, in our example,
priority than B, under PB, and hence, would for B: to be predecessor-blocked at tinte
have been eligibility-blocked at time 3. Thus, it is necessary for the processét; executes
on the whole, in the scenario in inset (@, is ON to be unavailable until time;, and for
blocked byA, because a processor became avail-the higher-priority subtask; to be released at
able before its predecessor completed executingt- This observation can be generalized as follows.

Thus, we have the following.
Property PB: Leti/ denote the set of all subtasks

A subtaskl; may be blocked in a slat that are predecessor-blocked: @ some sched-
that is not the first slot of its IS-window, ule S under PB-DVQ. Then, there exist another
if 7,’s predecessor executes up to titne set of subtask¥ and a set of processofZ such
on processof;,, some other processor that the following holds.

P, becomes available before timand

is allocated to a ready subtask with a [Pl = Ul A V[ = Ul A (VP €P:: P makes
lower priority thanT;, and at timet, P, a scheduling decision at timén S) A

is allocated to a higher-priority subtask (VVieeViue(Vy)=t ANSt)=t) (8)



Property PB says that predecessor blocking can{ Ay, By, Cs, D3, E3} is ready at time 3. Of these
occur only under specific circumstances; thesesubtasksDs; andEs; are inE'B(3), andA; andC,
circumstances are exploited in the proof that es-are in D B(3). BecauseB; executes until time,

tablishes the tardiness bound of RFDVQ.

Algorithm PD®. Having given some insight
into the timing anomalies of PEDVQ, we now
explain algorithm PB in detail. PD¥ is based on
PD?. In describing PO, we use the precedence
operators<, =<, >, and > to indicate the rela-

B, cannot be scheduled at any time befgreven
thoughe(B,) < t holds, and hence, is iIRB(3).
Within each subset, subtasks are prioritized in
accordance with Pband are scheduled in this
order. Like P33, PD” schedules at most/ sub-
tasks in every slot. The subtask chosen in each

tive priority between two subtasks with respect scheduling decision is from one of the three sub-

to PD?, as follows: IfT; andU; are any two sub-
tasks, ther;<U; (7;>U;) denotes that the prior-
ity of T; is strictly greater (less) than that oF;
=(>) will be used if they may be equal. To indi-
cate the relative priority with respect to PQve
use symbols, C, 1, and .

As mentioned earlier, PPmimics, in the SFQ

sets and has the highest priority within that sub-
set. Subtasks i@ B(t) are unconstrained by sub-
tasks in the other two subsets, and hence, do not
experience any blocking anywhere in time slot
under PB-DVQ. Therefore, under PB, a sub-
task7; in EB(t) or PB(t) cannot be scheduled
at ¢, if some subtasl/; in DB(t) has not yet

model, blockings that subtasks may be subjected’@en scheduled atandU;<7; holds. However,

to under PB-DVQ due to priority inversions;

hence, all times in this discussion are integral, un-

to mimic eligibility blocking, a subtask/; from
DB(t) may be scheduled prior to a subtagk

less stated otherwise. As described above, a subfrom EB(t), even ifT;<U; holds.

taskT; may be blocked in slatif eithere(7;) = ¢
holds orT;’s predecessdf;, completes execution
att. Therefore, at any timg PD” partitions the
set of all subtasks that aready att, into three
disjoint subset#’'B, PB, andD B, based on sub-
task eligibility times, as follows.

EB(t) S (T, | e(T}) = t}

PB()E{T; [ e(T}) <t A T;
could be predecessor-blocked at (10)

DB(t)E{T; |e(T;) <t A T, ¢ P()}  (11)

(9)

A subtask inEB(t) is not eligible until¢, and
hence, coulgotentiallybe eligibility-blocked at
t under PB-DVQ, and a subtask if* B(t) could
potentiallybe predecessor-blockef®.B(t) is the
set of all subtasks that definitely do not block

To mimic predecessor blocking, PDallows
a subtaskU; from DB(t) to be scheduled prior
to a subtask/, in PB(t), even if V,,<U, holds.
However, for every such, blocked, by Property
PB, PDP ensures that a subtask; in EB(t) is
scheduled such that; <V, holds. Note that be-
causeV,<U; holds, we also havél;<U;. That
PD?-DVQ exhibits such behavior was stated ear-
lier in Property PB, and is proved formally later
in Lemma 1. We now give the priority rules for
PD".

PD? priorities. Let EB(t,r), PB(t,r), and
DB(t,r) be equal taEB(t), PB(t), and D B(t)
as defined in (9), (10), and (11), respectively,
with the subtasks selected in the first— 1
scheduling decisions for time slat removed.

att. For an illustration of how ready subtasks p = |PB(t)| denotes the number of subtasks that

are classified at any timg consider the PB
schedule in Fig. 2(c). In this example, at time 2,
{By,C1, Dy, E5, F5} is the set of all subtasks that
are ready. Of these subtaskid;, E,, and 5
are in £B(2), and the remaining are i B(2).

could potentially be predecessor-blocked ah-
der P¥-DVQ, and hence, denotes the maximum
number of processors that subtasks B (t)
could contend for. Therefore, the remaining
M — p processors can be freely allocated to sub-

In the schedule in Fig. 3(d), the set of subtaskstasks inEB(t) and DB(t), and hence, a subtask

8



in PB(t) may be assigned a lower priority in the

first M — p scheduling decisions than every sub- Table 1. PD? priority definition.

task that is not inPB(t). Recall that, by Prop- Conditions forT;CU; to hold,

erty PB,p is also the minimum number of pro- | for scheduling decision, wherel < r < M, att.
cessorsi(e., there are at leagt processors) that U,

make scheduling decisions at timeunder the T, EB(t,r) PB(t,r) DB(t,r)
DVQ model. Furthermore, in that model, sub- [ EB(t,r) T,=U; T,=U; V T;=U;
tasks inPB(t) and £ B(t) are ready during these r<M-—p

decisions, and hence, at leashighest-priority PB(t,r) | T;=U; A T,=U; T,<U; N
subtasks cannot be blocked at timeTo mimic r>M-—p r>M-—p
this correctly, scheduling is strictly by PRiur- DB(t,r) | T,2U;Vv | TiZU; V T;=U;
ing the finalp scheduling decisions (or the final r<M-p|r<M-p

p processors) under PD Referring back to the

example in Fig. 4(a)B- is predecessor-blocked hen by Table 1, bot#,=U; andl/;C7; hold for
at time 3 because its predecessor executed unt@he rt scheduling deci_sic;n SoJ[_V- is sched-
. . . . . 1 ]

time 3 on processor 3; hence, a scheduling deC|-uled beforeT}, thenT, may be blocked (if it does

sio_n s mb_‘de at time 3 for that processor, _during not get selected in a later scheduling decision for
which B, is ready. Subtask®; and £, which ) " 5 the other hand, if/,<7; holds, then only

are inEB(3), are also ready at time 3. The sub- 17 —p il hold, to ensure that a subtask with
task with the highest priority among the unsched- .7, ~

led read » i scheduled at fi a lower priority in EB(t) does not get sched-
uled ready tas 51_93' IS schedule attime 3. uled before a higher-priority subtask nB(t).
Thus, the relative priority between subtagks However, if T;<U; andr > M — p hold, then
. ’ 4 J ’
andU; at timet depends on the sets the gubtask_somyTiEUj will hold. This ensures that the final
b_elong to _and_ the number of the scheduling de(:|-p scheduling decisions are by PDas explained
sion, and is given by Table 1. Rows and columns

. - earlier.
in the table indicate the sets tigtandU; be- We claim the following before elaborating on

long to, respectively. Entries in the cells indicate ., predecessor blocking is mimicked.
th_e condltlpns under which;,CU; holds (the Pl claim 1 LetT; € DB(t,r), U; € PB(t,r), and
ority of 7; s at least that ot/;), for scheduling |, U;<T; hold. LetT; be the subtask that is

decisionr, wherel < r < M, at timet. T;CU; : : .
T e - scheduled under PDin scheduling decisiom
would hold iff ;LU A UEZT; holds. Similarly, slot¢, wherer < M — p. Then, the following

T;2U; would hold iff T;iZU; A U,CT; holds. (In holds (YVi € DBI(t, s),r < s < M :: U;<V}).

the table entriess is with respect to PB)
Proof: Because subtasks inB(t) are scheduled
As mentioned earlier, subtasks within each by their PC¥ priority, 7;=<V}, holds, withV}, as
subset are scheduled by their Ppriority; the  defined in the claim. Therefore, because<T;
entries along the main diagonal confirm this. Re- holds,U; <V}, holds, as well. O

ot note that the entries i the last row and col-CIAM 2 LeLT: & EB(L.r), U, € P(1.r), and
let U;<T; hold. LetT; be the subtask that is

umn of the table ensure this. Eligibility block- scheduled under PBin scheduling decision
ing is mimicked by not giving a higher priority for slot £, wherer < M — p. Then, the follow-

to subtasks i’ B(t) than a subtask i B(t) in .
the firstA/ — p scheduling decisions regardless of ;\r}g.h?]ldj‘ﬁv)Vk =P ER s
2 Uy k)

their PI¥ priorities. For example, if < M — p,
T, € EB(t,r),U; € DB(t,r), andI;<U, holds,  Proof: Similar to the proof of Claim 1. |



Predecessor blocking is mimicked by exclud-
ing thep subtasks inPB(t) in the initial M — p

This implies that no subtask that is ready in
(t — 1,t,] and is not scheduled &t has a higher

scheduling decisions, as given by the entries inpriority thanT;, i.e., we have

the middle row and column. This gives an op-
portunity for a subtasi; in D B(t) with a lower
priority than the lowest-priority subtask; in
PB(t) to be scheduled. The finaldecisions are

in strict PC¥ order among the remaining unsched- by time ¢.

(VW :: Wyisready at, A S(W;) > t, = T,=W)).

(17)
Proof of (a): Let U; be any subtask it¥, andU,
its predecessor. By (13) and (16), is ready
Therefore, becaus&;<7; holds,

uled subtasks. Therefore, if one or more subtaskpp?-pvQ would not prefer7; to U; at timet.

in EB(t) have higher priority thar/;, thenU;
will experience blocking. By Claim 1, no sub-
task remaining inD B(t) will have higher prior-
ity than7;, and hencéJ;, in the finalp schedul-
ing decisions. By Claim 2, if a subtask BB (t)
with a lower priority thanU; is scheduled in the
initial M — p scheduling decisions, then no sub-
task remaining in£B(t) or DB(t) would have
higher priority tharl/;, and hence, any subtask in
PB(t), during the finap scheduling decisions.
We now formally prove Property PB.

Lemma 1 LetS be a schedule under PEDVQ
for a task system. LetT; be a subtask/, a set
of subtasks im, andt, an integral time, such that
the following hold.

e(T;) <t—1 (12)
(VU; eU me(Uj) <t —1 A

U, is ready at or before) (13)
(VU; e U - U=T;) (14)
T; is executing at (15)
(VU; el :: S(U;) > t) (16)

Then, each of the following holds.

(@) (YU; € U :: the predecessor @f; exists and does
not complete executing until tintei.e., U; is not
ready untilt).

(b) There exists a se¥ of subtasks such thay| >
Ul, "W €V e(Vi) =t AN S(Vg) =t A
(VVi € V,U; € U :: V;=Uj) hold.

Proof: BecauseS is a PI¥-DVQ schedule, not
all times referred to in this proof are integral. Let
t, be the time at whicl; is scheduled irf, i.e.,
S(T;) =t.. Then, by (15)f — 1 < t, < t holds.
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Hence,

t—1<t. <t (18)

holds,i.e., T; is scheduled in the middle of slot
t — 1 (recall thatt is an integer), and/; is not
ready att,. Because:(U;) < ¢ — 1 holds, this
implies thatU; is not ready at time,, due toU,
executing at,.. We claim the following.

Claim 3 For every subtasky; that is ready at or
before time,, wheret, < ¢, and is not scheduled
beforet, T;<W; holds.

Proof: By (17), for every subtasW, that is ready
at or before time,., and is not scheduled before
t,, T;=W; holds.

By (18), and since the eligibility time of a
subtask is integral, every subtask that becomes
ready att,, wheret, < t, < t, does so be-
cause its predecessor completes executian. at
Let ¢1,to,---,t,, Wheret, < t,t, < t, and
tr < tgs1, foral 1 < k < n, denote all the
distinct times at which one or more subtasks be-
come ready int,,t). Lett,.; = t. Then, to
establish the claim, it is sufficient to show that
for every subtaskV, that is ready before timg,,

i.e, isready in0, ¢), and is not scheduled before
t., T;=W; holds, for allk, wherel < k <n+ 1.
We show this by induction oh.

By the way we defined, - - - t,,,1, no subtask
that is not ready at. is ready in(¢,,¢,). Hence,
by (17), for every subtasK/; that is ready before
t; and is not scheduled befote T;<W; holds.
Thus,k = 1 forms the base case. LEY denote
the set of all subtasks that are ready befgrand
are not scheduled beforg, wherel < k£ < n.
For the induction hypothesis, assume that for ev-
ery subtaskV; in W, T;<W, holds.



We next show thal; <R, holds for every sub- until ¢. [ |
';ans; i};q nt:tatsct;]eecdourlr;s br:f%?tgﬁi‘fo}r%i it:]mf@aﬁ Following is the counterpart of the above
becomes ready beforg, then T;<R, follows lemma for PL, proved in [9].

y &, i=Ry
by the induction hypothesis. Otherwisg, be- ~Lemma2 LetS be a schedule under PDfor a
comes ready at,, the only time in the inter- (@SK Systenr. LetT; be a subtask im, i/, a set

val [tx, tx.1) that some subtask becomes ready.tor: Sl];’blfasks "1’ allgdt, an integral time, such that
Let R denote the set of all subtasks that become™ € '0"0WING hold.

ready att, and letm = |R|. Because the pre- e(T) <t—1 (20)
decessors of subtasks T complete execution h

i : i i N <t—1
at time ¢, them < M processors on which (VU; €U = e(Uj) < A

they executed become availabletatfor which Uj is ready at or before) (21)
PD?-DVQ makes scheduling decisions at time (VU; €U = U;=T;) (22)
Thus, because, (which is inR) is not sched- S(T;) =t (23)
uled att;, some other subtask that is ready be- (VU; e U : S(U;) > t) (24)

fore t;, and not scheduled befotg, i.e., a sub-
tasklV, € W, is scheduled instead, which in turn Then, we have the followinghere exists a ser
implies that!¥,< R, holds. By the induction hy- Of subtasks such thqv| > [| and (VV}, € V
pothesis,T;<W; holds, from whichT,<R, fol-  ¢(Vi) =t N S(Va) = t A (¥ € V,U;j € U =
lows. O Vi,=Uj) hold, andT; is scheduled in slat before ev-
ery subtask in.
By the claim above, and (14) and (16), it fol-

lows thatU; is not ready until time. 3.2 Tardiness Bound for P}-DVQ
Proof of (b): Letw = ||, and letU; be the sub-
task with the highest priority it/. By part (), We now turn to showing that PDrepresents

U, is ready only at time. By Claim 3,7;<X,, a worst case for PBDVQ. Towards this end,
holds for every subtask,, that is ready before we would like to show that the tardiness of ev-
t and remains unscheduled until timeBecause ery feasible GIS task systemunder PB-DVQ

the predecessors of subtaskddrcomplete exe- s at most the tardiness of some feasible GIS

cuting at timet, u processors become available task systems’ under PI¥. However, since

become ready at have their predecessors exe- st one quantum, it would suffice to show that

cuting untilt, and are not id{. That is, let the tardiness of under PB-DVQ is at most
m = |{W; | The predecessor 6¥; completes the ceiling of the tardiness of’ under P,
executing at A W, ¢ U}|. (19) i.e, (V7 : (37 : tardiness(r,PD*-DVQ) <
[tardiness(t',PDP)])) holds.
Then, at least +m processors become available Let SDQ denote a schedule for some feasible
att, for which scheduling decisions are made attask systemr under PB-DVQ. Then, to estab-
time¢. Therefore, ifU; is not scheduled attime  |ish our claim, it is sufficient to show that there
then by (14) and Claim 3, it implies that at least exists a corresponding valid schedule undefPD
u+m subtasks with priority at least thatﬁj that SB; for some task System’ such that the tardi-
are not ready until timeare scheduled at Let) ness of every subtask & is at most the ceiling
denote the set of all such subtasks. Then, by (19)of that of some subtask ifiz.
only m subtasks in/ can have their predecessors  \We begin by introducing some notation. Let
executing untit. Hence, at least subtasks i All denote the set of all subtasksin Aligned,
are not ready until because they are not eligible the subset of all subtasks i/ that commence
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Aligned = {a,b,d,g}
Olapped = {ek,1}
Free = {f,h,i,j}

Time -0 1 2 3 4 5 6 7
Slot—=0 1 2 3 4 5 6

B
2 3 4
2 3 4

Time -0 1
(b)

Slot—=0 1

Figure 4. (a) A partial schedule under PEDVQ on

a single processor. Each rectangular box represents
the execution of a subtask. For clarity, successive
subtasks are shown in alternate shades; no other re-
lation is implied by the shading. Subtasks in subsets
Aligned, Olapped, and Free are as indicated.(b)

An equivalent schedule for subtasksAigned and
Olapped under the SFSQ model.

executing on a slot boundary€., at some inte-
gral timet), and Olapped, the subset of all sub-
tasks thamneither commencenor complete exe-

same as in. Let the time at whicll; commences

its execution inSg beSpo(T;), if Spo(T;) is in-
tegral. Otherwise, postpone its commencement
time to the beginning of the next slote. to
[Spo(T3)]. In other words, defing as follows.

(VT; : T; € Aligned :: Sp(T;) = Spg(T3))
(VT; : T; € Olapped :: Sp(T;) = [Spo(T3)])

The schedule so constructed for the subtasks in
Charged in Fig. 4(a) is shown in Fig. 4(b).

This construction ensures the following.
Lemma 3 The commencement time and comple-
tion time for every subtask iff in S are at least
their respective values ifipg.

We now prove the following lemma concern-
ing the tardiness of every subtaskrin Sp,.

Lemma 4 Let T; be some subtask in. Then
tardiness(T;, Spg) < [tardiness(U;,Sp)],
whereU; is some subtask irf.

Proof. We consider two cases based on whether
T; is in Charged or Free. If T; is in Charged,
then by Lemma 3, its completion time in

cuting on a slot boundary but are in the middle of S, is at most its completion time irSg,

execution at a slot boundary, 8. Note that
subsetsAligned and Olapped are disjoint. For-
mal definitions are given below.

All ={T; | T;is a subtask in}

Aligned = {T; | T; € All N Spg(T;) is integral
Olapped = {T; | T; € All N Spq(T;) is not integral
A (Spo(T;) + ¢(T3)) is not integral

A Spo(Ti) + o(Ti) = |Spe(Ti)] + 1}

We also define two other subsets:

Charged = Aligned U Olapped
Free = All \ Charged

An example of this classification of subtasks is
shown in Fig. 4(a).

We next consider a task systefrcomprised of
subtasks inCharged only, and construct a sched-
ule Si for 7 as follows. The actual execution
costc(7;) of every subtask; in 7’ remains the

12

which, by (7), implies thatardiness(T;, Spg) <
tardiness(T;, Sg). Therefore, the lemma holds if
T; is in Charged.

If T; is in Free, then it should be scheduled in
the middle of some slot in Spg, as shown in
Fig. 5. Let the completion time df; bet + 4,
where0 < 6 < 1. Let U; be the subtask that
was executing at timeon the same processor in
the same schedule. Therefotg,is in Charged
(by the definition ofCharged). Hence, we have
Spo(U;) < t,and letits completion time befe.
Becausd; executes aftel/; on the same proces-
sor, we havé) < ¢ < . We consider two cases.
Case 1: U;=T;. In this case, we havé(T;) >
d(U;). Hence, by (7), the tardiness 6f in Spq
is given by

tardiness(T;, Spg)

max(0,t + 0 — d(T;))
max(0,t + 6 — d(Uj))
max(0,t — d(U;) + [0])

< ;d(Ty) > d(U;)
<



78 be any feasible GIS task system, andrdte

a corresponding task system obtained by shift-
ing the IS-window of every subtask i right

by one time slot. In other words, for every sub-
taskT; in 75, 7 includes a subtask! such that
e(T)) = e(T,) + 1, r(T}) = r(T;) + 1, and
d(T!) = d(T;) + 1. Let Sp be a schedule un-
der PD¥ for 72, andS, a schedule under PD
for 7. Then, because PDs optimal, no subtask
in 7 misses its deadline i, and if S is viewed

T T
t=1 t t+€ t+6 t+l t+2

Figure 5. Lemma 4.7; andU; are scheduled on the
same processor at the times indicatedisy. T; is
in Free andU; is in Charged (and hence, in’). We
determine the tardiness f in Spg in terms of the
tardiness olJ; in S7;.

= max(0,t — d(U;) + [€]) ;0<de<1 as a schedule for?, in which 7} is scheduled
= max(0, [t + ¢ —d(U;)]) in the place ofI?, then no subtask in” misses
= [tardiness(Uj, Spq)]- its deadline by more than one quantumsn S

would differ fromSg because subtasks are eligi-
Therefore, the tardiness 6f is at most the ceil-  ple one time slot earlier in?, and hence, may be
ing of the tardiness al; in Sp. Becausd/; is  scheduled earlier i§, perhaps displacing other
in Charged, its tardiness irSp is at least its tar-  subtasks in the process. Therefore, to prove that
diness inSpg, and hence, the tardiness'Bfin -~ PDP generates a “valid” schedule that ensures a
Spq Is at most the ceiling of the tardiness@f  tardiness of at most one quantum for every sub-
inSp. task, it is sufficient to prove that no subtask in
Case 2:T;<Uj. The proof of this case is similar - misses its deadline under PDif the eligibil-
to that of Case 1, and is omitted here due to pagéty time of each subtask is decreased by o,
limitations. B (7)) = ¢(T;) holds for every subtask! in 7.
For this, we systematically conveft to Sg by
decreasing the eligibility time of exactly one sub-

lemma, proved in [9], shows that this is the Case_task ata time., scheduling it in acc_:ordance with
The lemma follows becaus®, is a valid sched- Sg, and showing that the intermediate schedules

ule for PD-DVQ, and because PBs priority in this process remain valid. A schedule for a

definition is designed to allow the blockings that task system is said to bevalid in time slott if

occur under PB-DVQ. (i) each subtask; in ¢ is scheduled in some slot
Lemma5 Sg is a valid schedule for’ under N the intervalle(T;), d(T5)), (if) no two subtasks
PD5. of the same task are scheduled in glaand(iii)
the number of subtasks scheduled & at most

Thus, by our definition o5pq, the construc- A7, A schedule isalidiff it is valid in every slot.
tion of Sp, and Lemmas 5 and 4, we have the e first define an irreflexive total order on the
following theorem. subtasks inr? by the sequence in which they
g are scheduled i by PDP. (Subtasks that are

scheduled in the same slot are ordered by the

pprder in which they are selected for that slot.)

We are left with showing thasg is a valid
schedule for7’ under PE¥. The following

Theorem 1 The tardiness of every feasible Gl
task system under PEDVQ is at most the ceil-
ing of the tardiness of some feasible task syste

under PP, Let mnkz(Ti) denote the position of subtagk
in this total order. We then say thatis k- com-
3.3 Tardiness Bound for PO¥ pliant to 77 if the following hold: (i) there ex-

In this subsection, we show that P2nsures ists a bijective (one-to-one and onto) mapping
a tardiness bound of one quantum for every fea-from subtasks in? to subtasks irt, (ii) for ev-
sible GIS task system. To prove this result, let ery subtaski, in 72, d(V/) = d(V}) + 1 and
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r(V}) = r(Vi)+ 1 hold for its imagéeV// in 7, (iii)
for every subtask; with rank at most: in 75,
e(T!) = e(T;) holds for its imagd? in 7, (iv) for
every subtask/; with rank greater thak in 77,
e(U}) = e(U;) + 1 holds for its imagel; in 7.

Fig. 6 shows an example. In this example, letting
78 be the task system in inset (a), inset (a) de-

picts a PI¥ schedule forr?. (The schedule has

been repeated twice for ease of comparison with
the schedules in insets (b) and (c).) In the tasky | 3]

system in inset (b), every subtask1f is right-

shifted by one slot. Note that in inset (a), subtask
F, misses its deadline by one quantum. However,

subtaskiy meets its deadline in the PBchedule

in inset (b) In the task system in inset (c), sub-

tasks with ranks 1 through 4 have their eligibility

Al e 1 Le |
16 | B | l 5 |
cw| & 1 1 6 |
VR N I |21
|1: | _|10‘ | |1 | lo |
oo L2 LA
S NI [ Y N

T I F, Is " deadline: __: I ) f I -
172 : - 9 : | miss : : ; - ‘9 : :
: 12| | 3 | : | 12|

v Lo gt

o L - | @ |

times advanced by one time slot. Thetasksystemc we L | | |

here is4-compliant tor?.

ScheduleS for 7 is said to bek-compliant to
Sy if (i) S is valid, (i) for every subtask with
rank at mostk, 77 and7; are scheduled in the
same slot irS andSg, respectively, angii) sub-
tasks with rank greater thanare scheduled ac-
cording to P in S. The schedules in Fig. 6(b)

and (c) are 0-compliant and 4-compliant, respec-

tively, to the schedule in inset (a).
Let n denote the number of subtasksrif. To

show that PO ensures a tardiness of at most one

quantum tor?, we show that there exist a task
system7’ and a schedul&’ for 7/ that aren-
compliant tor? andSg, respectively, by induc-
tion on k-compliance. As explained earlier, the
task systemr derived fromr? by right shifting
each subtask in? by one slot is 0-compliant to
78 and the PB schedulesS for 7 is 0-compliant
to Sg. Thus,k = 0 forms the base case. For

the induction hypothesis, assume that there ex-

ists a task system?*, which isk compliant tor?,

and a scheduls), for 7%, which isk-compliant to
Sp, wherek > 0. We then show that & + 1)-

compliant task system and schedule exist.

Lemma 6 There exist a task systerfit! that is
(k + 1)-compliant tor?, and a schedulé,, for
r*+1 that is (k + 1)-compliant toS5.
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Figure 6. (a) A PD” scheduleS; for a task system
78 comprised of three tasks of weight6 each and
three other tasks of weight/2 each. The ranks of
the subtasks in? underSg are as indicated(b) A
PD? schedulesS for 7 obtained fromr? by shifting
the I1S-window of each subtask right by one slots
0-compliant tor? andsS is 0-compliant toSz. (c)
A task systemr’ that is 4-compliant tor?, and a
schedule for’ that is 4-compliant t&p.

The proof of this lemma is somewhat tedious and
is available in an appendix.

By our definition ofSz andk-compliance, and
Lemma 6, we have the following theorem.

Theorem 2 PD® ensures a tardiness of at most
one quantum to every feasible GIS task system.

Theorems 1 and 2 imply the following.
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a schedule, then we say that there/arelesin ¢
in that schedule.

LetT; be the subtask with rark+1 in the total
order described above, and Btbe scheduled at
timetin Sg, i.e, let

Sp(T;) =t. (25)

Let 75! be the task system obtained frarh
by decreasing the eligibility time df; to e(T;).
Therefore, we have the following.

e(T], ) =

e(Ti) +1 A e(T, 7%+1) = ¢(

1;) (26)
Then,7**1is (k + 1)-compliant tor?. If T} is
scheduled atin Sy, then takeS; . ; to beS;. Oth-
erwise, let

Sp(T7) =1 (27)

Let 7}, denote the predecessorf if one ex-
ists. Then, we hav&g(T,) < t, and hence,
rank(Ty,) < k + 1 holds. Therefore, because
¢ andS;, arek-compliant, we have

Sk(T})

=Sp(Ty) <t (28)

We first claim the following.

Clam4 ¢ > t.

Proof: The proof is quite simple, but omitted due
to space constraints.
We next claim the following.

Claim5 There either is a hole it in S, or there
exists a subtasIU]’. scheduled at in S;, such that
e(UJ’-) <t A Ti’jU; holds, andU; is not scheduled
attin Sp.

Proof: Contrary to the claim, assume that there is no
hole int in S;, and that for every subtadk’ scheduled
att in S such thatVj, is not scheduled atin Sp,
Vi <T/ holds. LetU; be one such subtask. Then, the
following holds.
Sk(Uj) =t A Sp(Uj) #t AN U;=T; ANUG=T] (29)
Becausel; and U] are scheduled in different slots
in their respective schedulesank(U;) > k + 1
holds. Therefore, becaus&™! is (k 4 1)-compliant,
e(Uj) = e(Uj;) + 1 holds. Becaussy(U;) = ¢ holds,
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Figure 7. Lemma 5. rank(U;) > k + 1 holds.
Thus,e(U7) = e(U;) + 1. An arrow over a window
end point indicates that the end point could extend in
that direction.(a) Case 1.7; € EB(t). Hence,T;
cannot block a higher-priority subtask. Hencel/if
exists, PI¥ would schedule it prior td;. (b) Case
2. In this case, subtasks in 3&twhich are inEB(t)
are scheduled atin Sz, while their images inr*
are not scheduled atin S;. For each subtask,
inV, e(V,) = e(V,,) + 1 holds. Subtasks in sét
are scheduled dtin Si, and|V| > || holds. Thus,
there should exist at least one a subtlgksuch that
Sp(Wi) #t N Sp(W)) =t AN T; < W; holds.

e(U}) < t, and henceg(U;) < t — 1 holds. This can
be generallzed as follows.

(VUj : SB(Uj) <t A Sk(UJI) =t:

e(Uj) <t Ne(Uj) <t—1) (30)

ThereforelU; is either inDB(t) or PB(t) in Sp. By



the the priority definition of PB in Table 1, a subtask
in DB(t) is not blocked in slot under PI¥. There-
fore, if U; € DB(t) in Sg, thenU;<T; cannot hold,
which contradicts (29). Henc#; € PB(t). Because
T; is scheduled atin Sp, e(7;) < t holds. We con-
sider two cases.
Case l:e(T/, 7*+1) = e(T;) = t. This case is il-
lustrated in Fig. 7(a). In this cas@; is in EB(t) in
Sp. Letp denote the number of subtasks|AB(¢)]
before any scheduling decisions are made for &slot
SinceU; is in PB(t), by the priority definition of
PD? in Table 1,7;CU; can hold only in the firsb/ —p
scheduling decision. Henc&; is scheduled in one
of the first M — p scheduling decisions farin Sg.
Thus, by Claim 2, no subtask that remain&iB (¢) or
DB(t) during the lasip scheduling decisions for the
same slot can have a higher priority thin Hence,
PD” would have scheduledl; in ¢ in one of the final
p scheduling decisions, contradicting (29).
Case 2:e(T/,7Ft1) = e(T;) < t. This case is
illustrated in Fig. 7(b). Let/ denote the set of all
subtasks that are eligible befareready att, are not
scheduled at in Sg, and have a higher priority than
T;. Then, by Lemma 2, there exists a ¥atf subtasks
that are inEB(t) in Sp such that
VI = U] (31)
holds and every subtask ¥ is scheduled atin Sp
and has equal or a higher priority than every subtask
in Y. By the same lemmd[; is scheduled in slot
before every subtask ivi. Therefore, the rank of ev-
ery subtask inV is greater than that df, i.e., exceeds
k + 1. That is, we havé/ and) as follows.

U = {UjlelU;)<t—1 A Ujisready at in S
A SB(U]') >t A Uj~<Ti} (32)

V = {Vile(Vk) =t A rank(Vi) >k+1 A
Sp(Vk) =t N (YU; €U : Vi, =U;)} (33)

Let V, be any subtask inY. Then, because

rank(Vi) > k + 1 ande(V}) = t hold, andr® is
(k +1)-compliant tor B, e(V}, 7F1) = e(Vy) +1 =
t + 1 holds. Therefore, no subtask Wnis scheduled
in slott in S;,.

Let 75 and 7" denote the set of all subtasks that
are scheduled atin Sp andS;,, respectively. Let/"
denote the set of all subtaskg in 7%, whereU; is

17

inU. (" is the set of the images of subtaskd4r)

We next define a one-to-one mapping from subtasks

in 77 to those inT*. Because there is no hole in

in Sk, such a mapping is possible. Let the preimage
of every subtask i#/* that is in7"*, be a subtask in
V. (If d’ is the image ofi under some mapping, then
a is the preimage of’.) By (31), such a mapping is
possible. Note that, by (32), no subtask4rs in 77,
and by (33), every subtask W is in 75. Fig. 7(b)
shows an example. Apart from subtaskd/inat least
subtaskT; is in 7B. Because every subtaskiiff that
isin 7% is the image of some subtaskf it follows

thatT; should be mapped onto a subtagk that is not

in U* such thatSgW; > t holds. SgW; > t holds
becauseS, is k-compliant.) Thereforeyank(W;) >
k+ 1, and henceg(W)) = (W) + 1 holds. Because
Si(W]) = tholds, we have(W;) < t—1. Therefore,
sincelV; is not ini{, by (32), we havd;<W,. O

By Claim 5, (27), Claim 4, and (26) one of the
following holds.

(C1) Thereis a hole atin S.

(C2) e(T!, 1) = e(T;) < t holds and a sub-
taskU; with the same priority ag; under
PD? is scheduled at in S, but U; is not
scheduled at in Sg. (Claim 5 actually
implies that7; =< U holds. However, by
(26), e(T!,7") < t holds, and by (28)77,
is scheduled beforein S,. Therefore, if
T} = Uj holds, then PBwould schedule
T} att in S, in preference té/}.)

e(T) = e(T;) = t holds and a subtask’
such thaﬂ}’jUJ’. holds is scheduled dtin
Sk, butU; is not scheduled &tin Sp.

(C3)

If there is a hole in slot in S, then we can easily
schedul€l’ in S, and the resulting schedule will
be (k + 1)-compliant. Note that becaugg is k-
compliant,T;’s predecessor is guaranteed not to
be scheduled dtin S;.. Therefore, for the rest of
this proof, assume that there is no holée in S;.

We next show that we can constrit, ; from
Sk, by movingT; into slott andU; (defined in
(C2) or (C3)) out. Because there are no holes in
t in Si, we have the following.



(H) There are no holes ihin Sy, 4.

Let p denote the set of all subtasksrifi! with
rank higher thark. LetS; andS; , , be the sched-
ules for p obtained fromsS, and S,.,, respec-
tively, by removing all subtasks not jn(i.e., sub-
tasks with rank at mogt) and letting the remain-
ing subtasks be scheduled in the same slots as in
S, andS, 1. Then, becauss§, is k-compliant for
7%, all subtasks i, except?! if (C3) holds, are
scheduled by their PDpriority in Sy, and hence,
in ;.. Also, no subtask i misses its deadline
in Sy, or S;.. Letr denote the number of subtasks
with rank greater thah that are scheduled in slot
t in Si. Thus, we have the following:

(R1) &, is a valid schedule fop in which (i) no
subtask is scheduled in the fitst- 1 slots,
(i) only r < M subtasks are scheduled in
slott, and (iii) every allocation except pos-
sibly that of 7} is in accordance with PD

If (C2) holds, theri7; U7 holds. If (C3) holds,
thenT; € EB(t) in Sg. Therefore, from the pri-
ority definition for PI¥, it can be seen that PD
would scheduld; att in Sp in preference tdJ;
only if 7;=<U; holds. If T;=<U; holds, then by
the construction of*, Ti’jU]’. holds. Thus, if ei-
ther (C2) or (C3) holds, then we ha¥g<U’, and
hence, all subtasks ip are scheduled by their
PD? priorities in Sy ,,. Letr denote the num-
ber of subtasks with rank greater tharhat are
scheduled in slatin Si.. Then, by (H); subtasks
are scheduled in slatin S _ ;.

Thus, we have the following:

(R2) S, , isaschedule fop in which (i) and (ii)
from (R1) hold, and (iii) every allocation is
in accordance with PD

Because (R1) and (R2) hold, it can be shown that

S;.41 Is also avalid schedule fop. The proof is

essentially the same as the proof that establishes

the optimality of PD [14]. [ |
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