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Abstract

The earliest-deadline-first (EDF) scheduling of a sporadic real-time task system on a multiprocessor
may require that the total utilization of the task system,Usum, not exceed(m + 1)/2 on m processors
if every deadline needs to be met. In recent work, we considered the alleviation of this under-utilization
for task systems that can tolerate deadline misses by bounded amounts (i.e., bounded tardiness). We
showed that ifUsum ≤ m and tasks are not pinned to processors, then the tardiness ofeach task is
bounded under both preemptive and non-preemptiveEDF. The tardiness bounds that we derived are
dependent upon the utilizations and execution costs of the constituent tasks, but are independent of
Usum. Furthermore, any task may incur maximum tardiness. In thispaper, we address the issue of
supporting tasks whose tolerance to tardiness is less than that known to be possible underEDF. We
propose a new scheduling policy, calledEDF-hl, that is a variant ofEDF, and show that underEDF-hl,
any tardiness, including zero tardiness, can be ensured fora limited number ofprivilegedtasks, and that
bounded tardiness can be guaranteed to the remaining tasks if their utilizations are restricted.EDF-hl
reduces toEDF in the absence of privileged tasks. The tardiness bound thatwe derive is a function
of Usum, in addition to individual task parameters. Hence, tardiness for all tasks can be lowered by
loweringUsum. An experimental evaluation of the tardiness bounds that are possible is provided.
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1 Introduction

A real-time system has to meet certaintiming con-
straintsto be correct. Such timing constraints are
typically specified as deadline requirements. Tasks
in a real-time system are often recurrent in na-
ture. The sporadic task model is one of the most
widely-studied notions of recurrent real-time task
execution. In this model, each task is a sequential
program that is invoked repeatedly; each such in-
vocation is called ajob. The ith task is denoted
Ti(ei, pi), wherepi > 0 is the minimuminter-
arrival separationfor its successive jobs (i.e., suc-
cessive job invocations ofTi must be spaced apart
by at leastpi time units), andei ≤ pi is its per-job
execution cost. pi is also referred to as theperiodof
Ti. In the variant of the sporadic model considered
here,pi is also therelative deadlineof Ti, i.e., each
job of Ti must complete execution withinpi time
units of its invocation. The quantityei/pi denotes
the utilization of Ti. This quantity corresponds to
the share of a single processor thatTi requires in
the long run.

It is highly desirable that jobs be scheduled so
that they do not miss their deadlines. However, in
a soft real-time system, deadline misses can some-
times be tolerated, if the amount by which a dead-
line is missed is within a specified per-tasktardi-
ness threshold: If δ is the tardiness threshold of task
Ti, then a job ofTi with a deadline at timed should
be guaranteed to complete execution by timed+ δ.
Such a guarantee would ensure that each task re-
ceives a processor share close to its utilization.

In work on real-time systems, multiprocessor
platforms (SMPs) are of growing importance. This
is due to both hardware trends such as the emer-
gence of multicore technologies, and also to the
prevalence of computationally-intensive applica-
tions for which single-processor designs are not
sufficient. Examples of such applications include
systems that track people and machines, many
computer-vision systems, and signal-processing
applications such as synthetic aperture imaging (to
name a few). Timing constraints in several of these
applications are predominantly soft. Given these
observations, designing efficient scheduling algo-

rithms for multiprocessor-based soft real-time sys-
tems and extending the analysis of traditional algo-
rithms to soft real-time systems are goals of con-
siderable value and interest.

Sporadic task systems can be scheduled on a
multiprocessor using either apartitioning or a
global-schedulingapproach. Under partitioning,
tasks are statically assigned to processors, and a
uniprocessor scheduling algorithm is used on each
processor to schedule its assigned tasks. In con-
trast, under global scheduling, a task may execute
on any processor and may migrate across proces-
sors. Each approach can be differentiated further
based on the scheduling algorithm that is used. For
instance, theearliest-deadline-first(EDF) [7] or
the rate-monotonic(RM)∗ [9] algorithm could be
used as the per-processor scheduler under partition-
ing, or as the system-wide global scheduler.

Pfair scheduling [4], when deployed in a global
setting, is currently the only known way ofopti-
mally scheduling sporadic task systems on a mul-
tiprocessor. (The term “optimal” means that such
algorithms are capable of scheduling onm pro-
cessors any task system with total utilization at
mostm.) However, Pfair algorithms schedule tasks
one quantum at a time, and as a result, jobs may
be preempted and migrate across processors fre-
quently. Such preemption and migration overheads
can lower the amount of useful work that is actually
accomplished. On the other hand, no known non-
Pfair-based scheduling algorithm is optimal, and
in the worst case, every such algorithm requires
that total utilization not exceed(m + 1)/2 (i.e.,
the underlying platform is underutilized by roughly
50%), if every deadline is to be met [5, 10, 3, 2].

Prior work has shown that such restrictions on
overall utilization can be eliminated for soft real-
time systems. In [1], Andersonet al. presented a
variant of partitioned-EDF that ensures bounded
tardiness with no such restrictions, provided per-
task utilizations are capped at 1/2. In addition, in
a recent paper [8], we derived tardiness bounds for

∗UnderRM scheduling, priorities for jobs are fixed offline
and are inversely proportional to the periods of their tasks: the
jobs of a task with a smaller period have higher priority than
those of another task with a larger period.
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Figure 1: A global-RM schedule for an example task
set. Numbers within shaded rectangles indicate job
numbers.δi indicates the tardiness of theith job of T3.

both preemptive and non-preemptive globalEDF.
ForEDF, we established a bound of((m−1)emax−
emin)/(m − (m − 2)umax) + emin, wherem is the
number of processors andemax (resp.,emin) is the
maximum (resp., minimum) execution cost of any
task in the task system. For non-preemptiveEDF,
we established a bound of(memax − emin)/(m −
(m − 1)umax) + emin. Tardiness bounds under
EDF have also been presented by Valente and Li-
pari [12]. A precursor to all of the work men-
tioned here is a paper by Srinivasan and Ander-
son [11] in which tardiness bounds are presented
for the earliest-pseudo-deadline first (EPDF) Pfair
scheduling algorithm, which is sub-optimal but
more efficient than optimal algorithms.

While it may be reasonable to expect that most
scheduling algorithms should be capable of guaran-
teeing bounded tardiness in the absence of overuti-
lization, in reality this is not the case for some
well-known algorithms. Partitioning algorithms
and globalRM are examples. Under partitioned
scheduling, if a task set cannot be partitioned with-
out overutilizing some processor, then tardiness for
the tasks on that processor will increase with time.
An example of a task system with unbounded tardi-
ness under globalRM is shown in Fig. 1. Assume
here that each job of every task is invoked as early
as permissible. Then, the first job ofT3 does not
complete executing until time 12, for a tardiness of
6 time units, and the second job suffers from a tar-
diness of12 time units. It is easy to see that the
ith job of T3 does not complete until time12i, for
all i, for a tardiness of6i time units. This tardiness
increases with time and thus is unbounded.

Contributions. The tardiness bounds derived by
us previously for preemptive and non-preemptive
EDF [8] are dependent on per-task utilizations and
execution costs but independent of total system uti-
lization, Usum. Furthermore, any task may incur
maximum tardiness. This may not be acceptable
to applications that are comprised of hard and soft
real-time tasks or those comprised of soft tasks with
different tardiness tolerances. In this paper, we
make an attempt to address this limitation.

Our contributions are twofold. First, we consider
guaranteeing lower tardiness to some tasks at the
expense of others. To this end, we propose a new
scheduling policy, calledEDF-hl, which is a vari-
ant of globalEDF. We show that underEDF-hl,
on m processors, up tom tasks can be accorded
preferential treatment and thereby guaranteed any
tardiness, including zero, and that bounded tardi-
ness can be guaranteed to the remaining tasks if
their utilizations are capped. In the absence of tasks
that require lower tardiness,EDF-hl reduces to
EDF. Simulations involving randomly-generated
task sets presented herein suggest that for many
systems, the tardiness bounds that can be ensured
for tasks that do not receive preferential treatment
are acceptable.

Unlike in [8], the tardiness bound derived here
is a function ofUsum, in addition to individual
task parameters. Thus, as a second contribution,
our bound offers the possibility of lowering tardi-
ness for all tasks by loweringUsum. To assess the
tardiness-utilization trade-off forEDF (i.e., with-
out special tasks), we again conducted experiments
involving randomly-generated task sets. We found
that, with the improved analysis, considerable re-
ductions in tardiness are possible even for reason-
able reductions in total system utilization. For in-
stance, in the simulation results for eight proces-
sors shown in Fig. 6(b) in Sec. 4, loweringUsum

by around 10% results in a reduction in maximum
tardiness by over 35%, and loweringUsum by 25%
lowers maximum tardiness by close to 50%.

Organization. The rest of this paper is organized
as follows. Our system model and algorithmEDF-
hl are described in Sec. 2. Tardiness bounds are
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derived in Sec. 3. An experimental evaluation of
the tardiness-total utilization trade-off is provided
in Sec. 4. Finally, Sec. 5 concludes.

2 Definitions

In this section, our task model is described and al-
gorithmEDF-hl is presented.

Task model. A sporadic task system comprised
of n ≥ 1 sporadic tasks is to be scheduled on
m ≥ 2 processors. Each sporadic taskTi(ei, pi)
is as described in the introduction. Theutilization
of Ti is given byui = ei/pi. ui ≤ 1 holds for alli.
The total utilizationof τ is defined asUsum(τ) =
∑n

i=1 ui. It is required thatUsum(τ) ≤ m hold.
The maximum utilization (resp., execution cost) of
any task inτ is denotedumax(τ) (resp.,emax(τ)).
The minimum execution cost of any task is denoted
emin(τ). Umax(τ, k), wherek ≤ n, denotes the
k tasks with highest utilizations inτ . More for-
mally, Umax(τ, k) denotes a subset ofk tasks ofτ ,
where the utilization of each task in the subset is at
least as high as that of every task inτ \Umax(τ, k).
Emax(τ, k) is defined analogously with respect to
execution costs. (In all of thesemax andmin terms,
τ will be omitted when it is unambiguous.)

The kth job of Ti, wherek ≥ 1, is denoted
Ti,k, and its release timeand absolute deadline
(or simplydeadlinefor short) are denotedri,k and
di,k(= ri,k +pi), respectively.ri,k denotes the invo-
cation time ofTi,k and is the time at or after which
Ti,k can be executed.ri,k+1 − ri,k ≥ pi holds for all
k ≥ 1. Each task is sequential, and hence no job of
any task may execute in parallel. Furthermore, no
two jobs of any task may execute in parallel.

A sporadic task systemτ is said to beconcreteif
the release time of every job of each of its tasks is
specified, andnon-concrete, otherwise. Note that
an infinite number of concrete task systems can be
specified for every non-concrete task system. We
omit specifying the type of the task system unless
it is necessary. The results in this paper are for
non-concrete task systems, and hence hold for ev-
ery concrete task system.

The tardiness of a jobTi,j in a scheduleS is
defined astardiness(Ti,j,S) = max(0, t − di,j),
wheret is the time at whichTi,j completes execut-
ing in S. The tardiness of a task systemτ under
scheduling algorithmA is defined as the maximum
tardiness of any job of a task inτ in any sched-
ule underA. If κ is the maximum tardiness of any
task system underA, thenA is said toensure a
tardiness bound ofκ. Though tasks in a soft real-
time system are allowed to have nonzero tardiness,
we assume thatmissed deadlines do not delay fu-
ture job releases. That is, even if a job of a task
misses its deadline, the release time of the next job
of that task remains unaltered. Since consecutive
jobs of the same task cannot be scheduled in paral-
lel, a missed deadline effectively reduces the inter-
val over which the next job should be scheduled in
order to meet its deadline.

The sporadic task model is augmented as fol-
lows for EDF-hl (described below). Each task in
τ is classified as either aprivileged taskor anun-
privileged task. The set of all privileged (resp., un-
privileged) tasks is denotedτH (resp.,τL). (H and
L stand for high and low privilege, respectively.)
|τH | ≤ m holds. Each privileged taskTh has a
maximum tardiness parameter∆h ≥ 0, which de-
notes the maximum tardiness that any of its jobs
can tolerate.dh,j +∆h is referred to as theeffective
deadlineof job Th,j and is denotedρh,j.

Algorithm EDF-hl. Our goal is to design an al-
gorithm that can guarantee a tardiness of∆h to each
privileged taskTh while guaranteeing bounded tar-
diness to the remaining tasks. Let theslack of a
job Th,j of a privileged taskTh at time t be de-
fined asdh,j + ∆h − t − (eh − δh,j), whereδh,j

denotes the amount of time thatTh,j executed be-
fore t. Informally, the slack of jobTh,j at t is the
amount of time it can affordnot to execute aftert
until completion for its tardiness to be at most∆h.
A tardiness of at most∆h can be guaranteed for
taskTh if each jobTh,j is scheduled based on its
deadline until timedh,j + ∆h − eh, but is guaran-
teed continuous execution fromdh,j + ∆h − eh on-
ward. (This is somewhat similar to the behavior
of the earliest-deadline-until-zero-laxity algorithm
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described in [6].) JobTh,j is said to beurgent at
time t, if t ≥ dh,j + ∆h − eh andTh,j has not com-
pleted execution byt. Note thatTh,j is flagged as
urgent fromdh,j + ∆h − eh until completion even
if its slack is positive. This eliminates the overhead
of updating the urgency for each privileged job at
runtime and may also result in fewer preemptions
and migrations.

With the above definitions in place, Algorithm
EDF-hl can be described as follows. At any time
t, each of the urgent jobs, if any, of tasks inτH is
assigned a unique processor. If not every processor
is assigned to an urgent job, then the non-urgent
jobs ofτH and jobs of tasks inτL are scheduled on
the remaining processors on an earliest-deadline-
first basis, where ties are resolved arbitrarily. A job
may be preempted at any time by a higher priority
job and may later resume execution on a different
processor.

Note thatEDF-hl reduces toEDF if τH = ∅.
Since|τH | ≤ m holds,EDF-hl clearly ensures the
required tardiness for each privileged task. Hence,
the question to be addressed is whether bounded
tardiness can be guaranteed for the remaining tasks.
The answer turns out to be yes if there is a cap
on the utilizations of the remaining tasks. This
cap depends on the number of privileged tasks and
their utilizations. To see that such a cap is neces-
sary, at least in some cases, consider a task system
comprised of four tasksT1(3, 4), . . . , T3(3, 4), and
T4(3i, 4i), wherei ≥ 1. If tasksT1, . . . , T3 require
a tardiness of zero, then tardiness forT4 can grow
unboundedly.

Discussion. Though the tardiness bounds derived
in [8] guarantee that tardiness for each task in the
above example (withi = 1) is at most4.33 time
units underEDF, no task is immune from incur-
ring maximum tardiness. The bound forEDF-hl
derived here would enable one of the four tasks to
be guaranteed zero tardiness if the remaining tasks
can tolerate a tardiness of6 time units (which is
only slightly higher than4.33). However, if two
tasks have a tardiness requirement of zero, then tar-
diness for the remaining tasks may be as high as
21.0 (which is still bounded). Lower tardiness can

be guaranteed if the utilizations of the unprivileged
tasks are lower. For instance, with two privileged
tasksT1(3, 4) andT2(3, 4) and three unprivileged
tasksT3(3, 6), . . . , T5(3, 6), the unprivileged tasks
would have a tardiness of at most 12.0.

3 Tardiness underEDF-hl

In this section, we determine a tardiness bound for
τL. The approach for doing this is the same as
that used in [8]. This involves comparing the al-
locations to a concrete task systemτ in a processor
sharing (PS) schedule forτ and an actualEDF-hl
schedule of interest forτ , and quantifying the dif-
ference between the two. In aPS schedule, each
job of Ti is allocated a fractionui of a processor at
each instant (or equivalently, a fractionui of each
instant) in the interval between its release time and
its deadline. BecauseUsum ≤ m holds, the total
demand at any instant will not exceedm in a PS
schedule, and hence no deadlines will be missed;
in fact, every job will complete executing exactly
at its deadline. We begin by setting the required
machinery in place.

3.1 Definitions and Notation

A time interval[t1, t2), wheret2 ≥ t1, consists of
all times t, wheret1 ≤ t < t2, and is of length
t2 − t1. The system start time is assumed to be
zero. For any timet > 0, t− denotes the timet − ε
in the limit ε → 0+.

Definition 1 (active tasks and active jobs): A
taskTi is said to beactiveat timet, if there exists a
job Ti,j (calledTi’s active jobat t) such thatri,j ≤
t < di,j. By our task model, every task can have at
most one active job at any time.

Definition 2 (pending jobs): Ti,j is said to be
pendingat t in a scheduleS if ri,j ≤ t and Ti,j

has not completed execution byt in S. Note that a
job with a deadline at or beforet is not considered
to be active att even if it is pending att.

Definition 3 (ready jobs): A pending jobTi,j is
said to bereadyat t in a scheduleS if t ≥ ri,j and
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all prior jobs ofTi have completed execution byt
in S.

We now quantify the total allocation toτ in an
interval [t1, t2) in a PS schedule forτ , PSτ . Let
A(S, Ti, t1, t2) denote the total time allocated toTi

in an arbitrary scheduleS for τ in [t1, t2). Then,
sinceTi is allocated inPSτ a fractionui of each
instant at which it is active in[t1, t2), we have

A(PSτ , Ti, t1, t2) ≤ (t2 − t1)ui. (1)

The total allocation toτ in the same interval inPSτ

is

A(PSτ , τ, t1, t2)

≤
∑

Ti∈τ

(t2 − t1)ui = Usum(τ) · (t2 − t1). (2)

We are now ready to definelag and LAG, which
play a pivotal role in this paper. Thelag of task
Ti at timet in scheduleS, denotedlag(Ti, t,S), is
given by

lag(Ti, t,S) = A(PSτ , Ti, 0, t) − A(S, Ti, 0, t). (3)

In S, less work than inPSτ on the jobs ofTi has
been completed by timet if lag(Ti, t,S) is positive
(i.e., Ti is under-allocated inS), and more work, if
lag(Ti, t,S) is negative (i.e., Ti is over-allocated in
S). The total lag of a task systemτ at t, denoted
LAG(τ, t,S), is given by

LAG(τ, t,S) =
∑

Ti∈τ

lag(Ti, t,S)

= A(PSτ , τ, 0, t) − A(S, τ, 0, t). (4)

Note thatLAG(τ, 0,S) and lag(Ti, 0,S) are both
zero, and that by (3) and (4), we have the following
for t2 > t1.

lag(Ti, t2,S) = lag(Ti, t1,S) +

A(PSτ , Ti, t1, t2) − A(S, Ti, t1, t2) (5)

LAG(τ, t2,S) = LAG(τ, t1,S) +

A(PSτ , τ, t1, t2) − A(S, τ, t1, t2) (6)

Lag for jobs. The notion of lag defined above
for tasks and task sets can be applied to jobs and
job sets in an obvious manner. Letτ denote a
concrete task system, andΨ a subset of jobs in

τ . Let A(PSτ , Ti,j, t1, t2) and A(S, Ti,j, t1, t2)
denote the allocations toTi,j in [t1, t2) in PSτ

and S, respectively. Then,lag(Ti,j, t,S) =
A(PSτ , Ti,j, ri,j, t) − A(S , Ti,j, ri,j, t), and
LAG(Ψ, t,S) =

∑

Ti,j∈Ψ lag(Ti,j, t,S). The
total allocation in[0, t), wheret > 0, to a job that
is neither pending att− in S nor is active att− is
the same in bothS andPSτ , and hence, itslag at t
is zero. Therefore, fort > 0, we have

LAG(Ψ, t,S) =
∑

{Ti,j is in Ψ, and is
pending or active at
t−}

lag(Ti,j , t,S).

The above expression can be rewritten using task
lags as follows (since no job can be scheduled be-
fore its release time).

LAG(Ψ, t,S) ≤
∑

{Ti ∈ τ : Ti,j is in Ψ,
and is pending or active
at t−}

lag(Ti, t,S) (7)

Similarly, the total utilization ofΨ at timet is given
by the sum of the utilizations of tasks with an active
job att in Ψ:

Usum(Ψ, t) =
∑

{Ti ∈ τ : Ti,j is in Ψ and
is active att}

ui. (8)

Definition 4 (busy interval): A time interval
[t1, t2), wheret2 > t1, is said to bebusyfor τ if
all m processors are executing jobs of tasks inτ
throughout the interval,i.e., no processor is ever
idle in the interval or executes a job of a task not in
τ . An interval [t1, t2) that is not busy forτ is said
to benon-busyfor τ , and ismaximally non-busyif
every time instant in[t1, t2) is non-busy, and either
t1 = 0 or t1- is busy.

If at leastUsum(τ) tasks are executing at any in-
stant in[t1, t2) in a scheduleS for τ , then the tasks
in τ receive a total allocation ofUsum(τ) · (t2 − t1)
time in S in that interval. By (2), the total alloca-
tion toτ in [t1, t2) cannot exceedUsum(τ) ·(t2−t1)
in PSτ . Therefore, by (6), theLAG of τ at t2 cannot
exceed that att1, and we have the following lemma.
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Lemma 1 If LAG(τ, t + δ,S) > LAG(τ, t,S),
whereδ > 0 andS is a schedule forτ , then[t, t+δ)
is a non-busy interval forτ . Furthermore, there ex-
ists at least one instant in[t, t + δ) at which fewer
thanUsum(τ) tasks are executing.

The busy interval in Def. 4 is defined with respect
to τ . With respect toΨ, [t1, t2) is said to bebusy
only if every processor is executing some job of
Ψ throughout[t1, t2). The job-set counterpart of
Lemma 1 is as follows.

Lemma 2 If LAG(Ψ, t + δ,S) > LAG(Ψ, t,S),
whereδ > 0 andS is a schedule forΨ, then[t, t+δ)
is a non-busy interval forΨ. Furthermore, there ex-
ists at least one instantt′ in [t, t+δ) at which fewer
thanUsum(Ψ, t′) tasks are executing jobs inΨ.

3.2 Deriving a Tardiness Bound

Given an arbitrary non-concrete task systemτN ,
we are interested in determining the highest tardi-
ness of any job of any task inτN

L in any concrete
instantiation ofτN . Let τ (resp.,τH andτL) be a
concrete instantiation ofτN (resp.,τN

H andτN
L ), T`,j

a job inτL, td = d`,j, andS anEDF-hl schedule for
τ with the following property.

(P) The tardiness of every job of every taskTk in
τL with deadline less thantd is at mostx + ek,
wherex ≥ 0.

Then, determining the smallestx, independent of
the parameters ofT`, such that the tardiness ofT`,j

remains at mostx + e` would by induction imply a
tardiness of at mostx + ek for all jobs of tasks in
τL. Becauseτ is arbitrary, the tardiness bound will
hold for every concrete instantiation ofτN .

Our proof obligation is easily met ifT`,j com-
pletes by its deadline,td, so assume otherwise. The
completion time ofT`,j depends on the amount of
work that can compete withT`,j aftertd. We follow
the steps below to determinex.

(S1) Compute an upper bound (UB) on the amount
of work (including that due toT`,j) that can
compete withT`,j aftertd.

(S2) Determine a lower bound (LB) on the amount
of such work required for the tardiness ofT`,j

to exceedx + e`.

(S3) Determine the smallestx such that the tardi-
ness ofT`,j is at mostx + e` using UB and
LB.

Let Ψ denote the set of all jobs with deadlines at
mosttd of all tasks inτ . UnderEDF-hl, no job of a
task inτL with a deadline aftertd can compete with
T`,j. Therefore, competing work forT`,j is given
by (i) the amount of work pending attd for jobs in
Ψ, i.e., LAG(Ψ, td,S), plus(ii) the amount of work
demanded by jobs of tasks inτH that are not inΨ
but can compete with jobs inΨ in [td, td + x + e`)
. We now determine an upper bound on these two
components (step (S1) described above).

(In the analysis that follows, we assume that
∆h � x holds for allTh in τH . The analysis has to
be extended slightly, otherwise. We have refrained
from presenting a more general analysis in the in-
terest of clarity.)

3.2.1 Upper Bound onLAG(Ψ, td, S)

Let thecarry-in job of a taskTh in τH be defined
as that job ofTh, if any, with a release time before
td and an absolute deadline afterward. Clearly, at
most one such job exists for eachTh. Similarly, let
the job ofTh, if any, with a release time beforetd +
x+e` and an effective deadline afterward be defined
as itscarry-outjob. This is illustrated in Fig. 4. The
carry-in job ofTh is its only job with anabsolute
deadlineafter td that may preempt (i.e., compete
with) jobs inΨ beforetd (i.e., become urgent before
td). Let ΨH be the set of all carry-in jobs of tasks
in Th. (For ease of reference, descriptions for these
task sets and job sets are repeated in Fig. 2.)

By Lemma 2, theLAG of Ψ can increase only
across a non-busy interval forΨ. Recall that in a
non-busy interval forΨ fewer thanm jobs fromΨ
execute. In the case of anEDF-hl schedule, such a
non-busy interval forΨ can be classified into two
types depending on whether a job fromΨH is ex-
ecuting in the interval while a ready job fromΨ
is waiting. At the risk of slightly abusing terms,
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τH
def
= Set of all privileged tasks inτ

τL
def
= Set of all unprivileged tasks inτ

Ψ
def
= Set of all jobs of all tasks inτ

with deadlines at mosttd

ΨH
def
= Set of carry-in jobs of tasks inτH

Figure 2:Task and job sets heavily referred to.

we will refer to the two types asblockingandnon-
blockingnon-busy intervals. Ablocking non-busy
interval is one in which a job fromΨH is execut-
ing while a ready job fromΨ is waiting, whereas
a non-blocking, non-busy intervalis one in which
fewer thanm jobs fromΨ are executing, but there
does not exist a ready job inΨ that is waiting. Note
that it is immaterial whether a job fromΨH is exe-
cuting in a non-blocking, non-busy interval.

Before determining an upper bound onLAG, we
state some needed properties. In [8], we showed
that if a task does not execute continuously within
a non-busy interval in anEDF schedule, then its
lag at the end of the interval is at most zero. This
property can be extended to a non-blocking, non-
busy interval of anEDF-hl schedule, as follows.

Lemma 3 (from [8]) Let [t, t′) be a maximally
non-blocking, non-busy interval in[0, td) in S and
let Tk be a task inτ with a job inΨ that is active or
pending att′−. If Tk does not execute continuously
in [t, t′), thenlag(Tk, t

′,S) ≤ 0.

To see why this lemma holds, note that, because
[t, t′) is maximally non-busy and is non-blocking,
at least one processor is idle throughout this inter-
val, or a job fromΨH is executing while no job in
Ψ is waiting. Recall that the absolute deadline of a
job in ΨH is aftertd. Hence, ifTk is not executing
at t′−, then it has no pending work att′, and hence,
its lag at t′ is at most zero. On the other hand, if
Tk is executing att′−, but was not executing some
time earlier in[t, t′), then it must have had no pend-
ing work when its most-recent job was released and
must have executed continuously since then. In this
case too, its lag cannot exceed zero.

The two lemmas that follow are proved in an ap-
pendix. The first lemma bounds thelag of a task in
τL at any arbitrary time at or beforetd. The second
concerns thelags of tasks inτH .

Lemma 4 Let v be an arbitrary time instant at or
beforetd. LetTk be a task inτL andTk,q its earliest
pending job atv, and letδk,q < ek be the amount
of time that Tk,q executed for beforev. Then,
lag(Tk, v,S) ≤ (v − dk,q) · uk + ek − δk,q. Further-
more,v − dk,q ≤ x + δk,q. Hence,lag(Tk, v,S) ≤
x · uk + ek.

Lemma 5 Let Tk be a task inτH andTk,q its ear-
liest pending job at any arbitrary timev. Then,
lag(Tk, v,S) ≤ min(dk,q +∆k−v, ek)+(v−dk,q) ·
uk ≤ ek + ∆k · uk.

We now turn to determining an upper bound on
the LAG of Ψ at td. By Lemma 2, theLAG of Ψ
can increase only across a non-busy interval for
Ψ. Hence, an upper bound onLAG at the end of
the latest non-busy interval beforetd across which
LAG increases will serve as an upper bound for that
at td. As discussed earlier, a non-busy interval in
anEDF-hl schedule can be either blocking or non-
blocking. We will consider these two cases sepa-
rately. Letf be defined as follows.

f =

{

Usum(τ) − 1, Usum(τ) is integral
bUsum(τ)c, otherwise

(9)

Expressions that occur frequently in the analysis
are provided in Fig. 3. The lemma that follows
shows how to boundLAG at the end of a non-
blocking, non-busy interval.

Lemma 6 Let [t, t′) be a maximally non-
blocking, non-busy interval in[0, td) in S
and let LAG(Ψ, t′,S) > LAG(Ψ, t,S). Then,
LAG(Ψ, t′,S) ≤ x · UL + UH + EL.

Proof: By (7), theLAG of Ψ at t′ is given by the
sum of thelags at t′ of all tasks inτ with at least
one job inΨ that is active or pending att′−. By
Lemma 3, the lag of such a task that does not exe-
cute continuously in[t, t′) is at most zero. Hence,
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EL =
∑

Tk∈Emax(τ,f)

ek

UH =
∑

Th∈Umax(τH ,max(0,f−1−|τL|))

∆h · uh

EH =
∑

Th∈τH

eh(1 − uh)

UL =
∑

Tk∈Umax(τL,min(f−1,|τL|))

uk

E′
H =

∑

Th∈τH

((eh(1 − uh) + uh(e` − ∆h) +

min(eh · uh, ∆h)) + max(uh(eh − e`), 0))

U ′
H =

∑

Th∈τH

uh

Figure 3:Some expressions used in the paper.

to determine an upper bound onLAG at t′, it is suf-
ficient to determine an upper bound on thelags of
such tasks that are executing continuously in[t, t′).
Let f ′ denote the number of such tasks. Then, by
Lemma 2,

f ′ < max
t≤t̂<t′

{Usum(Ψ, t̂)} ≤ Usum(τ). (10)

Let αH (resp.,αL) denote the subset of all tasks
in τH (resp.,τL) that are executing continuously in
[t, t′) and have a job inΨ that is active or pending
at t′−. Then,

|αH | + |αL| = f ′, (11)

and by the above discussion on boundingLAG,

LAG(Ψ, t′,S)

≤
∑

Th∈αH

lag(Th, t′,S) +
∑

Tk∈αL

lag(Tk, t
′,S)

≤
∑

Th∈αH

(∆h · uh + eh) +
∑

Tk∈αL

(x · uk + ek)

{by Lemmas 5 and 4}

=
∑

Tk∈αL∪αH

ek +
∑

Tk∈αL

x · uk +
∑

Th∈αH

∆h · uh

≤
∑

Tk∈Emax(τ,f ′)

ek +
∑

Tk∈αL

x · uk +
∑

Th∈αH

∆h · uh

{By (11)}

≤
∑

Tk∈Emax(τ,f ′)

ek +
∑

Tk∈Umax(τL,min(f ′,|τL|))

x · uk

+
∑

Th∈Umax(τH ,max(0,f ′−|τL|))

∆h · uh.

{By (11) and assuming∆h � x so that

∆h · uh < x · uk for all Th ∈ τH , Tk ∈ τL}

Finally, as in [8], it can be shown that forLAG to
increase across[t, t′), at least one job ofΨ with a
deadline at or aftert′ should have completed execu-
tion beforet and that at least one job executing att
should have a deadline at or aftert′. Hence, thelag
for its taskTk at t′ is at mostek. By this argument,
the upper bound onLAG derived above reduces to

LAG(Ψ, t′,S)

≤
∑

Tk∈Emax(τ,f ′)

ek +
∑

Tk∈Umax(τL,min(f ′−1,|τL|))

x · uk

+
∑

Th∈Umax(τH ,max(0,f ′−1−|τL|))

∆h · uh.

The lemma follows because, by (9) and (10),f ′ ≤
f . �

The next lemma shows how to boundLAG at the
end of a blocking, non-busy interval.

Lemma 7 Let [t, t′) be a blocking, non-busy inter-
val in [0, td) in S such that every instant in[t, t′)
is a blocking instant and any job ofΨH that exe-
cutes in[t, t′) executes continuously in[t, t′). Then,
LAG(Ψ, t′,S) ≤ LAG(Ψ, t,S) +

∑

Th∈αH
(t′ − t) ·

(1 − uh), whereαH is the subset of all tasks inτH

whose jobs inΨH execute continuously in[t, t′).

Proof: Let Th be a task inαH , whereαH is as de-
fined in the statement of the lemma. Then, because
the job ofTh that is executing in[t, t′) is in ΨH ,
Th does not have a job inΨ that is either active or
pending anywhere in[t, t′). Thus, by (8),

(∀t̂ : t ≤ t̂ < t′ :: Usum(Ψ, t̂) ≤ Usum(τ)−
∑

Th∈αH

uh),

(12)
and since the cumulative allocation at each instant
in [t, t′) in PSτ to jobs inΨ is at mostUsum(τ) −
∑

Th∈αH
uh, the following holds.

A(PSτ ,Ψ, t, t′) ≤ (t′ − t)



Usum(τ)−
∑

Th∈αH

uh



(13)

Because[t, t′) is continuously blocking, at every in-
stant in[t, t′), there exists at least one job inΨ that
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is ready, but does not execute. This in turn implies
that no processor is idle in the interval. Hence, we
have the following.

A(S,Ψ, t, t′) = (t′ − t)(m − |αH |) (14)

By (13) and (14), and (6) (witht1 = t andt2 = t′),
we have

LAG(Ψ, t′,S)

≤ LAG(Ψ, t,S) +

(t′ − t)



(Usum(τ) −
∑

Th∈αH

uh) − (m − |αH |)





= LAG(Ψ, t,S) +

(t′ − t)



(Usum(τ) − m) + |αH | −
∑

Th∈αH

uh)



 .

Because Usum(τ) ≤ m, the above implies
LAG(Ψ, t′,S) ≤ LAG(Ψ, t,S) + (t′ − t) ·
∑

Th∈αH
(1 − uh). �

An upper bound on theLAG of Ψ at td can now
be determined by combining Lemmas 6 and 7 as
follows. (This lemma is proved in an appendix.)

Lemma 8 Let δh ≤ eh denote the amount of time
that the carry-in job (i.e., job in ΨH), if any,
of task Th in τH executes for beforetd. Then,
LAG(Ψ, td,S) ≤ x · UL + UH + EL +

∑

Th∈τH
δh ·

(1 − uh).

To complete step (S1), we need to determine an
upper bound on the work due to tasks inτH that can
compete with jobs inΨ in [td, td + x + e`). We do
this next.

3.2.2 Competing Demand by Jobs of Tasks in
τH not in Ψ

Let D(Th) denote the amount of work due to the
jobs of a taskTh in τH that are not inΨ and that
can compete with jobs of other tasks inΨ in [td, td+
x + e`). Then,D(Th) is composed of three parts:
(i) Work that needs to be done on a carry-in job, if
any, (ii) mandatory work that needs to be done on
a carry-out job, if any, and(iii) work to be done on
all jobs that lie between the carry-in and carry-out

jobs, which iseh times the number of such jobs.
This is illustrated in Fig. 4. (Note that because the
effective deadlines of any two consecutive jobs of
Th are separated by at leastph time units, the latter
of the two jobs does not become urgent until after
the effective deadline of the former job has elapsed.
Hence, no job released after the carry out job can
compete with a job inΨ.)

We now derive a bound onD(Th).

Lemma 9 Let Th be any task inτH . Then,
D(Th) ≤ eh−δh +uh ·(x+e`−∆h)+min(0, ∆h−
(eh − δh)uh)+max(0, uh(eh − e`)), whereδh ≤ eh

is the amount of time that the carry-in job, if any,
of Th executes beforetd.

Proof: If no job of Th has its effective deadline in
[td, td +x+e`), then at most one job ofTh executes
in the interval, and the maximum amount of time
it executes for cannot exceedeh − δh. Therefore,
D(Th) ≤ eh − δh holds. Assuming∆h � x, it can
be shown thatuh ·(x+e`−∆h)+min(0, ∆h−(eh−
δh)uh) + max(0, uh(eh − e`)) ≥ 0 holds. Hence,
D(Th) ≤ eh−δh +uh ·(x+e`−∆h)+min(0, ∆h−
(eh − δh)uh) + max(0, uh(eh − e`)), which proves
the lemma.

Therefore, for the rest of the proof assume that
at least one job ofTh has its effective deadline in
[td, td+x+e`). LetTh,ci

andTh,co
denote the carry-

in and carry-out jobs ofTh, if any.
Let ξh = ρh,ci

− td and letφh denote the offset
from td + x + e` of the last effective deadline in
[td, td + x + e`) of a job of Th. Refer to Fig. 4.
We now determine the three components ofD(Th)
mentioned above.

Work due to Th,ci
. SinceTh,ci

completes execut-
ing by ρh,ci

, the amount of time thatTh,ci
can exe-

cute for aftertd is at mostρh,ci
−td = ξh time units.

BecauseTh,ci
executes forδh time units beforetd,

it cannot execute for more thaneh − δh time units
after td. Thus, the amount of work to be done on
Th,ci

aftertd is at mostmin(eh − δh, ξh).

Work due to Th,co
. The effective deadline of

Th,co
is separated from the previous effective dead-

line of Th by at leastph time units. Since the last
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eh−(ph h)−φ

φ
h

td ξ
h

r

h,c carry−out job (Th,c+3 )

(=dh,c)

carry−in job(T )

(=dh,c+1) (=dh,c+2) (=dh,c+3)
h,c

Figure 4: Competing demand due to taskTh in τH in
the interval[td, td + x + e`). Competing demand due
to the carry-in jobTh,ci

(Th,c here) is at mostmin(eh −

δh, ξh) and that due to the carry-out jobTh,co
(Th,c+3

here) is at mostmax(0, eh − (ph − φh)).

effective deadline within[td, td +x+ e`) is φh time
units beforetd +x+e`, ρh,co

is at leastph−φh time
units aftertd. Therefore,min(eh, ph − φh) units of
work due toTh,co

does not compete with jobs inΨ
beforetd + x + e`. Hence, the competing work in
[td, td + x + e`) due to the carry-out job is at most
max(0, eh − (ph − φh)).

Work due to jobs betweenTh,ci
and Th,co

. The
effective deadlines of successive jobs ofTh are sep-
arated by at leastph time units. Therefore, the num-
ber of jobs ofTh that lie betweenρh,ci

andtd + x +
e` − φh is at mostbx+e`−ξh−φh

ph
c ≤ x+e`−ξh−φh

ph
.

Combining the three components above, we have

D(Th)

≤

(

x + e` − ξh − φh

ph

)

· eh +

max(0, eh − (ph − φh)) + min(eh − δh, ξh)

= max((x + e` − ξh − φh)uh, (x + e` − ξh − φh)uh

+eh − (ph − φh)) + min(eh − δh, ξh)

{Becauseeh/ph = uh}

≤ uh(x + e` − ξh) + min(eh − δh, ξh)

{Because0 ≤ φh ≤ ph anduh ≤ 1}

= uh(x + e` − ∆h − χh) + min(eh − δh,∆h + χh)

{Letting ξh = ∆h + χh; becausedh,ci
> td, χh > 0}

= min(eh − δh + uh(x + e` − ∆h − χh),

χh(1 − uh) + ∆h + uh(x + e` − ∆h))

= min(eh − δh + uh(x + e` − ∆h − χh),

(eh − δh)(1 − uh) + ∆h + uh(x + e` − ∆h))

{Becauseχh + ∆h < eh − δh ⇒ χh < eh − δh}

≤ min(eh − δh + uh(x + e` − ∆h),

(eh − δh)(1 − uh) + ∆h + uh(x + e` − ∆h))

{Becauseχh > 0}

≤ eh − δh + uh(x + e` − ∆h) +

min(0,∆h − (eh − δh)uh).

≤ eh − δh + uh(x + e` − ∆h) +

min(0,∆h − (eh − δh)uh) + max(0, uh(eh − e`)).

�

The next lemma gives a bound on the sum of the
LAG of Ψ and the competing work due to tasks in
τH .

Lemma 10 LAG(Ψ, td,S)+
∑

Th∈τH
D(Th) ≤ L+

∑

Th∈τH
(eh(1−uh)+uh · (x+ e` −∆h)+min(eh ·

uh, ∆h)+max(0, uh(eh−e`))), whereL = x·UL+
UH + EL.

Proof: By Lemma 8,

LAG(Ψ, td,S) ≤ L +
∑

Th∈τH

δh · (1 − uh), (15)

whereL = x·UL+UH +EL andδh is the amount of
time the carry-in job ofTh in ΨH executed before
td. By Lemma 9,
∑

Th∈τH

D(Th)

≤
∑

Th∈τH

(eh − δh + uh · (x + e` − ∆h)

+ min(0,∆h− (eh− δh)uh) + max(0, uh(eh− e`)))

(16)

By (15) and (16), we have

LAG(Ψ, td,S) +
∑

Th∈τH

D(Th)

≤ L +
∑

Th∈α

(δh(1 − uh) + eh − δh + uh(x + e` − ∆h)

+ min(0,∆h − (eh − δh)uh) + max(0, uh(eh − e`)))

= L +
∑

Th∈τH

((eh − δh · uh)

+uh(x + e` − ∆h) − (eh − δh)uh

+ min((eh − δh)uh,∆h) + max(0, uh(eh − e`)))

≤ L +
∑

Th∈τH

(eh(1 − uh) + uh(x + e` − ∆h)

+ min(eh · uh,∆h) + max(0, uh(eh − e`))).
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That completes step (S1). The next step is to deter-
mine a lower bound on the amount or such work
required for tardiness ofT`,j to exceed a certain
amount, which we do next.

3.3 Lower Bound onLAG + D

Lemma 11 If LAG(Ψ, td,S) ≤ (m−|τH |) ·x+ e`

and|τH | < m or LAG(Ψ, td,S)+
∑

Th∈τH
D(Th) ≤

(m − max(|τH | − 1, 0) · u`) · x + e` and|τH | > 0,
then the tardiness ofT`,j in S is at mostx + e`.

Proof: To prove the lemma, we show thatT`,j com-
pletes executing bytd + x + e`. If j > 1, then
d`,j−1 ≤ td − p` holds, and by (P), we have the
following.

(R) T`,j−1 completes executing bytd +x+e`−p`,
for j > 1.

We consider the two conditions stated in the lemma
in two separate cases below. In what follows, let
H = |τH |.

Case 1:LAG(Ψ, td, S) ≤ (m − |τH|) · x + e`

and |τH| < m. Let δ`,j denote the amount of
time thatT`,j executed beforetd. By the conditions
of this case, the amount of work pending attd
for jobs in Ψ, and hence for those ofτL in Ψ
is at most(m − H) · x + e`. Without loss of
generality, assume that the jobs inΨ are the
only jobs of τL (or, equivalently, jobs with dead-
lines beyondtd have been discarded). Hence, if
m − H tasks ofτL are executing at any instant
in [td, td + x +

δ`,j

m−H
), then the amount of work

done in the interval on jobs ofτL in Ψ is at least
(m−H)(x+

δ`,j

m−H
). Therefore, the amount of work

pending attd + x +
δ`,j

m−H
for those jobs is at most

(m−H) ·x+ e` − (m−H)(x+
δ`,j

m−H
) = e` − δ`,j .

Since T`,j has executed forδ`,j time before td,
the latest time thatT`,j completes executing is
td + x +

δ`,j

m−H
+ e` − δ`,j < td + x + e`. If fewer

than m − H tasks are executing at some time,
say t′ < td + x +

δ`,j

m−H
, then fewer thanm − H

tasks of τL have pending work att′. Because
tasks ofτH can execute on at mostH processors
at any instant,T` can execute uninterruptedly
from t′ until T`,j completes execution. Suppose
the job of T` executing att′ is T`,j. Then, since
t′ < td + x +

δ`,j

m−H
holds, and the amount of work

pending forT`,j is at moste` − δ`,j, T`,j completes
executing beforetd + x + e`. So, assume that
a prior job of T` is executing att′. In this case,
T`,j could not have executed beforetd, and hence,
δ`,j = 0, which implies (from the definition of
t′) that t′ < td + x. Furthermore,j ≥ 2 holds,
and by (R),T`,j−1 completes executing bytd + x,
and hence, the latest time thatT`,j commences
execution is at or beforetd + x, and so the latest
time thatT`,j completes execution istd + x + e`.

Case 2: LAG(Ψ, td, S) +
∑

Th∈τH
D(Th) ≤

(m − |τH| · u`) · x + e`. At the risk of some
notational abuse, let a time interval (resp., instant)
in [td, td + x + e`) in which all m processors are
executing a job ofΨ or that part of a task inτH that
can compete withΨ be referred to as abusy inter-
val (resp.,instant). Then, if pending, taskT` can
execute in every non-busy instant. If the latest busy
instant in[td, td +x+e`) is at or beforetd +x, then
because, by (R),T`,j−1, if it exists, completes exe-
cution at or beforetd + x, the latest time thatT`,j

completes execution istd + x + e`.
So, for the rest of this proof we assume that the

latest busy instant is aftertd + x. Let the total
lengths of the busy intervals in[td + x, td + x + e`)
be δ ≤ e`. (Refer to Fig. 5.) Therefore,T` can
execute for at leaste` − δ time in that interval. If
fewer thanm − H + 1 tasks are executing at any
non-busy instanttn at or beforetd +x, then at most
m − H tasks ofτL have pending work at or after
tn. Hence, since tasks inτH can execute on at most
H processors at any instant,T` is guaranteed un-
interrupted execution fromtn until T`,j completes.
Hence, since by (R),T`,j−1 (if it exists) completes
execution bytd +x, T`,j would complete execution
no later thantd + x + e`. Therefore, for the rest of
this case, assume the following.

(N) At leastmin(m−H+1, m) tasks are executing

11
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Figure 5: Case 2 of Lemma 11. Sample schedule in
[td, td + x + e`).

at every non-busy instant in[td, td + x).

Let B denote the total length of all the busy in-
tervals in [td, td + x + e`). (Refer to Fig. 5.) If
B ≤ x − x · u`, thenT` can execute for at least
x · u` + e` time in [td, td + x + e`). By Lemma 4,
lag(T`, td,S) ≤ x · u` + e`, and hence,T`,j would
complete executing at or beforetd + x + e`. So,
assumeB = x − x · u` + δ1, whereδ1 > 0. With
this assumption, we now compute the total amount
of work done in[td, td + x + e`). The total amount
of work done in all busy intervals in[td, td +x+e`)
is m · B. By (N), at leastmin(m − H + 1, m)
tasks are executing at every non-busy instant in
[td, td + x). The total length of all non-busy in-
tervals in[td, td + x) is x − (B − δ). Therefore,
the amount of work done in all non-busy intervals
in [td, td + x) is at leastmin(m−H + 1, m) · (x−
B + δ). The total length of all non-busy intervals
in [td + x, td + x + e`) is e` − δ, and at least task
T` of τL has pending jobs inΨ until td + x + e`,
and hence, executes in every non-busy instant in
[td + x, td + x + e`). (Otherwise, it would imply
thatT`,j has completed executing beforetd +x+e`,
completing the proof, as well). Hence, the total
amount of work done in[td, td + x + e`) is at least
mB +min(m−H +1, m) · (x−B + δ)+(e` − δ),
which, on substitutingx−x·u`+δ1 for B, simplifies
tomx−H ·x·u`+(m−H)·δ+x·u`+H ·δ1+(e`−δ)
for H > 0 andm · (x + δ) + e` − δ for H = 0.

By the condition of this case, the amount of work
that needs to be done in[td, td + x + e`) for jobs in
Ψ and of tasks inτH that can compete withΨ is at
mostmx−max(H − 1, 0) · x · u` + e`. Therefore,
the amount of work pending attd +x+e` is at most

−(H − 1) · δ1 − (m−H) · δ, for 1 ≤ H ≤ m, and
is at most−(m − 1) · δ, for H = 0. Becauseδ and
δ1 are positive, both the above bounds are negative.
Thus, no work of jobs inΨ, and in particular, that
of T`,j , can be pending attd + x + e`. �

This completes step (S2). We are left with deter-
mining a value forx for which the tardiness ofT`,j

is at mostx + e`.

3.4 Finishing Up

Solving forx using Lemma 8 and the first condition
in Lemma 11,i.e., solving forx in x · UL + UH +
EL + EH ≤ (m − |τH |)x + e`, yields

x ≥
EL + UH + EH − e`

(m − |τH |) − UL

, (17)

whereEH is as in Fig. 3.Solving using Lemma 10
and the second condition of Lemma 11,i.e., using
∑

Th∈τH
(eh ·(1−uh)+uh ·(x+e`−∆h)+min(eh ·

uh, ∆h)+max(0, uh·(eh−e`)))+x·UL+UH+EL ≤
mx − max(|τH | − 1, 0) · x · u` + e`, we have

x ≥
EL + UH + E′

H − e`

m − max(|τH | − 1, 0) · u` − UL − U ′
H

, (18)

whereE ′
H and U ′

H are as in Fig. 3. Hence, ifx
is smaller of the two values that are on the right-
hand sides of (17) and (18), then the tardiness of
T`,j would not exceedx + e`. A value ofx that is
independent of the parameters ofT` is obtained by
replacinge` by emin andu` by umax(τL) in (17) and
(18). Similarly, thee` term in the expression forE ′

H

has to be replaced byemax(τL). By inducting on
the jobs ofτL in the non-decreasing order of their
deadlines, we have the following theorem.

Theorem 1 EDF-hl ensures a tardiness of at
most min(X1, X2) + ek to every taskTk of
τL if |τH | ≤ m and Usum(τ) ≤ m,
where X1 = EL+UH+EH−emin(τL)

(m−|τH |)−UL
and X2 =

EL+UH+E′

H−emin(τL)

m−max(|τH |−1,0)·umax(τL)−UL−U ′

H

.

Conditions for bounded tardiness. Since the
derivation was based on the assumption thatx ≥ 0,
X1 andX2 are valid only if their denominators are
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Figure 6: Tardiness byUsum using theBASIC and IMPR bounds for(a) m = 16, 0.4 < uavg ≤ 0.5, and
19.0 < eavg ≤ 20.0, (b) m = 8, 0.7 < uavg ≤ 0.8, and14.0 < eavg ≤ 15.0, and(c) m = 32, 0.7 < uavg ≤ 0.8,
and14.0 < eavg ≤ 15.0.

non-negative.X1 andX2 are bounded only if their
denominators are greater than zero. Hence, if the
sum of the utilizations of thef − 1 heaviest tasks
in τL is less thanm − |τH |, thenX1 is bounded.
Similarly,X2 is bounded only if the sum of the uti-
lizations of the heaviestf−1 tasks inτL is less than
m − |τH | · umax(τL) − U ′

H . Hence, if either of the
above conditions holds, then bounded tardiness is
guaranteed to tasks inτL.

Computational complexity. Each of theE and
U terms in the tardiness bound can be computed in
O(f) time. Thef tasks with highest utilizations
or execution costs can selected fromτ , τL, or τH

in O(n) time. Hence, the tardiness bound can be
computed inO(n) time.

4 Experimental Evaluation

In this section, we present the results of experi-
ments conducted to(i) determine the range of the
tardiness bound guaranteed byEDF-hl on an aver-
age and(ii) evaluate the tardiness-utilization trade-
off possible in the absence of high-priority tasks.
Due to space constraints, only a subset of the re-
sults is presented here.

Tardiness-Utilization trade-off. As mentioned
earlier,EDF-hl reduces toEDF in the absence of
high-priority tasks. Hence, in this case, the tardi-
ness bound given in Thm. 1 applies to every task
in τ . Note that the tardiness bound is expressed in

terms ofUsum(τ) in addition to individual task pa-
rameters. Hence, an alternative toEDF-hl for guar-
anteeing lower tardiness is to lowerUsum. This ap-
proach may be preferable if a majority of the tasks
require lower tardiness and the gains are reasonable
for slight decreases inUsum.

In the absence of high priority tasks, using a
slightly different, but more complicated, analysis
than that used in Sec. 3 or in [8], it can be shown
that

UL ≤
∑

Tk∈Umax(τL,f−1)

u2
k(m − f)

(m − Usum) + uk(Usum − f)
,

(19)
which when used in the expression for the tardi-
ness bound in Thm. 1 results in slightly lower val-
ues. We will refer to the bound given in Thm. 1
asBASIC and the bound obtained by using (19) as
IMPR.

We evaluated the tardiness-utilization trade-off
that is possible by generating random task sets with
varying values forUsum and computing theBA-
SIC and IMPR bounds for each and comparing
these bounds with those obtained from our earlier
work, whenUsum = m [8]. Simulation experi-
ments were conducted for four, eight, 16, and 32
processors, withUsum varying between3m/4 and
m in increments of0.1. 600,000 task sets, with
at leastm + 1 tasks in each, were generated for
each(Usum, m) pair. The maximum utilization of
any task in a task set varied uniformly from0.5 to
1.0. The task sets generated were grouped based
on uavg andeavg, whereuavg andeavg are the av-
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Figure 7:Experimental evaluation of the tardiness bounds guaranteed by Thm. 1 underEDF-hl for tasks in|τL|.
LU with (a) m = 4 and (b) m = 16. HU with (c) m = 4 and(d) m = 16. The different curves in each inset
correspond to different values of|τH |. |τH | = 0 for the bottom-most curve and is greater by one for each curve
higher up.

erages of the highestbUsumc task utilizations and
execution costs, respectively. The variation in tar-
diness (mean of the maximum tardiness for all task
sets in a group) withUsum for (i) m = 16 when
0.4 < uavg ≤ 0.5 and 19.0 < eavg ≤ 20.0 and
(ii) m = 8 andm = 32 when0.7 < uavg ≤ 0.8
and14.0 < eavg ≤ 15.0 are presented in Fig. 6.
Note that the rate at which tardiness drops with de-
creasingUsum is higher whenuavg is higher (in the
(0.7, 0.8] range). Furthermore, the rate at which tar-
diness drops withUsum decreases with decreasing
Usum. For instance, in inset (c), reducingUsum to
31.0 (which is 96.8% ofm(= 32)) lowers tardiness
to less than 50.0 from over 60.0, which is a drop of
over 20%, whereas to lower tardiness to less than
40.0, Usum has to be decreased to approximately
27.0 (which is 84.3% ofm). Hence, settingUsum

to a value slightly lower thanm may be appropri-
ate when high utilization tasks are present in the
task system. At this point, we would like to note
that these characteristics should be attributed to the
bounds derived (and to the analysis) and not to the
algorithm per se.

Tardiness bounds forEDF-hl. We also experi-
mentally evaluated the tardiness bounds that can
be guaranteed to low-priority tasks on an average
under EDF-hl for m = 4 and m = 16, with
Usum = m. The task sets generated were grouped
based on the average of them highest task utiliza-
tions and the utilizations of the tasks inτH , denoted
uavg. (eavg is with respect to execution costs, anal-
ogously.) For each task set generated, the number
of tasks inτH was varied from zero tom, and for

uavg

|τH | 0.2 0.3 0.4 0.5 0.6 0.7 0.8

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 1.9 100.0
8 0.0 0.0 0.0 0.0 37.2 98.09 100.0
9 0.0 0.0 0.0 0.0 99.3 100.0 100.0
10 0.0 0.0 0.0 0.0 100.0 100.0 100.0
11 0.0 0.0 0.0 14.76 100.0 100.0 100.0
12 0.0 0.0 25.0 100.0 100.0 100.0 100.0
13 0.0 9.7 99.78 100.0 100.0 100.0 100.0
14 0.0 99.67 100.0 100.0 100.0 100.0 100.0
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 1: Percentage of task sets for which unbounded
tardiness was computed form = 16 underHU.

each|τH |, the members ofτH were chosen in two
different ways: first, as tasks with the highest|τH |
utilizations in the generated task set (denotedHU),
and then, as tasks with the lowest|τH | utilizations
(denotedLU). The variation in tardiness withuavg

as the number of high-priority tasks is increased
is plotted in Fig. 7 for bothHU and LU. As ex-
pected, tardiness increases with|τH | anduavg, and
the increase is higher forHU than forLU. The tar-
diness bounds computed grew to unbounded val-
ues for certain task sets at high values of|τH |, with
the percentage of such task sets increasing with in-
creasinguavg. The percentage of such task sets for
HU is tabulated by|τH | anduavg for m = 16 in
Table 1. The figures forLU are slightly lower.
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5 Conclusion
We have addressed the issue of supporting tasks
whose tolerance to tardiness is lower than that cur-
rently known to be possible underEDF. We have
proposed a new scheduling policy calledEDF-hl,
which is based onEDF, and have shown that un-
der EDF-hl, a limited number ofprivileged tasks
can be guaranteed any tardiness, including zero tar-
diness, and that bounded tardiness can be guaran-
teed to the remaining tasks if their utilizations are
restricted. The tardiness bound derived is a func-
tion of Usum, in addition to individual task param-
eters, and hence, tardiness for all tasks can be low-
ered by slightly loweringUsum. We have, through
simulations, assessed the impact of privileged tasks
on the tardiness bounds that can be guaranteed to
the remaining tasks, and the tardiness-utilization
trade-off that is possible in the absence of privi-
leged tasks.

This problem of supporting sporadic tasks with
different tardiness requirements may alternatively
be viewed as one of supporting tasks with rela-
tive deadlines at least periods. TheEDF schedu-
lability tests available for task systems with rela-
tive deadlines equal to periods on a multiprocessor,
though applicable when deadlines may exceed peri-
ods also, are pessimistic and tend to under-utililize
the underlying platform. The work presented in this
paper is an attempt towards remedying this limita-
tion.
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Appendix: Additional Proofs

Lemma 4 Let v be an arbitrary time instant at or
beforetd. LetTk be a task inτL andTk,q its earliest
pending job atv, and letδk,q < ek be the amount
of time that Tk,q executed for beforev. Then,
lag(Tk, v,S) ≤ (v − dk,q) · uk + ek − δk,q. Further-
more,v − dk,q ≤ x + δk,q. Hence,lag(Tk, v,S) ≤
x · uk + ek.

Proof: We prove the lemma for the casedk,q ≤ v,
leaving the casedk,q > v to the reader. The amount
of work pending forTk,q at v is ek − δk,q. Tk is al-
located at mostuk time at every instant afterdk,q

in PSτ . The firstlag bound indicated follows from
these two facts. The bound onv−dk,q follows from
(P) and the secondlag bound is obtained by substi-
tuting the bound forv − dk,q in the firstlag bound.

�

Lemma 5 Let Tk be a task inτH andTk,q its ear-
liest pending job at any arbitrary timev. Then,
lag(Tk, v,S) ≤ min(dk,q +∆k−v, ek)+(v−dk,q) ·
uk ≤ ek + ∆k · uk.

Proof: BecauseTk is in τH andTk,q is pending at
v, v ≤ dk,q + ∆k holds. SinceTk,q is guaranteed
continuous execution until completion after time
dk,q + ∆k − ek, the amount of work pending for
Tk,q at v is at mostmin(dk,q + ∆k − v, ek), i.e.,
A(S, Tk,q, rk,q, v) ≥ ek −min(dk,q +∆k −v, ek). If
v ≤ dk,q, thenA(PSτ , Tk,q, rk,q, v) = ek−(dk,q−v)·
uk. Thus,lag(Tk,q, v,S) = A(PSτ , Tk,q, rk,q, v) −
A(S, Tk,q, rk,q, v) ≤ min(dk,q + ∆k − v, ek) −
(dk,q − v) · uk. BecauseTk,q is the earliest pend-

’t 2’t 1=t2 ’t 3 ’t 4 ’t 5t1 =t3 =t4 t5 tdt’

I1 I2

J1

2

J3

J4J

Figure 8: Lemma 8. There does not exist a non-
blocking, non-busy interval across whichLAG increases
in [t′, td). J1, . . . , J4 are jobs inΨH . Their execution in
blocking, non-busy intervalsI1 andI2 is shown, as well
as the slicing of the blocking intervalI1 as specified in
the proof.

ing job of Tk at v and no later job ofTk can be re-
leased beforedk,q, lag(Tk, v,S) = lag(Tk,q, v,S) ≤
min(dk,q + ∆k − v, ek) − (dk,q − v) · uk. On the
other hand, ifv > dk,q, then thelag of Tk at v
is given by the sum of the work pending forTk,q

(which is at mostmin(dk,q + ∆k − v, ek)) and the
total allocation toTk in PSτ in [dk,q, v). In PSτ , Tk

is allocated at most a fractionuk in every instant in
[dk,q, v). Hence, in this case too,lag(Tk, v,S) ≤
min(dk,q + ∆k − v, ek) + (v − dk,q) · uk. Finally,
becausev ≤ dk,q + ∆k, we havemin(dk,q + ∆k −
v, ek) + (v − dk,q) · uk ≤ ek + ∆k · uk. �

Lemma 8 Let δh ≤ eh denote the amount of time
that the carry-in job, if any, inΨH of taskTh in
τH executes for beforetd. Then,LAG(Ψ, td,S) ≤
x · UL + UH + EL +

∑

Th∈τH
δh · (1 − uh).

Proof: Let [t, t′) denote the latest non-blocking,
non-busy interval beforetd across whichLAG

increases. If[t, t′) exists, then by Lemma 6,
LAG(Ψ, t′,S) ≤ x · UL + UH + EL. If [t, t′) does
not exist, then lett′ be equal to the first blocking in-
stant in[0, td), if any. Otherwise, lett′ = td. Then,
LAG(Ψ, t′,S) ≤ 0.

If no blocking, non-busy interval followst′ (by
our assumption,[t, t′) is the latest non-blocking in-
terval beforetd across whichLAG increases), then
by Lemma 2,LAG(Ψ, td,S) ≤ LAG(Ψ, t′,S), com-
pleting the proof. So assume that some blocking,
non-busy interval followst′.

Let [ti, t
′
i), where1 ≤ i ≤ b and ti < t′i−1
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for all 1 < i ≤ b, denote theb disjoint (i.e.,
non-overlapping) blocking, non-busy subintervals
in [t′, td) such that the following holds: any job of
ΨH that executes in any of theb non-busy subin-
tervals executes continuously in the interval. It is
straightforward to show that such subintervals can
be defined—see Fig. 8.

Any increase inLAG for Ψ only occurs across a
blocking interval aftert′. By Lemma 7, the increase
in LAG across the blocking subinterval[ti, t

′
i) is at

most
∑

Th∈αi
(t′i − ti) · (1 − uh), whereαi is the

subset of all tasks inτH whose carry-in jobs are
executing continuously in[ti, t′i). Let Th be a task
of τh whose carry-in jobTh,ci

executes in[ti, t′i).
Then, the increase inLAG due toTh across[ti, t′i)
is at most(t′i−ti) ·(1−uh). By the statement of the
lemma,Th,ci

does not execute for more thanδh time
units in [t′, td). Hence, the increase due toTh over
all the blocking subintervals cannot be more than
δh · (1−uh), and the increase due to all the tasks in
τH cannot be more than

∑

Th∈τH
(1 − uh) · δh. The

lemma then follows from the upper bound forLAG

at t′ determined in the beginning of the proof.�

17


