Flexible Tardiness Bounds for Sporadic Real-Time Task
Systems on Multiprocessors

UmaMaheswari C. Devi and James H. Anderson
Department of Computer Science
The University of North Carolina at Chapel Hill

October, 2005

Abstract

The earliest-deadline-firsEDF) scheduling of a sporadic real-time task system on a moltgssor
may require that the total utilization of the task systém,,,, not exceedm + 1)/2 onm processors
if every deadline needs to be met. In recent work, we constttite alleviation of this under-utilization
for task systems that can tolerate deadline misses by bdusmmeunts i(e., bounded tardiness). We
showed that ifUs,,, < m and tasks are not pinned to processors, then the tardinesacbftask is
bounded under both preemptive and non-preem#ilé-. The tardiness bounds that we derived are
dependent upon the utilizations and execution costs of dmstituent tasks, but are independent of
Usum. Furthermore, any task may incur maximum tardiness. Inphjser, we address the issue of
supporting tasks whose tolerance to tardiness is less tarkbhown to be possible und&DF. We
propose a new scheduling policy, callEBF-hl, that is a variant oEDF, and show that undeégDF-hl,
any tardiness, including zero tardiness, can be ensuredlifmited number oprivilegedtasks, and that
bounded tardiness can be guaranteed to the remaining fahledr iutilizations are restrictedeDF-hl
reduces t&EDF in the absence of privileged tasks. The tardiness boundabalerive is a function
of Usum, In addition to individual task parameters. Hence, tarsinfor all tasks can be lowered by
lowering Us,..,,. An experimental evaluation of the tardiness bounds ttepassible is provided.

*Work supported by NSF grants CNS 0309825 and CNS 0408996firEhauthor was also supported by an IBM Ph.D.
fellowship.

1 Introduction rithms for multiprocessor-based soft real-time sys-
tems and extending the analysis of traditional algo-
A real-time system has to meet certéiming con- rithms to soft real-time systems are goals of con-
straintsto be correct. Such timing constraints argderable value and interest.
typically specified as deadline requirements. TasksSporadic task systems can be scheduled on a
in a real-time system are often recurrent in narultiprocessor using either partitioning or a
ture. The sporadic task model is one of the magibbal-schedulingapproach. Under partitioning,
widely-studied notions of recurrent real-time tagkisks are statically assigned to processors, and a
execution. In this model, each task is a sequentimiprocessor scheduling algorithm is used on each
program that is invoked repeatedly; each such rocessor to schedule its assigned tasks. In con-
vocation is called gob. The " task is denotedtrast, under global scheduling, a task may execute
Ti(ei,p;), wherep; > 0 is the minimuminter- on any processor and may migrate across proces-
arrival separationfor its successive jobs.¢€., suc- sors. Each approach can be differentiated further
cessive job invocations af; must be spaced aparbased on the scheduling algorithm that is used. For
by at leasp; time units), anc:; < p; is its per-job instance, theearliest-deadline-firs{EDF) [7] or
execution costp; is also referred to as thperiodof the rate-monotoniqRM)* [9] algorithm could be
T;. In the variant of the sporadic model considereged as the per-processor scheduler under partition-
here,p; is also theelative deadlineof 73, i.e., each ing, or as the system-wide global scheduler.
job of T; must complete execution withip, time Pfair scheduling [4], when deployed in a global
units of its invocation. The quantity;/p; denotes setting, is currently the only known way oipti-
the utilization of 7;. This quantity corresponds tanally scheduling sporadic task systems on a mul-
the share of a single processor tiatrequires in tiprocessor. (The term “optimal” means that such
the long run. algorithms are capable of scheduling en pro-

It is highly desirable that jobs be scheduled sessors any task system with total utilization at
that they do not miss their deadlines. However, imostm.) However, Pfair algorithms schedule tasks
a soft real-time systendeadline misses can somasne quantum at a time, and as a result, jobs may
times be tolerated, if the amount by which a dealde preempted and migrate across processors fre-
line is missed is within a specified per-taskdi- quently. Such preemption and migration overheads
ness thresholdf ¢ is the tardiness threshold of taskan lower the amount of useful work that is actually
T;, then a job off; with a deadline at timé should accomplished. On the other hand, no known non-
be guaranteed to complete execution by titred. Pfair-based scheduling algorithm is optimal, and
Such a guarantee would ensure that each taskimethe worst case, every such algorithm requires
ceives a processor share close to its utilization. that total utilization not excee@m + 1)/2 (i.e,

In work on real-time systems, multiprocessahne underlying platform is underutilized by roughly
platforms (SMPs) are of growing importance. ThB0%), if every deadline is to be met [5, 10, 3, 2].
is due to both hardware trends such as the emerPrior work has shown that such restrictions on
gence of multicore technologies, and also to theerall utilization can be eliminated for soft real-
prevalence of computationally-intensive applicime systems. In [1], Andersoet al. presented a
tions for which single-processor designs are nariant of partitioned=DF that ensures bounded
sufficient. Examples of such applications includardiness with no such restrictions, provided per-
systems that track people and machines, mdagk utilizations are capped at 1/2. In addition, in
computer-vision systems, and signal-processiagecent paper [8], we derived tardiness bounds for
applications such as synthetic aperture imaging {te

name a few). Timing constraints in several of thegﬁd are inversely proportional to the periods of their tathes

applications are predominantly soft. Given thegfs of a task with a smaller period have higher priority than
observations, designing efficient scheduling algese of another task with a larger period.

*UnderRM scheduling, priorities for jobs are fixed offline

1

. | Contributions. The tardiness bounds derived by

| us previously for preemptive and non-preemptive
EDF [8] are dependent on per-task utilizations and

= execution costs but independent of total system uti-

T,(2,3) $ |

1
T23)]

ol M @M m m m m m

e lization, U,,,,. Furthermore, any task may incur
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 maXimum tardiness_ Th|S may not be acceptable
[Allocations on Processor 1 [Allocations on Processor 2 to applications that are comprised of hard and soft

Figure 1A g|0ba|_RM schedule for an examp|e taslfeal'time ta.SkS or those ComanEd Of SOft taSkS with

set. Numbers within shaded rectangles indicate jgiferent tardiness tolerances. In this paper, we

numberss; indicates the tardiness of tié job of 7;. Make an attempt to address this limitation.
Our contributions are twofold. First, we consider

guaranteeing lower tardiness to some tasks at the

both preemptive and non-preemptive gloB@F. expense of others. To this end, we propose a new
ForEDF, we established a bound @fn—1)e . — scheduling policy, calle@EDF-hl, which is a vari-
emin)/ (M — (M — 2)Umax) + €min, Wherem is the ant of globalEDF. We show that undeEDF-hl,
number of processors amg.. (resp.,em,) is the 0N m processors, up ten tasks can be accorded
maximum (resp., minimum) execution cost of ar@referential treatment and thereby guaranteed any
task in the task system. For non-preempfiRF, tardiness, including zero, and that bounded tardi-
we established a bound 6fiena, — emim)/(m — NESS can be guaranteed to the remaining tasks if
(m — 1)umax) + emm Tardiness bounds undetheir utilizations are capped. In the absence of tasks
EDF have also been presented by Valente and that require lower tardines€DF-hl reduces to
pari [12]. A precursor to all of the work menEDF. Simulations involving randomly-generated
tioned here is a paper by Srinivasan and Andéask sets presented herein suggest that for many
son [11] in which tardiness bounds are presenteptems, the tardiness bounds that can be ensured
for the earliest-pseudo-deadline firRDF) Pfair for tasks that do not receive preferential treatment
scheduling algorithm, which is sub-optimal bure acceptable.

more efficient than optimal algorithms. Unlike in [8], the tardiness bound derived here

o is a function ofU,,,,, in addition to individual
While it may be reasonable to expect that mQglsk narameters. Thus, as a second contribution,

scheduling algorithms should be capable of guarafy pound offers the possibility of lowering tardi-
teeing bounded tardiness in the absence of overfliss for all tasks by lowering.,,,. To assess the
lization, in reality this is not the case for SOME, jiness-utilization trade-off foEDE (i.e., with-
well-known algorithms. Partitioning algorithmg, s special tasks), we again conducted experiments
and globalRM are examples. Under partitionegh ,ing randomly-generated task sets. We found
scheduling, if a task set cannot be partitioned Witfyat \ith the improved analysis, considerable re-
out overutilizing some processor, then tardiness i@ (ions in tardiness are possible even for reason-

the tasks on that processor will increase with timgy) requctions in total system utilization. For in-
An example of a task system with unbounded tardipnce in the simulation results for eight proces-

ness under gIopeRM is shown in.Fi.g. 1. Assumeg,,s shown in Fig. 6(b) in Sec. 4, loweririg,,,
here that each job of every task is invoked as eagy 5r6und 109% results in a reduction in maximum

as permissible. Then, the first job § does not i yiness by over 35%, and loweribg,,,, by 25%

complete executing until time 12, for a tardiness Qf\.ars maximum tardiness by close to 50%.

6 time units, and the second job suffers from a tar-

diness ofl2 time units. It is easy to see that thgyrganization. The rest of this paper is organized
i job of T3 does not complete until tim&2i, for s follows. Our system model and algoritiEDF-

a” 7:, for atardiness w’l t|me UnitS. Th|S tardineSSh| are descnbed in Sec. 2. Tardiness bounds are
increases with time and thus is unbounded.

2

derived in Sec. 3. An experimental evaluation of The tardiness of a jobl; ; in a scheduleS is

the tardiness-total utilization trade-off is providedefined astardiness(1; ;,S) = max(0,t — d, ;),

in Sec. 4. Finally, Sec. 5 concludes. wheret is the time at whicl¥; ; completes execut-
ing in S. Thetardiness of a task systemunder
scheduling algorithrmd is defined as the maximum

2 Definitions tardiness of any job of a task inin any sched-
ule underA. If x is the maximum tardiness of any

In this section, our task model is described and &sk system unded, then.A is said toensure a

gorithmEDF-hl is presented. tardiness bound of. Though tasks in a soft real-
time system are allowed to have nonzero tardiness,

Task model. A sporadic task system comprisedie assume thanissed deadlines do not delay fu-

of n > 1 sporadic tasks is to be scheduled aare job releases That is, even if a job of a task

m > 2 processors. Each sporadic tdBKe;, p;) misses its deadline, the release time of the next job

is as described in the introduction. Thglization of that task remains unaltered. Since consecutive

of T; is given byu; = e;/p;. u; < 1 holds for alli. jobs of the same task cannot be scheduled in paral-

The total utilization of 7 is defined ad/;,.,(7) = lel, a missed deadline effectively reduces the inter-

> u;. Itis required that/,,,(7) < m hold. val over which the next job should be scheduled in

The maximum utilization (resp., execution cost) @frder to meet its deadline.

any task in7 is denotedum..(7) (resp..emax(7))- The sporadic task model is augmented as fol-

The minimum execution cost of any task is denot@slvs for EDF-hl (described below). Each task in

emin(7): Umax(7, k), Wherek < n, denotes the - js classified as either privileged taskor anun-

k tasks with highest utilizations im. More for- privileged task The set of all privileged (resp., un-

mally, Upnax (7, k) denotes a subset éftasks ofr, privileged) tasks is denoted; (resp.,7;). (H and

where the utilization of each task in the subset is Atstand for high and low privilege, respectively.)

least as high as that of every taskrily Unax (7, k). |r5| < m holds. Each privileged task, has a

Emax(7, k) is defined analogously with respect thaximum tardiness parametay, > 0, which de-

execution costs. (In all of theseax andmin terms, notes the maximum tardiness that any of its jobs

7 will be omitted when it is unambiguous.) can tolerated,, ; + A}, is referred to as theffective

The k' job of T;, wherek > 1, is denoted deadlineof job 7}, ; and is denoteg, ;.

T;x, and itsrelease timeand absolute deadline

(or simply deadlinefor short) are denoted, , and Algorithm EDF-hl. Our goal is to design an al-

di k(= rix + p:), respectivelyr; , denotes the invo-gorithm that can guarantee a tardinesdgto each

cation time of7; , and is the time at or after whichprivileged taskl}, while guaranteeing bounded tar-

T . can be executed; ;1 — 7, > p; holds for all diness to the remaining tasks. Let thiack of a

k > 1. Each task is sequential, and hence no jobjob 7}, ; of a privileged task7}, at timet be de-

any task may execute in parallel. Furthermore, fined asdy, ; + A, — t — (en — 0n;), Wheredy,

two jobs of any task may execute in parallel. denotes the amount of time th&f ; executed be-

A sporadic task systemis said to beconcretef foret. Informally, the slack of jold}, ; att is the
the release time of every job of each of its tasksamount of time it can afforciot to execute aftet
specified, andhon-concretgotherwise. Note thatuntil completion for its tardiness to be at mast.
an infinite number of concrete task systems canAdardiness of at most\;, can be guaranteed for
specified for every non-concrete task system. \Wéesk T, if each jobT}, ; is scheduled based on its
omit specifying the type of the task system unledgadline until timed;, ; + A, — e, but is guaran-
it is necessary. The results in this paper are f@ed continuous execution froi ; + Ay, — e, ON-
non-concrete task systems, and hence hold for eard. (This is somewhat similar to the behavior
ery concrete task system. of the earliest-deadline-until-zero-laxity algorithm

described in [6].) Jold}, ; is said to beurgentat be guaranteed if the utilizations of the unprivileged
timet, if t > d, ; + Ay — e, andT}, ; has not com- tasks are lower. For instance, with two privileged
pleted execution by. Note thatT}, ; is flagged as tasksT;(3,4) and73(3,4) and three unprivileged
urgent fromd, ; + Aj, — e, until completion even tasks73(3,6), ..., 75(3,6), the unprivileged tasks
if its slack is positive. This eliminates the overheamdould have a tardiness of at most 12.0.

of updating the urgency for each privileged job at

runtime and may also result in fewer preemptions .

and migrations. ! P P ?3 Tardiness underEDF-hl

With the above definitions in place, Algorithm hi i _ _ ¢
EDF-hl can be described as follows. At any timi this section, we determine a tardiness bound for

t, each of the urgent jobs, if any, of tasks7g is "L The ?pproaCh for. doing this is thg same as
assigned a unique processor. If not every proces@t?rt gsed in [8]. This involves comparing the al-
is assigned to an urgent job, then the non-urg (Pﬁat_lons to a concrete task systermm a processor
jobs of 7y and jobs of tasks im;, are scheduled onsharing PS) _schedule forr and an a_lct_uaEDF-h!

the remaining processors on an earliest-deadlifghdule of interest for, and quantifying the dif-
first basis, where ties are resolved arbitrarily. AjJBrence *?et""ee” the two. ‘InI%S schedule, each
may be preempted at any time by a higher prior'r't?/b of T; is allocated a fractiom; of a processor at

job and may later resume execution on a differe_?ﬁmh ms_tant (C_’r equivalently, a_fractmxm of e_:ach
processo. instant) in the interval between its release time and

Note thatEDF-hl reduces tEDF if 7 — 0. its deadline. Becaus¥,,,, < m holds, the total

Since|ru| < m holds,EDF-hl clearly ensures thedemand at any instant will not exceedin a PS

required tardiness for each privileged task. Hengghedule, and hence no deadlines will be missed;

the question to be addressed is whether boun&(g‘%t’ every job will complete executing exactly

tardiness can be guaranteed for the remainingtaéﬁs'ts deadline. We begin by setting the required

The answer turns out to be yes if there is a Cgbachmery in place.

on the utilizations of the remaining tasks. This

cap depends on the number of privileged tasks a&dd. Definitions and Notation
their utilizations. To see that such a cap is neces-

sary, at least in some cases, consider a task sys’gﬁﬂme interval t,,t,), wheret, > t,, consists of

comprised of four task®)(3,4),...,75(3,4), and ; t'Tesflthherettl = tt t<t't2, apd s of Ie(r;gtthb
Ty(3i,4i), wherei > 1. If tasksTy, ..., Ty require '2 — ‘1- 1N System start ime IS assumed 1o be

a tardiness of zero, then tardiness Tgrcan grow ZEro. F_or_ any time > 0, 1~ denotes the fime— ¢
unboundedly. in the limite — 0+.

Definition 1 (active tasks and active jobs): A
Discussion. Though the tardiness bounds derivagsk7; is said to beactiveat timet, if there exists a
in [8] guarantee that tardiness for each task in tjeg T;; (calledT;'s active jobatt) such thatr; ; <
above example (with = 1) is at most4.33 time ¢+ < 4, ;. By our task model, every task can have at
units underEDF, no task is immune from incur-most one active job at any time.
ring maximum tardiness. The bound fBDF-hl
derived here would enable one of the four tasks

be guaranteed zero tardiness if the remaining ta dlngatt |r: ? sdchedul?_S‘ 'fbfivjsgl\f ?n?hTiij
can tolerate a tardiness 6ftime units (which is . as not completed execution byn o. Wote that a

only slightly higher thant.33). However, if two job with a deadline at or beforeis not considered

tasks have a tardiness requirement of zero, then {glpe active at even if it is pending at.
diness for the remaining tasks may be as high Bsfinition 3 (ready jobs): A pending jobT; ; is
21.0 (which is still bounded). Lower tardiness casaid to bereadyatt in a schedules if ¢ > r; ; and

I'T)oefinition 2 (pending jobs): T;; is said to be

4

all prior jobs of7; have completed execution By 7. Let A(PS.,T;,,t1,t2) and A(S,T;,,t1,t2)
inS. denote the allocations td; ; in [t1,t;) in PS;
We now quantify the total allocation toin an and S, respectively. Then,lag(T;;,t,S) =
interval [t,, t5) in a PS schedule forr, PS,. Let A(PS: Tijrijt) — A(S,Tirigt), and
A(S,T;, t1,1,) denote the total time allocated o LAG(Y.t.S) = > 7 cylag(Tiy,t,S). The
in an arbitrary schedulé§ for 7 in [t;,t,). Then, total allocation in[0,t), wheret > 0, to a job that
sinceT; is allocated inPS, a fractionu; of each is neither pending at™ in S nor is active at™ is

instant at which it is active ift,, t,), we have the same in botl andPS,, and hence, itag att
is zero. Therefore, for > 0, we have
A(PS., T;, t1,ts) < (to — t1)u;. 1
(1t2) < (2~)) LAG(T,t,S) = > lag(Tiyt,S).
The total allocation te in the same interval iRS- {T;, is in ¥, and is
is pending or active at
7}

A PST,T,tl,tQ i i .
() The above expression can be rewritten using task

< Z(tQ = t)ui = Usum(7) - (f2 = 11)- (2) lags as follows (since no job can be scheduled be-
ner fore its release time).
We are now ready to defineg and LAG, which < ‘
play a pivotal role in this paper. Thag of task LAG(Y,,5) < Z l2g(T: 1, 5) (7)

T; at timet in scheduleS, denotedag(7},t, S), is {T: e 7: T,;isinV,
given by and is pending or active

att—}

Similarly, the total utilization ofl at timet is given

In S, less work than irPS, on the jobs ofl; has by the sum of the utilizations of tasks with an active
been completed by timeif lag(7;, ¢, S) is positive job att in V:

(i.e., T; is under-allocated i&), and more work, if

lag(7;,t,S) is negativeite., T; is over-allocated in Usum (¥ 1) = Z Ui (8)
S). Thetotal lag of a task system at ¢, denoted {T; e 7:T,;isin¥ and
LAG(T,t,S), is given by is active att}

|ag(]—;7ta8) = A(PSTafI;/a 07t) - A(S7E707t) (3)

LAG(T,t,S) = Z lag(T;,t,S) Definition 4 (busy interval): A time interval
TieT [t1,t2), Wheret, > ¢, is said to bebusyfor 7 if
= A(PS;,7,0,t) — A(S,7,0,t).(4) all m processors are executing jobs of tasksrin

throughout the intervali.e., no processor is ever
Note thatLAG(r,0,5) and lag(T;, 0, S) are bOth. idle in the interval or executes a job of a task not in

fzoerr;), and that by (3) and (4), we have the foIIowm7g An interval(t;, t5) that is not busy for is said
9 > 1. . . .
to benon-busyfor 7, and ismaximally non-busy
lag(Ti,t2,S) = lag(Ti,t1,S) + every time instant iy, t,) is non-busy, and either
A(PS;, T, t1,t2) — A(S, T, 1, t2) (5) t; = 0 ort;. is busy.
LAG(T,t2,S) = LAG(7,t1,S) + If at leastU,,,,, () tasks are executing at any in-
A(PS;, 7,t1,ta) — A(S,7,t1,t2) (B) stantin[t,,t,) in a schedules for 7, then the tasks
in 7 receive a total allocation df ,,,(7) - (to — t1)
Lag for jobs. The notion of lag defined abovdime in S in that interval. By (2), the total alloca-
for tasks and task sets can be applied to jobs diwh tor in [t1,t2) cannot exceel,,, (1) - (t2 —t1)
job sets in an obvious manner. Letdenote a in PS,. Therefore, by (6), theAG of 7 att, cannot
concrete task system, andl a subset of jobs inexceed that at, and we have the following lemma.

5

Lemmal If LAG(7,t + §,S) > LAG(7,t,S), (S2) Determine a lower bound-B) on the amount
whered > 0 andS is a schedule for, then(t, t+6) of such work required for the tardiness’tf;
is a non-busy interval for. Furthermore, there ex- to exceedr + ey.

ists at least one instant ift, ¢ + ¢) at which fewer

than (/. (7) tasks are executing. (S3) Determine the smallest such that the tardi-

ness ofl; ; is at mostz + e, usingUB and

The busy interval in Def. 4 is defined with respect LB.
to 7. With respect tol, [¢,t,) is said to bebusy
only if every processor is executing some job
U throughout[t;, ¢;). The job-set counterpart o
Lemma 1 is as follows.

ostt, of all tasks inr. UnderEDF-hl, no job of a
task inT;, with a deadline aftet, can compete with
T; ;. Therefore, competing work fdf, ; is given

Lemma2 If LAG(V,t + 6,S) > LAG(V,t,S), by (i) the amount of work pending &t for jobs in

wheres > 0 andS is a schedule fow, thenft, t+5) V» -8+ LAG(V, 74,), plus(ii) the amount of work
is a non-busy interval fo¥. Furthermore, there ex-démanded by jobs of tasks #; that are not in¥

ists at least one instamtin [£, ¢ + &) at which fewer Put can compete with jobs i in [y, t; + + e)
thanU,,..(,) tasks are executing jobs i. . We now determine an upper bound on these two

components (step (S1) described above).
(In the analysis that follows, we assume that
3.2 Deriving a Tardiness Bound A, < z holds for allT}, in 7;. The analysis has to
be extended slightly, otherwise. We have refrained
{i.gm presenting a more general analysis in the in-

i;ft ¥ denote the set of all jobs with deadlines at

Given an arbitrary non-concrete task systefn,
we are interested in determining the highest tar
ness of any job of any task if¥ in any concrete
instantiation ofr". Let 7 (resp.,7y andr;) be a
concrete instantiation of" (resp.,7 andr)), 7,; 3-2.1 Upper Bound onLAG (¥, t4, S)

ajobin7, ts = d ;, andS anEDF-hl schedule for | ot the carry-in job of a taskT}, in 7 be defined

7 with the following property. as that job off},, if any, with a release time before
ty and an absolute deadline afterward. Clearly, at
most one such job exists for ea€l. Similarly, let

the job of 7}, if any, with a release time befotg+
r+e, and an effective deadline afterward be defined

Then, determining the Sma"est independent of as itscarry-outhb. This isillustrated in Flg 4. The
the parameters df,, such that the tardiness @f; Carry-in job of 7}, is its only job with anabsolute
remains at most + e, would by induction imply a deadlineafter ¢, that may preempti.e., compete
tardiness of at most + ¢, for all jobs of tasks in With) jobs inV beforet, (i.e., become urgent before
.. Becauser is arbitrary, the tardiness bound wilfa). Let Uy be the set of all carry-in jobs of tasks
hold for every concrete instantiation of . in T. (FOf ease of reference, descriptions for these
Our proof obligation is easily met if;; com- task sets and job sets are repeated in Fig. 2.)
pletes by its deadling,, so assume otherwise. The By Lemma 2, theLAG of ¥ can increase only
completion time Oﬂ"&j depends on the amount ofiCross a non-busy interval fdr. Recall that in a

work that can compete withy, ; aftert,. We follow Non-busy interval fol fewer thanmn jobs from W
the steps below to determine execute. In the case of &DF-hl schedule, such a

non-busy interval folr can be classified into two
(S1) Compute an upper boundB) on the amount types depending on whether a job froby, is ex-
of work (including that due td} ;) that can ecuting in the interval while a ready job frof
compete withl ; aftert,. is waiting. At the risk of slightly abusing terms,

|)
erest of clarity.)

(P) The tardiness of every job of every tagkin
71, With deadline less thaty, is at mostr + ¢,
wherez > 0.

Ty = Setofall privileged tasks in The two lemmas that follow are proved in an ap-
. % Setof all unprivileged tasks in pendix. The first lemma bounds theg of a task in
71, at any arbitrary time at or beforg. The second

¥ = Setofalljobs of all tasks im .
_ _ concerns théags of tasks inry.
with deadlines at most;
Uy ¥ setof carry-in jobs of tasks iny Lemma 4 Letv be an arbitrary time instant at or

beforet,. LetT}, be a task in;, and7}, , its earliest
pending job aw, and letd, , < e, be the amount
of time that7}, executed for before. Then,
lag(Tk, v, S) < (v —dpq) - ux + ex — 0x 4. Further-
more,v — dj o < x + ;. Hencelag(Ty, v, S) <
X - U + eg.

Figure 2:Task and job sets heavily referred to.

we will refer to the two types aslockingandnon-
blockingnon-busy intervals. Alocking non-busy
interval is one in which a job fromly is execut-

ing while a .ready job frorﬂ! is Waiting, lwher.eas Lemma’5 Let T}, be a task inr; and T}, , its ear-
a non-blocking, non-busy intervas one in which jiast nending job at any arbitrary time. Then,
fewer thanm jobs from W are executing, but therqag(Tk’ 0,8) < min(dy g+ Ap —v,)+ (v—djg) -
does not exist a ready job ihthat is waiting. Note we < e+ A}; U, ’ ’
that it is immaterial whether a job fromi is exe- -

cuting in a non-blocking, non-busy interval. We now turn to determining an upper bound on
Before determining an upper bound bAG, We the | AG of T at #,. By Lemma 2, theLAG of ¥

state some needed properties. In [8], we showggh increase only across a non-busy interval for

that if a task does not execute continuously withi, Hence, an upper bound drAG at the end of

a non-busy interval in aiEDF schedule, then itsthe |atest non-busy interval befotgacross which

lag at the end of the interval is at most zero. ThisnG increases will serve as an upper bound for that

property can be extended to a non-blocking, nogy+, As discussed earlier, a non-busy interval in

busy interval of arEDF-hl schedule, as follows. gnEDF-hI schedule can be either blocking or non-

blocking. We will consider these two cases sepa-

Lemma 3 (from [8]) Let [¢,¢') be a maximally rately. Letf be defined as follows.

non-blocking, non-busy interval {0, t,) in S and o

let T}, be a task inr with a job inW that is active or f= { Usum(T) — 1, Usum(T). is integral 9)

pending at’~. If T;, does not execute continuously [Usum(T)], otherwise

in[t,t), thenlag(T}, <0. : . :
[, ¢), thenlag(T, ¢/, 5) < 0 Expressions that occur frequently in the analysis

are provided in Fig. 3. The lemma that follows

To see why this lemma holds, note that, becaugg, s how to bound AG at the end of a non-
[t,t') is maximally non-busy and is non-blockingmocking non-busy interval.

at least one processor is idle throughout this inter-

val, or a job fromW; is executing while no job in emma 6 Let [t,#) be a maximally non-
¥ is waiting. Recall that the absolute deadline offiocking, non-busy interval in[0,#;) in S
job in Wy is aftert,. Hence, if7}, is not executing gnq et LAG(T,#,S) > LAG(T,t,S). Then,
att'", then it has no pending work &t and hence, | AG(v, ¢ S) < - U, + Uy + Ey.

its lag at¢’ is at most zero. On the other hand, if

Ty is executing at’—, but was not executing soméroof: By (7), theLAG of ¥ att' is given by the
time earlier inj¢, t'), then it must have had no pendsum of thelags att’ of all tasks inT with at least
ing work when its most-recent job was released aode job inW¥ that is active or pending at~. By
must have executed continuously since then. In thismma 3, the lag of such a task that does not exe-
case too, its lag cannot exceed zero. cute continuously int, t') is at most zero. Hence,

EL = Z €k
TkegmaX(wa)
UH = Z Ah - Up
Th €Umax (TH ,max(0,f—1—|7L]))
TheTH
0 - > w
Ty €Umax (7r,min(f—1,|7L]))
By =) ((en(1 = un) +un(er — An) +
ThETH
min(ep, - up, Ap)) + max(up(ep — €¢),0))
UI/LI = Z Up,

TheTH

Figure 3:Some expressions used in the paper.

to determine an upper bound bAG att’, it is suf-
ficient to determine an upper bound on thgs of
such tasks that are executing continuousliz itf).

Let /' denote the number of such tasks. Then,

Lemma 2,

' < max {Usum(V, 1)} < Ugun (7).

t<i<t!

(10)

{By (11) and assumind\;, < z so that
Ay cup < x-ug foral Ty, € 7y, Tk GTL}

Finally, as in [8], it can be shown that f&AG to
increase acrosg, t'), at least one job ofr with a
deadline at or afte should have completed execu-
tion beforet and that at least one job executing at
should have a deadline at or afterHence, theag
for its taskT}, att’ is at most,. By this argument,
the upper bound obAG derived above reduces to

LAG(, ¢/, S)
< Y ar Y au
T € Emax (val) Ty eumax(TL 7min(fl_17|7_L ‘))

+ Z JAVIERTIS

Theumax(TH7maX(07f,_1_|TL‘))

The lemma follows because, by (9) and (10).<
/- |

byThe next lemma shows how to boubdG at the

end of a blocking, non-busy interval.

Lemma 7 Let[t, ') be a blocking, non-busy inter-

Let ayy (resp.,a;) denote the subset of all task¥al in [0, 44) in S such that every instant ift, ')
in 7 (resp.,m) that are executing continuously i @ blocking instant and any job df; that exe-
[t,#) and have a job inF that is active or pendingcutes inf¢, ¢') executes continuously jh ¢'). Then,

att~. Then,

lag| + |ar] = f, (11)

and by the above discussion on boundirs,
LAG(Y, ¥, S)
< Z Iag(Th>t/>‘9) + Z Iag(Tkvt,7‘S)

ThEay TyEQr,

< Z (Ap - up +ep) + Z (z - ug + ex)

TheEay TiEar

- ¥

Ti,earUang

>

Tk €Emax (Tyf,)

>

T € Emax (va/)

+ Z Ay, - up,.

Th eumax(TH 7maX(07f/_ ‘TL ‘))

{by Lemmas 5 and 4

er + Z T up + Z Ay - up,

Tpear ThEay

er + Z T ug + Z Ay - up,

Trear ThEay
{By (11)}

T - U

IN

IN

e +

>

Tk eumax (TL 7min(f/ 7‘7—L I))

LAG(V, ', S) < LAG(V,t,S) + 35 cop, (B — 1) -
(1 — up), Whereay is the subset of all tasks iy
whose jobs inl; execute continuously i, t').

Proof: Let T}, be a task invy, whereay is as de-
fined in the statement of the lemma. Then, because
the job of 7}, that is executing irj¢,t’) is in Uy,

T, does not have a job iW that is either active or
pending anywhere ift, t'). Thus, by (8),

Vit <E<t': Usn(¥,8) < Usum(T) — > up),
TheEay
(12)
and since the cumulative allocation at each instant
in [t,t') in PS; to jobs inV is at MostU,,,,(7) —
7, capy Uns the following holds.

APS,, U, t,t) < (t' —t) (Usum(T)Z uh)(13)

TheEany

Becauset, t') is continuously blocking, at every in-
stantinft, t’), there exists at least one jobinthat

is ready, but does not execute. This in turn impliggbs, which ise; times the number of such jobs.
that no processor is idle in the interval. Hence, Wehis is illustrated in Fig. 4. (Note that because the
have the following. effective deadlines of any two consecutive jobs of
T, are separated by at leasttime units, the latter

of the two jobs does not become urgent until after
By (13) and (14), and (6) (with, = t and¢, = t'), the effective deadline of the former job has elapsed.

A(S, U, t,t") = (t' —t)(m — |agl) (14)

we have Hence, no job released after the carry out job can
, compete with a job inl.)
LAG(¥,t,S) We now derive a bound oB(7},).

< LAG(Y,t,S) +

D(Th) < €h—5h+uh-(1’—|—65—Ah) +min(0, Ay —

Lemma9 Let 7, be any task inty. Then,
(' =) | Uaum(7) = D up) = (m — |anl)

Thean (6h — 5h)uh) + maX(O, uh(eh — 6@)), whered;, < e,
= LAG(Y,t,S) + is the amount of time that the carry-in job, if any,
of T}, executes beforg,.
(' —1) ((Usum(T) —m)+ |oan| — Z uh))
Tp€an Proof: If no job of 7}, has its effective deadline in

.. [ta, ta+x+e€), then at most one job @f, executes
Because/Usum(T) < m, the abov/e Implies ;) the interval, and the maximum amount of time
LAG(T,#,S) < LAG(Y,1,S) + (' — 1) - it executes for cannot exceeg — ;. Therefore,
ZThEaH<1 — up). u D(T}) < e, — 05, holds. Assuming\, < z, it can

An upper bound on theAG of ¥ att, can now be shown that,- (z+e,—Ap)+min(0, A, — (e, —
be determined by combining Lemmas 6 and 7 @gu,) + max(0, u,(e, — e)) > 0 holds. Hence,
follows. (This lemma is proved in an appendix.) D(7%) < e, —6n +up- (v +e—Ap) +min(0, Ay —

- (en — 0p)up) + max(0, up(en, — e¢)), which proves

Lemma 8 Letd, < e, denote the amount of timgpe |emma.
that the carry-in job (e, job in Wy), if any, Therefore, for the rest of the proof assume that
of task7), in 7 executes for beforé,. Then, gt |east one job of), has its effective deadline in
LAG(V, 24, S) < & - U +Un + EL+ 3 g, c0, 00 [ty ty+3+e,). LetTy,,, andT,.., denote the carry-
(1 — up). in and carry-out jobs df},, if any.

To complete step (S1), we need to determine arl-€t &r = Pn.e; — ta @nd letg, denote the offset
upper bound on the work due to tasksjpthat can from t; + = + e, of the last effective deadline in

compete with jobs il in [ty t; + = + e;). We do [ta,ta + = + e;) of & job of 7). Refer to Fig. 4.
this next. We now determine the three component®ef’,)

mentioned above.

3.2.2 Competing Demand by Jobs of Tasks inWork due to T}, .,. SinceT}, ., completes execut-
Ty hotin W ing by ps..,, the amount of time théfj, ., can exe-
cute for aftet, is at mosty, ., —tq = &), time units.

Let D(T;,) denote the amount of work due to thgecauséfhc. executes fop,, time units before,;,

Jobs of a tasklj, in 74 that are not in and that it cannot execute for more thap — ¢;, time units

can compete with jobs of other taskslinn [t,, t,+
%+ ¢). Then,D(T;) is composed of three partsaftertd. Thus, the amount of work to be done on

(i) Work that needs to be done on a carry-in job,clpf"ci aftert, is at mostmin(e;, — o, &)-

any, (i) mandatory work that needs to be done &Nork due to T ,.,. The effective deadline of
a carry-out job, if any, andii) work to be done on7}, ., is separated from the previous effective dead-
all jobs that lie between the carry-in and carry-olihe of 7}, by at leastp, time units. Since the last

9

carry—in job(T,,) carry—out job (T .,3)

4,

\$\\ \?W‘/

Thess Podnm Thetd P
(=4 c2) (Bdy i3

_—

s
ty+x+e,
-

&~(Py=®@)

Figure 4: Competing demand due to tagk in 75 in

the interval[ty, ty + = + e;). Competing demand due

to the carry-in joldl}, ., (T}, here) is at mostin(e;, —
dn,&n) and that due to the carry-out jdbi, ., (Th,c+3
here) is at mosinax (0, e, — (pr, — ¢n))-

effective deadline withifft,, t; + = + e,) IS ¢, time
units before ; +z + ey, ppc, IS at leaspy, — ¢, time
units aftert,. Thereforemin(ey, p, — ¢p,) units of
work due to7}, ., does not compete with jobs i
beforet, + = + e,. Hence, the competing work i
[ts,ta + x + €;) due to the carry-out job is at mo

max (0, e, — (pn — &n))-

Work due to jobs betweenT}, ., and Ty, .,. The

effective deadlines of successive jobgpfare sep-

+3

(en —0n) (L —up) + Ap 4+ up(x + e — Ap))
{Because;, > 0}

—~

x+e—Ap)+

en — Op)up).

x+e—Ap)+

en — Op)up) + max(0, up(ep, — er)).

e — On + up,
min(0, Ap, —
e — Op + up,
min(0, Ap, —

—_—~

The next lemma gives a bound on the sum of the
LAG of ¥ and the competing work due to tasks in
TH.

Lemma 10 LAG(V,t4,S)+> 7, o, D(Th) < L+
> ot ery (€n(1—up) +up - (x+e—Ap) +min(ep -
Up, Ah)+max(0, uh(eh—eg))), wherel = x-Up+
Uy + Ey.

;Froof: By Lemma 8,

LAG(T,#43,S) <L+ Y & -(1—uy), (15)

TheTy

wherel = z-Ur+Uy+ Er, andd;, is the amount of

arated by at leagt, time units. Therefore, the numtime the carry-in job off}, in ¥ executed before

ber of jobs of7}, that lie betweem, ., andt; + x +
— ¢y is at mostL”“r er— 5h bn | < her- 5h on

Comblnlng the three components above we have,

D(Th)
&h— on

<1’—|—€g— >'€h+
DPh

max(0, ey, — (pr, — ép)) + min(ep — op, &n)

max((z + e; — §p — dn)un, (¥ + e — Ep — dn)un

+en — (P — ¢n)) + min(ep, — p, &p)
{Becauseeh/ph = uh}

< up(x + e — &) + min(ep — 0p, &n)
{Becausé < ¢, < pp anduy, < 1}
= uh(x + €y — Ah — Xh) + min(eh — 5h7 Ah + Xh)

{Letting &, = Aj, + x»; becausely, ., > tq, x5, > 0}
= min(e, — O + up(z +ep — Ap — xn),
Xn(l —up) + Ap + up(x +ep — Ap))
= min(ep, — O + up(z +ep — Ap — xn),
(en — 0p)(1 —up) + Ap +up(z+e,— Ap))
{Becausey, + Ay, < ep, — 6, = Xn < e, — Op}
< min(ep, — 0p + up(z + €p — Ap),

tq. By Lemma 9,

D(Th)
TheETH
< Z(eh—5h+uh-(x+eg—Ah)
TheTH
+min(0, Ap — (ep,— p)up) + max(0, up(en, — €r)))
(16)
By (15) and (16), we have
LAG(T,t4,S Z D(T},)
TheETH
<L+ Z(6h(1—uh)+eh—5h+uh(x+eg—Ah)
Thea

+min(0, Ay, — (ep — dp)up) + max(0, up (e, — er)))
=L+ Z ((en, — O, - up)

Thern
+up(r +ep — Ap) — (en — n)un
+min((en — dn)un, Ap) + max(0, up(en — e)))
<L+ Z (en(1 —up) +up(z +ep — Ap)
Thern
+ min(ey, - up, Ap) + max(0, up(en, — €r))).

10

B tasks ofr;, have pending work at’. Because

) tasks ofry can execute on at mos$f processors
That completes step (S1). The next step is to detey- T P

: 6}2 any instant,7, can execute uninterruptedly
mine a lower bound on the amount or such wo f . .
. from ¢’ until 7, ; completes execution. Suppose

required for. tardiness of, ; to exceed a certaln,[he job of T, executing at’ is T,,. Then, since
amount, which we do next. 50 ’
t' < ts + x + —=% holds, and the amount of work

pending forT, ; is at most, — ¢, ;, Ty ; completes
3.3 Lower Bound onLAG + D executing beforey; + = + e,. So, assume that

a prior job of T is executing at’. In this case,
Lemma 11 If LAG(V, 14, S) < (m—|7ul|) -+ e '
and|ry| < m or LAG(‘Pa%S)ﬂLZTheTH D(T)) < T, ; could not have executed befatg and hence,

(m — max(|7i| — 1,0) -) - + ¢ and|rg| = 0 d¢; = 0, which implies (from the definition of

; L t') thatt < ty + x. Furthermore,; > 2 holds,
then the tardiness o, ; in S is at mostr + e,. and by (R),T,,_, completes executing by + «,

Proof: To prove the lemma, we show tHt; com- and hence, the latest time th@l; commences
pletes executing by, + = + ep. If j > 1 then execution is at or before; + x, and so the latest
dy;_1 < tq — p, holds, and by (P), we have thdime thatT7; ; completes execution ig + x + e,.
following.

Case 2: LAG(V,14,S) + ZThGTH_D(Th) <
(m — |TH| - uwe) - © + e, Atthe risk of some
notational abuse, let a time interval (resp., instant)

We consider the two conditions stated in the lemrh f@: fa + & + ¢¢) in which allm processors are

in two separate cases below. In what follows, @(ecutlng aJob_oﬁ! or that part of a task "M that
H = |7y, can compete with be referred to as busy inter-

val (resp.,instan). Then, if pending, task, can
execute in every non-busy instant. If the latest busy
Case L:.LAG(¥,t4,S) < (m — |TH|) - © + e, instantinfty, t;+z +¢,) is at or before,; + z, then
and |Tg| < m. Letd,; denote the amount ofbecause, by (R)I;;_1, if it exists, completes exe-
time that7}, ; executed before;. By the conditions cution at or beforg, + =, the latest time thaf ;

of this case, the amount of work pending tat completes execution ig + = + e,.

for jobs in ¥, and hence for those of, in ¥ So, for the rest of this proof we assume that the
is at most(m — H) - x + e,. Without loss of latest busy instant is aftey; + =. Let the total
generality, assume that the jobs ih are the lengths of the busy intervals [+ =, tq + = + ¢/)
only jobs of 7, (or, equivalently, jobs with deadbe s < ¢,. (Refer to Fig. 5.) Thereforel, can
lines beyondt, have been discarded). Hence, #éxecute for at least, — § time in that interval. If

m — H tasks ofr, are executing at any instanfewer thanm — H + 1 tasks are executing at any
in [ta, ta + o + WfﬁjH), then the amount of worknon-busy instant, at or beforet,; + z, then at most
done in the interval on jobs of;, in ¥ is at least m — H tasks ofr; have pending work at or after
(m—H)(z+ 5@;1). Therefore, the amount of work:,,. Hence, since tasks if; can execute on at most

m

pending att, + « + —2L for those jobs is at most// processors at any instarff; is guaranteed un-
S0 interrupted execution frory, until 7, ; completes.

(m_H)x_‘_ez_(m_H)(x_}_ml[_—’JH)zeé_(sé’] H p . b R rnlf IZJ pl

Since T;; has executed fop,; time beforet,, ence, since by (R)f%;—. (if it exists) completes

the latest time thafl; ; completes executing jsexecution byt + x, T, ; would complete execution

5. e no later thart; + x + e,. Therefore, for the rest of
fat+ @+ o2 + e 0y < tat T e IfTewer Ihis case, assume the following.

(R) T,,-1 completes executing by + x + e, — py,
forj > 1.

than m — H tasks are executing at some time,
sayt' < ty+ x + nf%fH then fewer thanm — H (N) Atleastmin(m—H+1,m) tasks are executing

11

N /f\ is at most—(m — 1) - 6, for H = 0. Because and

(<= > <> <

[L AT

MB\ —(H-1)-6—(m—H)-6,forl < H <m,and
N

0 are positive, both the above bounds are negative.
Thus, no work of jobs inl, and in particular, that

m procs |

E i of Ty ;, can be pending &t + = + ;. [|
ty X b, This completes step (S2). We are left with deter-
B : total length of all the busy intervals in [ty ty+x+e;) mlmng a value for: for which the tardiness dn’j
d : total length of all the busy intervals in [ty+X, ty+x+¢e,) IS at mostr + ey.
Figure 5: Case 2 of Lemma 11. Sample schedule in L
(ta,ta+ @ +ep). 3.4 Finishing Up
at every non-busy instant in;, t; + z). Solving forz using Lemma 8 and the first condition

_inLemma 1l,.e, solvingforz inz - Uy, + Uy +
Let B denote the total length of all the busy Lo (m — |7u|)z + e, yields

tervals infty,ts + © + e;). (Refer to Fig. 5.) If
B < x — z - uy, thenT, can execute for at least Er +Ug+ Eg — e

ot) (17)
T - up + e time infty, tg + o + e,). By Lemma 4, (m —|tul) — UL
lag(Ty,ta, S) < x - ue + €4, and hence; ; would
complete executing at or befotg + = + ¢,. So

where Ey is as in Fig. 3.Solving using Lemma 10
~ ' and the second condition of Lemma 1%, using
assumeB = x — x - uy + 01, whered; > 0. With

this assumptign, we now compute the total amo%‘fgg’)’f& aS(Of;Z)_ (J; :ﬁeg);rjgxﬂfi)(}; Hj:ziehg
of work done .|n[td, tag+ + er). The total amount ... max(|7g| — 1,0) -z - ug + e, we have

of work done in all busy intervals ifty, t;+x +¢e;)

ism - B. By (N), at leastmin(m — H + 1,m) . ErL+Un+Ey —e

tasks are executing at every non-busy instant in® — m — max(|rg| — 1,0) - uy — U, — U}’
[ts,ta + z). The total length of all non-busy in- , , o _
tervals infty, tq + «) is = — (B — 6). Therefore, where £, and U}, are as in Fig. 3. Hence, if

the amount of work done in all non-busy intervals smalller of the two values that are on thg right-
in 1, ta +) is at leastnin(m — H + 1,m) - (& — hand sides of (17) and (18), then the tardiness of

B +). The total length of all non-busy intervald . Would not exceed: + e,. A value ofx that is

in [ty + 2, ta + o + ¢) is s — 6, and at least tasklndepgndent of the parametersiofis o_btained by
T, of 7, has pending jobs i until t; + = + e;, '€PlaCiNGer bY ewin @ndug by tmax(7z) in (17) and
and hence, executes in every non-busy instant(q'r‘?)' Similarly, thec, term in the expr.essmr.lch}{

lta+ 2,0+ + ¢;). (Otherwise, it would imply has to be replaced by;,.«(7.). By inducting on

thatT}; has completed executing befaper« + e, the jo_bs ofr;, in the non-decre_asing order of their
completing the proof, as well). Hence, the totdfadlines, we have the following theorem.

amount of work done ifftq, tq + x + ;) is atleast thagrem 1 EDF-hl ensures a tardiness of at

mB+min(m—H+1,m)-(x =B +0)+ (e =9), most min(X,, X,) + ex to every task7, of
which, on substituting —z-u,+4; for B, simplifies it |rw| < omoand Uwn(t) < m,
toma—H-z-up+(m—H)-64z-up+H-01+(e=0) \nare X, = BtlmiPucenn(n) gnd X, =
for H > 0andm - (z + &) + e, — 0 for H = 0. h , et
e . ' L+UH+EH_8m1n(TL)

By the condition of this case, the amount of Work=max ([=1,0) Umax ()~ Uz 0% *
that needs to be done fty, t; + x + ¢,) for jobs in
U and of tasks in; that can compete with is at Conditions for bounded tardiness. Since the
mostmaz — max(H — 1,0) - z - uy + e,. Therefore, derivation was based on the assumption that 0,

the amount of work pending i+ x + ¢, is at most X; and X, are valid only if their denominators are

(18)

12

Avg. of Maximum Tardiness

16 processors for u_avg in (0.4,0.5], e_avg in (19,20] 8 processors for u_avg in (0.7,0.8], e_avg in (14.0,15.0] 32 processors for u_avg in (0.7,0.8], e_avg in (14.0,15.0]

60 60 70
55 o 55 o 5
4 S 60 [
50 s 90 S ogs |, e
c = < *x, joe———
45 ISENECH RRRE- RPN £ 50 o SO—
T KK £ b € e (A
or TN Yo s 2 40 Flrorg g 45 R I—
,,,,,,,,,,,, dewoe woxnox 3 k 3 40 e, —
35 N S 35 \ s e
= \ . sl T
30) © 30 , Em IR ITE TR ° !
Tardiness for Usum =m —— 2 tardiness for Usum = m —— R 2 30 tardiness for Usum = m ——
25 BASIC ——x—- < o5 BASIC ——x—- < BASIC ——x--
IMPR - -=-- IMPR - -=-- 2 IMPR --=--
20 20 20
16 155 15 145 14 135 13 125 12 8 7.5 7 6.5 6 32 31 30 29 28 27 26 25 24
Total System Utilization (Usum) Total System Utilization (Usum) Total System Utilization (Usum)

_ () (b) (c)
Figure 6: Tardiness byUs,, using theBASIC and IMPR bounds for(a) m = 16, 0.4 < uq,y < 0.5, and

19.0 < equg < 20.0, (b) m =8, 0.7 < ugyy < 0.8, and14.0 < eqg < 15.0, and(c) m = 32, 0.7 < ugyg < 0.8,
and14.0 < eqyy < 15.0.

non-negative.X; and X, are bounded only if theirterms ofUs,,,(7) in addition to individual task pa-
denominators are greater than zero. Hence, if tlaneters. Hence, an alternativeBEDF-hl for guar-
sum of the utilizations of th¢ — 1 heaviest tasksanteeing lower tardiness is to low&r,,,,,. This ap-

in 77, is less thanm — ||, then X, is bounded. proach may be preferable if a majority of the tasks
Similarly, X5 is bounded only if the sum of the utitequire lower tardiness and the gains are reasonable
lizations of the heaviegt— 1 tasks inr;, is less than for slight decreases it .

m — |Tg| - umax (1) — Uy. Hence, if either of the In the absence of high priority tasks, using a
above conditions holds, then bounded tardinesshghtly different, but more complicated, analysis

guaranteed to tasks in. than that used in Sec. 3 or in [8], it can be shown
that

Computational complexity. Each of theE and)

U terms in the tardiness bound can be computed i, < up(m = f) :

O(f) time. Thef tasks with highest utilizations 7.ctt i1 (7~ Usum) + s (Usum = f)

or execution costs can selected fromr;, or 74 (19)

in O(n) time. Hence, the tardiness bound can Mé&ich when used in the expression for the tardi-

computed irO(n) time. ness bound in Thm. 1 results in slightly lower val-

ues. We will refer to the bound given in Thm. 1
asBASIC and the bound obtained by using (19) as

4 Experimental Evaluation IMPR. _ o
We evaluated the tardiness-utilization trade-off

In this section, we present the results of expeH1atis possible by generating random task sets with
ments conducted t¢) determine the range of the/arying values forU,,,,, and computing theBA-_
tardiness bound guaranteed BPF-hl on an aver- SIC and IMPR bounds for each and comparing
age and{ii) evaluate the tardiness-utilization traddt'€se bounds with those obtained from our earlier
off possible in the absence of high-priority task&/0rk, whenUs,,,, = m [8]. Simulation experi-

Due to space constraints, only a subset of the faents were conducted for four, eight, 16, and 32
sults is presented here. processors, witll/,,,,, varying betweersm/4 and

m in increments of0.1. 600,000 task sets, with
Tardiness-Utilization trade-off. As mentioned at leastm + 1 tasks in each, were generated for
earlier, EDF-hl reduces t&EDF in the absence ofeach(Us,,,, m) pair. The maximum utilization of
high-priority tasks. Hence, in this case, the tardiny task in a task set varied uniformly froirb to
ness bound given in Thm. 1 applies to every task). The task sets generated were grouped based
in 7. Note that the tardiness bound is expressedonv,,, andeg,,, whereu,,, ande,,, are the av-

13

Avg. of Maximum Tardiness

250

200

150

100

: (@)
Figure 7:Experimental evaluation of

0
01 02 03 04 05 06 07 08 09 1

4 processors for e_avg in (19,20]

Average Utilization

Avg. of Maximum Tardiness

250

200

150

100

0
01 02 03 04 05 06 07 08 09 1

16 processors for e_avg in (18,20]

4 processors for e_avg in (19,20]

250

200

150

100

50

Avg. of Maximum Tardiness

Average Utilization

(b

0
01 02 03 04 05 06 07 08 09 1

Average Utilization

C

250

200

150

100

50

Avg. of Maximum Tardiness

0
01 02 03 04 05 06 07 08 09 1

16 processors for e_avg in (18,20]

Average Utilization

) (€) (d)
the tardiness bounds guardrigdhm. 1 undeEDF-hl for tasks in|ry|.

LU with (&) m = 4 and(b) m = 16. HU with (c) m = 4 and(d) m = 16. The different curves in each inset
correspond to different values pf|. |7z| = 0 for the bottom-most curve and is greater by one for each curve

higher up.

erages of the highesU,,,,| task utilizations and Uavg
execution costs, respectively. The variation in tazzl| 02 [03 | 04 | 05 | 06 | 07 | 08
diness (mean of the maximum tardiness for all task—| %0 | 00 | 00 | 0.0 | 00 | 00 | 0.0
: . . 6 |00 |00] 00| 00] 00 | 00 | 00
sets in a group) witlU,,,,, for (i) m = 16 when =100 1001 00 0.0 0.0 19 11000
0.4 < gy < 0.5and19.0 < €4y < 20.0@nd g 7700 [00 | 00 | 00 | 37.2 | 98.09| 100.0
(i) m = 8 andm = 32 when0.7 < ugy <08 [9 [00] 00| 0.0 | 0.0 | 99.3 | 100.0| 100.0
and14.0 < eqy < 15.0 are presented in Fig. 6| 10 | 00 | 00 | 0.0 0.0 | 100.0| 100.0| 100.0
Note that the rate at which tardiness drops with de-- | 00 | 0.0 | 0.0 | 14.76] 100.0] 100.0| 100.0
creasing..., is higher whena, is higher (in the | 2 | 0-0 [0.0 | 250 [100.0] 100.0[100.0] 100.0
. - ['13 0.0 | 9.7 | 99.78] 100.0| 100.0] 100.0| 100.0
(0.7,0.8] range). Furthermore, the rate at which taf; 4559 671 100.0 | 100.0 100.0 100.0] 100.0
diness drops witlt/,,, decreases with decreasingis {100.0{100.0] 100.0| 100.0| 100.0| 100.0| 100.0

U,.n. FOrinstance, in inset (c), reduciig,,, to

31.0 (which is 96.8% ofn(= 32)) lowers tardiness Table 1: Percentage of task sets for which unbounded

to less than 50.0 from over 60.0, which is a drop Eirdiness was computed for = 16 underHU.
over 20%, whereas to lower tardiness to less than
40.0, U,,,, has to be decreased to approximately

27.0 (which is 84.3% ofn). Hence, settind/,...,,
to a value slightly lower tham may be appropri-
ate when high utilization tasks are present in t

he

task system. At this point, we would like to note _
that these characteristics should be attributed to ##¢h|7z|, the members of; were chosen in two

bounds derived (and to the analysis) and not to tfifferent ways: first, as tasks with the highes|
algorithm per se. utilizations in the generated task set (dendtkd),

and then, as tasks with the lowesy;| utilizations

Tardiness bounds forEDF-hl. We also experi- (denoted.U). The variation in tardiness witt..,
the number of high-priority tasks is increased

mentally evaluated the tardiness bounds that o

be guaranteed to low-priority tasks on an averageploueol n Fig. 7 for both—|U_ andLU. As ex-
under EDE-hl for m 4fandm = 16, with eCFed, tardmess increases wiith | andwu,,,, and
U.., — m. The task sets generated were groupklf Ncrease is higher fo#U than forLU. The tar-

based on the average of thehighest task utiliza- mefss boun_ds colinputed %Terlv tol unbound_eg val-
tions and the utilizations of the tasks7p, denoted ues for certain task sets at high valuesmf, wit

Uang- (€ang IS With respect to execution costs, analihe percentage of such task sets increasing with in-

ogously.) For each task set generated, the numpb&SINHavg- The percentage of such task sets for

of tasks inty was varied from zero ten, and for HU is tabulated by 7| and Uag fOr m =16 in
Table 1. The figures fdcU are slightly lower.

14

5 Conclusion

[3]

We have addressed the issue of supporting tasks
whose tolerance to tardiness is lower than that cur-

rently known to be possible und&DF. We have
proposed a new scheduling policy callE®F-hl,

which is based oftDF, and have shown that un- 4]

der EDF-hl, a limited number ofrivileged tasks

can be guaranteed any tardiness, including zero tar-

diness, and that bounded tardiness can be guaran-

teed to the remaining tasks if their utilizations are
restricted. The tardiness bound derived is a fungs] J. Carpenter, S. Funk, P. Holman, A. Srini-
tion of U,,,,, in addition to individual task param-

eters, and hence, tardiness for all tasks can be low-

ered by slightly lowerind/,..,. We have, through

simulations, assessed the impact of privileged tasks
on the tardiness bounds that can be guaranteed to
the remaining tasks, and the tardiness-utilization
trade-off that is possible in the absence of privi-

leged tasks.

This problem of supporting sporadic tasks witH6]
different tardiness requirements may alternatively
be viewed as one of supporting tasks with rela-

tive deadlines at least periods. TE®F schedu-

lability tests available for task systems with rela-
tive deadlines equal to periods on a multiprocessor,

though applicable when deadlines may exceed pel[iZ

ods also, are pessimistic and tend to under-utililize
the underlying platform. The work presented in this

paper is an attempt towards remedying this Iimita[-8

tion.

References

[9]

[1] J. Anderson, V. Bud, and U. Devi. An EDF-
based scheduling algorithm for multiproces-

sor soft real-time systems. Rroc. of the 17th

Euromicro Conference on Real-time Systems

pages 199-208, July 2005.

[2]

[10]

B. Andersson and J. Jonsson. The utilization

bounds of partitioned and pfair static-priority

scheduling on multiprocessors are 50%.

In

Proc. of the 15th Euromicro Conference on

Real-time Systempages 33-40, July 2003.

15

S. Baruah. Optimal utilization bounds for
the fixed-priority scheduling of periodic task
systems on identical multiprocessordEEE
Transactions on Computer$3(6):781-784,
2004.

S. Baruah, N. Cohen, C.G. Plaxton, and
D. Varvel. Proportionate progress: A notion
of fairness in resource allocationAlgorith-
mica, 15:600—-625, 1996.

vasan, J. Anderson, and S. Baruah. A catego-
rization of real-time multiprocessor schedul-
ing problems and algorithms. In Joseph Y.
Leung, editor,Handbook on Scheduling Al-
gorithms, Methods, and Modelsages 30.1—
30.19. Chapman Hall/CRC, Boca Raton,
Florida, 2004.

S. Cho, S.K. Lee, S. Ahn, and K.J. Lin. Effi-
cient real-time scheduling algorithms for mul-
tiprocessorslEICE Transactions on Commu-
nications E85-B(12):2859-2867, December
2002.

] M. Dertouzos. Control robotics: The proce-

dural control of physical processes. Pmoc.
of IFIP Cong, pages 807-813, 1974.

] U. Devi and J. Anderson. Tardiness bounds

for global EDF scheduling on a multiproces-
sor. InProc. of the 26th IEEE Real-time Sys-
tems Symposiundec. 2005. To appear.

C.L. Liu and J.W. Layland. Scheduling algo-
rithms for multiprogramming in a hard-real-
time environment. Journal of the Associa-
tion for Computing Machinery20(1):46-61,
1973.

J.M. Lopez, M. Garcia, J.L. Diaz, and D.F.
Garcia. Worst-case utilization bound for EDF
scheduling on real-time multiprocessor sys-
tems. InProc. of the 12th Euromicro Con-
ference on Real-time Systenmages 25-34,
June 2000.

[11] A. Srinivasan and J. Anderson. Efficient s '2
scheduling of soft real-time applications on ’

multiprocessors. IProc. of the 15th Euromi-
cro Conference on Real-time Systerpages
51-59, July 2003.

[12] P. Valente and G. Llparl An upper bound t t‘l ti;tz té;tB té;t4 tL'l ‘ts té ty
to the lateness of soft real-time tasks sched-
uled by EDF on multiprocessors. Rroc. of Figure 8: Lemma 8. There does not exist a non-
the 26th IEEE Real-time Systems Symposiuiocking, non-busy interval across whitAG increases
Dec. 2005. To appear. in[t' ty). Ji,...,Js are jobs in¥ ;. Their execution in
blocking, non-busy intervalg, andl, is shown, as well
as the slicing of the blocking intervd} as specified in

Appendix: Additional Proofs the proof.

Lemma 4 Let v be an arbitrary time instant at Ofing job of T}, atv and no later job off}, can be re-
beforet,. LetT), be ataskin andT , its earliest |g55e(d beforé, , lag(T}, v, S) = lag(Tyq, v, S) <
pending job at, and letd, , < e be the amountmin(qu LA, = v,er) — (dpg — v) - u}f. On the
of time thatT7; , executed for before. Then, giner Hand, ifo > dy,, then thelag of 7}, at v
lag (T, v, §) < (v —diq) - s+ ex — O q- FUthEr- s given by the sum of the work pending
more,v —dyy < x + oy Hencelag(7y,v,S) < (which is at mosmin(dy,, + Ay — v,) and the
T Uk + Ck. total allocation tdl}, in PS. in [dy. 4, v). In PS,, T}
Proof: We prove the lemma for the cadg, < v, is allocated at most a fractian, in every instant in
leaving the caséy , > v to the reader. The amounid,, ,,v). Hence, in this case todgg(7},v,S) <
of work pending for7; , atv is e, — g q- Tk is @l- min(dy, + Ax — v, ex) + (v — di) - ug. Finally,
located at most,, time at every instant aftef, , because < dy., + Ay, we havemin(dy , + Ay —
in PS;. The firstlag bound indicated follows fromuv, e;,) + (v — dy) - ux < e + A - uy. |
these two facts. The bound or-dy, , follows from .
(P) and the seconldg bound is obtained by substi-€émma 8LetJ, < e, denote the amount of time

tuting the bound fow — d;., in the firstlag bound. that the carry-in job, if any, in¥; of task7j, in
m 7 executes for beforg,. Then,LAG(V,t,;, S) <

l’-UL+UH+EL +ET;L€TH 5h . (1 —uh).
Lemma 5Let T} be a task inry and T}, its ear- proof: Let [t,¢) denote the latest non-blocking,
liest pending job at any arbitrary time. Then, non-busy interval before,; across whichLAG
lag(Tk, v, §) < min(dyg+Ar—v,ex)+(v—drg)- increases. If[t,) exists, then by Lemma 6,
up < e+ Ay -y LAG(U, ', 8) < x- U + Uy + Eyp. If [t,¢') does
Proof: Becausel}, is in 7y andT} , is pending at not exist, then let’ be equal to the first blocking in-
v, v < dp, + Ag holds. Sincel}, is guaranteedstantin|0,¢,), if any. Otherwise, let’ = ¢,. Then,
continuous execution until completion after timeAG(¥,#,S) < 0.
diq + A — e, the amount of work pending for If no blocking, non-busy interval follows (by
Ty, atv is at mostmin(dy, + Ay — v, e), i.€, our assumptiony,t') is the latest non-blocking in-
A(S, Ty g4, kg, v) > ex, —min(dy ,+Ar — v, ex). I terval beforet, across whichLAG increases), then
v < djq, thenA(PS;, T}, 4, Tk g, v) = €—(di q—v)- by Lemma2LAG(V,t,, S) < LAG(¥,#,S), com-
uy. Thus,lag(Ty 4, v,S) = A(PS;, Tk 4, Tkq,v) — pleting the proof. So assume that some blocking,
A(S, T g, Tk, v) < min(dyg + Ap — v,e;) — non-busy interval follows'.
(dg, — v) - ui. Becausel}, is the earliest pend- Let [t;,t)), wherel < ¢ < b andt;, < t,_,

16

forall 1 < ¢ < b, denote theb disjoint (.e.,
non-overlapping) blocking, non-busy subintervals
in [t',t4) such that the following holds: any job of
U that executes in any of thenon-busy subin-
tervals executes continuously in the interval. It is
straightforward to show that such subintervals can
be defined—see Fig. 8.

Any increase irLAG for ¥ only occurs across a
blocking interval aftet’. By Lemma 7, the increase
in LAG across the blocking subintervil, t;) is at
most) ;. ... (t; — ti) - (1 — wy), whereq; is the
subset of all tasks imy whose carry-in jobs are
executing continuously ift;, ¢;). Let T} be a task
of 7, whose carry-in jobdl}, ., executes int;, t}).
Then, the increase ibAG due toT), across|t;, t;)
isatmost(t. —t;)- (1—wuy). By the statement of the
lemma,T}, ., does not execute for more thntime
units in[t’, ;). Hence, the increase due’ty over
all the blocking subintervals cannot be more than
o - (1 —uy), and the increase due to all the tasks in
T cannot be more thaETheTH(l — up) - 0. The
lemma then follows from the upper bound 10kG
att’ determined in the beginning of the proof.ll

17

