Flexible Tardiness Bounds for Sporadic Real-Time Task Sysims on
Multiprocessors *

UmaMaheswari C. Devi and James H. Anderson
Department of Computer Science, The University of NorthoGiaa at Chapel Hill

Abstract guaranteed to complete execution by tidhe §. Such a guar-
antee would ensure that, in the long run, each task receives a
processor share commensurate with its utilization (seeZec

In work on real-time systems, multiprocessor platforms
(SMPs) are of growing importance. This is due to both hard-
ware trends such as the emergence of multicore technologies
and also to the prevalence of computationally-intensiyaiap
by bounded amount§.e., bounded tardinegs We showed cations for which singl_e-pr_oces_sor designs are not sufficie

Examples of such applications include systems that track pe

that if Usum < m and tasks are not pinned to processors, le and machines, many computer-vision systems, and signal
then the tardiness of each task is bounded under both preempp ' y b y ' 9

tive and non-preemptiiEDF. However, the tardiness bounds p.roc_:essing applicat_ions such as synthetic aperture Irgagin
derived are applicable to every task in the task sysioe Timing constraints in several of these applications are pre

. : : . dominantly soft. Given these observations, designingiefftc
any task may incur maximum tardiness. In this paper, we con- . .) .
. . . scheduling algorithms for multiprocessor-based softtigad
sider supporting tasks whose tolerances to tardiness &% le

than that known to be possible undebF. We propose a hew ;ystems and analyzing the tradlltlonal algorithms fqr sedl 1

. . o . time systems are goals of considerable value and interest.
scheduling policy, calle@&DF-hl, which is a variant oEDF, S dic task ¢ b heduled i
and show that undeEDF-hl, any tardiness, including zero poradic task systems can be scheduled on a multipro-

tardiness, can be ensured for a limited numbepo¥ileged cessor using either partitioning or aglobal-schedulingap-

tasks, and that bounded tardiness can be guaranteed to the’ roach. Underdparutl.onlng, tasks ﬁrz slt.a'ucallly a}tsh3|glr$d
remaining tasks if their utilizations are restricteDF-hl re- Processars, and a uniprocessor scheduling aigorithm o use

duces t&EDF in the absence of privileged tasks. The tardiness on each processor to_schedule its assigned tasks. In dontras
bound that we derive is a function bt,,,,, in addition to in- under global S(_:hedullng, a task may execute on any proces-
dividual task parameters. Hence, tardiness for all tasks ca sor and Mmay Migrate across processors. Ea.Ch appro-ach can be
be lowered by lowering/....,. A simulation-based evaluation differentiated further based on the scheduling algorithat t

: . : is used. For instance, ttearliest-deadline-firs(EDF) [6] or
of the tardiness bounds that are possible is provided. therate-monotoni€RM)* [10] algorithm could be used as the

. per-processor scheduler under partitioning, or as thesyst
1 Introduction wide global scheduler.

A real-time system has to meet certaiiming constraintso Pfair scheduling [4], when deployed in a global setting, is
be correct. Such timing constraints are typically specified ~ currently the only known way obptimally scheduling spo-
deadlines for tasks. Tasks in a real-time system are often reradic task systems on a multiprocessotowever, Pfair al-
current in nature. The sporadic task model is one of the mostgorithms schedule tasks one quantum at a time, and as a result
widely-studied notions of recurrent real-time task exggut ~ jobs may be preempted and migrate across processors fre-
In this model, each task is a sequential program that is iesok quently. Such preemption and migration overheads can lower
repeatedly; each such invocation is call§dimand has an as- the amount of useful work that is actually accomplished. On
sociated deadline by which it should complete execution. the other hand, no known non-Pfair-based scheduling algo-

It is generally required that jobs be scheduled so that theyrithm is optimal, and in the worst case, every such algorithm
do not miss their deadlines. However, insaft real-time requires that the total utilization not exceed + 1)/2 (i.e,,
system deadline misses can sometimes be tolerated, if the , . . . , .

. L ip *Under RM scheduling, priorities for jobs are fixed offline and are in-

amount by _Nh'Ch a deadline '$ missed '_S within a specified versely proportional to the periods of their tasks: the jobs task with a
per-tasktardiness thresholdif ¢ is the tardiness threshold of shorter period have higher priority than those of anothsk taith a longer

some task, then its job with a deadline at tishshould be period.

TThe term “optimal” means that om processors, such algorithms are
*Work supported by NSF grants CNS 0309825 and CNS 0408996. The capable of correctly scheduling (without any deadline e8$any task system

first author was also supported by an IBM Ph.D. fellowship. with total utilization at mostn.

The earliest-deadline-fir§EDF) scheduling of a sporadic
real-time task system on a multiprocessor may require that
the total utilization of the task system,,,, not exceed
(m+1)/2 onm processors if every deadline needs to be met.
In recent work, we considered the alleviation of this under-
utilization for task systems that can tolerate deadlinesess

the underlying platform be underutilized by roughly 50%), i 2 Definitions
every deadline is to be met [9, 11, 3, 2].

Prior work has shown that such restrictions on overall uti-
lization can be eliminated for soft real-time systems. I [1
Andersonet al. presented a variant of partition&DF that Task model. A sporadic task system comprisedof> 1
ensures bounded tardiness with no such restrictions,gdvi sporadic tasks is to be scheduledan> 2 processors. The
per-task utilizations are capped at 1/2. In addition, in-a re ;** task is denoted;(e;, p;), wherep; > 0 is the minimum
cent paper [8], we derived tardiness bounds for both preemp-inter-arrival separatiorfor its successive jobs ang < p; is
tive and non-preemptive glob&@DF. Tardiness bounds un- its per-job execution costp; is also referred to as th@eriod
derEDF have also been presented by Valente and Lipari [13]. of 7;. In the variant of the sporadic model considered here,
A precursor to all of the work mentioned here is a paper by p, is also therelative deadlineof T}, i.e., each job ofl; must
Srinivasan and Anderson [12] in which tardiness bounds arecomplete execution withip; time units of its invocation. The
presented for the earliest-pseudo-deadline fE&F) Pfair utilization of 7; is given byu; & ei/p; < 1. Thetotal uti-

scheduling algorithm, which is sub-optimal but more effitie def —n . .
than optimal algorithms, lizationof 7 is defined a¥/s,m, (7) = >, u;. Itis required

that Usym () < m hold. The maximum utilization (resp.,
execution cost) of any task in is denotedu,,..(7) (resp.,
emax(7)). The minimum execution cost of any task is denoted

In this section, our task model is described and algorithm
EDF-hl is presented.

Contributions. The tardiness bounds derived by us previ-
ously for preemptive and non-preemptlvBF [8] are depen-) . ; ,
dent on per-task utilizations and execution costs but isdep ~ ¢min(7)- (In this notation, the task systemis omitted when
dent of the total system utilizatio,,.,. Furthermore, any ~ Unambiguous.) _ _
task may incur maximum tardiness. This may not be accept- 1€ kt_h job of T;, wherek > 1, is denotedr’ x, and its
able to applications that are comprised of hard and soft real '¢lease timeand absolute deadlingor simply deadlinefor

time tasks with different tardiness tolerances. In thisgsap ~Short) are denoted) , andd; (= rix +pi), respectivelyr; j
we make an attempt to address this limitation. denotes the the time at or after whi@h; can be executed.

our contributions are twofold. First, we consider guaran- "i-k+1 — ik = pi holds forallk > 1. Each task is sequential,
teeing lower tardiness to some tasks at the expense of oth@"d hence no job of any task may execute in parallel. Further-
ers. To this end, we propose a new scheduling policy, called™Ore N0 twg jobs of any ta?" m:_;\y execute In pa_raIIeI.
EDF-hl, which is a variant of glob#EDF. We show that un- A sporadic task system is said to beconcreteif the re-
der EDF-hl onm processors, up te: tasks can be accorded lease time of every job of each of its tasks is specified, and
preferential treatment and thereby guaranteed any tamsline NOn-concreteotherwise. Note that an infinite number of con-
including zero, and that bounded tardiness can be guarhnteeCet€ task systems can be specified for every non-concsite ta
to the remaining tasks if their utilizations are capped.hia t ~ SyStem. We omit specifying the type of the task system unless
absence of tasks that require lower tardin&&-hl reduces It IS necessary. The results in this paper are for non-coacre
to EDF. Simulations involving randomly-generated task sets 'aSK systems, and hence hold for every concrete task system.
presented herein suggest that for many systems, the tasdine ~ 1he tardiness of a jobil; ; in a schedules is defined as

bounds that can be ensured for tasks that do not receive preftardiness(T; ;, §) = max(0,¢ — d; ;), wheret is the time at
erential treatment are acceptable. which T; ; completes executing i§. If x is the maximum

tardiness of any task system undérthen.A is said toensure

a tardiness bound of. We assume thahissed deadlines do
not delay future job releasesThat is, even if a job of a task
misses its deadline, the release time of the next job of that
tardiness-utilization trade-off foEDF (i.e. without special task remains unaltered. Since consecutive jobs of the same

tasks), we again conducted experiments involving randemly t_ask cannot be scheduled in parall_el, a missed _deadlineeffe

generated task sets. We found that, with the improved analtively reduges the interval over WhIC.h the next job should be

ysis, considerable reductions in tardiness are possitga ey Scheduled in order to meet its deadline. _

for reasonable reductions in total system utilization. ier The sporadic task model described above is augmented

stance, in the simulation results for eight processors atiow &S follows forEDF-hl (described below). Each task inis

Fig. 5(b) in Sec. 4, lowering/s.., by around 10% results in classified as either privileged taskor anunprivileged task

a reduction in maximum tardiness by over 35%, and lowering 1 he set of all privileged (resp., unprivileged) tasks isated

Usum by 25% lowers maximum tardiness by close to 50%. 7# (résp.,7z). (H and L stand for high and low privilege.)
|7 | < m holds. Each privileged task, has a maximum tar-

Organization. The rest of this paper is organized as fol- diness parametek;, > 0, which denotes the maximum tardi-

lows. Our system model and algoritHBDF-hl are described ~ ness that any of its jobs can toleratk,; + Ay, is referred to

in Sec. 2. Tardiness bounds are derived in Sec. 3. Result&s theeffective deadlinef job 7}, ; and is denoteg, ;.

of the simulation-based evaluations mentioned above are pr 10 express the tardiness bound derived in this paper easily,
sented in Sec. 4. Finally, Sec. 5 concludes. we lete;, i, ande;” (resp..uq, p1;, andy;’) denote thei

Unlike in [8], the tardiness bound derived here is a function
of Usum, in addition to individual task parameters. Thus, as a
second contribution, our bound offers the possibility af{o
ering tardiness for all tasks by lowerifig,,,,. To assess the

execution cost (resp., task utilization) in a non-incregsir-
dering of those of tasks in, 7, and7, respectively. Also,

~; denotes the tardiness-utilization produa, A; x u;, for
thei'” privileged task in a non-increasing ordering for tasks
in 7. A is defined as follows.

-

Algorithm EDF-hl. Our goal is to design an algorithm that
can guarantee a tardiness &f, to each privileged tas7},
while guaranteeing bounded tardiness to the remainingtask
Let theslackof job T3, ; of a privileged taskl}, at timet¢ be
defined asiy ; + Ap — ¢t — (en, — dn,5), Whered, ; denotes
the amount of time thal}, ; executed before. Informally,
the slack of joldl}, ; att is the amount of time the job can af-
ford notto execute aftet until completion for its tardiness to
be at mostA,. A tardiness of at mosh; can be guaranteed
to task1}, if each jobT}, ; is scheduled based on its deadline
until timed,, ; + Ap, — ey, butis guaranteed continuous execu-
tion fromdy, ; + Ay — e, onward. (This is somewhat similar
to the behavior of the earliest-deadline-until-zerot#azigo-
rithm described in [5].) Jold}, ; is said to baurgentat timet,
if t > dp ; + A — e, andT} ; has not completed execution
by ¢. Note thatT}, ; is flagged as urgent frod, ; + Ay, — ey,
until completion even if its slack is positive. This elimira
the overhead of updating the urgency for each privilegedjob
runtime and may result in fewer preemptions and migrations.
With the above definitions in place, AlgorithBEDF-hl can
be described as follows. At any timgeach of the urgent jobs,
if any, of tasks inry is assigned a unique processor. If not ev-
ery processor is assigned to an urgent job, then the nomurge
jobs ofry and jobs of tasks im;, are scheduled on the remain-
ing processors on an earliest-deadline-first basis, wiesgdt

Usum (T) —
[Usum (7)),

1, Usum(7)Iisintegral

otherwise

@)

than4.33). However, if two tasks have a tardiness require-
ment of zero, then tardiness for the remaining tasks may be
as high as 21.0 (which is still bounded). Lower tardiness can
be guaranteed if the utilizations of the unprivileged tamstes
lower. For instance, with two privileged tasi%(3,4) and
T>(3,4) and three unprivileged taskg(3,6),...,75(3,6),

the unprivileged tasks can be guaranteed a bound of 12.0.

3 Tardiness underEDF-hl

In this section, we determine a tardiness boundrfar The
approach for doing this is the same as that used in [8]. This
involves comparing the allocations to a concrete task syste
7 in a processor sharind®§) schedule forr and an actual
EDF-hl schedule of interest for, and quantifying the differ-
ence between the two. InRS schedule, each job df; is
allocated a fractiom; of a processor at each instant (or equiv-
alently, a fraction; of each instant) in the interval between its
release time and its deadline. Becalisg,, < m holds, the
total demand at any instant will not exceedin aPS sched-
ule, and hence no deadlines will be missed; in fact, every job
will complete executing exactly at its deadline. We begin by
setting the required machinery in place.

3.1 Definitions and Notation

Atime interval[ty, t2), wherety > ¢, consists of all times,
wheret; <t < ty, and is of lengtht; — ¢;. The system start
time is assumed to be zero. For any timg 0, t~ denotes
the timet — ¢ in the limite — 0+.

Definition 1 (active tasks and active jobs): A taskT; is
said to beactiveat timet, if there exists a joll; ; (calledT;’s
active jobatt) such that; ; <t < d; ;. By our task model,
every task can have at most one active job at any time.

any, are resolved arbitrarily. A job may be preempted at any Definition 2 (pending jobs): T; ; is said to bependingat ¢
time by a higher priority job and may later resume execution in @ schedule if r; ; < ¢ andT;, ; has not completed execu-

on a different processor.
Note thatEDF-hl reduces toEDF if 7y = (. Since
|Tz| < m holds, EDF-hl clearly ensures the required tar-

tion byt in S. Note that a job with a deadline at or befaris
not considered to be activeiagven if it is pending at.

Definition 3 (ready jobs): A pending jobT; ; is said to be

diness for each privileged task. Hence, the question to bereadyatt in a schedulé if all prior jobs of 7; have completed
addressed is whether bounded tardiness can be guaranteexecution byt in S.

for the remaining tasks. The answer turns out to be yes if

there is a cap on the utilizations of the remaining taskss Thi

We now quantify the total allocation te in an interval
[t1,t2) in @ PS schedule forr, PS.. Let A(S,T;,t1,t2) de-

cap depends on the number of privileged tasks and their uti-note the total time allocated tb; in an arbitrary schedul&

lizations. To see that such a cap is necessary, at least iffor 7 in [t1, ;). Then, since iPS,, T} is allocated a fraction
some cases, consider a task system comprised of four taskg, of each instant at which it is active jfy, t,), we have

T1(3,4),...,T5(3,4), andT,(37, 47), wherei > 1. Here, if
tasksTy, . .., T3 require a tardiness of zero, then tardiness for
T, can grow unboundedly.

Discussion. Though the tardiness bounds derived in [8]

guarantee that tardiness for each task in the above example

(with ¢ = 1) is at most4.33 time units undeEDF, no task
is immune from incurring maximum tardiness. The bound for
EDF-hl derived here would enable one of the four tasks to
be guaranteed zero tardiness if the remaining tasks can tole
ate a tardiness df time units (which is only slightly higher

A(PST, Ti, tl, tg) S (tg — tl)ui. (2)
The total allocation to- in the same interval ifPS; is
A(PST7 T, t17t2) S Z (t2 - tl)ui = Usum(T) . (t2 — tl) (3)

T,eT

We are now ready to defineg andLAG, which play a pivotal
role in this paper. Théag of taskT; at timet in scheduleS,
denotedag(T;,t,S), is given by

lag(T5,t,S) = A(PS,,T;,0,t) — AS,T3,0,8). (4)

In S, less work than irPS; has been completed by tinte
on the jobs ofT; if lag(T;,t, S) is positive {.e., T; is under-
allocated inS), and more work, iflag(T;,¢,S) is negative
(i.e, T; is over-allocated irS). Thetotal lag of a task sys-
temr att¢, denoted AG(T, t,S), is given by

> lag(Ty,t,8)

T,eT

A(PS;,7,0,t) — A(S,7,0,1). (5)
Note thatLAG(r,0,S) andlag(7;,0,S) are both zero, and

that by (4) and (5), we have the following for > t;.
Iag(Ti7t27S) = Iag(Ti7t17$)+

A(PST7Ti,t1,t2) — A(S,Ti7t17t2)
LAG(7,t2,S) = LAG(T,t1,S) +
A(PST7T7t17t2)—A(S7T7t17t2)

LAG(T,t,S)

(6)

Lag for jobs. The notion of lag defined above for tasks
and task sets can be applied to jobs and job sets in a
obvious manner. Letr denote a concrete task system,
and ¥ a subset of jobs inr. Let A(PS.,T; ;,t1,t2) and
A(S,T; ;,t1,t2) denote the allocations td@;; in [t1,t2)

in PS; and S, respectively. Then,lag(T; ;,t,S)
A(PSTaT%-,jvTiyjat) - A(S,T%_’j,?"iyj,t), andLAG(\I/,t,S) =
>, evl2g(Ti;,t,S). The total allocation irf0,?), where
t > 0, to a job that is neither pending &t in S nor is active
att~ is the same in botl¥ andPS,, and hence, ittag att is
zero. Therefore, fot > 0, we have

LAG(¥,t,S) = > lag(Tigt,S).
{T;,; isin ¥, and is pending
or active at ™ }

The above expression can be rewritten using tagk as fol-
lows (since no job can be scheduled before its release tiche an
jobs of T;; that are not in may be pending aj.

LAG(V,t,8) < > lag(T;,t,S)
{T; e 7 : T;;isin ¥, and is
pending or active at™ }

@)

Similarly, the total utilization ofl at timet is given by the
sum of the utilizations of tasks with an active joktdh :

>

{T; € 7 : T;,; isin ¥ and is ac-
tive att}

Usum (0,) = 8)

Definition 4 (busy interval): A time interval[t,,t2), where
to > t1, is said to béousyfor 7 if all m processors are execut-
ing jobs of tasks in- throughout the interval,e., no processor
is ever idle in the interval or executes a job of a task nat.in
An interval [t1, t2) that is not busy forr is said to benon-
busyfor 7, and ismaximally non-busif every time instant in
[t1,t2) is non-busy, and eithéf = 0 or¢; is busy.

If at leastU....,(7) tasks are executing at every instant in
[t1,t2) in @ schedules for 7, then the tasks im receive a total
allocation ofUsy,, (7) - (t2 — t1) time in S in that interval. By
(3), the total allocation te in [t1, t2) cannot exceet g, (7)-
(t2 — t1) in PS.. Therefore, by (6), theAG of 7 att, cannot
exceed that at;, and we have the following lemma.

n

Lemma 1l If LAG(7,t + 4,S) > LAG(7,t,S), where§ > 0
andS is a schedule for, then[t, ¢ 4 §) is a non-busy interval
for 7. Furthermore, there exists at least one instartin+4)
at which fewer thai/,,,,,, (7) tasks are executing.

The busy interval in Def. 4 is defined with respecttowith
respect tol, [t1,t2) is said to bebusyonly if every processor
is executing some job o¥ throughout|t,t>). The job-set
counterpart of Lemma 1 is as follows.

Lemma 2 If LAG(¥,t + 4,S) > LAG(Y,¢,S), whered > 0
andS is a schedule for, then[t, ¢ 4 §) is a non-busy interval
for U. Furthermore, there exists atleast one insté [¢, t+

) at which fewer tharUs,,,, (¥, ') tasks are executing jobs
from ¥,

3.2 Deriving a Tardiness Bound

Given an arbitrary non-concrete task systefh, we are in-
terested in determining the highest tardiness of any jolmpf a
task in72¥ in any concrete instantiation of". Let T (resp.,
Ty andTz) be a concrete instantiation of" (resp.,75 and
™), Ty, ajob intr, ty = dyj, andS an EDF-hl schedule
for ~ with the following property.

(P) The tardiness of every job of every ta%k in 7., with
deadline less thaty, is at mostr + ¢, wherez > 0.

Then, determining the smallestindependent of the parame-
ters ofTy, such that the tardiness®f ; remains at most+e,
would by induction imply a tardiness of at mast- e, for all
jobs of tasks inr;,. Because is arbitrary, the tardiness bound
will hold for every concrete instantiation of".

Our proof obligation is easily met ify ; completes by its
deadline,ty, so assume otherwise. The completion time of
Ty,; depends on the amount of work that can compete with
Ty,; afterty. We follow the steps below to determime

(S1) Compute an upper bound)B) on the amount of work
(including that due tdl} ;) that can compete witl ;
aftert,.

(S2) Determine a lower bound.B) on the amount of such
work required for the tardiness @} ; to exceed: + e;.

(S3) Determine the smallest such that the tardiness @ ;
is at mostr + e, usingUB andLB.

Let ¥ denote the set of all jobs with deadlines at mgsof
all tasks in7. UnderEDF-hl, no job of a task inr;, with a
deadline aftet, can compete witll} ;. Therefore, competing
work for Ty ; is given by(i) the amount of work pending &i
forjobsin¥,i.e, LAG(V,t4,S), plus(ii) the amount of work
demanded by jobs of tasks if; that are not inl but can
compete with jobs inl in [t4, tq+x+e,) . We now determine
an upper bound on these two components (step (S1) above).
(In the analysis that follows, we assume that < z holds
for all T}, in 7. The analysis has to be extended slightly,
otherwise. We have refrained from presenting a more general
analysis in the interest of clarity.)

3.2.1 Upper Bound onLAG(¥, tg4,S)

Let thecarry-in job of a taskl}, in 7 be defined as that job,
if any, of T3, with a release time beforig, and an absolute

deadline afterward. Clearly, at most one such job exists for

eachT},. Similarly, let the job, if any, ofl}, with a release
time beforet; + x + e, and an effective deadline afterward be
defined as itgarry-outjob. This is illustrated in Fig. 3. The
carry-in job of Ty, is its only job with anabsolute deadline
aftert, that may preempt.g., compete with) jobs i before

tq (i.e., become urgent beforg). Let Uy be the set of all
carry-in jobs of tasks imry. (For easy reference, descriptions
for these task and job sets are repeated in Fig. 1.)

By Lemma 2 Task / L
! Description

the LAG of ¥ Job Set
can increase TH Set of all privileged tasks im
0n|y across a TL Set of all gnprivileged taslfs in

b . 7 Set of all jobs of all tasks im
non-busy In- with deadline at most,
terval for . Uy Set of carry-in jobs of tasks iy
Recall that in
a non-busy Figure 1. Task and job sets heavily re-
interval for ¥ ferred to.
fewer than m

jobs from ¥ execute. In the case of d@EDF-hl schedule,
such a non-busy interval fo¥ can be classified into two
types depending on whether a job frob, is executing in
the interval while a ready job fron¥ is waiting. At the risk
of slightly abusing terms, we will refer to the two types as
blocking and non-blockingnon-busy intervals. Ablocking,
non-busy intervals one in which a job fromP i is executing
while a ready job fromb is waiting, whereas aon-blocking,
non-busy intervals one in which fewer tham jobs from ¥
are executing, but there does not exist a ready job that is
waiting. Note that it is immaterial whether a job frofny is
executing in a non-blocking, non-busy interval.

Before determining an upper boundloAG, we state some
needed properties. In [8], we showed that if a task does no
execute continuously within a non-busy interval in BDF
schedule, then itag at the end of the interval is at most zero.

This property can be extended to a non-blocking, non-busy

interval of anEDF-hl schedule, as follows.

Lemma 3 (from [8]) Let[t,¢') be a maximally non-blocking,
non-busy interval if0, t;) in S and letT}, be a task inr with
a job in ¥ that is active or pending at'~. If T} does not
execute continuously i, t'), thenlag(Ty, ¢, S) < 0.

The two lemmas that follow are proved in [7]. The first
lemma bounds thiag of a task inr;, at any arbitrary time at
or beforety. The second concerns thegs of tasks inry.

Lemma 4 Letwv be an arbitrary time instant at or beforg,.
Let T}, be a task inr, and T}, its earliest pending job at,
and letdy 4 < ex be the amount of time thdi; , executed for
beforev. Then,lag(Tx,v,S) < (v — di,q) - Uk + €k — O q-
Furthermore,v — di , < x + 6x,q. Hencelag(Ty,v,S) <
X - U + €.

Lemma5 LetT} be a task inrg andT}, 4 its earliest pending
job at any arbitrary timev. ThenJag(T%, v, S) < min(dk,q+
Ak —v,ex) + (v —dk7q) cup < ep + Ap - ug.

We now

turn to de- [Symbol] Expression
J;enrmmmugpper Er 22:1 €k
bound on B | Som, oy onll —un)

U min(A—1,|7p|) I
the LAG of L k=1 M

U max(0,A—1—|71|)
v atty. By H h=1 Th
Lemma 2, U | 2ryery un
theLAG of U By | oy, ergy ((en(l —up)+
can increase up(ee — Ap) +min(ep, - up, Ap))
only across + max(up (en — er),0))

a non-busy
interval for Figure 2. Frequently referred-to expressions.
¥. Hence,

an upper bound o AG at the end of the latest non-busy
interval before; across whichLAG increases will serve as an
upper bound for that at;. As discussed earlier, a non-busy
interval in an EDF-hl schedule can be either blocking or
non-blocking. We will consider these two cases separately.
Expressions that occur frequently in the analysis are gexi
in Fig. 2. The lemma that follows shows how to bounlG
at the end of a non-blocking, non-busy interval.

Lemma 6 Let[t,¢') be a maximally non-blocking, non-busy
interval in [0, ¢4) in S and letLAG(¥,¢',S) > LAG(Y,t,S).
Then,LAG(\I!,t’,S) <z-Up,+Ux+ EL.

Proof: By (7), theLAG of ¥ att’ is given by the sum of the
lags att’ of all tasks inr with at least one job if that is active
or pending at’~. By Lemma 3, the lag of such a task that
does not execute continuouslylint’) is at most zero. Hence,
to determine an upper bound aAG att/, it is sufficient to
determine an upper bound on thegs of such tasks that are
{executing continuously ift,¢). Let A’ denote the number of
such tasks. Then, by Lemma 2,

AI < max {Usum(qj,f)} < Usum(T)'

t<t<t’

(9)

Let ay (resp.,«ar) denote the subset of all tasks i
(resp.,r1) that are executing continuouslyfiy ¢') and have a

job in ¥ that is active or pending at~. Then,
lam| + lar| = A, (10)

and by the above discussion on boundidds,

LAG(T, ¢, S)
<D lag(Th,t,8) + Y lag(Tw,t',S)
ThEay TpEar,
< > (Anunten)t+ Y (@-uktex)
Theamg TrEar,

{by Lemmas 5 and 4

e + Z T Uk + Z Ap - up

Tp€ar ThE€ay

>

TpearUag

A/
< Zék—‘r Z T - Uk + Z Ap - un {By(lO)}
k=1 TpEar, Theang
A min(A’, |7 |) max(0,A" — |7 |)
< Z €k + T pk + T
k=1

k=1 h=1
{By (10) and assuming\, < x so that
Ap-up <z-ugforal Ty, € Ty, T € 71}
Finally, as in [8], it can be shown that f&rAG to increase
acrosgt, t'), at least one job o¥ with a deadline at or aftef
should have completed execution befoend that at least one
job executing at should have a deadline at or aftérHence,

thelag for its taskT}, att’ is at mosty,. By this argument, the
upper bound ohAG derived above reduces to

LAG(®,t,S)
A min(A,fl,\‘rL\)

S T S
k=1 k=1

The lemma follows because, by (1) and (8),< A.

max(0,A" —1—|71|)
Yh-
h=1

The next lemma shows how to bouhdG at the end of a
blocking, non-busy interval.

Lemma 7 Let]t,t') be a blocking, non-busy interval |, ¢ ;)

in S such that every instant ift, ¢') is a blocking instant and
any job of ¥ j; that executes ift, t') executes continuously in
[t,t). ThenLAG(¥,#',S) < LAG(W,t,S) + > 1, ca, (' —
t) - (1 — uyp), whereay is the subset of all tasks iy whose
jobs in¥ ; execute continuously in, t').

Proof: Let T}, be a task invg, whereay is as defined in the
statement of the lemma. Then, because the jab,ofhat is
executing inft,t’) is in ¥, T), does not have a job il that
is either active or pending anywhere[int’). Thus, by (8),

(VE:t <E <t Usum (¥, 8) S Usur(7) = > un), (11)

TpEapy

and since the cumulative allocation at each instant,itf)
in PS; to jobs in¥ is at mostUsy, (1) — ZThEaH up, the
following holds.

u;L> (12)

Becausdt, t') is continuously blocking, at every instant in
[t,t'), there exists at least one jobinthat is ready, but does
not execute. This in turn implies that no processor is idle in
the interval. Hence, we have the following.

-2

ThEap

A(PS,, W, t,t") < (t' —t)- (Usum(f)

AS, T, 4ty =1 —t)- (m—|au|)
By (12) and (13), and (6) (withy = ¢ andt, = t), we have

(13)

LAG(T, ¢/, S)
< LAG(T,t,8) +

S w) — (m- |aH|>)

TpEapy

' =) ((Usum(T) -

LAG(T,¢,S) +

(' =) ((me(f)—m)ﬂam_ > uh))~

Theay
Becaus€,,(7) < m, the above impliebAG(T,¢',S) <
LAG(V,t,S) + (' = 1) - Dop, cap (1 — un). []

An upper bound on theAG of ¥ att,; can be determined
by combining Lemmas 6 and 7 as follows. (This lemma is
provedin [7].)

Lemma 8 Let d;, < e; denote the amount of time that the
carry-injob(i.e. job in Uy), if any, of taskl}, in 7y executes
for beforet,;. Then,LAG(V,t4,S) < x-Up +Up + EL, +
ZThem Op - (1 —up).

To complete step (S1), we need to determine an upper
bound on the work due to jobs of tasksrig that can compete
with jobs inW in [t4, ts + « + e;). We do this next.

3.2.2 Competing Demand due to Jobs afy notin ¥

Let D(7},) denote the amount of work due to the jobs of a task
T}, in 7y that are not in and that can compete with jobs of
othertasksinv in [t4,tq+x+e¢). Then,D(T},) is composed
of three parts:(i) Work that needs to be done on a carry-in
job, if any, (i) mandatory work that needs to be done on a
carry-out job, if any, andiii) work to be done on all jobs that
lie between the carry-in and carry-out jobs, whicljstimes
the number of such jobs. This is illustrated in Fig. 3. (Note
that because the effective deadlines of any two consecutive
jobs of T}, are separated by at legst time units, the latter
of any two such jobs does not become urgent until after the
effective deadline of the former job has elapsed. Hence, no
job released after the carry out job can compete with a job in
¥ in [td, ta+x+ep).)

We now derive a bound od(7},).

Lemma 9 Let T}, be any task inry. Then,D(T},) < ej —
On + up - (x4 eg — Ap) + min(0, Ap, — (en — Op)up) +
max(0,up(en, — er)), Whered, < ey is the amount of time
that the carry-in job, if any, of}, executes beforg;.

Proof: If no job of T}, has its effective deadline {ing, t4+x +

e¢), then at most one job df}, executes in the interval, and
the maximum amount of time it executes for cannot exceed
en, —0n. ThereforeD(Ty,) < ep, —dj, holds. Assuming, <

x, itcan be shown that, - (x +e,— Ap) +min(0, A, — (e, —
Op)up) + max(0,un(en, — e¢)) > 0 holds. HenceD(T},) <

enp —Op +up - (x +ep— Ah) + min(O, Ap — (eh — 5h)uh) +
max(0, up(en, — e¢)), which proves the lemma.

Hence, for the rest of the proof assume that at least one job
of T}, has its effective deadline ifty, tq + = + e¢). Let Ty .,
andTj, ., denote the carry-in and carry-out jobs, if any[(f

Let, = ph.c; — ta and letg, denote the offset frony +
x+e, of the last effective deadline jny, t4+x+e/) of ajob of
T},. Refer to Fig. 3. We now determine the three components
of D(T3) mentioned above.

carry=in job(T) carry—out job (Ty ..5)

h h h

_1=
hT (I il \L il |
[T Vo [1 [] [] ¥
The ‘5: Thert Pyic The2 Pocrt Thers Pucin Therd Pocs3
(=dy o) (=dy 41 (=dy 42 (=dy 43
_— _—=
ty &
ty+x+e,
_—
&=y~ @)

Figure 3. Competing demand due to tak in 7 in the interval
[ta,ta + = + er). Competing demand due to the carry-in jbh.,
(T, here) is at mostin (e, — dn, £) and that due to the carry-out
job T ¢, (Th,c+3 here) is at mosinax (0, er, — (pr — Pn))-

Work due to Tp,,. SinceT} . completes executing by
Ph,c;» the amount of time th&f}, ., can execute for aftery

is at mostoy, ., — tq = &, time units. Becaus®y, ., executes
for ¢, time units beford,, it cannot execute for more than
en — 0y, time units aftert;. Thus, the amount of work to be
done orl}, ., aftert, is at mostuin(ep, — dp, &p)-

Work due to Tj,.,. The effective deadline off}, ., is
separated from the previous effective deadlinelpfby at

leastp;, time units. Since the last effective deadline within

[ta,ta + = + er) IS ¢p, time units beforey + = + e, pn.c,

is at leastp, — ¢, time units afterty; + = + e,. Therefore,
min(ep, pr, — ¢p) units of work due tdl}, ., does not com-
pete with jobs inl beforet, + = + e,. Hence, the competing
work in [t4,tq + « + e;) due to the carry-out job is at most

max (0, ep, — (pr — @n)).

Work due to jobs betweenT}, ., and T .,. The effective
deadlines of successive jobs Bf are separated by at least
pn, time units. Therefore, the number of jobs Bf that lie
betweerpy, ., andty+z+e,— ¢y, is at moquJ <
zt+er—En—dn

Ph '
Combining the three components above, we have

D(Th)
< (m+ez—§h—¢h> P
Ph
max(0,ep, — (pr — ¢r)) + min(en, — On, &n)
= max((z + e¢ — & — dn)un, (x + e — En — dn)un
+en — (pn — én)) + min(en — 6n,&n)
{Becauses, /pn, = un}
ur(x + e¢ — &p) + min(en — 0, &n)
{Becausé < ¢, < p, anduy, <1}
= up(xr +er— Ap — xn) +min(ep, — p, Ap + Xn)
{Letting&, = Ay + xn; becausely, o, > tq, xn > 0}
= min(en — 6 + un(z + €0 — Ap — xn),
Xn(1—up) + Ap +un(z + e — Ap))
= min(ep — Op + un(x +er — Ap — xn),
(en — O0r)(L —up) + Ap +un(xz 4+ ec — Ap))
{Becausex, + A < en — 0 = Xn < €h — On}
min(er — dp + un(z + €0 — Ap),

IN

IN

(en — 0n)(1 —up) + Ap + un(z + e — Ap))

{Becausey, > 0}
en — O0n +un(z +er — Ap) + min(0, Ay, — (en, — Op)un).
en — O0n +un(x+er—Ap) +
min(0, Ap — (ern — dn)un) + max(0, un(en — €r)). |

VANRVAN

Using Lemmas 8 and 9, a bound, as given below, on the
sum of theLAG of ¥ and the competing work due to tasks in
Ty can be obtained. This lemma is proved in [7].

Lemma 10 LAG(V,t4,S) + > 5 ¢,, D(Th) < L +
>ty ey (€ (L=up) +up - (x+eg—Ap)+min(ep-up, Ap)+
max(0, up(en, —e¢))), whereL =z - Uy, + Uy + Ey,.

That completes step (S1). The next step is to determine a
lower bound on the amount of such work required for tardi-
ness ofl; ; to exceed a certain amount, which we do next.

3.3 Lower Bound onLAG + D
Lemma 11 If (i) LAG(V,t4,S) < (m — |7H|) - = + ¢, and

7| < m o (i) LAG(Y, t4,8) + g, crpy D(Th) < (m —
max(|7g| — 1,0) - ue) - @ + e(, then the tardiness ofy ; in S

is at mostr + e,.

Proof: To prove the lemma, we show th&t ; completes ex-
ecuting byty +x + €. If j > 1, thend, ;_1 < tq —pe holds,
and by (P), we have the following.

(R) T} ;—1 completes executing By +z+e,—pg, for j > 1.

We consider the two conditions stated in the lemma in two
separate cases below. In what follows, #&t= |rz|. Also,
without loss of generality, assume that the jobslirare the
only jobs ofr;, (or, equivalently, jobs with deadlines beyond
tq have been discarded).

Case 1: LAG(?,t4,S) < (m — |tul|) - * + e¢ and
|Te| < m. Letd,; denote the amount of time thdy ;
executed beforg;. By the conditions of this case, the amount
of work pending at; for jobs in ¥, and hence for those of
7, In ¥, is at most(m — H) - + e,. We first consider the
case where at least — H tasks ofr;, are executing at any
instantin(ty, tq+x+ nfﬁ”ﬁ) and letty +x + nf’iﬁ +¢, where

e > 0, denote the earliest instant aftgrat which fewer than
m — H tasks ofr;, are executing. Then, the amount of work

done in the interval front, to t4 + = + 5+JH + € on jobs

m

of 7, in U is at least(m — H)(z + ¢ + =£L.). Therefore,

m—H
the amount of work pending & + = + + ¢ for those

6[,]‘
m—H
jobs, and hence fdfy ;, is at mos{m — H) - x + e, — (m —
6[’]

H)(xz +e+ =) = e — (m— H)-e— d;. Hence, the
latest time thafl; ; completes executing ig + z + 5?1',{ +

m
ete—(m—H) ¢e— 5@7j < tq+ x+ es. (Note thaﬂﬂg_’j
can execute uninterruptedly aftey + = + % + € until

completion.) On the other hand, if fewer than- H tasks are

= L d <> <>

of LR

Q

le]

g
b=l

= 23
§ =

ty ty+x tytx+e,

B : total length of all the busy intervals in [ty ty+x+e)
4 : total length of all the busy intervals in [tg+X, ty+x+e,)

Figure 4. Case 2 of Lemma 11. Sample schedulétint, + = +

6().

executing at some time < t4 +z + nfﬂJH then fewer than

m — H tasks ofr;, have pending work at'. Because tasks
of 7y can execute on at mog{ processors at any instant,
T, can execute uninterruptedly froth until 7, ; completes
execution. Suppose the job Bf executing at’ is T, ;. Then,

sincet’ < tq+ x + nf’fTJH holds, and the amount of work
pending forT, ; is at moste, — d¢,;, T, ; completes executing
beforet ;+x+¢4. So, assume that a prior job’5f is executing
att’. In this case7} ; could not have executed befaig and
henceg,,; = 0, which implies (from the definition of') that

t' < tq + x. Furthermorej > 2 holds, and by (R)Z¢ ;_1
completes executing by, + x, and hence, the latest time that
T,,; commences execution is at or befoge+ x, and so the
latest time thaf; ; completes execution is; + = + ey.

Case 2:LAG(Y¥,t4, S) + > 1, crpy D(Th) < (m—|7H|-
uyg) - ¢ + eg. Atthe risk of some abuse in terminology, let
atime interval (resp., instant) [y, tq + x + e¢) in which all

m Processors are executing a jobdobr that part of a task in
Ty that can compete witl be referred to as busy interval
(resp.jnstan). Then, if pending, task, can execute in every
non-busy instant. If the latest busy instanttip t; + = + ¢/)

is at or before, + x, then because, by (R}, 1, if it exists,
completes execution at or beforg + z, the latest time that
Ty,; completes execution ig + x + e;.

can execute for at least- uy + ep time in[tq, tq + « + ey).
By Lemma 4,lag(Ty,tq,S) < x - ug + e, and hencely ;
would complete executing at or befatet . +e,. So, assume
B = x — x - uy + §1, whered; > 0. With this assumption,
we now compute the total amount of work doneldn t; +
x+ey¢). The total amount of work done in all busy intervals in
[ta,ta+x+e) ism- B. By (N), atleasinin(m — H +1,m)
tasks are executing at every non-busy instaftdint, + z).
The total length of all the non-busy intervals|ip, ¢4 + z) is

x — (B — §). Therefore, the amount of work done in all the
non-busy intervals inty, tq + x) is at leastmin(m — H +
1,m) - (x — B + ¢). The total length of all the non-busy
intervals infty + z,tq + = + e;) is e, — §, and at least task
T, of 71, has pending jobs i& until t; + = + e,, and hence,
executes in every non-busy instant[in + z,ts + « + ey).
(Otherwise, it would imply thaf ; has completed executing
beforety; + = + ey, completing the proof, as well). Hence,
the total amount of work done iy, t4 + = + e;) is at least
mB+min(m — H+1,m) - (x — B+46) + (e; — §), which,
on substitutinge — = - up + 7 for B, simplifies toma — H -
x-ug+(m—H)-d+x-us+H-51+ (eg—01),for H >0
andm - (z + &) + e, — 6, for H = 0.

By the condition of this case, the amount of work that needs
to be doneirjty, tq + x + e;) for jobs in ¥ and of tasks irry
that can compete witl is at mostnz — max(H — 1,0) -« -
ug + e4. Therefore, the amount of work pending at+ = + e,
isatmost—(H —1)-61 — (m—H)-4§,forl < H < m,
and is at most-(m — 1) - ¢, for H = 0. Because andJ; are
positive, both the above bounds are negative. Thus, no work
of jobs in¥, and in particular, that df} ;, can be pending at
tqg +x + ey |

This completes step (S2). We are left with determining a
value forx for which the tardiness df} ; is at mostz + e;.

3.4 Finishing Up

Solving for using Lemma 8 and the first condition in
Lemma 11j.e, solvingforzinz - Uy + Uy + Er, + Eg <

So, for the rest of this proof we assume that the latest busy(m — |7i|)z + e, yields

instantis after;+xz. Let the total lengths of the busy intervals
inf[tqg+z,tq+x+ep) bed < ey (Referto Fig. 4.) Therefore,
T, can execute for at least — time in that interval. If fewer
thanm — H + 1 tasks are executing at any non-busy instgnt
at or before; + x, then at mostn — H tasks ofr;, have pend-
ing work at or aftert,,. Hence, since tasks iry can execute
on at mostH processors at any instafif; is guaranteed unin-
terrupted execution fror, until T, ; completes. Hence, since
by (R),T¢ ;1 (if it exists) completes execution By +z, T} ;
would complete execution no later thant- 2 +e,. Therefore,
for the rest of this case, assume the following.

(N) Atleastmin(m — H + 1, m) tasks are executing at every
non-busy instant ifiég, tq +).

Let B denote the total length of all the busy intervals in
[ta,ta +x +e). (Referto Fig. 4.) IfB < z — x - uy, thenTy

. Er+Un+ Exg —eg
= (m—|mal) U’

(14)

whereFy is as in Fig. 2. Solving using Lemma 10 and the
second condition of Lemma 1ie., using} ., ., (en - (1 —
up)+up - (z+e,—Ap)+min(ep -up, Ap)+max(0, up - (e —
e))+x-Up+Ug+FErL < mz—max(|tg|—1,0) -z up+ey,
yields

EL+Un+Ey —ee

>
v= m — max(|7g| — 1,0) -u, — Up — Uy’

(15)

where B, andUy,; are as in Fig. 2. Hence, if is smaller
of the two values that are on the right-hand sides of (14) and
(15), then the tardiness @f, ; would not exceed: + e;. A
value ofz that is independent of the parametersibfis ob-
tained by replacing, by enin andug by umax () in (14)

Avg. of Maximum Tardiness

16 processors for u_avg in (0.4,0.5], e_avg in (19,20] 8 processors for u_avg in (0.7,0.8], e_avg in (14.0,15.0] 32 processors for u_avg in (0.7,0.8], e_avg in (14.0,15.0]

60 60 70
55 2 55 P 65
50 S 50 el _—
= T g5 |,
, ——
Rl e a5 Ry F s B WO,
‘‘‘‘‘ [RA—— E I e E e, -
2 Yo e g 40 I g 45 — |
““““““““““““ | SO % A\ % 40 [Somwenonn o
— \ S S—
3B/ e nnx = 35 1 s s Sevmcnnn,
= \ =

30 _ ° 30 _ R AT RCATI OO °)

Tardiness for Usum=m —— 2 tardiness for Usum=m —— N 2 30 tardiness for Usum=m ——
25 BASIC ———- < 25 BASIC ———- < BASIC ——~--

IMPR - - - - IMPR -~ - - 25 IMPR - -» -~
20 20 20
16 155 15 145 14 135 13 125 12 8 75 7 6.5 6 32 31 30 29 28 27 26 25 24
Total System Utilization (Usum) Total System Utilization (Usum) Total System Utilization (Usum)
@ (b) (©)

Figure 5. Tardiness by, using theBASIC andIMPR bounds for(a) m = 16, 0.4 < 4.y < 0.5, and19.0 < eqyg < 20.0, (b) m = 8,
0.7 < Ugvg < 0.8, aNnd14.0 < eqvg < 15.0, and(c) m = 32, 0.7 < uqvg < 0.8, and14.0 < eqvg < 15.0.

and (15). Similarly, the, term in the expression faE}, has [8], it can be shown that

to be replaced by.,.x(7z). By inducting over the jobs of ALl)

71, in the non-decreasing order of their deadlines, we have the <3 up(m — A) 16
UL =) ()

following. = (m = Usum) + uk(Usum — A)

h 1 EDE-HI di ; which when used in the expression for the tardiness bound in
eorem -hl “ensures a tardiness of ‘al moSt 1y ¢ reqylts in slightly lower values. We will refer to the

min(Xy, X2) + ex to every taskly, of 7, if |rp| < m bound given in Thm. 1 aBASIC and the bound obtained by

Er4+Ug+FEg—emin(T X
and Usum (1) < m, whereX; = =- (nf—\T;D—UL(£ and using (16) asMPR.

Xo= —— ﬁLﬂiﬁzfé’f&‘“‘(‘“(T)ﬁ)U S We evaluated the tardiness-utilization trade-off thatds-p
TR e T TR L T sible by generating random task sets with varying values for
Usum and computing th&ASIC andIMPR bounds for each
Conditions for bounded tardiness. Since the derivation and comparing these bounds with those obtained from our ear-
was based on the assumption that> 0, X; and X» are Jier work, whenlU,,,, = m [8]. Simulation experiments were
valid only if their denominators are non-negativé(; and conducted for four, eight, 16, and 32 processors, With,,
X, are bounded only if their denominators are greater thanvarying betweer$m /4 andm in increments of).1. 600,000
zero. Hence, if the sum of the utilizations of the- 1 heav- task sets, with at least. + 1 tasks in each, were generated
iest tasks inr;, is less thann — |74|, then X, is bounded. for each(Us,.,,m) pair. The maximum utilization of any
Similarly, X> is bounded only if the sum of the utilizations of task in a task set varied uniformly frot5 to 1.0. The task

the heaviest\ — 1 tasks in7;, is less thann — max(|7xu| — sets generated were grouped based:.gny ande,.,,, where
1,0) Umax(T0) —Upy. Hen_ce, if e_|ther of the above cond_|t|0ns Uqyg @Nde,,, are the averages of the highgt.,,,,, | task uti-
holds, then bounded tardiness is guaranteed to tasks in lizations and execution costs, respectively. The vamaiip

tardiness (mean of the maximum tardiness for all task sets in
a group) withUg,,, for m = 16, when0.4 < ug,e < 0.5
and19.0 < egy < 20.0, andm = 8 andm = 32, when

0.7 < Ugvg < 0.8 and14.0 < eqyy < 15.0, are presented

in Fig. 5. Note that the rate at which tardiness drops with de-
creasings.., is higher whenu,, is higher (in the(0.7, 0.8]

4 Performance Evaluation

In this section, we present the results of a simulation-thase
evaluation of(i) the tardiness-utilization trade-off possible in

:jhe abssncedof pnwlege% t;sks rﬁnﬂ the range of the tar- 546y “Furthermore, the rate at which tardiness drops with
iness bound guaranteed BDF-hl on an average. Due to ;"o reases with decreasibg,,,. For instance, in in-

space constraints, only a subset of the results is preseated ., (c), reducing/, to 31.0 (which is 96.8% of(= 32))
Tardiness-utilization trade-off. As mentioned earlier. lowers tardiness to less than 50.0 from over 60.0, which is
EDF-hl reduces tcEDF in the absence of privileged task’s. a drop of over 20%, whereas to lower tardiness to less than
Hence, in this case, the tardiness bound given in Thm. 140-0.Usum has to be decreased to approximately 27.0 (which
applies to every task im. Note that the tardiness bound is IS 84-3% 0fm). Hence, setting/s.., t0 a value slightly lower
expressed in terms df () in addition to individual task ~ thanm may be appropriate when high utilization tasks are
parameters. Hence, an alternativéE@F-hl for guaranteeing present in the task system. At this point, we would like teenot
lower tardiness is to lowe¥,..,. This approach may be that these characteristics should be attributed to thedsode-
preferable if a majority of the tasks require lower tardmes "ved (and to the analysis) and not to the algorithm per se.
and the gains are reasonable for slight decreasgs,in. Tardiness bounds forEDF-hl. We also evaluated the tar-

In the absence of privileged tasks, using a slightly diffiére ~ diness bounds that can be guaranteed to unprivileged tasks
but more complicated, analysis than that used in Sec. 3 or inon an average und&DF-hl for m = 4 andm = 16, with

4 processors for e_avg in (19,20] 16 processors for e_avg in (18,20]

250 250 250

4 processors for e_avg in (19,20] 16 processors for e_avg in (18,20]

200 200 200

150 150 150

100 100 100

Avg. of Maximum Tardiness
Avg. of Maximum Tardiness
Avg. of Maximum Tardiness

50 50

250

200

150

100

Avg. of Maximum Tardiness

0
01 02 03 04 05 06 07 08 09 1
Average Utilization

(b)

o
01 02 03 04 05 06 07 08 09 1
Average Utilization

(@)

0.1

0
01 02 03 04 05 06 07 08 09 1
Average Utilization

(d)

02 03 04 05 06 07 08 09 1
Average Utilization

(©)

Figure 6. Experimental evaluation of the tardiness bounds guardriggelhm. 1 undeEDF-hl for tasks in|7z|. LU with (a) m = 4 and
(b) m = 16. HU with (c) m = 4 and(d) m = 16. The different curves in each inset correspond to diffevahies of|7x|. |7x| = 0 for the

bottom-most curve and is greater by one for each curve higiher

Usum = m. The task sets generated were grouped based olReferences

the average of the: highest task utilizations and the utiliza- 4
tions of the tasks iny, denotedu.yg. (eqvg iS With respect
to execution costs, analogously.) For each task set geerat
the number of tasks ing was varied from zero tez, and for 2]
each|ry|, the members ofy were chosen in two different
ways: first, as tasks with the lowegty| utilizations in the
generated task set (denoted), and then, as tasks with the
highest|Ty| utilizations (denote¢iU). The variation in tardi- [3]
ness withuq,4 as the number of privileged tasks is increased
is plotted in Fig. 6 for both.U andHU. As expected, tardi-
ness increases with | andu,,,, and the increase is higher [4]
for HU than forLU. The tardiness bounds computed grew to
unbounded values for certain task sets at high valuésdf
with the percentage of such task sets increasing with iserea [5)
iNg uqyg. Further details on such task sets can be foundin [7].

. (6]
5 Conclusion

[71

We have addressed the issue of supporting tasks whose tol-
erance to tardiness is lower than that currently known to be
possible undeEDF. We have proposed a new scheduling pol-
icy calledEDF-hl, which is based oftDF, and have shown (8]
that underEDF-hl, a limited number oprivilegedtasks can

be guaranteed any tardiness, including zero tardinesshand
bounded tardiness can be guaranteed to the remaining tasks [
if their utilizations are restricted. The tardiness bourd d
rived is a function ofUs,.,, in addition to individual task
parameters, and hence, tardiness for all tasks can be low-
ered by slightly loweringd/,..,. We have, through simula-
tions, assessed the impact of privileged tasks on the &sdin
bounds that can be guaranteed to the remaining tasks, and the
tardiness-utilization trade-off that is possible in theatce of
privileged tasks.

This problem of supporting sporadic tasks with different
tardiness requirements may alternatively be viewed as bne o [12]
supporting tasks with relative deadlines at least peridde
EDF schedulability tests available for task systems with rel-
ative deadlines equal to periods on a multiprocessor, thoug [13]
applicable when deadlines may exceed periods also, are pes-
simistic and tend to under-utililize the underlying platfo
The work presented in this paper is an attempt towards reme-
dying this limitation.

[10]

J. Anderson, V. Bud, and U. Devi. An EDF-based schedubigp-
rithm for multiprocessor soft real-time systems. Rroc. of the 17th
Euromicro Conf. on Real-Time Systemages 199-208, July 2005.

B. Andersson and J. Jonsson. The utilization bounds iitioned and
pfair static-priority scheduling on multiprocessors a@84 In Proc.
of the 15th Euromicro Conf. on Real-Time Systepages 33-40, July
2003.

S. Baruah. Optimal utilization bounds for the fixed-pityp scheduling
of periodic task systems on identical multiprocesstEEE Trans. on
Computers53(6):781-784, 2004.

S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Prapoate
progress: A notion of fairness in resource allocatiohigorithmica
15:600-625, 1996.

S. Cho, S.K. Lee, S. Ahn, and K.J. Lin. Efficient real-tirsehedul-
ing algorithms for multiprocessort£ICE Trans. on Communications
E85-B(12):2859-2867, December 2002.

M. Dertouzos. Control robotics: The procedural conwblphysical
processes. IRroc. of IFIP Cong, pages 807-813, 1974.

U. Devi and J. Anderson. Flexible tardiness bounds faragic real-
time task systems on multiprocessors (extended versiorgilable at
http://www.cs.unc.edllanderson/papers.html, October 2005.

U. Devi and J. Anderson. Tardiness bounds for global E€ffeduling
on a multiprocessor. IProc. of the 26th IEEE Real-Time Systems
Symp, pages 330-341, December 2005.

J. Carpenter et al. A categorization of real-time mutigessor
scheduling problems and algorithms. In Joseph Y. Leungtoedi
Handbook on Scheduling Algorithms, Methods, and Modedges
30.1-30.19. Chapman Hall/CRC, Boca Raton, Florida, 2004.

C.L. Liu and J.W. Layland. Scheduling algorithms for ltiprogram-
ming in a hard-real-time environmendournal of the Association for
Computing Machinery20(1):46-61, 1973.

] J.M. Lopez, M. Garcia, J.L. Diaz, and D.F. Garcia. Wearase utiliza-

tion bound for EDF scheduling on real-time multiprocesg@tams. In
Proc. of the 12th Euromicro Conf. on Real-Time Sysiqrages 25-34,
June 2000.

A. Srinivasan and J. Anderson. Efficient scheduling aff seal-time
applications on multiprocessors. Broc. of the 15th Euromicro Conf.
on Real-Time Systemsages 51-59, July 2003.

P. Valente and G. Lipari. An upper bound to the latendssofi real-
time tasks scheduled by EDF on multiprocessorsProc. of the 26th
IEEE Real-Time Systems Sympages 311-320, December 2005.

