
A Simple Proof Technique for

Priority-scheduled Systems

James H. Anderson 1

The University of North Carolina, Chapel Hill, NC 27599

Mark Moir 2

Sun Microsystems, Inc., Burlington, MA 01803

Srikanth Ramamurthy

IBM-Transarc Labs, Pittsburgh, PA 15222

Abstract

A simple proof method is presented for proving invariance properties of con-

current programs in priority-scheduled systems. This method is illustrated by us-

ing it to establish the correctness of a simple wait-free consensus algorithm for

priority-scheduled uniprocessor systems. This consensus algorithm is of interest in

its own right because is shows that atomic read and write operations are univer-

sal in priority-scheduled uniprocessor systems, i.e., they can be used to implement

any shared object in such a system in a wait-free manner. This stands in con-

trast to fully asynchronous systems, where strong synchronization primitives such

as compare-and-swap are needed for universality.

Key words: Consensus, multiprogramming, program correctness, real-time

systems, scheduling, wait-freedom

1 Introduction

In this paper, we introduce a simple proof method for proving invariance

properties of concurrent programs in priority-scheduled systems. The key idea

1 Supported, in part, by NSF grant CCR-9732916.
2 Supported, in part, by an NSF CAREER award, grant number CCR-9702767.

Preprint submitted to Elsevier Preprint 18 August 2000

behind this proof technique is to modify the standard de�nition of an \enabled

statement" to reect the fact that a process does not take steps while a higher-

priority process on its processor is enabled to take steps.

As a case study, we consider the use of wait-free shared objects in priority-

scheduled systems. A shared object implementation is wait-free if and only if

it satis�es the following notion of delay tolerance: if several processes perform

object invocations concurrently, and if some proper subset of these processes

stop taking steps, then each of the remaining processes completes its object

invocation in a �nite number of its own steps.

Herlihy has shown that, in general, strong synchronization primitives such

as compare-and-swap (CAS) are necessary for wait-free implementations [9].

This result follows from a ranking of shared objects by \consensus number".

An object has consensus number N if it can be used to implement wait-free

consensus for N processes, but not for N + 1 processes. Herlihy showed that

synchronization objects with unbounded consensus numbers are necessary in

general-purpose wait-free object implementations. Such objects are called uni-

versal because they can be used to implement any other object. An example of

a universal object is a shared variable accessible by read and CAS operations.

In this paper, we present a wait-free consensus algorithm for multiprogrammed

uniprocessor systems in which processes are scheduled by priority. This algo-

rithm uses only atomic read and write operations and is correct for any number

of processes. It follows that reads and writes are universal in priority-scheduled

uniprocessor systems. The distinguishing characteristic of such a system is that

process interleavings are restricted | if process p can preempt process q, then

q cannot preempt p. Our consensus algorithm heavily exploits this fact.

Real-time systems are an important class of systems in which priority schedul-

ing is usually used. In most real-time systems, shared objects are implemented

using lock-based mechanisms. Unfortunately, the use of such mechanisms may

lead to priority inversions. A priority inversion is said to exist when a process

blocks on a process of lower priority. Conventional mechanisms for dealing

with priority inversions [11,13] rely on the kernel to dynamically raise the

priority of a process causing a priority inversion so that the duration of the

priority inversion is bounded. This adds complexity to the kernel and makes

dynamic process creation and removal more diÆcult to support. Wait-free

shared objects cannot cause priority inversions, and thus have an advantage

over lock-based mechanisms. The results of this paper imply that in unipro-

cessor real-time systems that are priority scheduled, any shared object can be

implemented in a wait-free manner without strong synchronization primitives.

The rest of this paper is organized as follows. In Sec. 2, we present our con-

sensus algorithm. Then, in Sec. 3, we present our proof method, and use it to

2

prove that the algorithm is correct. Concluding remarks appear in Sec. 4.

2 Consensus Algorithm

In the consensus problem, each process p has two private variables p:input

and p:output . Initially, p:output = ? and p:input 6= ?; we will assume that

p:input ranges over 0::C, where C � 1. p:output is updated exactly once by p,

while the value of p:input remains unchanged. The value of p:input is called

p's input value, and the value assigned to p:output is called p's output value.

Upon termination of all processes, the following condition must hold.

(9q :: (8p :: p:output = q:input))

In addition, each process is required to be wait-free; because each process

may potentially �nish the algorithm before any other process begins, this

requirement eliminates trivial solutions in which each process chooses a pre-

selected input value as its output value. Loui and Abu-Amara have proven

the following theorem regarding consensus in asynchronous shared-memory

systems [10].

Theorem 1 (Loui and Abu-Amara) The consensus problem has no solu-

tion (in an asynchronous system) using only atomic read and write operations.

In this section, we show that the consensus problem can be solved using only

atomic reads and writes in a priority-scheduled uniprocessor system. As a �rst

step towards a solution, consider the following simple (incorrect) algorithm.

shared variable Final : 0::C [?

initially Final = ?

process p: =� 0 � p < N �=

1: if Final = ? then

2: Final := p:input

�;

3: p:output := Final

In this algorithm, the �nal decision value is recorded in the shared variable

Final . Process p assigns its input value to Final if it �nds that Final =

? holds. Unfortunately, this simple algorithm does not work. Consider two

processes p and q such that p:input = 5 and q:input = 7, where q has higher

priority. The following sequence of statement executions is possible.

� p executes statement 1 and reads Final = ?.

� q preempts p, executes statement 1, and reads Final = ?.

3

shared variable Propose ; Final : 0::C [?

initially Propose = ? ^ Final = ?

process p: =� 0 � p < N �=

private variable p:temp; p:input ; p:output : 0::C [?

1: if Propose = ? then

2: Propose := p:input

�;

3: if Final = ? then

4: p:temp := Propose ;

5: Final := p:temp

�;

6: p:output := Final

Fig. 1. Consensus using reads and writes.

� q executes statements 2 and 3, establishing Final = 7 and q:output = 7.

� p executes statements 2 and 3, establishing Final = 5 and q:output = 5.

This counterexample suggests that at least two shared variables are needed,

because any process that is preempted when it is enabled to write a shared

variable will immediately overwrite the previous contents of that variable when

it resumes execution. We call such a write a \late write".

Our next attempt is an algorithm in which each process tries to write two

shared variables in sequence. This algorithm is shown in Fig. 1. This algorithm

is correct, as we shall prove in the next section. A key property of the algorithm

is that only the �rst value written to Propose can be written to Final . If

process p is preempted before executing statement 2 (i.e., it is enabled to

perform a late write of Propose), then when it resumes execution, Final 6= ?

holds, and hence statements 4 and 5 are not executed by p. This is because any

process that preempts p runs to completion before relinquishing the processor.

If process p is preempted before executing statement 5 (i.e., it is enabled to

perform a late write of Final), then when it resumes execution, its overwrite

of Final will leave the value of Final unchanged. This is because only the �rst-

written value to Propose can be written to Final , and Propose has already

been written prior to p's preemption.

3 Correctness Proof

We prove that the program in Fig. 1 satis�es the requirements of the consensus

problem by establishing several invariants. Before presenting these invariants,

we �rst state some notational conventions that will be used hereafter, and

discuss our proof obligations in establishing the required invariants.

4

Notational Conventions: Unless otherwise speci�ed, we assume that p and

q range over f0; : : : ; N�1g. If p and q appear as free variables in an assertion,

then they are assumed to be universally quanti�ed. We assume that processes

are ordered by priority, i.e., process p has higher priority than process q if and

only if p < q.

Each numbered statement is assumed to be atomic. (Observe that each such

statement accesses at most one shared variable.) Statement number k of pro-

cess p is denoted k:p.

Let S be a subset of the statement labels in process p. Then, p@S holds if and

only if the program counter for process p equals some value in S.

For each process p, we assume that p@f0g holds initially, and that statement 6

establishes p@f7g. Each process's execution is controlled by a \scheduler" pro-

cess. If p@f0g holds, then the scheduler may establish p@f1g. The scheduler

may not modify any variables or program counters in any other way.

We say that a process p is active if and only if it has begun executing the

algorithm, but has not yet terminated. For our algorithm, this is formalized

by active(p) � :p@f0; 7g. We say that a process p is running if and only if

it has the highest priority among all active processes. Formally, running(p)

is true if and only if active(p) ^ (8q : q < p :: :active(q)) holds. We let

Enabled(k:p) be a predicate that is true if and only if p@fkg ^ running(p)

holds.

All of the invariants given below are implications. To avoid excessive parenthe-

ses, we will assume that \)" has the lowest binding power of any symbol. �

Proof Obligations: An assertion is an invariant if it is initially true and

stable. An assertion P is stable for a program if it cannot be falsi�ed by any

statement execution of that program. Formally, for each statement k:p, P ^

Enabled(k:p)) wp(k:p; P) holds, where wp is the \weakest precondition"

predicate transformer [8]. Other previously-established invariants may be used

when proving stability. �

Note that our notion of stability di�ers from that in an asynchronous system

only in how Enabled(k:p) is de�ned. In an asynchronous system, Enabled(k:p)

would be de�ned to be simply p@fkg.

We now prove that the program in Fig. 1 is correct by establishing six invari-

ants. The �rst three invariants are quite straightforward, and thus are stated

without proof. For the remaining invariants, a proof is given.

The �rst two invariants follow easily from the code of process p and the fact

5

that no process assigns the value ? to either Propose or Final .

invariant p@f3::7g) Propose 6= ? (I0)

invariant p@f6; 7g) Final 6= ? (I1)

The next invariant holds because each value assigned to Propose and hence

Final is the input value of some process.

invariant Final 6= ?) (9r :: Final = r:input) (I2)

According to the next invariant, (I3), if p@f3::6g holds, and if q has higher

priority than p, then q@f2g is false.

invariant p@f3::6g) (8q : q < p : :q@f2g) (I3)

Proof: Initially, p@f0g holds, so (I3) holds. (I3) can be potentially falsi�ed

only by statements 1:q and 2:p, where q is any process (only statements 1:p

and 2:p can establish p@f3::6g, and only statement 1:q establishes q@f2g).

By the de�nition of Enabled(2:p), statement 2:p can establish p@f3::6g only

if (8q : q < p : :q@f2g) holds. Hence, it cannot falsify (I3). For 1:q, we have

the following.

I3 ^ Enabled(1:q)

) (Enabled(1:q) ^ :p@f3::6g) _

(Enabled(1:q) ^ p@f3::6g ^ p � q) _

(Enabled(1:q) ^ p@f3::6g ^ p > q)

, predicate calculus.

) (Enabled(1:q) ^ :p@f3::6g) _

(Enabled(1:q) ^ p@f3::6g ^ p > q)

, by the de�nition of Enabled(1:q), the

second disjunct above is false.

) (Enabled(1:q) ^ :p@f3::6g) _

(Enabled(1:q) ^ p@f3::6g ^ p > q ^ Propose 6= ?)

, by (I0).

) wp(1:q; I3) , by the de�nition of (I3) and the

monotonicity of wp. �

According to (I4), stated next, the execution of statement 5 has the e�ect of

6

copying the current value of Propose to Final .

invariant p@f5g) p:temp = Propose (I4)

Proof: p@f5g is initially false, so (I4) holds initially. (I4) can be potentially

falsi�ed only by statements 4:p (which establishes the antecedent and updates

p:temp) and 2:q (which updates Propose), where q is any process. However,

statement 4:p establishes the consequent of (I4). Hence, it cannot falsify (I4).

For statement 2:q, we have the following.

I4 ^ Enabled(2:q)

) (p@f5g ^ Enabled(2:q)) _ (:p@f5g)

, predicate calculus.

) ((8r < p : :r@f2g) ^ q < p ^ q@f2g) _ (:p@f5g)

, by (I3) and the de�nition of Enabled(2:q).

) :p@f5g , the �rst disjunct above is false.

) wp(2:q; I4) , by the de�nition of (I4) and the

monotonicity of wp. �

According to the next invariant, (I5), if p@f4; 5g holds, then either Final

hasn't yet been updated, or Final = Propose has been established.

invariant p@f4; 5g) Final = ? _ Final = Propose (I5)

Proof: p@f4; 5g is initially false, so (I5) holds initially. (I5) can be potentially

falsi�ed only by statements 3:p (which may establish p@f4; 5g), 2:q (which

updates Propose), and 5:q (which updates Final), where q is any process.

However, statement 3:p does not modify Final and establishes p@f4; 5g only

if Final = ? holds. Hence, it cannot falsify (I5). By (I3) and the de�nition of

Enabled(2:q), if Enabled(2:q) holds, then p@f4; 5g is false. Hence, statement

2:q cannot falsify (I5). For statement 5:q, we have the following.

I5 ^ Enabled(5:q)

) (p@f4; 5g ^ Enabled(5:q)) _ (:p@f4; 5g)

, predicate calculus.

) (p@f4; 5g ^ Enabled(5:q) ^ Propose = q:temp) _ (:p@f4; 5g)

, by (I4) and the de�nition of Enabled(5:q).

7

) wp(5:q; I5) , by the de�nition of (I5) and the

monotonicity of wp. �

According to the �nal invariant, (I6), the output value of each process is the

(unique) input value copied to Final .

invariant p@f7g) p:output = Final (I6)

Proof: Initially, p@f7g is false, and hence (I6) holds. (I6) could be falsi�ed

only by statements 6:p (which establishes p@f7g and updates p:output) and

5:q (which updates Final), where q is any process. Statement 6:p establishes

p:output = Final . For statement 5:q, we have the following.

I6 ^ Enabled(5:q)

) (I6 ^ p@f7g ^ Enabled(5:q)) _ (:p@f7g)

, predicate calculus.

) (p:output = Final ^ p@f7g ^ Enabled(5:q)) _ (:p@f7g)

, by the de�nition of (I6).

) (p:output = Final ^ Final 6= ? ^ Enabled(5:q)) _ (:p@f7g)

, by (I1).

) (p:output = Final ^ Final = Propose ^ Enabled(5:q)) _ (:p@f7g)

, by (I5) and the de�nition of Enabled(5:q).

) (p:output = Final ^ Final = q:temp ^ Enabled(5:q)) _ (:p@f7g)

, by (I4) and the de�nition of Enabled(5:q).

) wp(5:q; I6) , by the de�nition of (I6) and the

monotonicity of wp. �

The correctness of the program in Fig. 1 can now be easily argued. By (I1),

(I2), and (I6) we have

� p@f7g) (9r :: p:output = r:input).

In addition, by (I6), we have,

� p@f7g ^ q@f7g) p:output = q:output .

8

To see this, consider the following derivation.

p@f7g ^ q@f7g

) p:output = Final ^ q:output = Final

, by (I6).

) p:output = q:output , predicate calculus.

(As an aside, note that (I6) implies that the value of Final cannot be altered

once some process has terminated. In particular, if p@f7g holds, then the value

of p:output cannot be altered, as it is local to process p. By (I6), p:output =

Final holds as well, which implies that the value of Final also cannot be

altered.)

From the results of this section, we have the following theorem and corollary.

Theorem 2 In a priority-scheduled uniprocessor system, the consensus prob-

lem can be solved in constant time for any number of processes using only

atomic read and write operations.

Corollary 3 Atomic read and write operations are universal in priority-sched-

uled uniprocessor systems.

4 Concluding Remarks

We have shown how to establish invariance properties of programs in priority-

scheduled systems. As a test case, we presented and proved correct a sim-

ple wait-free consensus algorithm for priority-scheduled uniprocessor systems.

This algorithm is one of a series of results by us and colleagues on the ap-

plication of wait-free and lock-free shared objects in priority- and quantum-

scheduled uniprocessor and multiprocessor systems. (Lock-free objects are sim-

ilar to wait-free objects, except that they do not ensure starvation freedom.)

Other papers on this topic include [1{7,12]. This research has resulted in a

number of new algorithmic techniques for implementing wait-free and lock-

free objects in which characteristics of priority and quantum schedulers are

exploited. These techniques can be applied to obtain object implementations

that are more eÆcient than is possible in an asynchronous system.

9

References

[1] J. Anderson, R. Jain, and K. Je�ay. EÆcient object sharing in quantum-

based real-time systems. In Proceedings of the 19th IEEE Real-Time Systems

Symposium, pages 346{355. December 1998.

[2] J. Anderson, R. Jain, and D. Ott. Wait-free synchronization in quantum-based

multiprogrammed systems. In Proceedings of the 12th International Symposium

on Distributed Computing, pages 34{48. Springer Verlag, September 1998.

[3] J. Anderson, R. Jain, and S. Ramamurthy. Wait-free object-sharing schemes for

real-time uniprocessors and multiprocessors. In Proceedings of the 18th IEEE

Real-Time Systems Symposium, pages 111{122. December 1997.

[4] J. Anderson and M. Moir. Wait-free synchronization in multiprogrammed

systems: Integrating priority-based and quantum-based scheduling. In

Proceedings of the 18th Annual ACM Symposium on Principles of Distributed

Computing , pages 123{132. May 1999.

[5] J. Anderson and S. Ramamurthy. A framework for implementing objects and

scheduling tasks in lock-free real-time systems. In Proceedings of the 17th IEEE

Real-Time Systems Symposium, pages 92{105. December 1996.

[6] J. Anderson, S. Ramamurthy, and R. Jain. Implementing wait-free objects in

priority-based systems. In Proceedings of the 16th Annual ACM Symposium on

Principles of Distributed Computing, pages 229{238. August 1997.

[7] J. Anderson, S. Ramamurthy, and K. Je�ay. Real-time computing with lock-free

objects. ACM Transactions on Computer Systems, 15(6):388{395, May 1997.

[8] E. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cli�s,

New Jersey, 1976.

[9] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming

Languages and Systems, 13(1):124{149, 1991.

[10] M. Loui and H. Abu-Amara. Memory requirements for agreement among

unreliable asynchronous processes. Advances in Computing Research, 4:163{

183, 1987.

[11] R. Rajkumar. Synchronization In Real-Time Systems { A Priority Inheritance

Approach. Kluwer Academic Publishers, Boston, 1991.

[12] S. Ramamurthy, M. Moir, and J. Anderson. Real-time object sharing with

minimal support. In Proceedings of the 15th Annual ACM Symposium on

Principles of Distributed Computing, pages 233{242. May 1996.

[13] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:

An approach to real-time system synchronization. IEEE Transactions on

Computers, 39(9):1175{1185, 1990.

10

