
Atomic Semantics of Nonatomic

Programs�

James H. Anderson Mohamed G. Gouda

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712

December 1987

Abstract

We argue that it is possible, and sometimes useful, to reason about

nonatomic programs within the conventional atomic model of concur-

rency.

1 Introduction

Most of the proof methods that have been proposed for reasoning about

concurrent programs are developed within the atomic model of concurrency

[Ho 72, LS 84, MP 84, OG 76]. This model is based on the assumption that

no two operations in a concurrent program are executed at the same time.

Hence, the resulting proof theory may seem inadequate for reasoning about

programs in which operations of di�erent processes may overlap. In this

paper, we show to the contrary that it is possible to reason about such

programs within the atomic model of concurrency.

�Work supported in part by O�ce of Naval Research Contract N00014-86-K-0763.

1

2 Nonatomic Programs

A concurrent program consists of two or more sequential processes that ac-

cess a set of program variables. A program state is a mapping from the

program variables and program counters to values. A process is a sequence

of operations, each of which is either atomic or nonatomic. An atomic oper-

ation is a relation on the set of program states; that is, an atomic operation

causes a single transition between a pair of states. A nonatomic operation is

a sequence of atomic operations; that is, a nonatomic operation may cause

several state transitions. Intuitively, the execution of an atomic operation is

instantaneous and does not overlap the execution of another atomic opera-

tion, whereas the execution of a nonatomic operation lasts for an arbitrary,

but �nite, period of time and may overlap the execution of other operations.

If each process in a concurrent program consists only of atomic operations,

then the program is called atomic; otherwise, it is called nonatomic.

Each program variable is either global or local: a variable is global if it

is accessed by more than one process, and local if it is accessed by only one

process. Since each process is sequential, we may assume that an operation

that accesses no global variable is atomic. By contrast, an operation that

does access a global variable may be nonatomic.

In this note, we consider a class of nonatomic programs in which processes

communicate only by reading and writing global variables. For now, we

assume that the value of each global variable ranges over a �nite domain

f0; : : : ;M � 1g, for some M called the range of the global variable. (Later,

in Section 5, we relax this restriction.) We also assume that each variable is

written by only one process. Furthermore, we assume that global variables

are accessed according to the following rules.

1. (Atomicity) Each operation either reads or writes at most one global variable. An

operation that reads a global variable is atomic, and an operation that writes a

global variable is nonatomic.

2. (Reading While Writing) If a read of a global variable occurs while the variable is

being written, then the read operation returns an arbitrary value from the value

domain of the variable.

3. (Exclusive Reading) If a read of a global variable does not occur while the variable

is being written, then the read operation returns the most recently written value.

2

For convenience, each nonatomic write operation is distinguished by the spe-

cial syntax:

write v to x

where x is a global variable, and v is the value being written.

3 Semantics

In [La 77], Lamport de�nes the semantics of the nonatomic write operation

\write v to x" by the atomic program fragment

hx := ?i;
hx := vi

where \h" and \i" enclose the atomic operations, and \?" is an indeterminate

value. Furthermore, a read operation that reads x when x = ? returns an

arbitrary value from the value domain of x. Therefore, the semantics of a

read operation that reads x must be augmented to allow the possibility of

x = ?. In particular, the value of x must now be viewed as a relation instead

of a function.

We would like to suggest an alternative approach to de�ning the seman-

tics of the nonatomic write operation \write v to x". In this approach, it

is unnecessary to rede�ne the semantics of a read operation. Instead, the

semantics of the write operation is de�ned by a nondeterministic program

fragment along with a fairness condition. The program fragment is as follows:

do htrue! x := x+ 1 modulo Mi
[] htrue! x := v; exiti
od

whereM is the range of x, and the second branch of the do-od loop is called

the exit branch. The fairness condition can be stated as follows.

If the exit branch is continuously enabled, then it is eventually executed.

This condition guarantees that the program fragment terminates in a �nite

time, and, consequently, the duration of the corresponding nonatomic write

operation is �nite.

3

local var k: 1::N ;

while true do
hNoncritical Section i;

1: write true to a[i];

2: hk := 1i;
3: while hk � i� 1i do

4: if ha[k]i then
5: write false to a[i];

6: while ha[k]i do 7: hskipi od;
8: hgoto 1i

�;

9: hk := k + 1i
od;

10: hk := i + 1i;
11: while hk � N i do

12: while ha[k]i do 13: hskipi od;
14: hk := k + 1i

od;

15: hCritical Section i;
16: write false to a[i]

od

Figure 1: Process Pi of a nonatomic program.

4 Veri�cation

The above semantics suggests the following method for verifying that a

nonatomic program P satis�es some assertion, under some fairness condi-

tion F . First, translate the pair (P;F) into a pair (P 0
; F

0), where P
0 is

an atomic program. Second, show that P
0 satis�es the required assertion

under the fairness condition F
0. Since P 0 is atomic, this step can be accom-

plished using traditional proof methods, i.e. invariants and well-founded sets

[MP 84].

As an example, consider the one-bit mutual exclusion program given in

[La 86a]. The program, call it P , consists of N processes, P1; : : : ; PN , that

communicate via a global boolean array a[1::N]; each element in the array is

initially false. The code for process Pi is shown in Figure 1, and the fairness

condition F associated with P is true.

4

As discussed earlier, the pair (P;F) can be translated into a pair (P 0
; F

0).

The code for process P
0

i in the resulting program P
0 is shown in Figure 2.

The fairness condition F

0 is as follows:

If any exit branch is continuously enabled, then it is eventually executed.

Now, to prove that program P satis�es the mutual exclusion property

S � [8i; j : i 6= j : :(Pi at f15g ^ Pj at f15g)]

at each of its reachable states, it is su�cient to show that the atomic program

P

0 satis�es S at each of its reachable states. (Fairness is not needed in proving

mutual exclusion, since it is a safety property.) This can be done by �nding

a suitable invariant of P 0. To this end, let ki denote the local variable k of

process P 0

i , and let zi be an auxiliary variable of process P 0

i de�ned as follows:

zi =

(
1 if P 0

i at f9; 14g
0 otherwise

Then, the required invariant is as follows. (Proving that it is indeed an

invariant of P 0 is left to the reader.)

J � S ^ S1 ^ S2 ^ S3 ^ S4

where

S1 � [8i :: P 0

i at f2::4; 9::15g) a[i]]

S2 � [8i :: P 0

i at f15g) ki > N]

S3 � [8i :: P 0

i at f10g) ki � i]

S4 � [8i :: P 0

i at f3; 4; 9::15g) (8j : j 6= i ^ j < ki + zi :

:a[j] _ P
0

j at f1; 2; 5; 16g _ (kj + zj � i))]

We used an interesting \heuristic" in order to deduce the invariant J .

We �rst deduced an invariant I for the nonatomic program (Figure 1), under

the assumption that each \write true to a[i]" and \write false to a[i]"

is an atomic operation. We then \massaged" this invariant to get J . The

required massaging was slight, since I was very close to J already; in fact,

I � S ^ S1 ^ S2 ^ S3 ^R, where

R � [8i :: Pi at f3; 4; 9::15g) (8j : j 6= i ^ j < ki + zi :

:a[j] _ Pj at f2g _ (kj + zj � i))]

5

local var k: 1::N ;

while htrue i do
hNoncritical Section i;

1: do htrue ! a[i] := :a[i]i
[] htrue ! a[i] := true; exiti
od;

2: hk := 1i;
3: while hk � i � 1i do

4: if ha[k]i then
5: do htrue! a[i] := :a[i]i

[] htrue ! a[i] := false; exiti
od;

6: while ha[k]i do 7: hskipi od;
8: hgoto 1i

�;

9: hk := k + 1i
od;

10: hk := i+ 1i;
11: while hk � N i do

12: while ha[k]i do 13: hskipi od;
14: hk := k + 1i

od;

15: hCritical Section i;
16: do htrue ! a[i] := :a[i]i

[] htrue ! a[i] := false; exiti
od

od

Figure 2: Process P 0

i of an equivalent atomic program.

6

5 Concluding Remarks

Our approach can be extended to reason about nonatomic writes to un-

bounded global variables. For example, the semantics of a nonatomic write

to an integer variable x can be de�ned by the program fragment

do htrue! x := x+ 1i
[] htrue! x := x� 1i
[] htrue! x := v; exiti
od

along with the obvious fairness condition.

The semantics that we proposed in Section 3 is, in fact, the semantics

of a write operation of a safe register. A safe register is the most primitive

register in a hierarchy of registers de�ned by Lamport [La 86b]; it satis�es

only one constraint: a read of a safe register must return the most recently

written value if it does not \overlap" a write of the register. Another register

in Lamport's hierarchy is the regular register. A regular register is a safe

register that satis�es one additional constraint: a read of a regular register

that overlaps a write of the register must return either the \old" or the \new"

value. The operation \write v to x", where x is a regular register, can be

de�ned by the program fragment

u := x;

do htrue! x := ui
[] htrue! x := vi
[] htrue! x := v; exiti
od

along with the usual fairness condition. This example illustrates the fact that

our approach is general enough to reason about a variety of shared objects.

The semantics that we suggest is useful for proving safety properties

(which specify that something will not occur) and progress properties (which

specify that something will occur). However, it is not particularly useful for

proving possibility properties (which specify that something may occur). For

example, consider a read of a shared variable that occurs while the variable's

value is being changed from 0 to 200. To prove that the read may return

the value 500, at least 500 atomic steps are required. An alternative seman-

tics, which is more convenient for proving possibility properties, is obtained

7

by using a nondeterministic selection function. In particular, \write v to

x" can be de�ned by the following program fragment along with the usual

fairness condition:

do htrue! x := select(domain(x))i
[] htrue! x := v; exiti
od

where select(: : :) is the selection function, and domain(x) returns the value

domain of the variable x.

Recently, Lamport has proposed a proof theory for reasoning about nonatomic

programs in which the implementation of the nonatomic operations in terms

of atomic operations is left unspeci�ed [La 83, La 87]. Thus, this proof theory

allows implementation decisions to be deferred, in contrast to our approach

in which implementation decisions are made a priori . On the other hand,

our approach allows one to reason about program correctness within the

conventional atomic framework, instead of appealing to a new theory.

Acknowledgements We are thankful to L. Lamport, C. Lengauer, M.

Merritt, F. Schneider, and the referees for their helpful comments on this

note.

References

[Ho 72] Hoare, C.A.R., \Towards a Theory of Parallel Programming," Op-

erating Systems Techniques, Hoare and Perott (Eds.), Academic Press,

New York, 1972.

[La 77] Lamport, L., \Proving the Correctness of Multiprocess Programs,"

IEEE Transactions on Software Engineering, Vol. SE-3, No. 2, pp. 125-

143, March 1977.

[La 83] Lamport, L., \Reasoning About Nonatomic Operations," Proceed-

ings of the 10th Annual ACM SIGACT-SIGPLAN Symposium on Prin-

ciples of Programming Languages, pp. 28-37, 1983.

[La 86a] Lamport, L., \The Mutual Exclusion Problem, Parts I and II,"

Journal of the ACM , Vol. 23, No. 2, pp. 311-348, April 1986.

8

[La 86b] Lamport, L., \On Interprocess Communication, Parts I and II,"

Distributed Computing, Vol. 1, pp. 77-101, 1986.

[La 87] Lamport, L., \win and sin: Predicate Transformers for Concur-

rency," Technical Report, Systems Research Center, Digital Equipment

Corporation, May 1987.

[LS 84] Lamport, L., and Schneider, F., \The Hoare Logic of CSP, and All

That," ACM Transactions on Programming Languages and Systems,

Vol. 6, No. 2, pp. 281-296, April 1984.

[MP 84] Manna, Z., and Pnueli, A., \Adequate Proof Principles for In-

variance and Liveness Properities of Concurrent Programs," Science of

Computer Programming, Vol. 4, pp. 257-289, 1984.

[OG 76] Owicki, S., and Gries, D., \An Axiomatic Proof Technique for Par-

allel Programs I," Acta Informatica, Vol. 6, pp. 319-340, 1976.

9

