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Abstract—Autonomous vehicles often employ computer-vision
(CV) algorithms that track the movements of pedestrians and
other vehicles to maintain safe distances from them. These algo-
rithms are usually expressed as real-time processing graphs that
have cycles due to back edges that provide history information.
If immediate back history is required, then such a cycle must
execute sequentially. Due to this requirement, any graph that
contains a cycle with utilization exceeding 1.0 is categorically
unschedulable, i.e., bounded graph response times cannot be
guaranteed. Unfortunately, such cycles can occur in practice,
particularly if conservative execution-time assumptions are made,
as befits a safety-critical system. This dilemma can be obviated by
allowing older back history, which enables parallelism in cycle
execution at the expense of possibly affecting the accuracy of
tracking. However, the efficacy of this solution hinges on the
resulting history-vs.-accuracy trade-off that it exposes. In this
paper, this trade-off is explored in depth through an experimental
study conducted using the open-source CARLA autonomous-
driving simulator. Somewhat surprisingly, easing away from
always requiring immediate back history proved to have only
a marginal impact on accuracy in this study.

Index Terms—autonomous driving, cyber-physical systems,
multi-object tracking, real-time systems

I. INTRODUCTION

Semi- and fully autonomous advanced driver-assist systems
(ADASs) have become mainstream, as evidenced by systems
such as Tesla Autopilot and Cadillac Super Cruise that provide
features like adaptive cruise control, automatic lane keeping,
etc. Such capabilities necessitate the anticipation of dangerous
scenarios with enough time for driver or vehicle intervention.
Predicting dangerous situations typically entails tracking dy-
namic objects, such as pedestrians and other vehicles, and
using a motion model to extrapolate future positions.

Cameras are cost-effective sensors, so such multiple-object
tracking (MOT) applications are often image-based, taking
a sequence of video frames from a camera as input, and
maintaining tracks representing the estimated trajectory of
each dynamic object over time. An example is shown in Fig. 1,
where task τ1 uses the track produced by task τ4 during the
prior time step to predict the location of an object in the current
time step, introducing a cyclical dependency on prior results.
As this example suggests, tracks corresponding to the most
recent prior time step are the typical default for prediction in
MOT applications. Letting p denote the maximum prior-history
requirement—i.e., the maximum difference between the time
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Fig. 1: The tracking-by-detection pipeline.

step in which the prior data is produced and the time step in
which it is used—this default corresponds to p = 1.

Unfortunately, always insisting on p = 1 for every cycle
can create a troublesome certification dilemma, because any
such cycle must execute sequentially. For example, assuming
p = 1 for the cycle in Fig. 1, an invocation of task τ4 requires
the results of task τ3, which requires the results of task τ1,
which requires the results of task τ4 from the prior time step.
Such sequential execution can be problematic because cycles
with total utilization1 exceeding 1.0 can occur in practice,
particularly if conservative execution-time assumptions are
made, as befits a safety-critical system. For example, such
assumptions may account for tracking many more objects than
would likely be present, and may reflect the presumption of
heavy contention for shared hardware such as caches, memory
banks, and buses, as well as accelerators such as graphics
processing units (GPUs). The over-utilization caused by such
a cycle renders the graph containing it as unschedulable,
i.e., such a cycle precludes analytically guaranteeing bounded
response times for its corresponding graph.

Resolving cycle over-utilization. Assuming p=1, any cycle
with utilization exceeding 1.0 must have its utilization reduced.
There are only two ways to do this (assuming p=1): either the
cycle’s overall execution time must be decreased, or the invo-
cation period of its graph must be increased. However, in any
production system, the former possibility likely would have
been applied already in the quest to optimize performance.
(Note that simply adding more hardware could violate size,
weight, and power (SWaP) constraints that arise in ADASs.)

The latter possibility, increasing a graph’s invocation period
(i.e., decreasing the invocation rate), has been considered

1A cycle’s total utilization is given by the total worst-case execution time
of all of its nodes (tasks) divided by the corresponding graph’s invocation
period. Worst-case execution times are determined at design time and can be
quite pessimistic in order to ensure that runtime timing violations occur with
vanishingly small probability in any system deemed “schedulable.”



before, albeit in work that does not focus on real-time con-
straints. This approach equates to using low-frame-rate track-
ing, in which new video frames are available only 5-10 times
per second, rather than the standard 20+ times per second.
However, as shown by Murray [34], a low frame rate can
greatly reduce MOT performance due to larger displacements
of the targets being tracked. This reduced performance can be
mitigated by using an improved detector [36], [37] or motion
model [3]. However, these techniques still completely ignore
large portions of the input data; reducing from 20 frames
per second (FPS) to 5 FPS ignores 75% of the information
potentially available to the CV application!

Recent work by Amert et al. [2] on the real-time analysis of
graph-based task systems with cyclic dependencies suggests a
different way forward: instead of insisting on sequential cycle
execution, which is the root cause of any over-utilization, allow
parallel execution instead by permitting the use of slightly
older history, i.e., p > 1. As shown by Amert et al., allowing
p > 1 enables the computation of response-time bounds
for systems containing cycles with utilization exceeding 1.0.
Furthermore, these bounds decrease as p increases, so even
for a schedulable system, it may be worthwhile to consider
increasing this parameter.

While allowing p > 1 may seem heavy-handed, a graph
containing a cycle with utilization exceeding 1.0 is not
schedulable if p = 1 is assumed. Moreover, recall that p
is a maximum prior-history requirement, meaning that the
oldest data consumed by the `th cycle execution would be
from the kth cycle execution, where k = ` − p. At runtime,
individual graph nodes would likely execute for far less than
their provisioned worst-case execution times, so more recent
history may be available. Thus, a system with p > 1 may have
accuracy close to one with p = 1 while still being analyzable.

Despite these observations, allowing p > 1 is clearly not a
solution that comes entirely “for free”: as p increases, CV
accuracy may decrease due to using older history. This
accuracy-versus-history trade-off is a key issue in the real-time
certification of ADASs of which both CV researchers2 and
automotive designers should be aware, yet it has never been
examined in depth. In an attempt to foster such an awareness,
we provide here the first-ever detailed study of this trade-off.

Study overview. We consider an MOT system in which
pedestrians and other vehicles are tracked via images recorded
by a camera attached to a moving vehicle. In order to observe
the impact of increasing p on the performance of tracking
in isolation, we first assume that all sensors are perfect, e.g.,
using ground-truth positions of all pedestrians and vehicles
in each time step. However, this assumption is not valid for
real-world scenarios, so we also evaluate the impact given
a CV-based object detector rather than ground-truth data.
We perform our evaluation using CARLA [10], an open-
source simulator designed for research on autonomous-driving
systems. The use of CARLA allows us to generate a broad

2The fact that this trade-off has not been considered before by CV re-
searchers is not surprising, given its roots in real-time schedulability concerns.

range of scenarios, to consider each sensing component inde-
pendently, and to consider and evaluate potential modifications
to the vehicle’s behavior based on tracking results. Our results
show that allowing p to increase slightly has only a minor
impact on tracking accuracy, whereas low-frame-rate tracking
(effectively enforcing a much higher p, even if more recent
results are available) suffers greatly reduced tracking accuracy.

Organization. The remainder of this paper is organized as
follows. In Sec. II, we discuss the real-time scheduling im-
plications of varying parallelism, and then describe the MOT
pipeline in detail. Next, we give an overview of our evaluation
of the history-versus-accuracy trade-off in Sec. III. In Sec. IV
we discuss the results of our evaluation, both when ground-
truth detections are used and in the presence of a CV-based
object detector, and conclude in Sec. V.

II. BACKGROUND

In this section, we provide necessary background on the
real-time scheduling of graphs containing cycles and on a
Tracking-By-Detection MOT pipeline

A. Real-Time Graph Scheduling

Much prior work on response-time analysis under global
schedulers [9], [15], [27], [28] has assumed the sequential
sporadic task model, which requires invocations of the same
task to execute sequentially, i.e., no two invocations of task τ1
in Fig. 1 may execute concurrently. This model is in contrast
to the fully parallel task model, in which any number of
invocations of a given task may execute concurrently. Full
intra-task parallelism has been shown to enable much smaller
response-time bounds to be guaranteed [14].

Ex. 1. Most prior work on response-time analysis for graph-
based workloads applies only for DAGs. Therefore, the cycle
in Fig. 1 must be replaced with a single “supernode,” which
we call τc. Assume, for this example, that the supernode has
p = 2. Fig. 2 depicts possible schedules for invocations (called
jobs) of this supernode on a platform with four CPUs. Each
job Jc,k is released at time rc,k.

In schedule (a), the jobs execute sequentially. Due to jobs of
other tasks (not shown), Jc,21 is not scheduled until time 114.
This postponement impacts the subsequent jobs; Jc,24 has a
response time of 7.4. However, the p = 2 requirement is met,
i.e., Jc,21 completes before Jc,23 begins.

Schedule (b) shows the result of fully parallel execution.
The response time of Jc,24 is reduced to 2.3 time units. ♦

Unfortunately, unrestricted intra-task parallelism can violate
the dependencies required by back edges. However, sequential
execution can result in a system that is unschedulable.

Ex. 1 (cont’d). The supernode τc was created from a cycle
with p = 2. Thus, job Jc,23 requires output from job Jc,21.
However, in schedule (b) of Fig. 2, jobs Jc,21 and Jc,23
execute concurrently, violating this precedence constraint. If
jobs execute sequentially as in Fig. 2(a), response times can
be unbounded for τc if the cycle’s utilization exceeds 1.0. ♦
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Fig. 2: Scheduling repercussions of the degree of intra-task
parallelism, including a) sequential execution, b) fully parallel
execution, and c) restricted parallelism. Successive jobs are
shaded progressively darker. Assume the depicted jobs are
scheduled alongside other jobs, which are not shown.

Under the sporadic task model, a task τi is specified as
τi = (Φi, Ti, Ci), where Φi is the release time of the first job
of τi, Ti is the minimum separation between job releases, and
Ci is the worst-case execution time. The restricted parallelism
sporadic task model introduced by Amert et al. [2] adds a
per-task parallelism value Pi, which specifies the maximum
number of jobs of τi that may execute concurrently. Addition-
ally, the model requires that the utilization of any cycle is at
most Pi. Note that this task model generalizes both sequential
(Pi = 1) and fully parallel (Pi = m, where m is the number
of CPUs) execution.

In this paper, we assume Pi = p, although any Pi ≤ p
guarantees that prior-history requirements are met.
Ex. 1 (cont’d). Restricted intra-task parallelism (Pc = 2) is
shown in schedule (c) of Fig. 2. The response time of Jc,24
is increased to 4.1, but the history requirements are respected,
as only p = 2 jobs of τc execute concurrently. ♦

B. MOT via Tracking-By-Detection

MOT tracks an unknown number of objects, or targets,
through a scene. A track is a sequence of estimated positions
and sizes (as bounding boxes) of a target over time. A track is
a model of a target’s trajectory, i.e., the sequence of its actual
real-world positions. Time is measured by camera frames.

Tracking-by-detection (TBD) is a common approach to
MOT. This pipeline is illustrated in Fig. 1. The output from
frame t is the set of tracks after frame t. The input to frame t is
an RGB image and the set of tracks from frame t−1. We now
describe each step in detail, and discuss a few representative
approaches for the implementation of each step.

Predicting track positions. Given a set of tracks from frame
t − 1, a motion model is used to predict the position (repre-
sented as a bounding box) of each tracked target in frame t.
Ex. 2. We demonstrate the steps of the TBD pipeline via
a continuing example. Fig. 3 depicts the results of each of
the four TBD steps (the order matches the task indices in

Fig. 1) for a given frame. The input RGB image contains
three vehicles, one of which is occluded behind another
(center right). There are four tracks (indicated by dots showing
position estimates over time), one for each visible vehicle, plus
a fourth for a vehicle that is out of view to the right.

Dashed boxes in Fig. 3a represent predictions of vehicles’
positions in the current frame. ♦

In order to predict the new position of a target, a model of
its motion must be used to extrapolate from the existing track.
The simplest motion model assumes constant velocity: the two
most recent track positions are used to linearly extrapolate the
next. More advanced motion models use curvilinear extrapo-
lation [43], particle filtering [5], [25], or optical flow [26].

Multi-object detection. The goal of multi-object detection is
to identify the positions of all targets in an RGB image. The
number of targets is not known a priori.
Ex. 2 (cont’d). The detection step outputs a bounding box
for each detected vehicle, as in Fig. 3b. In this example, one
vehicle is occluded (center right) and the other is off screen
(far right), so only two bounding boxes are outputted. ♦

Multi-object detection is typically performed in two stages:
features are selected from regions in the image, and then
each feature is classified to determine if it is part of a
relevant bounding box. A traditional feature selection method
is histogram of oriented gradients (HOG) [7]. Recently, deep
convolutional neural networks have been used [18], [22]. Pop-
ular classifiers include linear support vector machines (SVMs),
as originally used with HOG [7], or latent SVMs [19].

Matching detections to tracks. Given a set of detected bound-
ing boxes and predictions of new track positions, the percent-
age overlap is compared for all detection-prediction rectan-
gle pairs. The Hungarian method (also known as Munkres’
algorithm) can be used to quickly match detections to predic-
tions [31], [44]. The overlap of two rectangles is computed
using the intersection-over-union measure (IOU) [40], also
known as the Jaccard index. The IoU (a scalar) is the ratio
of the size of the intersection to the size of the union of two
rectangles within an image. The Hungarian algorithm chooses
an assignment of detections to predictions that maximizes the
IoU of the selected pairs. The output of this step is a set
of detection-prediction assignments, as well as the lists of
detections and predictions that are unmatched.
Ex. 2 (cont’d). The bounding boxes computed by the two
prior steps are used to calculate pair-wise overlap ratios. As
shown in Fig. 3c, the detections and predictions for the two
unoccluded vehicles are closely aligned; the cars on the left
and right have IoUs of 0.85 and 0.81, respectively, indicating
strong matches. Two predictions are unmatched, one corre-
sponding to the occluded vehicle and the other to the vehicle
that exited the scene, and no detections are unmatched. ♦

Updating the tracks. For each prediction that is matched
with a detection, the corresponding track is updated based on
the detected position. Depending on the motion model, the
model is also updated based on the new position. If a track



(a) Each track (the output of processing the previous frame) is
extrapolated to the current frame based on the choice of motion
model. In this example, four tracks (indicated by dots) are used
to predict the positions of four vehicles in the current frame; three
vehicles are visible, and one is out of view to the right. The predicted
position for this frame is depicted as a dashed rectangle.

(b) Given an RGB image, the detector outputs a bounding box
for each detected object. In this example, a vehicle on the right
occludes another, so only two objects are detected. As the detector
has no knowledge of the mapping from bounding boxes to vehicles,
detected bounding boxes are shown as solid white rectangles, rather
than colored based on the targets being tracked, as in inset (a).

(c) Matching occurs between the predicted positions of each track
and the detected bounding boxes. In this example, two of the four
tracks are matched to a detection.

(d) Tracks matched to a detection are updated with a new position
based on that detection. Unmatched tracks are either deleted (if
unmatched long enough) or updated with the predicted position.

Fig. 3: The output of each step of the TBD pipeline from Fig. 1 for a single camera frame.

has enough consecutive unmatched predictions, then it can be
deleted. Unmatched detections potentially correspond to newly
visible objects; for each unmatched detection, a new track is
created. (More complex filtering can be done to handle noisy
detections, if necessary.)
Ex. 2 (cont’d). Tracks corresponding to the two matched
predictions are updated to contain a new position based on
the detection, as shown in Fig. 3d. The occluded vehicle’s
track prediction is not matched, so its track is updated based
on the prediction, indicated in Fig. 3d by the empty circle.
The predictions of the track on the far right have not been
matched for many frames, so that track is deleted. ♦

C. MOT from a Moving Vehicle

The pipeline described in Sec. II-B assumes a stationary
camera. For a vehicle-mounted camera, it is necessary to
account for ego-motion, i.e., the motion of the camera itself.

Typical approaches to ego-motion estimation fit into two
categories: simultaneous localization and mapping (SLAM)
methods [6], [12], [32], [33] and structure-from-motion (SfM)
methods [17], [20], [38], [42]. Both approaches leverage the

overlap of static scene content (e.g., road signs, buildings)
between frames, as well as the motion of such content,
to estimate the movement of the camera. SLAM methods
generally assume frames are temporally sequential, whereas
SfM methods allow frames to be processed in any order.

In addition to knowing where the camera moves within
the world, it is also necessary to determine each target’s
real-world position relative to the camera. Stereo-estimation
methods [4], [11], [21], [29], [41], [45]–[47] determine the
depth (distance to the 3D scene point) for each pixel by
examining corresponding camera poses for a pair of frames,
using either two cameras mounted on the car, or a single
moving camera at two different points in time.

D. Input for MOT

We can now list the required inputs for the tracking com-
ponent of a TBD-based MOT application in which the camera
is moving. First, to determine the positions of targets relative
to the camera, an RGB image is needed along with a distance
value for each pixel in that image. Then, the detector provides
a set of bounding boxes corresponding to 2D rectangles in



the RGB image. Finally, ego-motion estimation provides the
relative movement of the camera in the 3D world.

In this paper, we use a simulator that provides the ground-
truth position of the camera. Therefore, we do not need to per-
form ego-motion estimation. The primary input we consider is
thus the bounding boxes of the detections. When discussing the
results of our evaluation in Sec. IV, we consider first a system
with ground-truth detections in order to evaluate tracking is
isolation, and then a system with CV-based detections. In the
next section, we describe our experimental evaluation in full.

III. EVALUATING THE HISTORY-ACCURACY TRADE-OFF

We now describe the experiments we performed to evaluate
the trade-off between history and accuracy. We begin by giving
an overview of our experimental setup and traffic scenario
selection, and then discuss how we varied the age of historical
data provided to the MOT application.

A. Experimental Setup

We conducted our evaluation using CARLA [10], an open-
source urban-driving simulator. CARLA uses Unreal En-
gine 4 [13] to produce photo-realistic scenes combined with
accurate physical models of automobile dynamics. CARLA is
a client-server system. The urban environment and the interac-
tions of all vehicles and pedestrians with it are simulated on the
server. The client sends parameters for steering, acceleration,
and braking to the server, and is controlled manually or via an
agent that implements the perception, planning, and control
elements for driving; in our experiments, the vehicle was
controlled manually. All sensor data is provided by the server,
including physically based graphics renderings of camera
frames. Additionally, the server provides ground-truth data
needed for evaluation, such as the location and orientation
of the camera and each vehicle and pedestrian in the scene.

We evaluated the impact of p in a broad range of scenarios
generated from CARLA. These scenarios need to be challeng-
ing driving situations that require highly accurate tracking. The
CARLA Challenge provides scenarios that are selected from
the NHTSA (National Highway Traffic Safety Administration)
pre-crash typology [35], which provides scenarios that are
identified as common pre-crash scenarios of all police-reported
crashes. From these scenarios, we selected the list below,
which heavily rely on tracking and prediction, as our focus.
We modified each scenario by adding additional vehicles and
pedestrians to make the tracking task more challenging. In the
descriptions that follow, “ego-vehicle” refers to the vehicle that
navigates the scenario.

• Scenario 1: Obstacle avoidance with prior action. As the
ego-vehicle turns right at a red light, an unexpected obsta-
cle (a cyclist) crosses into the road. The ego-vehicle must
perform an emergency brake or an avoidance maneuver.

• Scenario 2: Right turn at an intersection with crossing
traffic. The ego-vehicle must turn right on red at an
intersection and in the presence of crossing traffic. In this
scenario, the ego-vehicle must track all crossing vehicles,
yielding to avoid collisions.

• Scenario 3: Crossing traffic running a red light at an
intersection. As the ego-vehicle enters an intersection
going straight, a vehicle runs a red light from the right.
In this scenario, the ego-vehicle must perform a collision
avoidance maneuver.

• Scenario 4: Unprotected left turn at an intersection
with oncoming traffic. The ego-vehicle must perform
an unprotected left turn at an intersection, yielding to
oncoming traffic.

The four scenarios are depicted in Fig. 4. In our experi-
ments, each scene is populated with additional vehicles and
pedestrians that obey all traffic laws (e.g., additional pedes-
trians do not enter the road, additional vehicles and cyclists
obey stop lights and lane markings). Scenario 1 features
three vehicles and twelve pedestrians. Scenarios 2-4 have six
vehicles, and Scenarios 2 and 4 also have four pedestrians.

B. Varying the Age of History

For our experiments, we implemented the TBD pipeline
in Fig. 1. As described in Sec. I, this graph contains a
cycle comprised of tasks τ1, τ3, and τ4. The prior-history
requirement p for the back edge from τ4 to τ1 is what we
seek to vary; increasing p means that the track prediction step
(τ1) may use less-recently updated tracks to make predictions.

By definition, p is the maximum difference in time steps
between the completion of an invocation of τ4 and when
those results are used by τ1. However, more recent results
can be used, if available. In our evaluation, we represent the
distribution of available prior results using a probability mass
function (PMF), which we represent as a tuple.

To measure the impact of varying p in our experiments, we
executed the code sequentially, and for each invocation of τ1,
we chose the prior history to use based on a random number
sampled from the PMF. For example, for a PMF represented
as (0.8, 0.2), we selected one frame prior with probability 0.8,
and two frames prior with probability 0.2.

We evaluated eight PMFs, listed in Table I, chosen to answer
four questions:

Q1 What if the most recent data is sometimes unavailable?
Q2 How much of an impact does the worst-case age have

if the most recent data is usually available?
Q3 Is it better to have a higher chance of more recent data,

or a lower worst-case age?
Q4 How does the average case differ from the worst case?
Comparing PMFs 1 and H1 should answer question Q1.

We can answer question Q2 by comparing PMFs 2 and 3. For
question Q3 we compare PMFs 3 and 4. Finally, we compare
PMFs 1-4 to the corresponding worst-case PMF Hp (e.g.,
PMFs 4 and H3) to answer question Q4.

IV. RESULTS

We first consider tracking in isolation, i.e., in the presence of
perfect sensors. For each frame of the video, we provide the
ground-truth 3D motion of the camera (representing perfect
ego-motion estimation), ground-truth 2D bounding boxes (as



(a) Scenario 1: Obstacle avoidance with prior action. (b) Right turn at an intersection with crossing traffic.

(c) Crossing traffic running a red light at an intersection. (d) Unprotected left turn at an intersection with oncoming traffic.

Fig. 4: The four scenarios we explore. The start position and path of the ego-vehicle are indicated by a yellow star and solid
line, respectively. The cyclist/vehicle the ego-vehicle must avoid are indicated with a pink dashed path and appropriate icon.

if from a perfect detector), and the 3D distance to each target
within the scene (corresponding to perfect stereo estimation).
(In Sec. IV-C, we remove the assumption of a perfect detector.)

A. Evaluation Metrics for MOT

In this section, we provide an overview of the standard
metrics used to evaluate MOT applications [44]. We consider
first the metrics defined for each frame, then the metrics for
each trajectory, and finally the high-level MOT metrics.

Per-frame metrics. A track represents not only where a target
is believed to have been, but the ability to predict where it will
be in future frames. Thus, a track for which the prediction
is matched to a detection is considered a true positive, and
we let TPt be the number of such matches for frame t. An
unmatched prediction is a hypothesis that does not correspond
to any detected target (false positive), and an unmatched
detection corresponds to a target for which there is no such
hypothesis (false negative). These are represented by FPt and
FNt, respectively. The ground-truth number of targets present
in frame t is represented by GTt.

PMF (represented as a tuple)
PMF 1 (0.9, 0.09, 0.009, 0.001)
PMF 2 (0.8, 0.2)
PMF 3 (0.8, 0.02, 0.02, 0.16)
PMF 4 (0.5, 0.4, 0.1)

PMF Hp

(
0,p−1. . . , 0, 1

)
TABLE I: Probability mass functions (PMFs) corresponding
to available history results. The PMFs are described as tuples:
(x, y) indicates that the result of one and two frames prior are
available with probabilities x and y, respectively. In PMF Hp,
0,p−1. . . , 0 denotes a sequence of p− 1 0’s, where p ranges over
(1, ..., 4). Note that the values of each PMF sum to 1.0.

The final per-frame metric is the number of ID switches.
We use the stricter definition given by Milan et al. [31]: an
ID switch (IDSWt) occurs for frame t when a target is assigned
a track that is different from its prior track assignment. In the
best case, TPt = GTt and FNt = FPt = IDSWt = 0.



Per-trajectory metrics. In addition to per-frame metrics, we
evaluate the results of tracking for each ground-truth trajectory.
Following [44], we classify each target as mostly tracked (MT)
if it is successfully tracked (i.e., its detections are matched to
track predictions) for at least 80% of the frames for which it
is present, mostly lost (ML) if it is tracked successfully for at
most 20% of the frames for which it is present, and partially
tracked (PT) otherwise. We can also measure the continuity
of each track by considering the track’s fragmentation count
(FM). A fragmentation occurs when a target’s trajectory be-
comes untracked and later becomes tracked again.

With an ideal tracker, all targets should be mostly tracked,
and thus we would expect to find PT = ML = 0. Additionally,
we would also expect FM = 0.

Overall metrics. A number of overall metrics are standardly
used in the CV literature to evaluate a tracker’s performance
holistically. The Multiple Object Tracking Accuracy (MOTA)
metric combines information about the false positives, false
negatives, and ID switches:

MOTA = 1−
∑

t (FNt + FPt + IDSWt)∑
t GTt

.

For an ideal tracker, MOTA = 1.0. However, if maintaining
the correct ID of each tracked object is not needed for a given
application, the MOTA might not appropriately represent the
success of the tracker. Instead, A-MOTA can be used in this
case, as it ignores ID switches:

A-MOTA = 1−
∑

t (FNt + FPt)∑
t GTt

.

The other common overall metric for MOT applications is
the Multiple Object Tracking Precision (MOTP), given as a
ratio of the distances between ground-truth object positions
and predicted track positions and the number of matches made,
summed over all objects and all frames:

MOTP =

∑
t,i dt,i∑
t ct

.

In this expression, dt,i is the IOU of the bounding boxes of
object i and its predicted track position at frame t, and ct is the
number of detection-track matches found at frame t. For an
ideal tracking system, MOTP = 1.0 (i.e., each detection-track
match has perfect overlap).

B. Perfect Sensing

We now describe the results of tracking both vehicles and
pedestrians in the scenarios listed in Sec. III-A, sampling
from the PMFs in Table I. Each scenario lasted 300 camera
frames. We evaluated the accuracy and precision of tracking,
comparing the results for each PMF with those of PMF H1.
For each scenario, we collected RGB images generated by a
single front-facing camera, ground-truth bounding boxes of all
vehicles and pedestrians that were captured by the camera, and
the ground-truth motion of the camera itself.

The A-MOTA, MOTP, and average FM count for each
scenario and PMF are reported in Table II for vehicle tracking

and Table III for pedestrian tracking (note that Scenario 3 had
no pedestrians). For PMFs 1-4, we repeated the scenario 100
times, and report the average A-MOTA, MOTP, and average
FM count results. Given these data, we can now answer the
four questions posed in Sec. III-B.

Q1: What if the most recent data is sometimes unavailable?
To explore this question, we compare the results of PMFs 1
and H1. As PMF 1 has the most recent data available with
probability 0.9, we expect that the accuracy and precision will
be comparable to PMF H1, for which the most recent data is
always available.

Comparing the two columns in Tables II and III, we
see that PMF 1 has an A-MOTA score within 0.62% and
0.90% of that of PMF H1 across all scenarios for vehicles
and pedestrians, respectively. Similarly, the MOTP score for
PMF 1 is within 2.07% and 1.61% of that of PMF H1 for
vehicles and pedestrians, respectively. The average FM count
is only slightly larger for PMF 1 in all scenarios as well.

Q2: How much of an impact does the worst-case age have
if the most recent data is usually available? This question
can be answered by comparing PMFs 2 and 3. For both
distributions, the most recent data is available with probability
0.8. However, PMF 3 represents a bimodal distribution, which
may result if tasks become greatly delayed; its worst-case age
is four frames, which occurs with probability 0.16. For PMF 2,
the worst-case data age is only two frames.

For pedestrian tracking, PMF 3 was within at most 1.14%
of PMF 2 in terms of A-MOTA across all scenarios. For
vehicle tracking, this difference dropped to 0.73%. MOTP was
more consistent between the two; PMF 3 had MOTP within
4.43% that of PMF 2 across all scenarios and both target
types. Additionally, PMF 3 resulted in up to 2.5 times as
many track fragmentations than PMF 2. These results suggest
that although it is better to have a lower worst-case age, the
differences in both accuracy and precision are not extreme.
However, higher worst-case age does contribute to more track
fragmentations.

Q3: Is it better to have a higher chance of more recent
data, or a lower worst-case age? PMFs 3 and 4 were chosen
to answer this question: PMF 3 has more likely availability
of the most recent results (probability 0.8 rather than 0.5), but
has greater worst-case age (four frames versus three frames).

The results in columns PMF 3 and PMF 4 indicate that
recency of available data is slightly more important than the
worst-case data age. PMF 3 outperformed PMF 4 for A-MOTA
and MOTP in six out of seven comparisons each. However, the
difference in these scores was only up to 0.84% for A-MOTA
and 1.89% for MOTP. On the other hand, PMF 3 resulted
in higher average FM count in five out of seven comparisons,
although in the worst case PMF 3 only had 10.18% more track
fragmentations. Therefore, although PMF 3 seems to perform
slightly better, our experiments have not demonstrated a clear
answer to this question.

Q4: How does the average case differ from the worst case?
For the average and worst cases, we compare PMFs 1-4 to the



Metric PMF 1 PMF 2 PMF 3 PMF 4 PMF H1 PMF H2 PMF H3 PMF H4

A-MOTA 0.951 0.952 0.947 0.939 0.951 0.927 0.893 0.888
Scenario 1 MOTP 0.709 0.700 0.669 0.670 0.724 0.644 0.588 0.567

Avg. FM 1.117 1.160 1.503 1.350 1.000 1.667 2.000 2.667
A-MOTA 0.966 0.962 0.955 0.951 0.972 0.933 0.943 0.933

Scenario 2 MOTP 0.730 0.724 0.699 0.697 0.736 0.669 0.609 0.560
Avg. FM 0.590 0.688 1.077 1.070 0.500 1.500 1.833 1.667
A-MOTA 0.982 0.980 0.977 0.974 0.985 0.973 0.954 0.931

Scenario 3 MOTP 0.721 0.714 0.689 0.686 0.730 0.656 0.628 0.580
Avg. FM 0.553 0.642 1.110 1.058 0.500 1.333 1.833 2.000
A-MOTA 0.965 0.962 0.957 0.952 0.968 0.939 0.934 0.908

Scenario 4 MOTP 0.777 0.772 0.751 0.751 0.784 0.741 0.690 0.650
Avg. FM 1.583 1.622 1.985 1.948 1.500 2.500 2.500 2.333

TABLE II: Results for vehicles tracking using ground-truth detections. The best result in each row, as well as any within 1%
of the best, are shown in bold.

Metric PMF 1 PMF 2 PMF 3 PMF 4 PMF H1 PMF H2 PMF H3 PMF H4

A-MOTA 0.884 0.878 0.868 0.863 0.892 0.847 0.842 0.825
Scenario 1 MOTP 0.672 0.663 0.634 0.622 0.683 0.601 0.569 0.541

Avg. FM 0.853 0.888 1.324 1.237 0.667 1.917 1.583 1.667
A-MOTA 0.968 0.969 0.959 0.962 0.971 0.962 0.956 0.936

Scenario 2 MOTP 0.808 0.803 0.785 0.783 0.814 0.767 0.731 0.702
Avg. FM 0.225 0.220 0.568 0.590 0.000 1.000 1.000 1.000
A-MOTA 0.936 0.934 0.928 0.927 0.938 0.920 0.856 0.840

Scenario 4 MOTP 0.794 0.788 0.767 0.767 0.800 0.748 0.736 0.720
Avg. FM 0.135 0.178 0.445 0.525 0.000 1.000 1.000 1.000

TABLE III: Results for pedestrian tracking using ground-truth detections. (Note that Scenario 3 did not have any pedestrians.)
The best result in each row, as well as any within 1% of the best, are shown in bold.

corresponding worst-case PMF Hps. We expect the average
case to result in higher A-MOTA and MOTP scores and lower
average FM counts, and for this difference to become more
pronounced as the worst-case history age increases.

For a worst-case history age of two, we compare PMF 2 to
PMF H2: PMF 2 performed better than PMF H2 in every
comparison. Similarly, for worst-case history age of three
frames, PMF 4 outperformed PMF H3 in every comparison.
As expected, for a worst-case history age of four frames, both
PMF 1 and PMF 3 beat the worst-case PMF H4 in every
comparison, and for most by a large margin.

The history-versus-accuracy trade-off. The experimental
results relating to question Q4 hint at our overall conclusion:
allowing the infrequent use of older results in a MOT applica-
tion has only minimal impact on the application’s accuracy
and precision, while allowing the computation of bounded
response times for use in real-time certification. To explore this
a little further, we make a final comparison against PMF H2,
which always uses the results of two frames prior, and thus
corresponds to tracking using only half of the frames.

PMFs 1-4 are indexed in order of the expected results. That
is, prior to performing experiments, we expected PMF 1 to
perform the best and PMF 4 to perform the worst of this

group. In fact, comparing these four PMFs to PMF H2, we
see that PMF H2 did not perform as well as PMF 1 or PMF 2
in any comparison. Additionally, PMF H2 scored better than
PMF 3 or PMF 4 in only one of the twenty-one comparisons.

C. Camera-Based Sensing

We have thus far examined the history-versus-accuracy
trade-off in the presence of perfect detections, i.e. using
the ground-truth bounding boxes of pedestrians and vehicles.
However, in real-world scenarios, such ground-truth data is
not available, which necessitates the use of CV-based object
detection algorithms.

We chose for a detector a state-of-the-art deep-learning
model, Faster R-CNN [39], which has been shown to achieve
a high level of accuracy. We used TensorFlow [1] to train a
Faster R-CNN model with the Inception v2 feature extrac-
tor [24] (that was pre-trained on the COCO dataset [22], [30])
on a small dataset of 2000 images of bicycles, motorbikes,
and cars generated from CARLA [8].

We measured the detection accuracy of our model using a
popular object detection accuracy metric, the mean average
precision (mAP) [16], [23]. After 40, 000 training iterations,
our Faster R-CNN model achieved a mAP score of 93.14%,



Metric PMF 1 PMF 2 PMF 3 PMF 4 PMF H1 PMF H2 PMF H3 PMF H4

Scenario 3 A-MOTA 0.982 0.980 0.977 0.974 0.985 0.973 0.954 0.931
(ground truth) MOTP 0.721 0.714 0.689 0.686 0.730 0.656 0.628 0.580
Scenario 3 A-MOTA 0.899 0.880 0.911 0.879 0.905 0.875 0.878 0.865
(R-CNN detections) MOTP 0.593 0.590 0.588 0.567 0.614 0.554 0.521 0.497

TABLE IV: Results for vehicle tracking using Faster R-CNN to detect vehicles, compared to the results using ground-truth
detections (copied from Table II). The best result in each row, as well as any within 1% of the best, are shown in bold.

indicating a high level of detection accuracy; a perfect object
detection algorithm would have a mAP score of 100%.

We now examine the impact of imperfect detections on
tracking accuracy and precision. We replaced the ground-
truth vehicle detections with those generated by the Faster
R-CNN model; the remainder of the experimental setup was
unchanged. For this comparison, we evaluated Scenario 3,
as there were no pedestrians present in that scenario. The
resulting A-MOTA and MOTP values are given in Table IV;
without a separate mapping step of ground-truth trajectories to
the detections provided by the Faster R-CNN model, we did
not compute FM counts a for this scenario.

Q1 through Q4, revisited. For question Q1, we again compare
PMF 1 and PMF H1. The MOTP score for PMF 1 was 3.42%
lower than that of PMF H1, indicating that there is still a
precision loss due to having older data. However, accuracy
seems to be more affected by potentially incorrect detections:
somewhat unexpectedly, PMF 3 resulted in a better A-MOTA
score than both PMF 1 and PMF H1.

In comparing PMF 2 and PMF 3, we see that the worst-case
age has less impact on MOTP than A-MOTA in the presence
of a CV-based vehicle detector. Despite having a higher worst-
case history age, PMF 3 resulted in higher accuracy. However,
PMF 2 had a slightly higher precision than PMF 3.

When considering the comparison for question Q3, we see
that in the presence of CV-based object detections, it is clearly
better to have the most recent data available more frequently
than to have a lower worst-case age: PMF 4 had 3.51% lower
A-MOTA and 3.57% lower MOTP than PMF 3.

Finally, we revisit the comparisons related to question Q4.
As with ground-truth detections, PMFs 1 and 3 outperformed
PMF H4, both by a large margin. The differences for the other
comparisons were less pronounced with CV-based detections
than ground-truth detections: PMF 4 barely outperformed
PMF H3 in A-MOTA but had much higher MOTP, and the
same trend held for PMF 2 and PMF H2.

The trade-off, revisited. Compared to always having the most
recent data (i.e., PMF H1), the lowest A-MOTA score was
2.87% reduced, and the lowest MOTP score was reduced by
7.65%. This suggests only a small drop in accuracy, with a
moderate drop in precision, as a result of using older data.

However, if requiring p = 1 results in a system for which
no response-time bounds can be computed, then measuring
accuracy no longer has any relevance. Instead, we compare
against PMF H2, to compare to a system in which the worst-

case history age of two is always used. In this case, both
precision and accuracy are somewhat robust to a potentially
imperfect detector. This is evident when comparing PMF H2

to PMFs 1-4. When using our Faster R-CNN model to detect
vehicles, PMFs 1-4 had 0.46-4.11% higher accuracy than that
of PMF H2, and the tracking precision for PMFs 1-4 was
2.35-7.04% higher than that of PMF H2.

V. CONCLUSION

Prior work by Amert et al. [2] has shown that response-time
bounds can be computed for cyclic real-time processing graphs
if p > 1 is allowed for any cycle with utilization exceeding
1.0. However, p > 1 permits non-immediate back history to be
used, which in the context of CV tracking applications could
potentially compromise tracking accuracy. In this paper, we
have studied this issue in detail. In the context of our study, we
found that allowing p > 1 did not significantly affect accuracy,
as long as immediate back history is frequently available.
This is a favorable observation from a real-time schedulability
point of view because it points to the existence of a certain
amount of leeway in graph scheduling that can be reasonably
exploited. It is worth noting that, while approaches that lessen
CV accuracy should be generally eschewed, accuracy loss is
mainly being contemplated here to ensure the schedulability
of a graph that would otherwise be unschedulable.

In our study, accuracy was assessed using well-established
metrics pertaining to CV algorithms. In future work, we intend
to fully integrate the usage of relaxed back-history require-
ments within the control and decision-making components
of CARLA, and to re-assess the impact of relaxing such
requirements in actual driving scenarios. CARLA is a com-
plex system, so this integration will be a major undertaking.
Additionally, our study considered only city driving scenarios.
We plan to extend our assessment to include highway driving
scenarios in order to explore the impact of the speed of the
ego-vehicle on the history-versus-accuracy trade-off.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation, 2016, pp. 265–283.

[2] T. Amert, S. Voronov, and J. H. Anderson, “OpenVX and real-time
certification: the troublesome history,” in Proceedings of the 40th IEEE
Real-Time Systems Symposium, 2019, pp. 312–325.

[3] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking without bells
and whistles,” arXiv preprint arXiv:1903.05625, 2019.



[4] M. Bleyer, C. Rhemann, and C. Rother, “Patchmatch stereo-stereo
matching with slanted support windows,” in Proceedings of British
Machine Vision Conference, vol. 11, 2011, pp. 1–11.

[5] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and
L. Van Gool, “Robust tracking-by-detection using a detector confidence
particle filter,” in 2009 IEEE 12th International Conference on Computer
Vision. IEEE, 2009, pp. 1515–1522.

[6] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[7] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2005, pp. 886–893 Vol. 1.

[8] DanielHfnr, “Carla object detection dataset,” Online at https://github.
com/DanielHfnr/Carla-Object-Detection-Dataset, 2019.

[9] U. Devi and J. H. Anderson, “Tardiness bounds under global EDF
scheduling on a multiprocessor,” Real-Time Systems, vol. 38, no. 2, pp.
133–189, 2008.

[10] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1–16.

[11] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from
a single image using a multi-scale deep network,” in Proceedings of
Advances in Neural Information Processing Systems, 2014, pp. 2366–
2374.
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