
CUPiDRT: Detecting Improper GPU Usage in
Real-Time Applications*

Tanya Amert and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract—Computer-vision applications typically rely on
graphics processing units (GPUs) to accelerate computations.
However, prior work has shown that care must be taken
when using GPUs in real-time systems subject to strict timing
constraints; without such care, GPU use can easily lead to
unexpected delays not only on the GPU device but also on the
host CPU. In this paper, a software library is presented that can
detect the improper use of GPUs for safety-critical computer-
vision applications. This library was used to analyze several
GPU-using sample applications available as part of OpenCV, a
popular computer-vision library, revealing the presence of issues
in all ten applications considered. Additionally, a case study is
presented, detailing the response-time improvements to one of
the applications when such issues are corrected.

Index Terms—Graphics Processors, Hardware/Software Inter-
faces, Image Processing, Computer Vision, Real-Time Systems

I. INTRODUCTION

Safety-critical systems increasingly rely on computer-vision
applications to perceive their environments. For example,
autonomous vehicles utilize object-detection algorithms to
identify pedestrians and other vehicles in their vicinity, and
optical-flow algorithms to localize the vehicle within the scene
over time. Graphics processing units (GPUs) were designed for
massively parallel processing of graphics algorithms, and thus
are well-suited to such computer-vision applications.

NVIDIA has positioned itself as a market leader in GPU ac-
celeration; NVIDIA GPUs are supported by many common vi-
sion and machine-learning frameworks, such as PyTorch [39],
TensorFlow [1], and OpenCV [10], and NVIDIA GPUs were
used for navigation in the original Tesla Model X [42].
Unfortunately, NVIDIA designs its GPUs for throughput rather
than predictability. Thus, great care is needed when using them
in safety-critical systems subject to strict timing constraints.

The problem. Prior work by Yang et al. [50] detailed several
pitfalls that can arise when using NVIDIA’s CUDA API
to utilize NVIDIA GPUs in real-time systems, leading to
unexpected delays not only on the GPU, but also on the host
CPU. One such scenario is shown in Fig. 1, which depicts
an experiment in which four CPU threads submit commands
to individual CUDA streams.1 The CUDA API command
(cudaFree) submitted by CPU Thread 3 at time (a) results
in another unrelated CPU thread being blocked until all prior

*This was supported by NSF grants CNS 1563845, CNS 1717589, CPS
1837337, CPS 2038855, and CPS 2038960, ARO grant W911NF-20-1-0237,
and ONR grant N00014-20-1-2698.

1CUDA streams are FIFO queues of GPU operations.

CPU Blocking

CPU Blocking

K1: 0

K2: 0

K3: 0

K4: 0

Stream 1 (K1) Stream 2 (K2) Stream 3 (K3) Stream 4 (K4)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Time (seconds)

SM 0

(a) (b) (c) (d)

Fig. 1. The results of an implicit synchronization experiment from Yang et
al. [50] depicting CPU blocking due to freeing GPU memory.

GPU work has completed (indicated by the arrow from time
(b) to time (c)). Such blocking must factor into response-time
analysis if it may occur in safety-critical applications, and thus
can lead to system capacity loss. To our knowledge, no prior
work has explored whether existing applications (e.g., those
utilizing OpenCV) are, in fact, subject to these pitfalls.

Our solution. In this paper, we present CUPiDRT (CUDA
Pitfall Detector for Real-Time Systems), a software library
designed to detect the improper use of NVIDIA GPUs for
real-time applications. In particular, we detected issues based
on two of the most egregious pitfalls listed by Yang et al., and
used CUPiDRT to analyze ten GPU-using sample applications
provided as part of OpenCV. In addition, we performed a
case study to explore the response-time changes when such
issues are mitigated. Before describing our contributions in
more detail, we briefly discuss prior work on using GPUs in
safety-critical systems.

Prior work. Prior work has traditionally focused on how to
use existing applications in real-time systems. Rather than
taking advantage of possible concurrency between programs,
many approaches have managed the GPU as a single mutual-
exclusion shared resource [16], [23], [24], [43]–[45], [48].
Other work has sought to understand existing GPU scheduling
policies [2], [33], [36]–[38] or to change GPU scheduling
policies by changing the driver code itself [12]. Beyond the
scheduling of GPU computations, multiple approaches have
also sought to evaluate and manage the use of specific GPU
hardware resources (e.g., cache and DRAM) [3], [13], [14],
[21], [27], [29], [47].

More closely related to our work, Horga et al. sought to
detect performance bottlenecks due to memory [20]. However,
to our knowledge, only Yang et al. [50] provided guidelines
for properly interfacing with an NVIDIA GPU from a software
perspective, and no prior work has tackled the general question



of whether a specific implementation is well-suited to the
timing requirements of a real-time system.

Contributions. In this paper, we address the problem of
detecting improper GPU use through three contributions. First,
we present CUPiDRT, a library we developed to intercept
operations submitted to NVIDIA GPUs and report issues based
on the most severe pitfalls identified by Yang et al. [50].
CUPiDRT can be used with any applications that utilize
NVIDIA GPUs, and although CUPiDRT was designed with
real-time systems in mind, throughput-oriented applications
can also benefit from detection and remediation of these issues.

Second, we detail the results produced by using CUPiDRT

to analyze ten GPU-using OpenCV sample applications. Based
on two of the most problematic pitfalls identified by Yang et
al., we configured CUPiDRT to detect issues related to specific
API calls (e.g., allocating and freeing GPU memory and the
submission of work to synchronous CUDA streams). Of the
ten applications, we found that each was subject to at least
one of the issues we sought to detect.

Finally, we present a case study demonstrating the benefits
of using CUPiDRT to verify that issues have been resolved.
For one of the applications we analyzed, we modified the
source code to remedy the discovered issues, and compared the
end-to-end execution times and GPU-computation submission
times of the application with and without modifications. In
the case study, we found that our modifications led to a
74.1% reduction in execution times and a 74.9% reduction
in computation submission times.

Organization. The remainder of this paper is organized as
follows. In Sec. II, we provide needed background on NVIDIA
GPUs and the pitfalls that can arise when they are used in real-
time systems. We give an overview of CUPiDRT in Sec. III,
and discuss the results of our OpenCV application analysis
and case study in Sec. IV. We overview related work on
designing real-time applications for CPU+GPU platforms in
Sec. V before concluding in Sec. VI.

II. BACKGROUND

We focus our attention on NVIDIA GPUs, as NVIDIA has
been the market leader in GPUs. This is due in large part
to the CUDA API, which enables general-purpose hardware-
accelerated parallelism in C/C++ programs. In this section,
we give an overview of NVIDIA GPUs and the CUDA API,
and summarize the pitfalls that can arise when using NVIDIA
GPUs in safety-critical systems.

A. Using NVIDIA GPUs

NVIDIA provides both discrete GPUs and system-on-chip
solutions with integrated GPUs. An NVIDIA GPU is com-
prised of an Execution Engine (EE), used to perform com-
putations, and one or more Copy Engines (CEs), which copy
data between the host (CPU) and the device (GPU), or from
one GPU memory location to another. All GPU operations are
submitted to CUDA streams, which are first-in first-out queues;
by default, the NULL stream is used, serializing all operations.

Listing 1 Vector Addition Routine using CUDA.

/∗ Performs single addition: C[i] = A[i] + B[i] ∗/
1: static global void vecAdd(int* A, int* B, int* C) {
2: // Calculate index using built-in thread, block info
3: int i = blockDim.x * blockIdx.x + threadIdx.x;
4: C[i] = A[i] + B[i];
5: }

/∗ Element-wise addition: C = A + B, returns pointer to C
(assumes n is a multiple of 32) ∗/

6: int ∗ vectorAdd(int* A, int* B, int n) {
7: // Allocate CPU (host) memory for result array C
8: size t bytes = n ∗ sizeof(int);
9: int* C = (int *) malloc(bytes);

10:
11: // Allocate GPU (device) memory for arrays A, B, and C
12: int *d A, *d B, *d C;
13: cudaMalloc(&d A, bytes);
14: cudaMalloc(&d B, bytes);
15: cudaMalloc(&d C, bytes);
16:
17: // Copy arrays A and B from CPU to GPU memory
18: cudaMemcpy(d A, A, bytes, cudaMemcpyHostToDevice);
19: cudaMemcpy(d B, B, bytes, cudaMemcpyHostToDevice);
20:
21: // Launch the kernel
22: int nt = 32; // threads per block
23: int nb = n / 32; // blocks per grid
24: int sm = 0; // no shared memory used
25: cudaStream t stream; // user-defined stream
26: cudaStreamCreate(&stream);
27: vecAdd<<<nb, nt, sm, stream>>>(d A, d B, d C);
28: cudaStreamSynchronize(stream);
29: cudaStreamDestroy(stream);
30:
31: // Copy results from GPU to CPU
32: cudaMemcpy(C, d C, bytes, cudaMemcpyDeviceToHost);
33:
34: // Free GPU memory for arrays A, B, and C
35: cudaFree(d A);
36: cudaFree(d B);
37: cudaFree(d C);
38:
39: return C;
40: }

To maximize concurrency, asynchronous user-defined streams
can be used, enabling multiple computations to be performed
simultaneously on the EE.

An NVIDIA GPU is accessed via the CUDA API, which is
a C/C++ extension that enables general-purpose GPU comput-
ing. An example CUDA-using program is shown in Listing 1.

Functions that execute on the GPU are called kernels; an
example kernel is shown in lines 1–5. Kernels are executed in
single-instruction-multiple-data (SIMD) fashion; the data to be
used can be determined by CUDA-provided variables (line 3).

When launching a kernel (line 27), the programmer specifies
the distribution of GPU threads into thread blocks (line 22)
and thread blocks into a grid (line 23). Additional optional
arguments include the per-block shared-memory requirement
(line 24), and the stream into which to launch the kernel
(line 25). By default, no shared memory is used, and all kernels



are launched into the NULL stream. Note that kernel launches
are typically asynchronous with respect to the CPU,2 so a
stream synchronization (line 28) is used to ensure the kernel
has completed before copying the results back to the CPU.

Additionally, this example demonstrates common CUDA
API functions, such as cudaMalloc (lines 13–15),
cudaMemcpy (lines 18 and 19), and cudaFree (lines 35–
37) used to allocate, copy to and from, and free GPU
device memory, respectively. Unlike cudaMalloc and
cudaFree, cudaMemcpy has an asynchronous variant,
cudaMemcpyAsync, that can be used with user-defined
streams for additional concurrency.

B. Pitfalls in using NVIDIA GPUs

As the CUDA API was designed for throughput rather
than predictability, care must be taken when using NVIDIA
GPUs in real-time systems. Yang et al. [50] detailed various
pitfalls that can arise with NVIDIA GPUs. They focused on
sources of explicit and implicit synchronization, which can
delay GPU operations (intentionally or not). They also listed
inconsistencies in the NVIDIA documentation, leading to fur-
ther difficulty in developing real-time GPU-using applications.

We now discuss the pitfalls listed by Yang et al. Note that
we retain their original pitfall numbering, but group them
differently for the purpose of our discussion.

Synchronization-related pitfalls. Explicit synchronization
can be performed via CUDA operations such as
cudaStreamSynchronize. Implicit synchronization,
on the other hand, occurs as a side effect of a non-
synchronization-related operation, such as cudaFree or a
kernel launched in the NULL stream. The synchronization-
related pitfalls Yang et al. identified are as follows:

P1 Explicit synchronization does not block future com-
mands issued by other tasks.3

P4 Some CUDA API functions will block future, unre-
lated, CUDA tasks on the CPU.

As they observed, while one CPU thread waits due
to an explicit synchronization command, GPU work is-
sued by other CPU threads may execute for the entire
duration of the synchronization. Thus, commands such as
cudaDeviceSynchronize do not serve as barriers be-
tween CPU threads. Implicit synchronization proves more ne-
farious: in their explorations, Yang et al. found that some API
functions can block other CUDA-using threads on the CPU,
rather than simply blocking future GPU work; such behavior
is depicted in Fig. 1 as a result of a call to cudaFree.

Best-practices-related pitfalls. Beyond synchronization-
related pitfalls, Yang et al. also identified two pitfalls related
to best practices for CUDA-using software:

P5 The suggestion from NVIDIA’s documentation to ex-
ploit concurrency through user-defined streams may be

2See Sec. 3.2.6.1 of the CUDA Programming Guide [32] for more details.
3Yang et al. referred to CPU threads as tasks to avoid confusion with GPU

threads.

K1: 0

K2: 0

K3: 0 K4: 0

Stream 1 (K1) Stream 2 (K2) NULL Stream (K3) Stream 4 (K4)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Time (seconds)

SM 0

(a) (b) (c)

Fig. 2. The results of an experiment from Yang et al. [50] depicting implicit
synchronization due to a kernel launched in the NULL stream.

of limited use for improving performance in thread-
based tasks.

P6 Async CUDA functions use the GPU-synchronous
NULL stream by default.

In their experiments, Yang et al. found that when using
user-defined streams, concurrency could be thwarted by the
presence of unexpected implicit synchronization. In addition,
due to the use of default parameters in CUDA API functions,
simple mistakes can lead to unexpected use of the NULL
stream, further limiting concurrency.

An example of the implicit synchronization introduced by
the NULL stream is depicted in Fig. 2. In this example,
Kernel K3 is launched into the NULL stream at time (a),
preventing K3 or later-launched kernels (K4) from executing
concurrently with earlier-launched kernels (K1 and K2), even
though available resources exist. Thus, Kernel K4 is blocked
on the GPU for 1.65 seconds, from time (b) to time (c).

Documentation-related pitfalls. The NVIDIA documentation
is at best sparse, and at worst incorrect and self contradicting.
Yang et al. listed the following documentation-related pitfalls:

P2 Documented sources of implicit synchronization may
not occur.

P3 The CUDA documentation neglects to list some func-
tions that cause implicit synchronization.

P7 Observed CUDA behavior often diverges from what
the documentation states or implies.

P8 CUDA documentation can be contradictory.
P9 What we learn about current black-box GPUs may not

apply in the future.

In particular, CUDA API functions related to allocating,
copying, setting, and freeing memory were shown to be-
have contradictory to the documented behavior. For exam-
ple, cudaFree variants were not documented to cause im-
plicit synchronization. Conversely, the NVIDIA documenta-
tion states that cudaMalloc does cause implicit synchro-
nization, but Yang et al. were unable to observe such behavior.

Although their experiments considered multiple generations
of NVIDIA GPUs (Maxwell, Pascal, and Volta) and CUDA
versions (8.0 and 9.0), Pitfall P9 indicates that their findings
may not hold in the future. However, we note that we were
able to reproduce their synchronization-related experiments on
a Titan V (Volta architecture) with CUDA 10.2.



III. CUPIDRT

In this section, we introduce CUPiDRT. To do so, we first
list the issues we seek to detect in GPU-using programs, and
relate them to the most egregious of the pitfalls listed by Yang
et al. [50]. Then, we describe how we designed CUPiDRT to
detect these issues at runtime.

A. Issues We Detect

Yang et al. identified pitfalls that focus primarily on ways
in which GPU-using programs may behave unexpectedly.
However, it is not clear how to rectify or even detect the
issues that arise due to these pitfalls. In fact, the majority
of the pitfalls described in Sec. II-B center around errors and
ambiguities in NVIDIA’s CUDA documentation.

In the design of CUPiDRT, we have focused on the most
egregious issues that arise when attempting to perform timing
analysis of GPU-using programs. In particular, we are con-
cerned with unexpected cross-CPU-thread blocking (Pitfall P4)
and NULL-stream GPU operations (Pitfall P6).

Issue: Unexpected CPU blocking. Of the pitfalls described
in Sec. II-B, Pitfall P4 is perhaps the most problematic, as it
relates to an unexpected source of blocking on the CPU. Such
potential blocking must be taken into account during real-
time schedulability analysis, and corresponds to lost system
capacity. Thus, we seek to detect any sources of unexpected
CPU blocking due to GPU use.

The two sources identified by Yang et al. are the variants
of the CUDA API functions cudaMalloc and cudaFree,
which serve to allocate and free GPU memory, respectively.
These function calls are necessary if GPU memory is to be
used, and are only problematic while other operations (e.g.,
kernel launches) are occurring. Thus, we exclude the setup and
cleanup regions of programs from our analysis, as described in
Sec. III-B. We call the remaining region the analyzed region.

Issue: NULL-stream GPU operations. As detailed in Pit-
fall P6, asynchronous CUDA functions (and kernel launches)
default to using the NULL stream if no stream parameter
is provided. For asynchronous functions in particular, this
can cause further unexpected delays as kernels and other
operations must then execute sequentially (see Amert et al. [2]
for an overview of NVIDIA’s GPU scheduling rules).

We thus also configured CUPiDRT to detect the use of
the NULL stream, both in kernel launches and in other
CUDA API functions (e.g., cudaMemcpyAsync). As these
operations are typically part of the actual work of a GPU-using
program, we do not distinguish between code regions, and
have configured CUPiDRT to report any detections of NULL
stream use, including those during setup and cleanup.

B. Analyzing GPU-Using Programs

Program analysis can be performed in one of two ways: (1)
at compile time, using a static code analyzer, or (2) at runtime,
based on tracing of CUDA API calls. Although static analysis
guarantees all issue occurrences are detected regardless of
program inputs and settings, dynamic analysis can be used

if the code path of interest is known. Additionally, as the
improper usage we seek to detect is based on individual CUDA
operations rather than a more complex sequence of commands,
we chose dynamic analysis for CUPiDRT. We leave a static-
analysis implementation to future work.

CUPiDRT design. CUPiDRT is comprised of a series of
scripts to trace the behavior of a CUDA-using program at
runtime, logging all CUDA calls (e.g., cudaMalloc or
kernel launches), and then parse the log file to detect the
issues described in Sec. III-A. For the tracing stage, we
utilize the nvprof tracing tool provided by NVIDIA. When
analyzing the trace output, we detect issues corresponding to
the following operations:

• cudaMalloc: Any invocation of cudaMalloc (or a
variant) inside the analyzed region.

• cudaFree: Any invocation of cudaFree (or a variant)
inside the analyzed region.

• NULL stream kernels: Any kernel submitted to the
NULL stream, regardless of location in the program.

• Asynchronous CUDA functions: Any asynchronous
function (e.g., cudaMemcpyAsync) called with a
stream parameter of 0 (the NULL stream), regardless of
location in the program.

• Other CUDA functions: Any other NULL-stream-using
function (e.g., cudaMemset), regardless of location
within the program.

Using CUPiDRT to analyze a program. There are two steps
to use CUPiDRT to analyze a GPU-using program. First, the
analyzed region must be annotated in the program source code.
Then, CUPiDRT can be used to run the GPU-using program;
CUPiDRT scripts analyze the tracing output and report any
issues detected. Our implementation is based on CUDA 10.2,
and is provided open source online.4

The only source-code modifications necessary to use
CUPiDRT are analyzed-region demarcations, for which
we utilize the NVIDIA Tools Extension (NVTX) API.
The statements nvtxMarkA("TRACE_START") and
nvtxMarkA("TRACE_END") must be added at the start
and end, respectively, of each analyzed region; these functions
add messages to the trace output without otherwise affecting
program functionality.

IV. EVALUATION

In this section, we present the results of using CUPiDRT to
detect issues in ten GPU-using sample applications provided
with OpenCV. Then, we demonstrate the value of remedying
these issues via a case study involving one of the applications.

A. OpenCV Sample Applications

We evaluated the benefits of CUPiDRT by analyzing GPU-
using applications provided as part of OpenCV [10], a popular
computer-vision framework. We considered ten sample appli-
cations provided with OpenCV 3.4, as listed in Table I. These

4Available online at https://github.com/tkortz/cupid-rt.

https://github.com/tkortz/cupid-rt


TABLE I
ISSUE OCCURRENCES FOR TEN GPU-USING OPENCV SAMPLE APPLICATIONS.

OpenCV Sample Description cudaMalloc/ NULL stream NULL stream Other NULL
cudaFree calls kernels async functions stream ops

bgfg segm Segmentation 0 3 0 5
farneback optical flow Optical Flow 10 2 0 14
generalized hough Feature Extraction 8 22 8 26
hog Object Detection 64 64 143 157
houghlines Feature Extraction 4 3 0 8
morphology (Erode/Dilate) Morphology 2 2 0 2
morphology (Open/Close) 5 4 0 3
optical flow (Brox) Optical Flow 7 3993 40 43
optical flow (TV-L1) 123 2937 0 262
pyrlk optical flow Optical Flow 23 21 13 26
stereo match Stereo Matching 0 2 0 7
super resolution Super Resolution 26 168 0 74

sample applications cover a broad range of different computer-
vision algorithms:

• Background/Foreground Segmentation: A video sequence
is processed to classify pixels in each video frame as
being in the background or foreground of the image.

• Optical Flow: Using two images, the movement of each
pixel from one image to the other is determined. Optical-
flow algorithms include the Brox et al. algorithm [11],
the Farnebäck algorithm [17], the iterative Lucas-Kanade
method with image pyramids [28], and the TV-L1
method [40], [52]; these algorithms are demonstrated in
three different OpenCV sample applications.

• Feature Extraction: Features of certain types (e.g., lines or
circles) are located in an individual image. The General-
ized Hough Transform extends the original Hough trans-
form to arbitrary shapes; these algorithms are demon-
strated in two sample applications.

• Object Detection: Although similar to feature extraction,
object detection entails detecting high-level objects, such
as pedestrians. The Histogram of Oriented Gradients
(HOG) algorithm [15], [41] detects pedestrians by iden-
tifying features to be classified by a Support Vector Ma-
chine (SVM); in the hog sample application, detections
are performed for each frame of a video.

• Morphology: Morphological operations modify binary
images, e.g., by “eroding” the foreground (shrinking any
white regions) or by “dilating” the foreground (expanding
any white regions). More complex operations, such as
“opening” and “closing,” can be performed by combining
the basic erosion and dilation operations.

• Stereo Matching: Given a pair of stereo images taken
from different positions, corresponding points in the two
images can be used to compute a depth map of the
distance to any point in the scene.

• Super Resolution: Given an input video, the resolution of

each frame in the video can be increased by leveraging
optical-flow techniques [18], [30].

B. Experimental setup

We performed our experiments on a machine with a single
Titan V NVIDIA GPU, two eight-core 2.10-GHz Intel CPUs,
and 32-GB of DRAM. Each core includes a 32-KB L1 data
cache, a 32-KB L1 instruction cache, and a 1-MB L2 cache;
all eight cores on a CPU socket share an 11-MB L3 cache. We
used Ubuntu 16.04, CUDA 10.2, the NVIDIA 440.33 driver,
and all experiments were run using native Linux scheduling.

C. Evaluation of Issue Detection via CUPiDRT

We list the issues detected by CUPiDRT for each of the
ten applications in Table I. When analyzing the applications,
we used default parameters when possible. For applications
that act on videos, we inserted the nvtxMarkA statements
at the beginning and end of the processing loop, as discussed
in Sec. III-B. For applications that process just one or two
images, we added a processing loop and the nvtxMarkA
statements. Note that results for two optical_flow sample
algorithms are omitted as they duplicate other samples.

cudaMalloc/cudaFree calls. We found that eight of
the ten applications included calls to cudaMalloc and
cudaFree within the analyzed regions. This is due, in part,
to the structure of OpenCV. Sample applications showcase
functionality provided by various “modules,” e.g., the hog
sample application utilizes the cudaobjdetect module to
perform GPU-based object detection. Unfortunately, inspec-
tion of the code reveals that the vast majority of the GPU-
memory allocations and frees that we observed are within
these modules themselves.

Obs. 1: OpenCV modules, as implemented, are prone to
unexpected CPU blocking.

Several of the applications we considered allocated and later
freed over twenty regions of GPU memory when processing an
individual video frame or pair of images. In fact, hog allocated



64 memory regions per video frame, and the TV-L1 algorithm
of optical_flow allocated over 100 GPU-memory regions.

We expect that the execution times of these applications
would be greatly improved by mediating these issues (recall
the discussion of CPU blocking in Sec. III-A); we explore the
benefits of such fixes for the hog application in Sec. IV-D.

Unfortunately, for other applications with high GPU-
memory allocation and free counts, these operations occur
deep within the module implementations (e.g., involving dy-
namic pools of GPU memory), and thus would be extremely
challenging to extricate into setup and cleanup code regions.

NULL-stream GPU operations. The number of NULL-
stream operations (both kernels and other operations) are given
in the rightmost three columns in Table I. Unlike the frequent
GPU-memory allocations and frees throughout the OpenCV
modules source code, the modules do take a CUDA stream
as a parameter. Thus, the presence of issues with NULL-
stream operations is primarily due to how the modules are
used, rather than their implementations. However, taking a
stream as a parameter does not guarantee that module-internal
functionality always uses it.

Obs. 2: Even modules that are implemented to take a stream
parameter may still internally use the NULL stream.

Using CUPiDRT, we found that all ten of the applica-
tions submitted at least some kernels to the NULL stream
and performed other synchronous NULL-stream operations,
and four of the ten submitted asynchronous operations (e.g.,
cudaMemcpyAsync) to the NULL stream.

Only two of the ten applications utilized user-defined
streams for kernel execution: farneback_optical_flow
submitted only two of its 158 kernels to the NULL stream, and
for super_resolution, only 168 of its 884 kernels were
submitted to the NULL stream. However, these remaining
NULL-stream kernels are the result of inner functionality that
does not use the provided stream parameter.

The hog application performed 143 asynchronous and
157 synchronous copy operations using the NULL stream;
these NULL-stream operations were hard-coded in the module
implementation. In the next section, we explore the benefits
of fixing these issues for the hog application.

D. Case Study: Impact of Issue Remediation

To explore the benefits of remedying the issues detected by
CUPiDRT, we performed a case-study experiment using the
hog OpenCV sample application. We modified the application
to perform all cudaMallocs before processing the video and
all cudaFrees after processing was complete. Additionally,
we modified hog to perform all per-frame kernel executions
and other GPU operations in user-defined streams rather than
the NULL stream. After making these changes, we used
CUPiDRT to ensure that no further issues remained.

Before we discuss the results of our case-study experiments,
we describe the structure of the HOG algorithm in more detail.
The algorithm can be represented as a graph, as shown in
Fig. 3. Each video frame is processed at a configurable number

Compute 
levels

A

A

C

C

C

E

E

E

D

D

D

B

B

B

Gather 
results

Fig. 3. Structure of the HOG algorithm.

of levels of detail (the default in the hog application is 13).
For each level, five GPU kernel operations are performed in
sequence: the image is resized (A), gradients are computed
(B), and then histograms of the gradients are computed (C),
normalized (D), and classified using an SVM (E). Finally, the
potential detections are aggregated. The first level processes
the original image, so the resize operation occurs 12 times;
the other four kernels occur 13 times each. Thus, a total of 64
kernels are submitted to the GPU per video frame.

Impact on execution times. For the first part of our case
study, we sought to measure the impact of issue remediation
on the overall execution time of the hog application. We
modified the application to run within a configurable number
of threads, such that one, two, three, or four threads were
performing the HOG algorithm simultaneously; this is meant
to simulate a vehicle in which multiple cameras might be
processing different video streams simultaneously.

All experiments represent the results of processing 5,000
video frames. For each frame, we used two calls to
clock_gettime to measure the elapsed time from just
before uploading the image to the GPU (thus, after reading
in the frame from the video file) until just after downloading
the resulting detections from the GPU and aggregating them
into detected locations. The program was configured to process
video frames as quickly as possible, rather than at a set
frequency, thus maximizing potential cross-thread interference.

The per-frame execution times are depicted as cumulative
distribution functions (CDFs) in Fig. 4. The corresponding
worst- and average-case execution times are also reported in
Table II, along with the 90th- and 99th-percentile values.

Obs. 3: Per-frame execution times increase when multiple
threads perform the HOG algorithm in parallel.

This is expected (Otterness et al. [36] observed similar
behavior for other applications) and occurs for both the
original hog implementation and our modified version with
issues fixed. For example, the 90th-percentile of the original
HOG execution times increased from 10.29 milliseconds for
one thread to 39.77 milliseconds with four threads.

Obs. 4: Per-frame execution times significantly improve
after all detected issues are fixed.

This can be observed when comparing curves between the
original implementation and our modified implementation. For
instance, the 90th-percentile measurement for the modified
implementation with four threads was 10.29 milliseconds, a
74.1% decrease compared to the original implementation.

It is worth noting that our modified implementation with
four threads had a 99th-percentile execution-time measurement



TABLE II
PER-FRAME EXECUTION TIMES (IN MILLISECONDS) OF HOG WITH AND

WITHOUT FIXING ISSUES.

Configuration avg 90th 99th max
Original x1 10.18 10.29 11.17 12.64
Original x2 17.12 18.71 21.16 24.30
Original x3 24.39 29.32 33.48 45.43
Original x4 32.83 39.77 47.61 63.36
Modified x1 2.84 2.90 2.99 5.93
Modified x2 4.93 5.67 6.16 8.77
Modified x3 5.29 7.68 9.04 14.06
Modified x4 7.36 10.29 13.06 24.27

In addition to the average and maximum per-frame execution times, the 90th-
and 99th-percentile results are also listed.

0 10 20 30 40 50 60
Per-Frame Execution Time (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (X

 <
= 

x)

[1]
[2]

[3]
[4]

[5]
[6]

[7]
[8]

[1] Modified x1
[2] Modified x2
[3] Modified x3
[4] Modified x4
[5] Original x1
[6] Original x2
[7] Original x3
[8] Original x4

Fig. 4. CDF of HOG per-frame execution times with and without fixing
issues.

of 13.06 milliseconds, which is not much higher than the
worst-case measurement of 12.64 milliseconds for one thread
in the original implementation. This, combined with the im-
provement of the single-threaded configurations, suggests that
CUPiDRT can be useful for performance tuning in addition to
ensuring predictable execution for real-time applications; we
explore this in more detail later.

Impact on CPU blocking. We can use the time required to
launch5 a kernel as a proxy for the CPU blocking time. If
CPU blocking occurs, such as that depicted in Fig. 1, we
expect to observe multiple peaks in a histogram of kernel
launch times. For example, most launches should take a
small amount of time, but some launches would take longer
due to overlapping with CPU-blocking operations, such as
cudaFree. We measured kernel launch times via calls to
clock_gettime immediately before and after each kernel-
launch CUDA command.

Histograms of kernel launch times for the original hog im-
plementation and our fixed version are depicted as probability
density functions (PDFs) in Fig. 5 for each of the five kernels
in HOG. These curves are normalized, such that the area under
the curve sums to one. Note that the x-axis is truncated; the
worst-case values range up to 8.5 milliseconds. Kernel launch
times are also reported in Table III.

5Note that this does not include the time to complete execution.

TABLE III
KERNEL LAUNCH TIMES (IN MICROSECONDS) OF HOG WITH AND

WITHOUT FIXING ISSUES, WITH PERCENTAGE IMPROVEMENTS IN BOLD.

Kernel avg 90th 95th 99th max
A (orig.) 44.02 81.62 169.40 346.75 4134.34
A (fixed) 25.22 42.12 54.39 97.91 4352.95
% Decr. 42.71 48.40 67.89 71.76 -5.29
B (orig.) 56.96 178.18 242.89 407.58 8530.10
B (fixed) 17.18 37.71 56.11 109.28 5157.46
% Decr. 69.84 78.84 76.90 73.19 39.54
C (orig.) 91.12 224.56 297.26 462.55 5127.76
C (fixed) 26.91 59.37 84.81 153.05 5128.24
% Decr. 70.47 73.56 71.47 66.91 -0.01
D (orig.) 90.35 229.09 297.46 474.76 5232.71
D (fixed) 26.54 58.92 84.84 150.43 4911.89
% Decr. 70.63 74.28 71.48 68.31 6.13
E (orig.) 88.98 228.64 309.67 490.57 6280.39
E (fixed) 21.94 49.88 69.27 123.16 4592.75
% Decr. 75.34 78.18 77.63 74.89 26.87

In addition to average and maximum kernel launch times, the 90th-, 95th-,
and 99th-percentile results are also listed, as are the percentage decreases after
fixing detected issues.

0 20 40 60 80 100 120 140
Kernel launch time (microseconds)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
e
n
si

ty

Peak 1

Peak 2

Peak 3

Original HOG

0 20 40 60 80 100 120 140
Kernel launch time (microseconds)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Peak 1

Peak 2

Peak 3 (gone)

HOG with issues fixed

Kernel A

Kernel B

Kernel C

Kernel D

Kernel E

Fig. 5. Distribution of HOG kernel launch times before and after fixing issues,
with one, two, or four HOG threads executing simultaneously.

Obs. 5: Fixing detected issues results in many more kernel
launches taking the minimum observed time.

This behavior can be observed by comparing the height
of the first peak (occurring around 8 microseconds) for each
kernel between the two plots in Fig. 5. The increase in the
peak height for our modified implementation indicates that the
average-case kernel launch duration is significantly reduced;
this is also evident in Table III.

The increase in the first peak height also suggests that our
modifications led to reductions in later peaks. To observe this,
we look at a different region of the PDFs, depicted in Figs. 6
and 7. These plots depict the first three peaks at around 8, 21,
and 165 microseconds, respectively.

Obs. 6: Fixing issues results in much more predictable
kernel launch times.

This can be observed when comparing Figs. 6 and 7. In



0 50 100 150 200 250 300 350
Kernel launch time (microseconds)

0.000

0.005

0.010

0.015

0.020

0.025
D

e
n
si

ty
Peak 1

Peak 2

Peak 3

Kernel A

Kernel B

Kernel C

Kernel D

Kernel E

Fig. 6. Zoomed-in distribution of the original HOG kernel launch times.

0 50 100 150 200 250 300 350
Kernel launch time (microseconds)

0.000

0.005

0.010

0.015

0.020

0.025

D
e
n
si

ty

Peak 1

Peak 2

Peak 3 (gone)

Kernel A

Kernel B

Kernel C

Kernel D

Kernel E

Fig. 7. Zoomed-in distribution of HOG kernel launch times after fixing issues.

particular, fixing issues completely removed the third peak at
around 165 microseconds, as shown in Fig. 7. Furthermore,
our modifications reduced the 99th-percentile launch times for
all kernels by up to 74.89%, as shown in Table III.

Unfortunately, our modifications did not always improve the
worst-case observed kernel launch times.

Obs. 7: Worst-case kernel launch times of some kernels
are higher after fixing issues.

This suggests that some other unexpected behaviors may
be occurring. However, the 99th-percentile results shown in
Table III indicate that these are likely outliers. These outliers
do, however, impact the worst-case per-frame execution times,
as worst-case values for the four-thread modified implemen-
tation listed in Table II are significantly higher than the 99th-
percentile execution times.

Summary. We have observed both per-frame execution times
and the distribution of kernel launch times between the original
hog implementation and our modified implementation with all
detected issues fixed. We now make one remaining observation
regarding the case study as a whole.

Obs. 8: Using CUPiDRT to ensure all detected issues are
resolved improves throughput in addition to predictability.

Our fixes greatly reduced each of the average, 90th-, 95th-,
and 99th-percentile kernel launch times, as listed in Table III.
Furthermore, our modifications resulted in more predictable
memory usage; our modified implementation used 129 MB of
GPU memory throughout its runtime, compared to the original
implementation, for which memory usage ranged from 139-
147 MB. Combined with the improved per-frame execution

times listed in Table II, we have shown that the issues we have
designed CUPiDRT to detect can greatly hinder both average
and worst-case performance and thus predictability.

Discussion. CUPiDRT can be a valuable tool for the develop-
ment of systems which require optimizing for either worst-case
or average-case performance. However, despite the benefits we
have shown of resolving the issues detected by CUPiDRT, such
efforts can require comprehensive application refactoring.

Obs. 9: Not all applications are well suited to remedying
the issues detected by CUPiDRT.

Fixing issues was fairly straightforward for the HOG ap-
plication. However, we had limited success using the same
techniques with other OpenCV sample applications that used
dynamically allocated GPU memory buffers. For these appli-
cations, remedying cudaMalloc and cudaFree uses was
prohibitively challenging, as it would have required massively
refactoring the underlying OpenCV modules to avoid using
GPU memory-buffer pools. Further work is necessary to
determine how best to fix issues in these cases.

Additionally, our fixes to the HOG application reduced the
runtime flexibility of the program; e.g., the choice of grayscale
versus full-color image processing cannot be changed after
program initialization (as color scheme impacts GPU memory
allocated). However, we consider this to be a reasonable
trade-off for real-time systems, in which inputs and program
behavior can reasonably be assumed stable after design time.

V. RELATED WORK

We now summarize the existing work on GPU use in real-
time applications. We focus on three areas: how access to the
GPU is managed, how timing analysis is performed for GPU-
using applications, and how GPU-using applications may need
to be modified to be amenable to real-time analysis.

Arbitrating GPU access. Managing GPU use in a real-
time system can be done in one of two ways. Synchroniza-
tion mechanisms can be used to arbitrate GPU-access order.
Alternatively, scheduling approaches can either use built-in
scheduling policies or modify them through driver changes.

Synchronization mechanisms typically treat GPUs as re-
quiring mutually exclusive access [16], [23], [24], [43]–[45],
[48]. For multi-GPU systems, this can be extended to a
k-exclusion lock [31]. Simultaneous access to multiple GPUs
can be managed via a nested locking protocol [46]. As an alter-
native to locking-protocol-based synchronization approaches,
Kim et al. [25] introduced a GPU server task to reorder and
submit all GPU operations on behalf of other GPU-using tasks.

Scheduling approaches, on the other hand, utilize knowledge
of existing scheduling rules or modify those rules. Scheduling
rules have been deduced via micro-benchmarking experiments
for NVIDIA [2], [33], [36] and AMD [37], [38] GPUs.
Capodieci et al. [12] implemented a preemptive earliest-
deadline first (EDF) scheduler for NVIDIA GPUs, but details
are unavailable due to non-disclosure agreements. Kato et
al. [24] modified the open-source Nouveau driver for NVIDIA
GPUs to implement a non-preemptive fixed-priority scheduler.



However, the Nouveau driver does not support CUDA, pre-
cluding its use for general-purpose real-time computing.

Timing analysis of GPU-using workloads. Schedulability
analysis of GPU-enabled real-time applications requires GPU
timing analysis. Some prior work has studied this from a
holistic perspective, considering high-level impacts of GPU
sharing [34], [35] or by developing response-time analysis
based on NVIDIA’s scheduling rules [49]. Further work has
explored WCET analysis for GPU-using programs and indi-
vidual kernels [5]–[9], [19]. Other performance bottlenecks
that can impact GPU timing analysis have been explored by
Horga et al. [20] and Yang et al. [50].

The accuracy of timing analysis can be greatly improved
given knowledge of the hardware platform. Jain et al. [22]
performed micro-benchmarking experiments to determine the
NVIDIA GPU memory hierarchy. Other work has explored
the evaluation and management of specific GPU hardware
resources [3], [13], [14], [21], [27], [29], [47].

Application changes for GPU use in real-time systems.
Given GPU-access arbitration and a means of performing
timing analysis, a GPU-enabled real-time workload may still
require changes to the applications themselves to ensure
schedulability. The use of CUPiDRT, presented in this paper,
can help identify some necessary application changes.

Other work has explored algorithm-level changes. For ex-
ample, object detection via a neural network can be mod-
ified to use lower-resolution images or even a batch of
images grouped into a single input; such techniques have
been shown to improve both utilization and throughput [51],
[54]. Additionally, Heo et al. [19] explored modifying deep
neural networks (DNNs) to choose between pre-determined
network configurations at runtime based on time remaining
until deadlines. Other approaches have explored splitting GPU
computations into smaller sub-computations to be scheduled
independently [4], [23], [26], [49], [53].

VI. CONCLUSION

In this paper, we have presented CUPiDRT, a software
tool designed to detect issues in GPU-enabled code. We used
CUPiDRT to analyze ten GPU-using OpenCV applications,
and showed that all were subject to at least one of the issues
we sought to detect. Although we designed CUPiDRT with
a focus on real-time workloads, our case study experiment
demonstrated that fixing all issues detected by CUPiDRT can
result in significant improvements in throughput, in addition
to a reduction in spurious GPU-operation launch times.

In the future, we plan to modify CUPiDRT to use static
analysis rather than relying on NVIDIA’s tracing tools. Static
analysis will enable us to report which lines of code rep-
resent issues, as well as ensure a more comprehensive set
of detections that does not rely on runtime behavior (e.g.,
a program may conditionally allocate or free GPU memory,
and runtime behavior may not demonstrate this). We will then
target automatically fixing issues, utilizing CUPiDRT to ensure
none remain. This will be a significant effort, and will require
static analysis and compiler techniques.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[2] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
“GPU scheduling on the NVIDIA TX2: Hidden details revealed,” in
Proceedings of the 38th IEEE Real-Time Systems Symposium, 2017, pp.
104–115.

[3] L. B. B. Forsberg, A. Marongiu, “GPUguard: Towards supporting a
predictable execution model for heterogeneous SoC,” in Proceedings of
the 20th Conference on Design Automation and Test in Europe, 2017,
pp. 318–321.

[4] C. Basaran and K. Kang, “Supporting preemptive task executions and
memory copies in GPGPUs,” in Proceedings of the 24th Euromicro
Conference on Real-Time Systems, 2012, pp. 287–296.

[5] K. Berezovskyi, K. Bletsas, and B. Andersson, “Makespan computation
for GPU threads running on a single streaming multiprocessor,” in
Proceedings of the 24th Euromicro Conference on Real-Time Systems,
2012, pp. 277–286.

[6] K. Berezovskyi, K. Bletsas, and S. Petters, “Faster makespan estimation
for GPU threads on a single streaming multiprocessor,” in Proceedings
of the 18th IEEE Conference on Emerging Technologies and Factory
Automation, 2013, pp. 1–8.

[7] K. Berezovskyi, F. Guet, L. Santinelli, K. Bletsas, and E. Tovar,
“Measurement-based probabilistic timing analysis for graphics processor
units,” in Proceedings of the 29th International Conference on Archi-
tecture of Computing Systems, 2016, pp. 223–236.

[8] K. Berezovskyi, L. Santinelli, K. Bletsas, and E. Tovar, “WCET
measurement-based and extreme value theory characterisation of CUDA
kernels,” in Proceedings of the 22nd International Conference on Real-
Time Networks and Systems, 2014, pp. 279–288.

[9] A. Betts and A. Donaldson, “Estimating the WCET of GPU-accelerated
applications using hybrid analysis,” in Proceedings of the 25th Euromi-
cro Conference on Real-Time Systems, 2013, pp. 193–202.

[10] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[11] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” in Proceedings
of the 8th European Conference on Computer Vision, 2004, pp. 25–36.

[12] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru,
“Deadline-based scheduling for GPU with preemption support,” in
Proceedings of the 39th IEEE Real-Time Systems Symposium, 2018, pp.
119–130.

[13] N. Capodieci, R. Cavicchioli, P. Valente, and M. Bertogna, “SiGAMMA:
Server based integrated GPU arbitration mechanism for memory ac-
cesses,” in Proceedings of the 25th International Conference on Real-
Time Networks and Systems, 2017, pp. 48–57.

[14] R. Cavicchioli, N. Capodieci, and M. Bertogna, “Memory interference
characterization between CPU cores and integrated GPUs in mixed-
criticality platforms,” in Proceedings of the 22nd IEEE International
Conference on Emerging Technologies and Factory Automation, 2017,
pp. 1–10.

[15] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 1, 2005, pp. 886–893.

[16] G. Elliott, B. Ward, and J. Anderson, “GPUSync: A framework for real-
time GPU management,” in Proceedings of the 34th IEEE Real-Time
Systems Symposium, 2013, pp. 33–44.

[17] G. Farnebäck, “Two-frame motion estimation based on polynomial
expansion,” in Proceedings of the 13th Scandinavian Conference on
Image Analysis, 2003, pp. 363–370.

[18] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust
multiframe super resolution,” IEEE transactions on image processing,
vol. 13, no. 10, pp. 1327–1344, 2004.

[19] S. Heo, S. Cho, Y. Kim, and H. Kim, “Real-time object detection system
with multi-path neural networks,” in Proceedings of the 26th Real-Time

http://tensorflow.org/


and Embedded Technology and Applications Symposium, 2020, pp. 174–
187.

[20] A. Horga, S. Chattopadhyayb, P. Elesa, and Z. Peng, “Systematic detec-
tion of memory related performance bottlenecks in GPGPU programs,”
Journal of Systems Architecture, vol. 71, pp. 73–87, 2016.

[21] P. Houdek, M. Sojka, and Z. Hanzálek, “Towards predictable execution
model on ARM-based heterogeneous platforms,” in Proceedings of the
26th IEEE International Symposium on Industrial Electronics, 2017, pp.
1297–1302.

[22] S. Jain, I. Baek, S. Wang, and R. Rajkumar, “Fractional GPUs: Software-
based compute and memory bandwidth reservation for GPUs,” in
Proceedings of the 25th Real-Time and Embedded Technology and
Applications Symposium, 2019, pp. 29–41.

[23] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar, “RGEM: A responsive GPGPU execution model for
runtime engines,” in Proceedings of the 32nd IEEE Real-Time Systems
Symposium, 2011, pp. 57–66.

[24] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “TimeGraph:
GPU scheduling for real-time multi-tasking environments,” in Proceed-
ings of the USENIX Annual Technical Conference, 2011, pp. 17–30.

[25] H. Kim, P. Patel, S. Wang, and R. Rajkumar, “A server-based approach
for predictable GPU access control,” in Proceedings of the 23rd Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications, 2017, pp. 1–10.

[26] H. Lee and M. A. A. Faruque, “Run-time scheduling framework for
event-driven applications on a GPU-based embedded system,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 12, pp. 1956–1967, 2016.

[27] A. Li, G. van den Braak, A. Kumar, and H. Corporaal, “Adaptive
and transparent cache bypassing for GPUs,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2015, pp. 17:1–17:12.

[28] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proceedings of the 7th Interna-
tional Joint Conference on Artificial Intelligence, 1981, pp. 674–679.

[29] X. Mei and X. Chu, “Dissecting GPU memory hierarchy through
microbenchmarking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 1, pp. 72–86, 2016.

[30] D. Mitzel, T. Pock, T. Schoenemann, and D. Cremers, “Video super
resolution using duality based TV-L1 optical flow,” in Proceedings of
the 31st Symposium of the German Association for Pattern Recognition,
2009, pp. 432–441.

[31] C. Nemitz, K. Yang, M. Yang, P. Ekberg, and J. Anderson, “Multiproces-
sor real-time locking protocols for replicated resources,” in Proceedings
of the 28th Euromicro Conference on Real-Time Systems, 2016, pp. 50–
60.

[32] NVIDIA, “CUDA C++ programming guide v10.2.89,” Online at
https://docs.nvidia.com/cuda/archive/10.2/cuda-c-programming-guide/
index.html, 2019.

[33] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and
M. Bertogna, “Dissecting the CUDA scheduling hierarchy: a perfor-
mance and predictability perspective,” in Proceedings of the 26th IEEE
Real-Time and Embedded Technology and Applications Symposium,
2020, pp. 213–225.

[34] N. Otterness, V. Miller, M. Yang, J. Anderson, and F. D. Smith,
“GPU sharing for image processing in embedded real-time systems,”
in Proceedings of the 12th Annual Workshop on Operating Systems
Platforms for Embedded Real-Time Applications, 2016, pp. 23–39.

[35] N. Otterness, M. Yang, T. Amert, J. Anderson, and F. D. Smith,
“Inferring the scheduling policies of an embedded CUDA GPU,” in Pro-
ceedings of the 12th Annual Workshop on Operating Systems Platforms
for Embedded Real-Time Applications, 2017, pp. 47–52.

[36] N. Otterness, M. Yang, S. Rust, E. Park, J. Anderson, F. D. Smith,
A. Berg, and S. Wang, “An evaluation of the NVIDIA TX1 for
supporting real-time computer-vision workloads,” in Proceedings of
the 23rd IEEE Real-Time and Embedded Technology and Applications
Symposium, 2017, pp. 353–363.

[37] N. Otterness and J. H. Anderson, “AMD GPUs as an alternative to
NVIDIA for supporting real-time workloads,” in Proceedings of the 32nd
Euromicro Conference on Real-Time Systems, 2020, pp. 10:1–10:23.

[38] ——, “Exploring AMD GPU scheduling details by experimenting with
“worst practices”,” in Proceedings of the 29th International Conference
on Real-Time Networks and Systems, 2021.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch:
An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[40] J. S. Pérez, E. Meinhardt-Llopis, and G. Facciolo, “TV-L1 optical flow
estimation,” Image Processing On Line, vol. 2013, pp. 137–150, 2013.

[41] V. Prisacariu and I. Reid, “fastHOG–a real-time GPU implementation
of HOG,” Department of Engineering Science, Oxford University, Tech.
Rep., 2009.

[42] D. Shapiro, “Wings come standard: Tesla Motors Model X rolls out
with Tegra onboard,” Online at https://blogs.nvidia.com/blog/2015/09/
30/tesla-motors-model-x-nvidia/.

[43] U. Verner, A. Mendelson, and A. Schuster, “Batch method for efficient
resource sharing in real-time multi-GPU systems,” in Proceedings of the
15th International Conference on Distributed Computing and Network-
ing, 2014, pp. 347–362.

[44] ——, “Scheduling periodic real-time communication in multi-GPU sys-
tems,” in Proceedings of the 23rd International Conference on Computer
Communication and Networks, 2014, pp. 1–8.

[45] U. Verner, A. Schuster, M. Silberstein, and A. Mendelson, “Schedul-
ing processing of real-time data streams on heterogeneous multi-GPU
systems,” in Proceedings of the 5th Annual International Systems and
Storage Conference, 2012, pp. 8:1–8:12.

[46] B. Ward and J. Anderson, “Supporting nested locking in multiprocessor
real-time systems,” in Proceedings of the 23rd Euromicro Conference
on Real-Time Systems, 2012, pp. 223–232.

[47] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,
“Demystifying GPU microarchitecture through microbenchmarking,” in
Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software, 2010, pp. 235–246.

[48] Y. Xu, R. Wang, T. Li, M. Song, L. Gao, Z. Luan, and D. Qian,
“Scheduling tasks with mixed timing constraints in GPU-powered real-
time systems,” in Proceedings of the 30th International Conference on
Supercomputing, 2016, pp. 30:1–30:13.

[49] M. Yang, T. Amert, K. Yang, N. Otterness, J. Anderson, F. D. Smith,
and S. Wang, “Making OpenVX really ‘real time’,” in Proceedings of
the 39th Real-Time Systems Symposium, 2018, pp. 80–93.

[50] M. Yang, N. Otterness, T. Amert, J. Bakita, J. Anderson, and F. D. Smith,
“Avoiding pitfalls when using NVIDIA GPUs for real-time tasks in
autonomous systems,” in Proceedings of the 30th Euromicro Conference
on Real-Time Systems, 2018, pp. 20:1–20:21.

[51] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. Anderson, and J.-M.
Frahm, “Re-thinking CNN frameworks for time-sensitive autonomous-
driving applications: Addressing an industrial challenge,” in Proceedings
of the 25th Real-Time and Embedded Technology and Applications
Symposium, 2019, pp. 305–317.

[52] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime
TV-L1 optical flow,” in Proceedings of the 29th Symposium of the
German Association for Pattern Recognition, 2007, pp. 214–223.

[53] J. Zhong and B. He, “Kernelet: High-throughput GPU kernel executions
with dynamic slicing and scheduling,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, p. 1522–1532, 2014.

[54] H. Zhou, S. Bateni, and C. Liu, “S3DNN: Supervised streaming and
scheduling for GPU-accelerated real-time DNN workloads,” in Pro-
ceedings of the 24th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2018, pp. 190–201.

https://docs.nvidia.com/cuda/archive/10.2/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/archive/10.2/cuda-c-programming-guide/index.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://blogs.nvidia.com/blog/2015/09/30/tesla-motors-model-x-nvidia/
https://blogs.nvidia.com/blog/2015/09/30/tesla-motors-model-x-nvidia/

	Introduction
	Background
	Using NVIDIA GPUs
	Pitfalls in using NVIDIA GPUs

	CUPiDRT
	Issues We Detect
	Analyzing GPU-Using Programs

	Evaluation
	OpenCV Sample Applications
	Experimental setup
	Evaluation of Issue Detection via CUPiDRT
	Case Study: Impact of Issue Remediation

	Related Work
	Conclusion
	References

