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Abstract

The PD2 Pfair/ERfair scheduling algorithm is the most efficient known algo-
rithm for optimally scheduling periodic tasks on multiprocessors. In this paper, we
prove that PD2 is also optimal for scheduling “rate-based” tasks whose processing
steps may be highly jittered. The rate-based task model we consider generalizes the
widely-studied sporadic task model.

Key words: Fairness, multiprocessors, optimality, Pfair, real time, scheduling

1 Introduction

In the real-time scheduling literature, the periodic [15] and sporadic [16] task
models have received the most attention. In the periodic model, each task is
invoked repeatedly, with consecutive invocations, or jobs , being spaced apart
by a fixed amount; in the sporadic model, a lower bound on the time be-
tween invocations is assumed. In practice, however, event occurrences often
are neither periodic nor sporadic. For example, in an application that services
packets arriving over a network, packet arrivals may be highly jittered. Rate-
based scheduling schemes are more seamlessly able to cope with jitter. In such
schemes, there is no restriction on a task’s instantaneous rate of execution,
but an average rate is assumed. If a task’s instantaneous rate exceeds its aver-
age rate, then it is dealt with by using simple mechanisms such as postponing
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deadlines. In this paper, we investigate rate-based scheduling on multiproces-
sors. The starting point for our work is recent research on Pfair and ERfair
scheduling algorithms, which are known to be optimal for scheduling periodic
tasks on multiprocessors [3,5–7].

Pfair scheduling and variants. Under Pfair scheduling , each task is re-
quired to execute at a uniform rate, while respecting a fixed allocation quan-
tum. Uniform rates are ensured by requiring the allocation error for each task
to be always less than one quantum, where “error” is determined by compar-
ing to an ideal fluid system. Due to this requirement, each task is effectively
subdivided into quantum-length subtasks that must execute within windows
of approximately equal lengths: if a subtask of a task T executes outside of
its window, then T ’s error bounds are exceeded. The length and alignment
of a task’s Pfair windows are determined by its weight , which is defined as
the ratio of its per-job execution cost and period. An example Pfair window
layout for a task of weight 8/11 is given in Figure 1, which is considered in
detail later.

Under Pfair scheduling, if some subtask of a task T executes “early” within its
window, then T is ineligible for execution until the beginning of its next win-
dow. This means that Pfair scheduling algorithms are necessarily not work
conserving when used to schedule periodic tasks. A scheduling algorithm is
work conserving if no processor ever idles unnecessarily. More precisely, if
there are M processors, and k uncompleted jobs at time t, then min(k,M)
processors should be busy at time t. Work-conserving algorithms are of inter-
est because their use often results in lower job response times, especially in
lightly-loaded systems. In addition, non-work-conserving algorithms often en-
tail higher runtime overheads. (Extra bookkeeping must be done to keep track
of when a job is and is not eligible.) In [3], we introduced a work-conserving
variant of Pfair scheduling called Early-release fair (ERfair) scheduling. Un-
der ERfair scheduling, subtasks may be released “early,” i.e., such a subtask
may become eligible for execution before its Pfair window. This is illustrated
in Figure 2.

In [4,18], we proposed a further extension of the Pfair task model called the
intra-sporadic (IS) model. The sporadic model generalizes the periodic model
by allowing jobs to be released “late,” i.e., the separation between consecutive
job releases of a task is allowed to be more than the task’s period. The IS
model generalizes this by allowing subtasks to be released late, as illustrated
in Figure 3. Early-release behavior is also allowed. As explained later, the
IS notion of a rate is quite similar to that found in the recently-proposed
uniprocessor rate-based execution model [14]. In [4], we presented an algorithm
that optimally schedules IS tasks on two processors. However, we left open
the problem of optimally scheduling IS tasks on systems of more than two
processors.
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Contributions of this paper. In this paper, we close this problem by show-
ing that the PD2 Pfair algorithm [3,5] correctly schedules any feasible IS task
system on M processors. Because the IS model is a generalization of the spo-
radic model, our work also shows that PD2 is optimal for scheduling sporadic
tasks on multiprocessors. As periodic task systems represent a “worst-case”
scenario in the spectrum of IS (or sporadic) task systems, one may think that
the optimality of PD2 follows as a simple corollary from previous work. How-
ever, as explained in detail later, previously-presented proofs for Pfair and
ERfair scheduling algorithms do not easily extend beyond the periodic task
model. In this paper, we provide a new approach for dealing with Pfair- or
ERfair-scheduled systems and use it to show that IS tasks can be optimally
scheduled on multiprocessors. Since the presentation of this work as a confer-
ence paper [18], this approach has been used as a basis for proving a number of
other results about fair-scheduled multiprocessor systems [2,8,11,13,12,19,20].
In addition to presenting a fundamentally new proof approach, this paper
breaks new ground by being the first to show that sporadic or IS tasks can be
optimally scheduled on systems of more than two processors.

In the rest of this paper, we present needed definitions (Section 2), describe
the PD2 algorithm (Section 3), prove that PD2 optimally schedules IS tasks
(Section 4), and then conclude (Section 5). A few technical results are proved
in an appendix.

2 Definitions

In the following subsections, relevant concepts and terms are defined. We begin
with Pfair and ERfair scheduling.

2.1 Pfair and ERfair Scheduling

In defining notions relevant to Pfair scheduling, we limit attention (for now)
to periodic tasks; we assume that each such task releases its first job at time 0.
A periodic task T with an integer period T.p and an integer per-job execution
cost T.e has a weight wt(T ) = T.e/T.p, where 0 < wt(T ) ≤ 1. Such a task T
is light if wt(T ) < 1/2, and heavy otherwise.

Under Pfair scheduling, processor time is allocated in discrete time units,
called quanta; the time interval [t, t + 1), where t is a nonnegative integer, is
called slot t. (Hence, time t refers to the beginning of slot t.) In each slot, each
processor can be allocated to at most one task. A task may be allocated time
on different processors, but not in the same slot (i.e., interprocessor migration
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Fig. 1. The Pfair windows of the first two jobs (or sixteen subtasks) of a task T with
weight 8/11 in a Pfair-scheduled system. During each job of T , each of the eight
units of computation must be allocated processor time during its window, or else a
lag-bound violation will result.

is allowed but each task must execute sequentially). The sequence of allocation
decisions over time defines a schedule S. Formally, S : τ ×N �→ {0, 1}, where
τ is a set of tasks and N is the set of nonnegative integers. S(T, t) = 1 iff T
is scheduled in slot t. Thus, in any M -processor schedule,

∑
T∈τ S(T, t) ≤ M

holds for all t.

The notion of a Pfair schedule is defined by comparing such a schedule to a
fluid processor-sharing schedule that allocates wt(T ) processor time to task
T in each slot. Deviation from the fluid schedule is formally captured by the
concept of lag . The lag of task T at time t, denoted lag(T, t), is defined as
wt(T ) · t − ∑t−1

u=0 S(T, u). A schedule is Pfair iff

(∀T, t :: −1 < lag(T, t) < 1). (1)

Informally, the allocation error associated with each task must always be less
than one quantum.

The lag bounds above have the effect of breaking each task T into an infinite
sequence of unit-time subtasks . We denote the ith subtask of task T as Ti,
where i ≥ 1. As in [6], we associate a pseudo-release r(Ti) and pseudo-deadline
d(Ti) with each subtask Ti, as follows. (For brevity, we often drop the prefix
“pseudo-.”)

r(Ti) =
⌊

i − 1
wt(T )

⌋
(2)

d(Ti) =
⌈

i
wt(T )

⌉
(3)

Ti must be scheduled in the interval w(Ti) = [r(Ti), d(Ti)), termed its window ,
or (1) will be violated. Note that r(Ti+1) is either d(Ti) − 1 or d(Ti). Thus,
consecutive windows of the same task either overlap by one slot or are disjoint
(see Figure 1). The length of Ti’s window, denoted |w(Ti)|, is d(Ti) − r(Ti).
As an example, consider subtask T2 in Figure 1. Here, we have r(T2) = 1,
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Fig. 2. The Pfair windows of the first job of a task T with weight 8/11 are shown.
The schedule shown is ERfair, but not Pfair.

d(T2) = 3, and |w(T2)| = 2. Therefore, T2 must be scheduled in either slot 1
or 2. (If T1 is scheduled in slot 1, then T2 must be scheduled in slot 2.)

The notion of ERfair scheduling [3] is obtained by simply dropping the −1
constraint in (1). With this change, a subtask can become eligible before its
Pfair window. This is illustrated in Figure 2. Note that any Pfair schedule is
ERfair, but not necessarily vice versa. It is easy to show that, in any Pfair or
ERfair schedule, all job deadlines are met [3].

2.2 The Intra-sporadic Task Model

As noted earlier, the sporadic model generalizes the periodic model by allow-
ing jobs to be released late. The IS model generalizes this notion further by
allowing subtasks to be released late, as illustrated in Figure 3. More specifi-
cally, the separation between subtask releases r(Ti) and r(Ti+1) is allowed to
be more than �i/wt(T )�−�(i−1)/wt(T )�, which would be the separation if T
were periodic (refer to Equation (2)). Thus, an IS task is obtained by allowing
a task’s windows to be right-shifted from where they would appear if the task
were periodic. Each subtask of an IS task has an offset that gives the amount
by which its window has been right-shifted. The offset of subtask Ti is denoted
θ(Ti). By (2) and (3), we have the following.

r(Ti) = θ(Ti) +
⌊

i − 1
wt(T )

⌋
(4)

d(Ti) = θ(Ti) +
⌈

i
wt(T )

⌉
(5)

These offsets are constrained so that the separation between any pair of sub-
task releases is at least the separation between those releases if the task were
periodic. Formally, the offsets satisfy the following property.

k ≥ i ⇒ θ(Tk) ≥ θ(Ti) (6)
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Fig. 3. The PF-windows of the first eight subtasks of an IS task T with weight 8/11.
Subtask T5 is released three time units late causing all later subtask releases to be
delayed by three time units.

Because
⌊

i
wt(T )

⌋
≥

⌈
i

wt(T )

⌉
− 1, by (4), r(Ti+1) ≥ θ(Ti+1) +

⌈
i

wt(T )

⌉
− 1.

Hence, by (5) and (6), it follows that

r(Ti+1) ≥ d(Ti) − 1. (7)

Each subtask Ti has an additional parameter e(Ti) that specifies the first time
slot in which it is eligible to be scheduled. It is assumed that e(Ti) ≤ r(Ti)
and e(Ti) ≤ e(Ti+1) for all i ≥ 1. Allowing e(Ti) to be less than r(Ti) is
equivalent to allowing “early” subtask releases as in ERfair scheduling. (This is
not shown in Figure 3.) We refer to the interval [r(Ti), d(Ti)) as the PF-window
of Ti and the interval [e(Ti), d(Ti)) as its IS-window . Since e(Ti) ≤ r(Ti), a
subtask’s PF-window is contained within its IS-window. Inequality (7) implies
that PF-windows of consecutive subtasks of a task overlap by at most one slot.
Henceforth, whenever the term “window” is used without qualification, it is
meant to refer to a task’s “PF-window.”

The validity of a schedule for an IS task system is given by the definition
below.

Definition 1 A valid schedule for an IS task system is one that satisfies the
following properties: (i) each subtask is scheduled in its IS-window, (ii) two
subtasks of the same task are not scheduled in the same slot, and (iii) the num-
ber of subtasks scheduled in any slot is at most the number of processors. �

Note that the notion of a job is secondary to the notion of a subtask in IS task
systems. For systems in which subtasks are grouped into jobs that are released
in sequence, the definition of e would preclude a subtask from becoming eligible
before the beginning of its job. Using the definitions above, it is easy to show
that sporadic and periodic tasks are special cases of IS tasks. In particular, a
sporadic task T is an IS task in which only the first subtask of each job may be
released late, i.e., if Ti and Ti+1 are part of the same job, then θ(Ti) = θ(Ti+1).
A periodic task T is an IS task such that only the very first subtask of each
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Fig. 4. The up arrows corresponds to subtask eligibility times and down arrows
correspond to subtask deadlines. The dotted lines are used to illustrate IS-windows
and the bold lines are used to illustrate the PF-windows. A server with weight 2/5
is shown. It receives requests of two units of processor time at times 0 and 10, and
a request of three units of processor time at time 7.

task may be released late, i.e., θ(Ti) = θ(T1) for all i ≥ 1. (In Section 2.1, we
assumed θ(T1) = 0.) Note that, by defining the function e appropriately, we
can obtain eligibility intervals (i.e., IS-windows) like those in either a Pfair
or ERfair system. In fact, we can define eligibility intervals (i.e., IS-windows)
that are longer than in a Pfair system but shorter than in an ERfair system.

In [4], we proved that an IS task system τ has a valid schedule on M processors
(i.e., is feasible) iff

∑
T∈τ

T.e

T.p
≤ M. (8)

The feasibility proof actually shows that a valid schedule exists in which each
subtask is scheduled in its PF-window . (This fact will be of importance when
we consider lags in IS task systems later in Section 4.2.)

Usefulness of the IS task model. Figure 4 illustrates an example server
task that reserves a processor share of 2/5 (given by its weight) and receives
client requests requiring two or three units of processor time. As seen in the
figure, the IS model allows this functionality to be modeled easily, so that the
server’s request size is decoupled from its service rate.

The IS model also allows the instantaneous rate of subtask releases to differ
greatly from the corresponding task’s average rate (given by its weight). Hence,
it is more suitable than the periodic model for several applications in network-
ing. Examples include web servers that provide quality-of-service guarantees,
packet scheduling in networks, and the scheduling of packet-processing activi-
ties in routers [21]. Due to network congestion and other factors, packets may
arrive late or in bursts. The IS model treats these possibilities as first-class
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concepts and handles them more seamlessly. In particular, a late packet arrival
corresponds to an IS delay. On the other hand, if a packet arrives early (as
part of a bursty sequence), then its eligibility time will be less than its Pfair
release time. Note that its Pfair release time determines its deadline. Thus, in
effect, an early packet arrival is handled by postponing its deadline to where
it would have been had the packet arrived on time.

Relation to the RBE task model. In the uniprocessor rate-based execution
(RBE) model [14], each task is characterized by four parameters: (x, y, d, c). A
task is expected to release x jobs every y time units; each job has an execution
cost of c and a relative deadline of d. In the IS model, a task with parameters
(e, p) is expected to release e subtasks every p time units; each subtask has an
execution cost of one and a relative deadline of approximately p/e. An RBE
task may release more than x jobs every y time units, but the deadlines of jobs
released early are postponed in a way that ensures the system is still feasible.
Deadlines of early IS subtasks are similarly postponed using (4) and (5).

3 Algorithm PD2

PD2 prioritizes subtasks by their deadlines. Any ties are broken using two tie-
break parameters, the “b-bit” (or “successor bit”), and the “group deadline.”
These parameters are defined next.

The successor bit. The successor bit for a subtask Ti is defined as follows.

b(Ti) =
⌈

i
wt(T )

⌉
−

⌊
i

wt(T )

⌋
(9)

Thus, b(Ti) is either 0 or 1. In a periodic task system, b(Ti) denotes the number
of slots by which Ti+1’s window overlaps Ti’s window (see (2) and (3)). For
example, in Figure 1(a), b(Ti) = 1 for 1 ≤ i ≤ 7 and b(T8) = 0.

The group deadline. It can be shown that all windows of a heavy task are
of length two or three [17] (see Figure 1). Consider a sequence Ti, . . . , Tj of
subtasks of a heavy task T (without any late releases) such that |w(Tk)| = 2
for all i < k ≤ j, b(Tk) = 1 for all i ≤ k < j, and either b(Tj) = 0 or
|w(Tj+1)| = 3 (e.g., T1, T2 or T3, T4, T5 or T6, T7, T8 in Figure 1). If any of
Ti, . . . , Tj is scheduled in the last slot of its window, then each subsequent
subtask in this sequence must be scheduled in its last slot. In effect, Ti, . . . , Tj

must be considered as a single schedulable entity subject to a “group” deadline.
Formally, we define the group deadline for the subtasks Ti, . . . , Tj to be d(Tj)
if b(Tj) = 0, and d(Tj) + 1 if |w(Tj+1)| = 3. Intuitively, if we imagine a job
of T in which each subtask is scheduled in the first slot of its window, then
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the remaining empty slots exactly correspond to the group deadlines of T . For
example, in Figure 1, T has group deadlines at slots 3, 7, and 10.

We let D(Ti) denote the group deadline of subtask Ti. Formally, if T is heavy,
then D(Ti) = (min u :: u ≥ d(Ti) and u is a group deadline of T ). For exam-
ple, in Figure 1, D(T1) = 3 and D(T6) = 10. If T is light, then D(Ti) = 0.
For an IS task, the group deadline is defined in the same way, assuming that
all the future subtasks are released as early as possible. In an IS task sys-
tem, the group deadline of a heavy task can be calculated using the following
formula [17].

D(Ti) = θ(Ti) +

⎡
⎢⎢⎢

⌈⌈
i

wt(T )

⌉
× (1 − wt(T ))

⌉
1 − wt(T )

⎤
⎥⎥⎥ (10)

Having explained the notion of a group deadline, we can now state the PD2

priority definition.

PD2 Priority Definition: Subtask Ti’s priority at slot t is defined to be
(d(Ti), b(Ti), D(Ti)), if it is eligible at t. Priorities are ordered using the fol-
lowing relation.

(d′, b′, D′) 	 (d, b,D) ≡ [d < d′] ∨ [(d = d′) ∧ (b > b′)]
∨ [(d = d′) ∧ (b = b′) ∧ (D ≥ D′)]

If Ti and Uj are both eligible at t, then Ti’s priority is at least Uj’s at t if
(d(Uj), b(Uj), D(Uj)) 	 (d(Ti), b(Ti), D(Ti)). �

According to the definition above, Ti has higher priority than Uj if it has
an earlier deadline. If Ti and Uj have equal deadlines, but b(Ti) = 1 and
b(Uj) = 0, then the tie is broken in favor of Ti. This is because the window
of Ti may overlap with that of its successor, and hence not scheduling it may
reduce the number of slots available for its successor by one, constraining the
future schedule. If Ti and Uj have equal deadlines and b-bits, then their group
deadlines are inspected to break the tie. If one is heavy and the other light,
then the tie is broken in favor of the heavy task (by the definition of the
group deadline). If both are heavy and their group deadlines differ, then the
tie is broken in favor of the one with the later group deadline. Note that the
subtask with the later group deadline can force a longer cascade of scheduling
decisions in the future. Thus, choosing to schedule such a subtask early places
fewer constraints on the future schedule. Any ties not resolved by PD2 can be
broken arbitrarily.
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Fig. 5. The PF-windows of the first eight subtasks of a GIS task T with weight
8/11. Subtask T3 is missing and T5 is released three time units late. (Because T3 is
missing, this is not an IS task.)

4 Proof of Optimality of PD2

In our proof, we consider task systems obtained by removing subtasks from
an IS task system. Note that such a task system may no longer be an IS task
system (see Figure 5). To circumvent this problem, we define a more general
model called the generalized IS (GIS) task model, and show that PD2 can
optimally schedule task systems that belong to this model. In a GIS task
system, a task T , after releasing subtask Ti, may release subtask Tk, where
k > i+1, instead of Ti+1, with the following restriction: r(Tk)−r(Ti) is at least⌊

k − 1
wt(T )

⌋
−

⌊
i − 1
wt(T )

⌋
. In other words, r(Tk) (and hence, d(Tk)) is not smaller

than what it would have been if Ti+1, Ti+2, . . . , Tk−1 were present and released
as early as possible. For the special case where Tk is the first subtask released

by T , r(Tk) is at least
⌊

k − 1
wt(T )

⌋
.

Thus, the GIS model generalizes the IS model by allowing subtasks to be
absent. It follows that for every GIS task system τ , there exists an IS task
system τ ′ such that τ can be obtained by simply removing certain subtasks
in τ ′. Hence, if there exists a schedule for τ ′ in which no deadline is missed,
then that schedule can be easily modified (by removing subtasks) to obtain a
schedule for τ . Therefore, Expression (8) is a feasibility condition for GIS task
systems as well.

Note that subtask indices for a GIS task are assigned to reflect the missing
subtasks. For example, task T in Figure 5 releases subtask T4 after releasing
T2; T3 is missing and θ(T4) = 0. Hence, the formulae for subtask release times
and deadlines of a GIS task are as in (4) and (5). Further, the formulae for
the b-bit and group deadlines are also as defined in (9) and (10). This implies
that the PD2 priority definition of a subtask of a GIS task is the same as for
the corresponding IS task.

Terminology. An instance of a task system is obtained by specifying a unique
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Fig. 6. A chain of four displacements, caused by removing X(1), which was scheduled
in slot t1.

assignment of release times and eligibility times for each subtask, subject to
(6). Note that the deadline of a subtask is automatically determined once its
release time is fixed (refer to (4) and (5)). If a task T , after executing subtask
Ti, releases subtask Tk, then Tk is called the successor of Ti and Ti is called
the predecessor of Tk (e.g., T4 is T2’s successor in Figure 5). The following
property is used in our proofs.

Claim 1 If subtask Tk is the successor of subtask Ti, then r(Tk) ≥ d(Ti)− 1.

Proof. Note that
⌈

i
wt(T )

⌉
≤

⌊
i

wt(T )

⌋
+ 1. Because k ≥ i + 1,

⌊
k − 1
wt(T )

⌋
≥⌊

i
wt(T )

⌋
. Therefore,

⌊
k − 1
wt(T )

⌋
≥

⌈
i

wt(T )

⌉
− 1. By (6), θ(Tk) ≥ θ(Ti). There-

fore, θ(Tk)+
⌊

k − 1
wt(T )

⌋
≥ θ(Ti)+

⌈
i

wt(T )

⌉
−1. By (4) and (5), this implies that

r(Tk) ≥ d(Ti) − 1. �

4.1 Displacements

By definition, the removal of a subtask from one instance of a GIS task system
results in another valid instance. Let X(i) denote a subtask of any task in a
GIS task system τ . Let S denote a schedule of τ obtained by any schedul-
ing algorithm (such as PD2) that schedules on an earliest-pseudo-deadline-
first (EPDF) basis. Assume that removing X(1), scheduled in slot t1 in S,
causes X(2) to shift from slot t2 to t1, where t1 
= t2, which in turn may cause
other shifts. We call this shift a displacement and represent it by a four-tuple
〈X(1), t1, X

(2), t2〉. A displacement 〈X(1), t1, X
(2), t2〉 is valid iff e(X(2)) ≤ t1.

Because there can be a cascade of shifts, we may have a chain of displacements,
as illustrated in Figure 6.
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Removing a subtask may also lead to slots in which some processors are idle.
If k processors are idle in slot t, then we say that there are k holes in slot t.
Note that holes may exist because of late subtask releases, even if the total
utilization is M .

The lemmas below concern displacements and holes. Lemma 1 states that a
subtask removal can only cause left-shifts, as in Figure 6. Lemma 2 indicates
when a left-shift into a slot with a hole can occur. Lemma 3 shows that shifts
across a hole cannot occur. Here, τ is an instance of a GIS task system and
S denotes a schedule for τ obtained by a greedy EPDF-based scheduling al-
gorithm. Throughout this section, we assume that ties among subtasks are
resolved consistently, i.e., if τ ′ is obtained from τ by a subtask removal, then
the relative priorities of two subtasks in τ ′ are the same as in τ .

Lemma 1 Let X(1) be a subtask that is removed from τ , and let the result-
ing chain of displacements in S be C = ∆1, ∆2, . . . , ∆k, where ∆i =〈X(i), ti,
X(i+1), ti+1〉. Then, ti+1 > ti for all i ∈ {1, . . . , k}.

Proof. Let τ ′ be the task system instance obtained by removing X(1) from τ ,
and let S ′ be its PD2 schedule. Note that the last displacement creates a hole
at tk+1 in S ′. Suppose ti+1 ≤ ti for some i ∈ {1, . . . , k}. Let

tj = min{ti | ti+1 < ti ∧ 1 ≤ i ≤ k}.

(Informally, the leftmost right-shift occurs when X(j+1) scheduled at tj+1 shifts
to tj.) We consider two cases depending on whether j is equal to k.

If j = k, then the last displacement is as shown in Figure 7(a). Note that
X(k+1) is eligible to be scheduled in slot tk+1 in S ′, because it is scheduled
there in S and no subtask (in particular, its predecessor) scheduled before
tk+1 is shifted to tk+1 (by the choice of j). Because there is a hole in slot tk+1

in S ′ and tk+1 < tk, this contradicts the greedy behavior of the scheduling
algorithm.

If j < k, then by our choice of j, tj+1 < tj and the displacements are as
in Figure 7(b). By the minimality of tj, tj+2 > tj+1. Thus, at tj+1, X(j+1) is
chosen over X(j+2) in S. After the displacements, X(j+1) is scheduled at tj
and X(j+2) at tj+1(< tj). This contradicts our assumption that ties are broken
consistently in S and S ′. Hence, ti+1 > ti for all i ∈ {1, . . . , k}. �

Lemma 2 Let ∆ = 〈X(1), t1, X
(2), t2〉 be a valid displacement in S. If t1 < t2

and there is a hole in slot t1 in S, then X(2) is the successor of X(1).

Proof. Because ∆ is valid, e(X(2)) ≤ t1. Since there is a hole in slot t1 and
X(2) is not scheduled there in S, X(2) is the successor of X(1). �
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X(4)
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X(5)

(a)

(b)

Fig. 7. Lemma 1. A chain of k = 4 displacements is shown. (a) The leftmost right
shift occurs when X(5) shifts from t5 to t4, i.e., j = k. (b) The leftmost right shift
occurs when X(4) shifts from t4 to t3, i.e., j < k (here, tj = t3, tj+1 = t4, and
tj+2 = t5).

Lemma 3 Let ∆ = 〈X(1), t1, X
(2), t2〉 be a valid displacement in S. If t1 < t2

and there is a hole in slot t′ such that t1 ≤ t′ < t2 in that schedule, then t′ = t1
and X(2) is the successor of X(1).

Proof. Because ∆ is valid, e(X(2)) ≤ t1. If t1 < t′, then e(X(2)) < t′, implying
that X(2) is not scheduled in slot t2 > t′, as assumed, since there is a hole in
t′. Thus, t1 = t′; by Lemma 2, X(2) is the successor of X(1). �

4.2 Flows and Lags in GIS Task Systems

The lag of an IS or GIS task at time t can be defined in the same way as it is
defined for periodic tasks. Let ideal(T, t) denote the share that T receives in
a fluid schedule in [0, t). Then,

lag(T, t) = ideal(T, t) −
t−1∑
u=0

S(T, u). (11)

For a periodic task that begins execution at time 0, ideal(T, t) = (T.e/T.p)t.
To define ideal(T, t) for an IS or GIS task, we consider the feasibility proof
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given in [4]. There, a valid schedule is shown to exist by constructing a flow
network with a certain real-valued flow. ideal(T, t) is defined based on this
flow:

ideal(T, t) =
t−1∑
u=0

flow(T, u). (12)

Here, flow(T, u) is the flow (or share) assigned to task T in slot u. We formally
define flow(T, u) below. For motivation, consider a task of weight 5/16. In any
valid schedule, each subtask of this task receives a share of one unit processor
time over its IS-window. In the ideal system, each subtask gets a share of 5/16
in each slot of its PF-window, except maybe the first and last slots of the
window. This is illustrated in Figure 8. Inset (a) shows the shares assigned
in each slot of the PF-window for a periodic task of weight 5/16, and inset
(b) shows the shares in each slot for an IS task of weight 5/16 in which some
subtasks are released late. Note that the shares for each subtask sum to one
(e.g., 5/16 + 5/16 + 5/16 + 1/16 = 1 for the first subtask). Also, note that
the share in each slot is at most 5/16, the weight of the task. For the periodic
task, the share in each slot is exactly 5/16, whereas for the IS task, it may
be less (see slot 3 in inset (b)). In the flow network, each subtask has flows
corresponding to these shares.

Formally, flow(T, u) is defined in terms of a function f , which indicates the
share assigned to each subtask Ti in each slot u. The function f is defined as
follows.

f(Ti, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(⌊
i−1

wt(T )

⌋
+ 1

)
· wt(T ) − (i − 1), u = r(Ti)

i −
(⌈

i
wt(T )

⌉
− 1

)
· wt(T ), u = d(Ti) − 1

wt(T ), r(Ti)+1 ≤ u ≤ d(Ti)−2

0, otherwise.

(13)

For example, consider the last slot of the second subtask in Figure 8(b) and
also the first slot of the third subtask. f(T2, d(T2)) = f(T2, 8), which by (13)

equals 2 − (
⌈

2
5/16

⌉
− 1) · (5/16) = 2/16, as shown in the figure. Similarly,

f(T3, r(T3)) = f(T3, 8), which by (13) equals (
⌊

2
5/16

⌋
+ 1) · (5/16) − (3 − 1) =

3/16. Note that these two flows sum to 5/16, the weight of the task.

The function flow(T, u) is defined as flow(T, u) =
∑

i f(Ti, u). The following
properties about flows are used in our proof. (We only prove (F1) here to give
a flavor of the proof technique used. The other properties are proved in an
appendix.)
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Fig. 8. Fluid schedule for a task T of weight 5/16. The share of each subtask in the
slots of its window is shown. In (a), no subtask is released late; in (b), T2 and T5

are released late. Note that flow(T, 3) is either 5/16 or 1/16 depending on when
subtask T2 is released.

(F1) For all time slots t, flow(T, t) ≤ wt(T ).

Proof: We first show that f(Ti, t) ≤ wt(T ). This follows directly from (13)
if t /∈ {r(Ti), d(Ti) − 1)}. If t = r(Ti), then

f(Ti) =
(⌊

i − 1
wt(T )

⌋
+ 1

)
× wt(T ) − (i − 1) , by (13)

≤
(

i − 1

wt(T )
+ 1

)
× wt(T ) − (i − 1) , �x� ≤ x

= wt(T ) , by simplification

If t = d(Ti) − 1, then

f(Ti) = i −
(⌈

i
wt(T )

⌉
− 1

)
× wt(T ) , by (13)

≤ i −
(

i

wt(T )
− 1

)
× wt(T ) , �x� ≥ x

= wt(T ) , by simplification

We now only need to consider the time slot in which two consecutive PF-
windows overlap. That is the case when d(Ti)−1 = r(Ti+1) for some i. In this
case, the total flow is f(Ti, d(Ti)−1) + f(Ti+1, r(Ti+1)). Thus, flow(T, d(Ti)−
1) is i −

(⌈
i

wt(T )

⌉
− 1

)
× wt(T ) +

(⌊
i

wt(T )

⌋
+ 1

)
× wt(T ) − i, which
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simplifies to
(⌊

i
wt(T )

⌋
−

⌈
i

wt(T )

⌉
+ 2

)
×wt(T ). Since d(Ti)− 1 = r(Ti+1),

by (4) and (5), it follows that θ(Ti) = θ(Ti+1) and
⌈

i
wt(T )

⌉
− 1 =

⌊
i

wt(T )

⌋
.

Therefore,
⌊

i
wt(T )

⌋
−

⌈
i

wt(T )

⌉
= −1. Hence, flow(T, d(Ti) − 1) = wt(T ).

Thus, in all cases, we have flow(T, t) ≤ wt(T ). �

(F2) Let Ti be a subtask of a GIS task and let Tk be its successor. If b(Ti) =
1 and r(Tk) ≥ d(Ti), then flow(T, d(Ti) − 1) + flow(T, d(Ti)) ≤ wt(T ).
(For example, in Figure 8(b), flow(T, 3) + flow(T, 4) = 1/16 < 5/16 and
flow(T, 14) + flow(T, 15) = 5/16.)

(F3) Let Ti be a subtask of a heavy GIS task T such that b(Ti) = 1 and let
Tk be the successor of Ti. If u ∈ {d(Ti), . . . , D(Ti)− 1} and u ≤ r(Tk), then
flow(T, d(Ti)) + flow(T, u) ≤ wt(T ). (This is an extension of (F2) to heavy
tasks.)

From (11) and (12), we get

lag(T, t + 1) =
t∑

u=0

(flow(T, u) − S(T, u)) (14)

= lag(T, t) + flow(T, t) − S(T, t).

Similar to the notion of lag for tasks, we can define the total lag of a task
system. The total lag for a schedule S and task system τ at time t+1, denoted
by LAG(τ, t + 1), is defined as follows.

LAG(τ , t + 1) = LAG(τ , t) +
∑
T∈τ

(flow(T, t) − S(T, t)) (15)

LAG(τ, 0) is defined to be 0. Note that the definitions of lag and LAG do not
make any assumptions about the validity of the corresponding schedule. The
lemma below is used in later proofs.

Lemma 4 If LAG(τ , t) < LAG(τ , t + 1), then there is a hole in slot t.

Proof. Let k be the number of subtasks scheduled in slot t. Then, by (15),
LAG(τ , t + 1) = LAG(τ , t)+

∑
T∈τ flow(T, t)−k. If LAG(τ , t) < LAG(τ , t + 1),

then k <
∑

T∈τ flow(T, t). Because flow(T, t) ≤ wt(T ) (by (F1)), we have∑
T∈τ flow(T, t) ≤ ∑

T∈τ wt(T ), which by (8) implies that
∑

T∈τ flow(T, t) ≤
M . Therefore, k < M , i.e., there is a hole in slot t. �
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4.3 Necessity of New Proof Techniques for IS Task Systems

Because periodic job releases represent a “worst-case” scenario for an IS task,
one may think that the optimality of PD2 for IS tasks follows as a simple
corollary from previous work. One proof technique that has been used in prior
work is a “swapping” argument wherein an arbitrary schedule is systematically
converted to one in accordance with PD2 by swapping subtasks that violate
the PD2 priority definition [5]. To ensure that multiple subtasks of the same
task are not scheduled at the same time, needed valid swappings may involve
many subtasks of many tasks. To do this correctly, it is crucial that at any
moment of time, future window alignments can be predicted. However, such
predictions cannot be made for IS task systems.

Another approach that has been often used with uniprocessor scheduling al-
gorithms is to reduce sporadic systems to periodic systems in the following
way. Consider a scheduling algorithm A that has been shown to be correct
for periodic tasks. Suppose that there exists a feasible sporadic task system τ
that misses a deadline at some time td when scheduled using A. Let S be the
corresponding schedule. We may assume that all jobs in S after td are released
in a periodic fashion, because such jobs have no impact on the deadline miss
at time td. Now, if we inductively “right-shift” all jobs released before time td
in S until there are no sporadic separations among jobs before td, then we get
a schedule S ′ that is in accordance with the periodic task model (see Figure
9(a)). Moreover, “right-shifting” such jobs in S can only increase demand near
time td. Thus, a deadline is missed at time td, a contradiction.

To see why this argument cannot be applied in Pfair-scheduled multiprocessor
systems, consider the situation shown in Figure 9(b). Here, subtask Ti is right-
shifted into slot t. Before the shift, subtask Uj was scheduled at t and some
processor was idle at t. After the shift, Uj has higher priority than Ti, so the
two are swapped in the schedule as a result of shifting Ti. Note that Uj being
scheduled at t makes Uj+1 ineligible at t. However, after Ti and Uj are swapped,
Uj+1 is eligible at t and thus it may left-shift into slot t. This may cause a
cascade of other left-shifts, which in turn can cause a presumed (future) missed
deadline to be met. The root of the problem here is that right-shifting certain
subtasks may in fact reduce demand in the future.

In the next subsection, we present a new, lag-based proof to establish the
optimality of PD2 for IS task systems.
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Fig. 9. The following notation is used in this figure. A right arrow over a window
corresponds to a right-shift of that window. A “dashed” window is used to depict
the window’s new position after the shift. Subtasks are denoted by rectangles. An
arrow over a subtask indicates the direction it is displaced as a result of a shift. Such
a subtask’s new position is indicated by a corresponding “dashed” rectangle. (a)
Starting with a sporadic task set that misses a deadline at td, we can right-shift all
windows towards td. Intuitively, we should get a periodic task system that misses a
deadline at td. (b) Unfortunately, right-shifting a window need not increase future
demand. Here, shifting Ti to the right by two slots decreases its priority and hence
subtask Uj , which was scheduled later at time t in the original schedule, may now
have higher priority. Note that at time t, a processor might be idle, in which case
Uj+1 can now be scheduled in that slot. This can cause a cascade of future left-shifts.
Thus, right-shifting a window can in fact decrease future demand.

4.4 Correctness Proof

We now show that PD2 correctly schedules any GIS task system. In particular,
we prove that the following assumption leads to a contradiction: PD2 misses
a deadline for some feasible GIS task system. This assumption implies the
existence of a time td and an instance of a task system τ as given by Definition 2
and Definition 3 below.
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Definition 2 td is the earliest time at which any task system instance misses
a deadline under PD2. �

Definition 3 τ is an instance of a task system with the following properties.

(T1) τ misses a deadline under PD2 at td.
(T2) No instance of any task system that satisfies (T1) releases fewer subtasks

in [0, td) than τ .
(T3) No instance of any task system that satisfies both (T1) and (T2) has a

larger rank than τ , where the rank of an instance is the sum of the eligibility
times of all subtasks with deadlines at most td. �

Existence of τ follows from the fact that (T1)–(T3) are applied in sequence;
e.g., τ is not claimed to be of maximal rank — rather, its rank is maximal
among those task system instances satisfying (T1) and (T2).

By (T1), (T2), and Definition 2, exactly one subtask in τ misses its deadline:
if several subtasks miss their deadlines, all but one can be removed and the
remaining subtask still misses its deadline, contradicting (T2).

In the rest of this proof, we use S to denote the PD2 schedule of τ . We now
prove several properties about τ and S.

Lemma 5 The following properties hold for τ and S.

(a) For all subtasks Ti in τ , e(Ti) ≥ min(r(Ti), t), where t is the time at
which Ti is scheduled in S. (Because e(Ti) ≤ r(Ti) and e(Ti) ≤ t, this
property actually implies e(Ti) = min(r(Ti), t).)

(b) Let t be the time at which Ti is scheduled and let Tk be Ti’s successor. If
either d(Ti) > t + 1 or d(Ti) = t + 1 ∧ b(Ti) = 0, then Tk is not eligible
before t + 1.

(c) For all Ti, d(Ti) ≤ td.
(d) There are no holes in slot td − 1.
(e) LAG(τ , td) = 1.
(f) LAG(τ , td − 1) ≥ 1.

Proof. Below, we prove each property separately.

Proof of (a): Suppose that e(Ti) < min(r(Ti), t). Consider the task system
instance τ ′ obtained from τ by changing e(Ti) to min(r(Ti), t). Note that e(Ti)
is still at most r(Ti) and τ ′’s rank is larger than τ ’s. τ ′ is feasible because the
feasibility proof produces a schedule in which each subtask is scheduled in its
PF-window (refer to Section 2.2).

Since PD2 priorities do not depend on eligibility times, it is easy to see that the
relative priorities of the subtasks do not change for any slot u ∈ {0, . . . , td−1}.
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Hence, τ ′ and τ have identical PD2 schedules. Thus, τ ′ misses a deadline at
td, contradicting (T3).

Proof of (b): By Claim 1, r(Tk) ≥ d(Ti) − 1. Therefore, if d(Ti) > t + 1 or
r(Tk) ≥ d(Ti+1), then r(Tk) ≥ t + 1. Further, since Ti is scheduled in [t, t + 1),
Tk is scheduled at or after time t + 1. Therefore, by part (a), e(Tk) ≥ t + 1.

We now consider the case when d(Ti) = t+1. Since b(Ti) = 0, by (9), it follows

that
⌊

i
wt(T )

⌋
=

⌈
i

wt(T )

⌉
. Therefore, by (4) – (6), r(Ti+1) ≥ d(Ti). Therefore,

r(Tj) ≥ t + 1, for all j > i. In particular, r(Tk) ≥ t + 1, where Tk is Ti’s
successor. As before, by part (a), it follows that e(Tk) ≥ t + 1.

Proof of (c): Suppose τ contains a subtask Uj with a deadline greater than
td. Since S is obtained using an EPDF-based scheduling algorithm, Uj can
be removed without affecting the scheduling of higher-priority subtasks with
earlier deadlines. Thus, a deadline is still missed at td after Uj’s removal. This
contradicts (T2).

Proof of (d): Let Uj be the subtask that misses its deadline at td in S. (Recall
that there is only one such subtask.) Because d(Uj) = td, d(Uk) ≤ td − 1,
where Uk is Uj’s predecessor (if it exists). By the minimality of td, Uk meets
its deadline and hence is scheduled before td − 1. Thus, if there is a hole in
slot td − 1, then Uj is scheduled there, in which case it meets its deadline.
Contradiction.

Proof of (e): By (15), we have

LAG(τ , td) =
td−1∑
t=0

∑
T∈τ

flow(T, t) −
td−1∑
t=0

∑
T∈τ

S(T, t).

The first term on the right-hand side of the above equation is the total share
in [0, td), which equals the total number of subtasks in τ . The second term
equals the number of subtasks scheduled in S over the interval [0, td). Since
exactly one subtask misses its deadline in S, the difference between these two
terms is 1, i.e., LAG(τ , td) = 1.

Proof of (f): By (d), there are no holes in slot td − 1. Hence, by Lemma 4,
LAG(τ , td − 1) ≥ LAG(τ , td). Therefore, by (e), LAG(τ , td − 1) ≥ 1. �

Because LAG(τ , 0) = 0, by part (f) of Lemma 5, there exists a time t (< td−1)
such that LAG(τ , t) < 1 and LAG(τ , t + 1) ≥ 1. Without loss of generality,
let t be the latest such time. Thus, we have the following.
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Fig. 10. Sets A, B, and I. The PF-windows of a sample task of each set are shown.
The PF-windows are denoted by line segments. An arrow over a release (respectively,
deadline) indicates that the release (respectively, deadline) could be anywhere in the
direction of the arrow.

0 ≤ t < td − 1 ∧ (LAG(τ , t) < 1) ∧ (LAG(τ , t + 1) ≥ 1)

∧ (u ∈ [t + 1, td] ⇒ LAG(τ, u) ≥ 1) (16)

(Note that the last inequality partly follows from parts (e) and (f) of Lemma 5.)
We now show that such a t cannot exist, thus contradicting our starting as-
sumption that td and τ exist.

By (16), we have

LAG(τ , t) < LAG(τ , t + 1). (17)

Hence, by Lemma 4, there is at least one hole in slot t. We now group the
tasks into sets A, B, and I (depending on how their subtask releases occur
around time t).

(1) A denotes the set of tasks that are scheduled in slot t.
(2) B denotes the set of tasks not in A that are “active” at t. A task U is said

to be active at time t if it has a subtask Uj such that e(Uj) ≤ t < d(Uj).
(A task may be inactive because of a late subtask release.)

(3) I denotes the set of the remaining tasks that are not active at time t.

Figure 10 shows how the tasks in A, B, and I are scheduled. Of these three
sets, set B is the most interesting. As we show below, every task in B must
have an IS separation in slot t. We use this to prove that LAG reduces below
one before time td.

We now prove several properties of set B, and we start by showing that B is
non-empty.

Lemma 6 |B| > 1.
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Proof. Let the number of the holes in slot t be h. Then,
∑

T∈τ S(T, t) =
M − h. By (15), LAG(τ , t + 1) = LAG(τ , t) +

∑
T∈τ (flow(T, t) − S(T, t)).

Thus, because LAG(τ , t) < LAG(τ , t + 1), we have
∑

T∈τ flow(T, t) > M − h.

For every V ∈ I, since either d(Vk) < t or r(Vk) > t holds, by (13), flow(V, t) =
0. It follows that

∑
T∈A∪B flow(T, t) > M−h. Thus, by (F1),

∑
T∈A∪B wt(T ) >

M − h.

Because the number of tasks scheduled in slot t is M−h, |A| = M−h. Because
wt(T ) ≤ 1 for any task T ,

∑
T∈A wt(T ) ≤ M − h. Thus,

∑
T∈B wt(T ) > 0.

Hence, B is not empty. �

In the proof of Lemmas 7, 8, and 10, we use the following technique to prove
the required result: if the required condition is not satisfied, then a subtask
can be removed without causing the missed deadline at td to be met, thus
contradicting (T2).

Lemma 7 Suppose there is a hole in slot u ∈ {0, . . . , td − 1}. Let U be a
task that is not scheduled in slot u, but is active at u. Further, let Uj be the
subtask with the largest index such that e(Uj) ≤ u < d(Uj). Then, d(Uj) =
u + 1 ∧ b(Uj) = 1.

Proof. Because there is a hole in slot u and no subtask of U is scheduled at
time u, and because e(Uj) ≤ t < d(Uj), Uj is scheduled before time u. Because
u < td, by Definition 2, Uj meets its deadline. From the lemma statement, we
have d(Uj) ≥ u + 1. Suppose that the following holds.

d(Uj) > u + 1 or d(Uj) = u + 1 ∧ b(Uj) = 0 (18)

Under these assumptions, we show that Uj can be removed and a deadline is
still missed at td, contradicting (T2).

Let the chain of displacements caused by removing Uj be ∆1, ∆2, . . . , ∆k,
where ∆i = 〈X(i), ti, X(i+1), ti+1〉 and X(1) = Uj. By Lemma 1, ti+1 > ti for
1 ≤ i ≤ k.

Note that at slot ti, the priority of subtask X(i) is at least that of X(i+1),
because X(i) was chosen over X(i+1) in S. Thus, because X(1) = Uj, by (18),
for each subtask X(i), 1 ≤ i ≤ k + 1, either d(X(i)) > u + 1 or d(X(i)) =
u + 1 ∧ b(X(i)) = 0. Therefore, by part (b) of Lemma 5, the following
property holds.

(E) The eligibility time of the successor of X(i) (if it exists in τ) is at least
u + 1 for all i ∈ {1, . . . , k + 1}.
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Fig. 11. (a) Lemma 7. IS-windows are denoted by line segments. X(h) must be the
successor of X(h−1) because there is a hole in slot u. (b) Lemma 8. If there is a hole
in both slots t and t + 1, then X(h−2) and X(h−1) must be scheduled at t and t + 1
in S, respectively. Also, X(h) must be the successor of X(h−1), which in turn, must
be the successor of X(h−2).

We now show that the displacements do not extend beyond slot u. Assume, to
the contrary, that tk+1 > u. Consider h ∈ {2, . . . , k + 1} such that th > u and
th−1 ≤ u, as depicted in Figure 11(a). Such an h exists because t1 < u < tk+1.
Because there is a hole in slot u and th−1 ≤ u < th, by Lemma 3, th−1 = u
and X(h) must be X(h−1)’s successor. Therefore, by (E), e(X(h)) ≥ u+1. This
implies that ∆h−1 is not valid.

Thus, the displacements do not extend beyond slot u, implying that no subtask
scheduled after u is left-shifted. Hence, a deadline is still missed at time td,
contradicting (T2). Therefore, we have d(Uj) = u + 1 ∧ b(Uj) = 1. �

The following corollary directly follows by applying Lemma 7 to slot t and
tasks in set B.

Corollary 1 Let U be any task in B. Let Uj be the subtask with the largest
index such that e(Uj) ≤ t < d(Uj). Then, d(Uj) = t + 1 ∧ b(Uj) = 1.

We now consider two separate cases depending on whether B contains a light
task.

4.4.1 At Least One Task in B is Light

The following property (proved in the appendix) is used in the proof of
Lemma 8.

(L) For a light task T , if Tk is the successor of Ti, then d(Tk) ≥ d(Ti) + 2.

Lemma 8 If B has at least one light task, then there is no hole in slot t + 1.
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Proof. By (16), t < td − 1, and therefore, t + 1 ≤ td − 1. Suppose that there
is a hole in slot t + 1. By part (d) of Lemma 5, t + 1 < td − 1, i.e.,

t + 2 ≤ td − 1. (19)

Let U be a light task in B and let Uj be the subtask of U with the largest
index such that e(Uj) ≤ t < d(Uj). Our approach is the same as in the
proof of Lemma 7. Let the chain of displacements caused by removing Uj be
∆1, ∆2, . . . , ∆k, where ∆i = 〈X(i), ti, X(i+1), ti+1〉 and X(1) = Uj. By Lemma 1,
we have ti+1 > ti for all i ∈ [1, k]. Also, the priority of X(i) is at least that of
X(i+1) at ti, because X(i) was chosen over X(i+1) in S. Because U is light and
d(Uj) = t + 1 ∧ b(Uj) = 1 (by Corollary 1), this implies the following.

(P) For all i ∈ {1, . . . , k +1}, either (i) d(X(i)) > t+1 or (ii) d(X(i)) = t+1
and X(i) is the subtask of a light task.

Suppose the chain of displacements extends beyond t + 1, i.e., tk+1 > t + 1.
Consider h ∈ {1, . . . , k+1} such that th > t+1 and th−1 ≤ t+1. Because there
is a hole in slot t+1 and th−1 ≤ t+1 < th, by Lemma 3, th−1 = t+1 and X(h)

is the successor of X(h−1). Similarly, because there is a hole in slot t, th−2 = t
and X(h−1) is the successor of X(h−2). This is illustrated in Figure 11(b).

By (P), either d(X(h−2)) > t + 1 or d(X(h−2)) = t + 1 and X(h−2) is the
subtask of a light task. In either case, d(X(h−1)) > t+2. To see why, note that
if d(X(h−2)) > t + 1, then because X(h−1) is the successor of X(h−2), by (5),
d(X(h−1)) > t + 2. On the other hand, if d(X(h−2)) = t + 1 and X(h−2) is the
subtask of a light task, then, by (L), d(X(h−1)) > t + 2.

Now, because X(h−1) is scheduled at t + 1, and d(X(h−1)) > t + 2, by part
(b) of Lemma 5, the successor of X(h−1) is not eligible before t + 2, i.e.,
e(X(h)) ≥ t + 2. This implies that the displacement ∆h−1 is not valid. Thus,
the chain of displacements cannot extend beyond time t + 2. Hence, because
t + 2 ≤ td − 1 (by (19)), removing Uj cannot cause a missed deadline at td to
be met. This contradicts (T2). Hence, there is no hole in slot t + 1. �

Lemma 9 If B has at least one light task, then LAG(τ , t + 2) < 1.

Proof. Let the number of holes in slot t be h. We now derive some properties
about the flow values in slots t and t + 1.

By the definition of I, only tasks in A ∪ B are active at time t. Therefore,∑
T∈τ flow(T, t) =

∑
T∈A∪B flow(T, t). Since wt(T ) ≤ 1 for any T , we have∑

T∈A wt(T ) ≤ |A|. Thus, by (F1),
∑

T∈A flow(T, t) ≤ |A|. Now, because there
are h holes in slot t, M − h tasks are scheduled at t, i.e., |A| = M − h. Thus,
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∑
T∈A flow(T, t) ≤ M − h and

∑
T∈τ

flow(T, t) ≤ M − h +
∑
T∈B

flow(T, t). (20)

Consider U ∈ B. Let Uj be the subtask of U with the largest index such that
e(Uj) ≤ t < d(Uj). Let C denote the set of such subtasks for all tasks in B.
Then, by Corollary 1,

for all Uj ∈ C, d(Uj) = t + 1 ∧ b(Uj) = 1. (21)

Let A′ denote the tasks in A that are active at time t + 1. Similarly, let I ′

denote the tasks in I that are active at time t+1. Then, the set of active tasks
at time t + 1 is A′ ∪ I ′ ∪ B. Thus, because τ is feasible,

∑
T∈A′∪I′∪B

wt(T ) ≤ M. (22)

Also,
∑

T∈τ flow(T, t + 1) =
∑

T∈A′∪I′∪B flow(T, t + 1). By (F1), this implies
that

∑
T∈τ flow(T, t + 1) ≤ ∑

T∈A′∪I′ wt(T ) +
∑

T∈B flow(T, t + 1). Thus, by
(20),

∑
T∈τ

(flow(T, t) + flow(T, t + 1))≤M − h +
∑

T∈A′∪I′
wt(T ) (23)

+
∑
T∈B

(flow(T, t) + flow(T, t + 1))

Consider Uj ∈ C (hence, U ∈ B). Let Uk denote the successor of Uj. Since Uj

is the subtask with the largest index such that e(Uj) ≤ t < d(Uj), we have
e(Uk) ≥ t+1. Hence, by Lemma 5(a), r(Uk) ≥ t+1. By (21), we have d(Uj) =
t + 1 and b(Uj) = 1. Therefore, by (F2), flow(U, t) + flow(U, t + 1) ≤ wt(U)
for each U ∈ B. By (23), this implies that

∑
T∈τ (flow(T, t) + flow(T, t + 1)) ≤

M − h +
∑

T∈A′∪I′∪B wt(T ). Thus, from (22), it follows that

∑
T∈τ

(flow(T, t) + flow(T, t + 1)) ≤ M − h + M. (24)

By the statement of the lemma, B contains at least one light task. Therefore,
by Lemma 8, there is no hole in slot t + 1. Since there are h holes in slot t, we
have

∑
T∈τ (S(T, t) + S(T, t + 1)) = M − h + M .

Hence, by (24),
∑

T∈τ (flow(T, t) + flow(T, t + 1)) ≤ ∑
T∈τ (S(T, t) + S(T, t +

1)). Using this relation in the identity (obtained from (15)), LAG(τ , t + 2) =
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LAG(τ , t) +
∑

T∈τ (flow(T, t) + flow(T, t + 1)) − ∑
T∈τ (S(T, t) + S(T, t + 1)),

and the fact that LAG(τ , t) < 1, we obtain LAG(τ , t + 2) < 1. �

4.4.2 All Tasks in B are Heavy.

We now extend Lemmas 8 and 9 to the case in which B consists solely of
heavy tasks. The following lemma is the counterpart of Lemma 8.

Lemma 10 Let U be a heavy task in B and let Uj be the subtask of U with
the largest index such that e(Uj) ≤ t < d(Uj). Then, there exists a slot with
no holes in [d(Uj),min(D(Uj), td)).

Proof. By Corollary 1, d(Uj) = t + 1 ∧ b(Uj) = 1. By (16), t < td − 1.
Therefore d(Uj) ≤ td−1. If min(D(Uj), td) = td, then by part (f) of Lemma 5,
slot td − 1 satisfies the stated requirement. In the rest of the proof, assume
that D(Uj) < td. Let v = D(Uj). Since b(Uj) = 1, by the definition of D,
D(Uj) > d(Uj), i.e.,

t + 1 < v. (25)

Suppose that the following property holds.

(H) There is a hole in slot u for all u ∈ {t, . . . , v − 1}.

Given (H), we show that removing Uj does not cause the missed deadline to
be met, contradicting (T2). Let ∆1, ∆2, . . . , ∆k be the chain of displacements
caused by removing Uj, where ∆i = 〈X(i), ti, X

(i+1), ti+1〉, X(1) = Uj, and t1 is
the slot in which Uj is scheduled. By Lemma 1, ti+1 > ti for all i ∈ {1, . . . , k−
1}. Also, the priority of X(i) is at least that of X(i+1) at ti, because X(i) was
chosen over X(i+1) at ti in S. Thus, by Corollary 1, for all i ∈ {2, . . . , k + 1},
one of the following holds:

(a) d(X(i)) > t + 1,
(b) d(X(i)) = t + 1 ∧ b(X(i)) = 0, or
(c) d(X(i)) = t + 1 ∧ b(X(i)) = 1 ∧ D(X(i)) ≤ v.

We now show that the displacements do not extend beyond slot v − 1 (which
implies that Uj can be removed without causing the missed deadline to be
met). Suppose, to the contrary, they do extend beyond slot v − 1, i.e., tk+1 >
v − 1.

Let tg be the largest ti such that ti < t and let th be the smallest ti such that
ti > v− 1. (Note that such a tg exists because t1 < t.) Then, by (H), there are
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holes in all slots in [tg+1, th−1]. Thus, by Lemma 3,

for all i ∈ [g+1, h−1], X(i+1) is the successor of X(i). (26)

Note that since ∆i is valid, we have e(X(i+1)) ≤ ti. Hence, for any i ∈ {g +
1, . . . , h−2}, since there are holes in the interval [ti, ti+1), we have ti+1 ≤ ti+1.
(Otherwise, X(i+1) would have been scheduled before ti+1.) By Lemma 1, we
have ti+1 = ti + 1.

Also, because there are holes in the interval [t, tg+1) (by (H)) and tg < t, we
have tg+1 = t. Similarly, th−1 = v − 1. (Otherwise, X(h) is scheduled at or
before v − 1.) Thus, we have the following.

tg+1 = t ∧ th−1 = v − 1 (27)

for all i ∈ {g + 1, . . . , h − 1}, ti = t + i − (g + 1) (28)

Earlier, we showed that one of (a) – (c) holds for all i ∈ [2, k + 1]. If either
d(X(g+1)) > t + 1 or d(X(g+1)) = t + 1 ∧ b(X(g+1)) = 0, then since X(g+1) is
scheduled at t, by Lemma 5, part (b), e(X(g+2)) ≥ t + 1 (recall that, by (26),
X(g+2) is the successor of X(g+1)). In other words, the displacement ∆g is not
valid. Therefore,

d(X(g+1)) = t + 1 ∧ b(X(g+1)) = 1 ∧ D(X(g+1)) ≤ v. (29)

We now consider two cases. In each, we show that the displacements do not
extend beyond v − 1, as desired.

Case 1: X(g+1) is the subtask of a light task. By (25), t + 1 ≤ v − 1 and
hence, by (H), there is a hole in both t and t + 1. Also, by (27) and (28), we
have v− 1 = t + (h− 1)− (g + 1) = t + h− g− 2. Because t < v− 1 (by (25)),
we have h > g + 2, i.e.,

h ≥ g + 3.

Because X(g+1) is the subtask of a light task, the reasoning used in the proof
of Lemma 8 applies. Thus, the displacement ∆g+2 is not valid. Hence, the
displacements do not extend beyond slot t + 1 (and hence, slot v − 1).

Case 2: X(g+1) is the subtask of a heavy task. Let v′ = D(X(g+1)). By
(29), v′ ≤ v. We now show that the displacements cannot extend beyond slot
v′ − 1 (and hence, slot v − 1). By (28), X(i) is scheduled in slot t + i− (g + 1)
in S for all i ∈ {g + 1, . . . , h − 1}. By (26), all X(i) where g + 1 ≤ i ≤ h
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Fig. 12. Lemma 10. (a) There are holes in all slots in [u, v]. X(i) scheduled at ti
displaces X(i−1) scheduled at ti−1. Also, by (28), the ti’s are consecutive and satisfy
ti = u + i − (g + 1). Further, X(h−1) is the subtask scheduled in slot v. (b) Case
2. D(X(g+1)) = v′. Hence, either d(X(v′−u+g+1)) = v′ ∧ b(X(v′−u+g+1)) = 0 (as
depicted) or d(X(v′−u+g+1)) > v′.

are subtasks of the same heavy task. We now show that the displacement
∆v′−1−t+(g+1)(= ∆v′−t+g) is not valid. Let w = v′ − t + g.

By (28), tw = v′ − 1. Because X(i) is scheduled at ti, the subtask scheduled at
v′−1 is X(w). Since X(i+1) is the successor of X(i), by (5), d(X(i)) > d(X(i−1))
for all i ∈ [g + 2, w]. Because d(X(g+1)) = t + 1 (by (29)),

for all i ∈ {g + 1, . . . , w}, d(X(i)) ≥ t + i − g. (30)

In particular, d(X(w)) ≥ v′.

We now show that if d(X(w)) = v′, then b(X(w)) = 0. In this case, because
d(X(w−1)) < d(X(w)), we have d(X(w−1)) < v′. By (30), d(X(w−1)) ≥ v′ − 1.
Therefore, d(X(w−1)) = v′ − 1. Similarly, by induction, d(X(i)) = t + i − g for
all i ∈ {g + 1, . . . , w}. (Refer to Figure 12(b).) Because D(X(g+1)) = v′ and
d(X(v′−u+g+1)) = v′, by the definition of D, b(X(v′−u+g+1)) = 0. (In this case,
the group deadline corresponds to the last slot of a window of length two.)
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Thus, either d(X(w)) > v′ or d(X(w)) = v′ ∧ b(X(w)) = 0. Since X(w) is
scheduled at v′− 1, by Lemma 5, part (b), the eligibility time of the successor
of X(w) is at least v′. Hence, ∆w is not valid. Thus, the displacements do not
extend beyond slot v′ − 1. �

Lemma 11 below extends Lemma 9 by allowing B to consist solely of heavy
tasks. The following claims are used in its proof.

Claim 2 If Uj is scheduled in slot u, where 0 ≤ u < td and u < d(Uj), and if
there is a hole in slot u, then d(Uj) = u + 1.

Proof. Because u < td, by Definition 2, no deadline is missed in [0, u + 1).
Because Uj is scheduled in slot u, i.e., [u, u + 1), we have d(Uj) ≥ u + 1.
Suppose that d(Uj) > u + 1. Then, by part (b) of Lemma 5, the successor
of Uj (if it exists) is not eligible before u + 1. Hence, by Lemma 2, we can
remove Uj and no displacements will result, i.e., a deadline is still missed at
td, contradicting (T2). Therefore, d(Uj) = u + 1. �

Claim 3 Suppose there is a hole in slot u ∈ {0, . . . , td−1}. Let Uj be a subtask
scheduled at t′ ≤ u. If the eligibility time of the successor of Uj is at least u+1,
then d(Uj) ≤ u + 1.

Proof. If t′ = u, then clearly u < d(Uj) and hence by Claim 2, d(Uj) = u+1.
On the other hand, if t′ < u and d(Uj) > u, then we have e(Uj) ≤ u < d(Uj).
In this case, Lemma 7 implies that d(Uj) = u + 1. Thus, d(Uj) ≤ u + 1. �

Lemma 11 There exists v ∈ {t + 2, . . . , td} such that LAG(τ , v) < 1.

Proof. Because LAG(τ , t) < 1 and LAG(τ , t + 1) ≥ 1 (by (16)),

LAG(τ , t) < LAG(τ , t + 1). (31)

Thus, by Lemma 4, we have the following property.

(H) There is at least one hole in slot t.

Let A,B, and I be as defined in the proof of Lemma 9. If any task in B is light,
then by Lemma 9, LAG(τ , t + 2) ≤ 0, which establishes our proof obligation.
We henceforth assume all tasks in B are heavy.

Let U be any task in B. Let Uj be the subtask with the largest index such
that e(Uj) ≤ t < d(Uj). Let C denote the set of such subtasks of all tasks in
B. Then, by Corollary 1,

for all Uj ∈ C, d(Uj) = t + 1 ∧ b(Uj) = 1. (32)
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Fig. 13. Lemma 11. Uj is the critical subtask of a task in A and Uk is the successor
of Uj . There is a hole in each slot in [t, u − 1] and there is no hole in slot u. The
earliest time at which Uk’s PF-window starts is u, i.e., r(Uk) ≥ u.

Let Li be the lowest-priority subtask in C. Then,

for all Uj ∈ C, d(Uj)= t + 1 ∧ b(Uj) = 1 ∧ D(Uj)≥D(Li). (33)

By Lemma 10, there is a slot in [t,min(D(Li), td)) with no hole. Let u be as
follows.

(U) u is the earliest slot in [t,min(D(Li), td)) with no hole.

Figure 13 depicts this situation. By (U) and (H),

u ≥ t + 1, (34)

and there are holes in all slots in {t, . . . , u−1}. We now establish the following
property about tasks in B.

Claim 4 All tasks in B are inactive over the interval [t + 1, u).

Proof of Claim: If the interval [t + 1, u) is empty, then the claim is vacu-
ously true, so assume it is nonempty. Let V be any task in B. We first show
that no subtask of V is scheduled in [t, u).

Note that because V ∈ B, no subtask of V is scheduled in slot t. Let Vi be
the earliest subtask of V scheduled in [t+1, u) and let v be the slot in which
it is scheduled. Because there is a hole in slot v, by Claim 2, d(Vi) = v + 1.
By (4) and (5), this implies that r(Vi) ≤ v. If r(Vi) < v, then e(Vi) < v.
Thus, because there are holes in all slots in {t, . . . , v − 1}, Vi should have
been scheduled earlier. Therefore, r(Vi) = v, which implies that wt(V ) = 1.
However, this contradicts the fact that some subtask of V has a b-bit of
1 (by (32)). Hence, no subtask of any task in B is scheduled in [t, u) (see
Figure 13). Moreover, because there are holes in all slots in [t, u), the earliest
slot after t at which a subtask of a task in B is eligible to be scheduled is u.
By (32), this implies that all the tasks in B are inactive in [t + 1, u − 1]. �

Let Uj be any subtask in C, and let Uk be the successor of Uj. By Claim 4,
r(Uk) ≥ u. Furthermore, by (32) – (34) and (U), d(Uj) = t + 1 ≤ u < D(Uj).
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Hence, by (F3), flow(U, t)+flow(U, u) ≤ wt(U). Because this argument applies
to all tasks in B, we have

for all U ∈ B, flow(U, t) + flow(U, u) ≤ wt(U). (35)

We now show that LAG is non-increasing over [t + 1, u).

Claim 5 LAG(τ , v + 1) ≤ LAG(τ , v) for all v ∈ {t + 1, . . . u − 1},

Proof of Claim: If {t + 1, . . . , u} is empty, then the claim is vacuously
true, so assume it is nonempty. Suppose for some v ∈ {t + 1, . . . , u − 1},
LAG(τ , v + 1) > LAG(τ , v). Then, by Lemma 6, there exists a task that is
active at v but not scheduled at v. Let V be one such task and let Vk be
the subtask with the largest index such that

e(Vk) ≤ v < d(Vk). (36)

Because no subtask of V is scheduled at v and because there is a hole at
v, Vk is scheduled before v. By (U), there is a hole at v − 1; moreover,
because t + 1 ≤ v ≤ u− 1, we have v − 1 ∈ {t, . . . , u− 2} ⊆ {0, . . . , td − 1}.
Hence, by Claim 3, we have d(Vk) ≤ v, which contradicts (36). Therefore,
LAG(τ , v + 1) ≤ LAG(τ , v) for all v ∈ {t + 1, . . . , u − 1}. �

We now show that LAG(τ , u + 1) ≤ 0, which establishes our proof obligation.

For each v ∈ {t, . . . , u}, let Hv denote the number of holes in slot v. Then,
M − Hv tasks are scheduled in slot v. Also, let Iv (Av) denote the tasks in I
(A) that are active at v.

By (15) and Claim 5,
∑

T∈τ flow(T, v) ≤ ∑
T∈τ S(T, v). Therefore,

for all v ∈ {t + 1, . . . , u − 1}, ∑
T∈τ

flow(T, v) ≤ M − Hv. (37)

Because τ is feasible, by (8), we have
∑

T∈B∪Iu∪Au
wt(T ) ≤ M . Hence, by (35)

and (F1), we get
∑

T∈B(flow(T, t) + flow(T, u)) +
∑

T∈Iu∪Au
flow(T, u) ≤ M .

Thus,∑
T∈B

flow(T, t) +
∑

T∈B∪Iu∪Au

flow(T, u) ≤ M. (38)

Because the tasks in A(= At) are the ones scheduled in slot t, the number of
tasks in set At is M −Ht. Hence, by (F1) and because the weight of each task
is at most one,∑

T∈At

flow(T, t) ≤ ∑
T∈At

wt(T ) ≤ M − Ht. (39)
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We are now ready to show that LAG(τ , u + 1) ≤ 0. Because S(T, v) = M−Hv,
by (15), LAG(τ , u + 1)−LAG(τ , t) = R, where R =

∑u
v=t (

∑
T∈τ flow(T, v))−∑u

v=t(M −Hv). By (U), there are no holes in slot u, hence, Hu = 0. Therefore,

R =
u∑

v=t

(∑
T∈τ

flow(T, v)

)
−

u−1∑
v=t

(M − Hv) − M. (40)

The right-hand side of (40) can be rewritten as follows.

∑
T∈τ

(flow(T, t) + flow(T, u)) − (M − Ht) − M

+
u−1∑

v=t+1

(∑
T∈τ

flow(T, v) − (M − Hv)

)

Rearranging terms, and using
∑

T∈I flow(T, t) = 0 (which follows by the defi-
nition of I), we get

∑
T∈B

flow(T, t) +
∑

T∈B∪Iu∪Au

flow(T, u) − M +
∑

T∈At

flow(T, t) − (M − Ht)

+
u−1∑

v=t+1

(∑
T∈τ

flow(T, v) − (M − Hv)

)
.

By (37) – (39), the above value is non-positive. Hence, by (40), LAG(τ , u + 1)−
LAG(τ , t) ≤ 0. Because LAG(τ , t) < 1, this implies that LAG(τ , u + 1) < 1.

By (U) and (34), t + 1 ≤ u ≤ min(D(Uj), td) − 1. Hence, t + 2 ≤ u + 1 ≤ td.
Thus, there exists a v ∈ {t + 2, . . . , td} such that LAG(τ , v) < 1. �

Recall our assumption that t is the latest time such that LAG(τ, t) < 1 and
LAG(τ, t + 1) ≥ 1. Because t ≤ td − 2 (by (16)), we have t + 2 ≤ td. By
Lemma 11, LAG(τ , v) ≤ 0 for some v ∈ {t+2, . . . , td}. By Lemma 5, parts (e)
and (f), v cannot be td or td − 1. Thus, v ≤ td − 2. Because LAG(τ , td) ≥ 1,
this contradicts the maximality of t. Therefore, td and τ as defined cannot
exist. Thus, we have the following.

Theorem 1 PD2 correctly schedules any feasible GIS task system.

The following corollaries are immediate.

Corollary 2 PD2 is optimal for scheduling IS task systems on multiproces-
sors.

Corollary 3 PD2 is optimal for scheduling sporadic task systems on multi-
processors.
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5 Concluding Remarks

In this paper, we have shown that PD2, the most efficient optimal Pfair
scheduling algorithm proposed to date, correctly schedules any feasible IS
or GIS task system on M processors. This paper is the first to show that IS,
GIS, or sporadic tasks can be optimally scheduled on systems of more than
two processors.

Two key insights led to our proof: the development of a notion of lag for GIS
systems that can be used to sufficiently predict where holes exist in a schedule,
and the identification of certain minimality conditions (Definitions 2 and 3)
that facilitate the reasoning. It is these notions that distinguish our proof from
previous proofs for Pfair/ERfair scheduling algorithms. Since the presentation
of this work as a conference paper [18], the proof techniques of this paper
have been used in work involving various Pfair-like scheduling algorithms and
task models. In particular, these techniques have been used to establish the
correctness of algorithms for systems with soft real-time tasks that require only
bounded deadline tardiness [11,13,12,19], for dynamic systems that permit
tasks to leave and join at runtime [20], and for systems where task weights
can be changed dynamically [2,8].

The IS task model incorporates a very flexible notion of a rate. Indeed, as
shown herein, the resulting multiprocessor execution model has many char-
acteristics in common with the uniprocessor rate-based execution model pro-
posed by Jeffay and Goddard [14]. The IS task model also generalizes the
model considered in our prior work on scheduling mixed early-release/non-
early-release periodic task systems [5].

The rate-based properties of PD2 make it potentially useful in several appli-
cation domains. One such application (potentially) is the scheduling of rate-
based packet flows in wave-division-multiplexing (WDM) networks. In WDM
networks, optical multiplexing techniques are used to send multiple packets
over the same link in parallel. In a similar vein, PD2 can be used to solve the
parallel switching problem in ATM networks mentioned in [1]. Also, as noted
earlier, PD2 might be useful in multiprocessor real-time applications that have
processing steps that are triggered by messages sent over a network.

The fairness properties of PD2 also make it useful for multiplexing
independently-authored applications on the same system. This is because such
algorithms ensure temporal isolation among applications (no “misbehaving”
application can execute faster than its proscribed rate, unless there is spare
processing capacity). This observation led researchers at the University of
Massachusetts and Ensim Corp. to investigate the use of fair scheduling al-
gorithms on multiprocessor servers for commercial web-hosting sites [9,10].
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However, this prior investigation was entirely empirical in nature. In this pa-
per, we have given the first ever general optimality proof for a multiprocessor
rate-based scheduling algorithm that provides fairness guarantees. As noted
above, the techniques used in our proof are not unique to PD2 and have been
applied to other rate-based and fair scheduling algorithms as well.

Acknowledgement: We are grateful to Uma Devi and Phil Holman for their
comments on earlier drafts of this paper.

A Properties about Flows for IS and GIS Tasks

We now prove properties (F2) and (F3) of GIS tasks that are used in the
proofs in Section 4. We establish (F2) and (F3) by deriving several other
useful properties about GIS and IS tasks. With the exception of (B3) (which
applies only to IS tasks), all the properties below hold for GIS tasks.

(L) For a light task T , if Tk is the successor of Ti, then d(Tk) ≥ d(Ti) + 2.

Proof. Because Tk is Ti’s successor, k ≥ i+1. Hence, d(Tk) ≥ θ(Tk)+
⌈

i + 1
wt(T )

⌉
.

By (6), d(Tk) ≥ θ(Ti)+
⌈

i + 1
wt(T )

⌉
. Therefore, by (5), d(Tk)−d(Ti) ≥

⌈
i + 1
wt(T )

⌉
−⌈

i
wt(T )

⌉
. Thus,

d(Tk) − d(Ti)≥ i + 1
wt(T )

−
⌈

i
wt(T )

⌉
, �x� ≥ x

> i + 1
wt(T )

− i
wt(T )

− 1 , �x� < x + 1

= 1
wt(T )

− 1 , by simplification

> 2 − 1 , wt(T ) < 1/2 ⇒ 1
wt(T )

> 2

Therefore, d(Tk) > d(Ti) + 1, i.e., d(Tk) ≥ d(Ti) + 2. �

(B1) Let Ti be a subtask with b(Ti) = 1. If Ti+1 exists, then f(Ti, d(Ti)− 1)+
f(Ti+1, r(Ti+1)) = wt(T ).

Proof. By (13), f(Ti, d(Ti) − 1) = i −
(⌈

i
wt(T )

⌉
− 1

)
× wt(T ), and

f(Ti+1, r(Ti+1)) =
(⌊

i
wt(T )

⌋
+ 1

)
× wt(T ) − i. Since b(Ti) = 1, by (9),⌈

i
wt(T )

⌉
=

⌊
i

wt(T )

⌋
+ 1. Hence, f(Ti+1, r(Ti+1)) =

⌈
i

wt(T )

⌉
× wt(T ) − i.
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Therefore, f(Ti, d(Ti)) + f(Ti+1, r(Ti+1)) = wt(T ). (See Figure 8.) �

(B2) Let Ti be a subtask such that b(Ti) = 1. If Ti+1 exists and is released
late, i.e., r(Ti+1) ≥ d(Ti), then flow(T, d(Ti) − 1) + flow(T, d(Ti)) ≤ wt(T ).

Proof. Because Ti+1 is released late, by (7), we have r(Ti+1) ≥ d(Ti). By (4)
and (5), it follows that r(Tk) > d(Ti) for all k > i+1. Similarly, d(Tj) < d(Ti)
for all j < i. This implies that the slot d(Ti) − 1 lies within the PF-window
of only one subtask, namely, Ti, and the slot d(Ti) can lie within the PF-
window of only one subtask, namely, Ti+1. Thus, the contribution to the flow
in slot d(Ti)−1 is f(Ti, d(Ti)−1) and the contribution to slot d(Ti) is at most
f(Ti+1, r(Ti+1)). Hence, by (B1), flow(T, d(Ti) − 1) + flow(T, d(Ti)) ≤ wt(T ).

�

(B3) If Ti and Tk are subtasks of an IS heavy task T such that k > i and
r(Tk) < D(Ti), then f(Ti, d(Ti) − 1) + f(Tk, r(Tk)) ≤ wt(T ).

Proof. If b(Ti) = 0, then D(Ti) = d(Ti). In this case, r(Tk) ≥ D(Ti) holds,
since (4) implies r(Tk) ≥ d(Ti) (thus, no task Tk exists such that k > i and
r(Tk) < D(Ti)). In the rest of the proof, we assume that b(Ti) = 1.

Since D(Ti) denotes the group deadline of Ti and r(Tk) < D(Ti), by definition
of a group deadline, we have |w(Tj)| = 2 and b(Tj) = 1 for all j ∈ {i +
1, . . . , k − 1}. Note that |w(Tj)| = 2 implies that d(Tj) = r(Tj) + 2. Because
the total flow for a subtask is one, this implies the following.

for all j ∈ {i + 1, . . . , k − 1}, f(Tj, r(Tj)) + f(Tj, d(Tj) − 1) = 1 (A.1)

Because b(Ti) = 1, we have b(Tj) = 1 for all j ∈ {i, . . . , k − 1}. Therefore, by
(B1), f(Tj, d(Tj)−1)+f(Tj+1, r(Tj+1)) = wt(T ). Therefore,

∑k−1
j=i f(Tj, d(Tj)−

1) + f(Tj+1, r(Tj+1)) = (k − i) × wt(T ). Rewriting, we get f(Ti, d(Ti) − 1) +
f(Tk, r(Tk)) +

∑k−1
j=i+1(f(Tj, r(Tj)) + f(Tj, d(Tj) − 1)) = (k − i) × wt(T ). By

(A.1), this implies that

f(Ti, d(Ti) − 1) + f(Tk, r(Tk)) + k − i − 1 = (k − i) × wt(T ).

Therefore, f(Ti, d(Ti) − 1) + f(Tk, r(Tk)) = wt(T ) + (k − i − 1)(wt(T ) − 1).
Because k ≥ i + 1 and wt(T ) ≤ 1 for all T , we have f(Ti, d(Ti) − 1) +
f(Tk, r(Tk)) ≤ wt(T ). �

(B4) Let Ti be a subtask of a heavy GIS task T and let Tk (k > i) be a subtask
such that r(Tk) < D(Ti). Then, f(Ti, d(Ti) − 1) + f(Tk, r(Tk)) ≤ wt(T ).

Proof. Because T is a GIS task, there is an IS task U such that wt(U) =
wt(T ), all subtasks between Ui and Uk are present, and r(Uk) = r(Tk). Hence,
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r(Uk) < D(Ui). By (B3), f(Ui, d(Ui) − 1) + f(Uk, r(Uk)) ≤ wt(U). Corre-
sponding subtasks in T and U have identical flows. Thus, f(Ti, d(Ti) − 1) +
f(Tk, r(Tk)) ≤ wt(T ). �

(F2) Let Ti be a subtask of a GIS task and let Tk be its successor. If b(Ti) = 1
and r(Tk) ≥ d(Ti), then flow(T, d(Ti) − 1) + flow(T, d(Ti)) ≤ wt(T ).

Proof. If k = i+1, then by (B2), flow(T, d(Ti)−1)+flow(T, d(Ti)) ≤ wt(T ).
Also, if r(Tk) > d(Ti), then flow(T, d(Ti)) = 0. Hence, by (F1), flow(T, d(Ti)−
1) + flow(T, d(Ti)) ≤ wt(T ).

In the rest of the proof, we assume that k > i + 1 and r(Tk) = d(Ti). We
first show that T must be heavy. If T is light, then by (L), we have d(Ti+1) >
d(Ti)+1. By (7), we also have r(Tk) ≥ d(Ti+1)−1 and therefore, r(Tk) > d(Ti),
which contradicts r(Tk) = d(Ti).

Thus, T is heavy. Because b(Ti) = 1, by the definition of D, D(Ti) > d(Ti).
Hence, because r(Tk) = d(Ti), we have r(Tk) < D(Ti). Thus, by (B4),
flow(T, d(Ti) − 1) + flow(T, r(Tk)) ≤ wt(T ). Because r(Tk) = d(Ti), we have
flow(T, d(Ti) − 1) + flow(T, d(Ti)) ≤ wt(T ). �

(F3) Let Ti be a subtask of a heavy GIS task T such that b(Ti) = 1 and let
Tk be the successor of Ti. If u ∈ {d(Ti), . . . , D(Ti) − 1} and u ≤ r(Tk), then
flow(T, d(Ti)) + flow(T, u) ≤ wt(T ).

Proof. Since b(Ti) = 1, by the definition of D, D(Ti) > d(Ti). Since u ≥ d(Ti)
and Tk is Ti’s successor, if r(Tk) > u, then flow(T, u) = 0. Thus, by (F1),
flow(T, d(Ti) − 1) + flow(T, u) ≤ wt(T ). The other possibility is r(Tk) =
u, which implies r(Tk) < D(Ti). In this case, by (B4), f(Ti, d(Ti) − 1) +
f(Tk, r(Tk)) ≤ wt(T ). Thus, flow(T, d(Ti) − 1) + flow(T, u) ≤ wt(T ). �
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