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Abstract

The earliest-pseudo-deadline-first (EPDF) Pfair algorithm is more efficient than other known Pfair scheduling
algorithms, but is not optimal for scheduling recurrent real-time task systems on more than two identical pro-
cessors. Although not optimal, EPDF may be preferable for real-time systems instantiated on less-powerful
platforms, those with soft timing constraints, or those whose task composition can change at run-time. In
prior work, Srinivasan and Anderson established a sufficient per-task utilization restriction for ensuring a
tardiness of at most q quanta, where q ≥ 1, under EPDF. They also conjectured that under this algorithm,
a tardiness bound of one quantum applies to task systems that are not subject to any restriction other
than the obvious restrictions, namely, that the total system utilization not exceed the available processing
capacity and per-task utilizations not exceed 1.0. In this paper, we present counterexamples that show that
their conjecture is false and present sufficient per-task utilization restrictions that are more liberal than
theirs. For ensuring a tardiness bound of one quantum, our restriction presents an improvement of 50% over
the previous one.
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1. Introduction

We consider the scheduling of recurrent (i.e., periodic, sporadic, or rate-based) real-time task systems
on multiprocessor platforms consisting of M identical, unit-capacity processors. Pfair scheduling, originally
introduced by Baruah et al. [4], is the only known way of optimally scheduling such multiprocessor task
systems. (A real-time scheduling algorithm is said to be optimal iff it can schedule without deadline misses
every task system for which some correct schedule exists.) To ensure optimality, Pfair scheduling imposes a
stronger constraint on the timeliness of tasks than that mandated by periodic scheduling. Specifically, under
Pfair scheduling, each task must execute at an approximately uniform rate at all times, while respecting a
fixed-size allocation quantum. A task’s execution rate is defined by its weight (i.e., utilization). Uniform
rates are ensured by subdividing each task into quantum-length subtasks that are subject to intermediate

IWork supported by NSF grants CCR 9988327, ITR 0082866, CCR 0204312, CNS 0309825, and CNS 0615197, ARO grant
W911NF-06-1-0425, and a grant from Intel Corporation. This work was published in preliminary form at the 12th International
Workshop on Parallel and Distributed Systems [5].

∗Corresponding author.
1The author was also supported by an IBM Ph.D. fellowship and this work was done when the author was with the University

of North Carolina, Chapel Hill.

Preprint submitted to Journal of Computer and System Sciences March 27, 2009



deadlines, called pseudo-deadlines, computed based on the task’s weight. Under most known Pfair algo-
rithms, subtasks are scheduled on an earliest-pseudo-deadline-first basis. However, to avoid deadline misses,
ties among subtasks with the same deadline must be resolved carefully. In fact, tie-breaking rules are of
crucial importance when devising optimal Pfair scheduling algorithms.

Motivation. The overheads associated with the tie-breaking rules of the optimal algorithms may be prob-
lematic for some applications. The earliest-pseudo-deadline-first (EPDF) algorithm is computationally more
efficient than optimal Pfair algorithms in that it does not use any tie-breaking rule to resolve ties among
subtasks with the same pseudo-deadline, but disambiguates them arbitrarily. PD2, the most efficient of the
known optimal Pfair algorithms, requires two tie-break parameters. Though these tie-break parameters can
be computed for each subtask in constant time, there exist some soft and/or dynamic real-time systems in
which not using any tie-breaking rule may still be preferable. Eliminating tie-breaking rules may also be
preferable in embedded systems with slower processors or limited memory bandwidth.

The viability of EPDF for scheduling soft and/or dynamic real-time systems was first considered by
Srinivasan and Anderson in [11], where they provided examples of such applications for which EPDF
may be preferable to PD2. Some web-hosting systems, server farms, packet processing in programmable
multiprocessor-based routers, and packet transmission on multiple, parallel outgoing router links are among
the examples provided by them. In these systems, fair resource allocation is needed, so that quality-of-service
guarantees can be provided. However, an extreme notion of fairness that precludes all deadline misses is
not required. Moreover, in systems such as routing networks, the inclusion of tie-breaking information in
subtask priorities may result in unacceptably high space overhead.

The applications mentioned above may also be dynamic in that the set of tasks and the utilizations of
tasks requiring service may change. In [11], Srinivasan and Anderson also noted that the use of tie-breaking
rules may be problematic for such dynamic task systems. As they explained, it is possible to reweight each
task whenever its utilization changes such that its next subtask deadline is preserved. If no tie-breaking
information is maintained, such an approach entails very little computational overhead. However, utilization
changes can cause tie-breaking information to change, so if tie-breaking rules are used, then reweighting may
necessitate an O(N) cost for N tasks, due to the need to re-sort the scheduler’s priority queue. This cost
may be prohibitive if reallocations are frequent.

Motivated by the above reasons, Srinivasan and Anderson studied EPDF and they succeeded in showing
that this algorithm can guarantee a tardiness (i.e., lateness) bound of q ≥ 1 quanta for every subtask,
provided a certain condition holds. Their condition can be ensured by limiting each task’s weight to at most

q
q+1 . Unfortunately, Srinivasan and Anderson left open the question of whether such weight restrictions
are necessary to guarantee small bounded tardiness. Moreover, they conjectured that EPDF can ensure a
tardiness bound of one quantum as long as the weight of each task does not exceed 1.0 (i.e., the capacity of
a single processor), and the total system utilization does not exceed the total available processing capacity.

Contributions. Our contributions in this paper are two-fold. First, we provide counterexamples that
show that the above conjecture is false, and that, in general, restrictions on individual task utilizations are
necessary to guarantee bounded tardiness under EPDF. Our second contribution is to show that a more
liberal per-task weight restriction of q+2

q+3 is sufficient to ensure a tardiness of q quanta. When q = 1, this
presents an improvement of 50% over the previous result.

The rest of the paper is organized as follows. Section 2 provides an overview of Pfair scheduling. In
Section 3, the results described above are established. Section 4 concludes.

2. Background on Pfair Scheduling

This section describes some basic concepts of Pfair scheduling, provides needed background, and summa-
rizes results from prior work reported in [1, 2, 3, 4, 10, 11]. Pfair scheduling [4, 10] can be used to schedule



a periodic, sporadic, intra-sporadic (IS), or generalized-intra-sporadic (GIS) (see below) task system τ on
M ≥ 1 identical processors, each of whose processing capacity is taken to be 1.0. As explained later, in
this paper, we assume that M ≥ 3 holds. Each task T of τ is assigned a rational weight wt(T ) ∈ (0, 1]
that denotes the fraction of a single processor it requires. In this paper, for simplicity and to avoid some
boundary cases, we assume that wt(T ) < 1 holds. The sum of the weights of all the tasks in τ , i.e., the total
system utilization of τ , is assumed to be at most M , which is the total available processing capacity. For a
periodic or a sporadic task T , wt(T ) = T.e/T.p, where T.e and T.p are the execution cost and inter-arrival
time or period , respectively, of T . When scheduled under Pfair algorithms, it is required that T.e and T.p
be specified as integers, which are interpreted as integral numbers of quanta.

A periodic or sporadic task T may be invoked zero or more times; T is periodic if any two consecutive
invocations of T are separated by exactly T.p time units and is sporadic if T.p is a lower-bound on the
inter-arrival separation. Each invocation of T is referred to as a job of T . The first job may be invoked or
released at any time at or after time zero. Every job of T executes for T.e time units and should complete
execution within T.p time units of its release, i.e., every job of T has a relative deadline of T.p time units.
(In this paper, for ease of description, we assume that each job executes for exactly T.e time units.) Each
task is sequential, and at any time may execute on at most one processor. A task is light if its weight is less
than 1/2, and heavy , otherwise.

Pfair algorithms allocate processor time in discrete quanta; the tth quantum, where t ≥ 0, spans the
time interval [t, t + 1), and is also referred to as slot t. (Hence, time t refers to the beginning of slot t.)
Quanta are assumed to be aligned on all processors. All references to time are non-negative integers. The
interval [t1, t2), consists of slots t1, t1 + 1, . . . , t2 − 1. A task may be allocated time on different processors,
but not in the same slot (i.e., interprocessor migration is allowed but parallelism is not). Similarly, on each
processor, at most one task may be allocated in each slot. The sequence of allocation decisions over time
defines a schedule S. Formally, S : τ ×N 7→ {0, 1}, where N is the set of nonnegative integers. S(T, t) = 1
iff T is scheduled in slot t. On M processors,

∑
T∈τ S(T, t) ≤ M holds for all t.

Periodic, sporadic, and IS task models. In Pfair scheduling, each quantum of execution of each task is
referred to as a subtask . Each task gives rise to a potentially infinite sequence of subtasks. The ith subtask
of T is denoted Ti, where i ≥ 1. If T is periodic or sporadic, then the kth job of T consists of subtasks
T(k−1)·e+1, . . . , Tk·e, where e = T.e and k ≥ 1.

Each subtask Ti has an associated pseudo-release r(Ti) and pseudo-deadline d(Ti), defined as follows.
(The prefix “pseudo-” is often omitted for conciseness.)

r(Ti) = Θ(Ti) +
⌊

i− 1
wt(T )

⌋
∧ d(Ti) = Θ(Ti) +

⌈
i

wt(T )

⌉
(1)

In the above formulas, Θ(Ti) ≥ 0 denotes the offset of Ti and is used in modeling the late releases of sporadic
and IS tasks. It is well known that the sporadic model generalizes the periodic model by allowing jobs to
be released “late;” the intra-sporadic model (IS model), proposed by Srinivasan and Anderson in [2, 10],
is a further generalization that allows subtasks to be released late. The offsets of T ’s various subtasks are
nonnegative and satisfy the following:

k > i ⇒ Θ(Tk) ≥ Θ(Ti). (2)

T is periodic if Θ(Ti) = c holds for all i (and is synchronous also if c = 0), and is IS , otherwise. For a
sporadic task, all subtasks that belong to the same job will have equal offsets. Examples are given in insets
(a) and (b) of Figure 1. Informally, the restriction in (2) on offsets implies that the separation between any
pair of subtask releases is at least the separation between those releases if the task were periodic.

The interval [r(Ti), d(Ti)) is termed the PF-window of Ti and is denoted ω(Ti). The following lemma,
concerning PF-window lengths, follows from (1).
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Figure 1: (a) PF-windows of the first job of a periodic (or sporadic) task T with weight 3/7. This job consists of
subtasks T1, T2, and T3, each of which must be scheduled within its window. (This pattern repeats for every job.)
(b) PF-windows of an IS task. Subtask T2 is released one time unit late. Here, Θ(T1) = 0 while Θ(T2) = Θ(T3) = 1.
(c) PF-windows of a GIS task. Subtask T2 is absent and subtask T3 is released one time unit late. (d) PF- and
IS-windows of the first job of a GIS task with early releases. All the subtasks of this job are eligible when the job
arrives. (The deadline-based priority definition of the Pfair scheduling algorithms and the prohibition of parallel
execution of a task ensure that the subtasks execute in the correct sequence.) For each subtask, its PF-window
consists of the solid part; the IS-window includes the dashed part, in addition. For example, T2’s PF-window is [2, 5)
and its IS-window is [0, 5).

Lemma 1. (Anderson and Srinivasan [3]) The length of the PF-window of any subtask Ti of a task T ,
|ω(Ti)| = d(Ti)− r(Ti), is either

⌈
1

wt(T )

⌉
or

⌈
1

wt(T )

⌉
+ 1.

GIS task model. When proving properties concerning Pfair scheduling algorithms, it is sometimes useful
to “eliminate” or “omit” certain subtasks. For example, if a deadline miss does not depend on the existence
of a subtask, then ignoring such a subtask makes analysis easier. In [10], Srinivasan and Anderson introduced
the generalized intra-sporadic model (GIS model) to facilitate such selective removal of subtasks. A GIS
task system is obtained by omitting subtasks from a corresponding IS (or GIS) task system. However, the
spacing between subtasks of a task that are not omitted may not be decreased in comparison to how they
are spaced in a periodic task. Specifically, subtask Ti may be followed by subtask Tk, where k > i + 1 if the
following holds: r(Tk)− r(Ti) is at least

⌊
k−1

wt(T )

⌋
−

⌊
i−1

wt(T )

⌋
. That is, r(Tk) is not smaller than what it would

have been if Ti+1, Ti+2, . . . ,Tk−1 were present, and released as early as possible. For the special case where
Tk is the first subtask released by T , r(Tk) must be at least

⌊
k−1

wt(T )

⌋
. Figure 1(c) shows an example. In this

example, though subtask T2 is omitted, T3 cannot be released before time 4. If a task T , releases subtask
Tk after executing subtask Ti, then Tk is called the successor of Ti and Ti is called the predecessor of Tk.
Note that a periodic task system is an IS task system, which in turn is a GIS task system, so any property
established for the GIS task model applies to the other models, as well.

The early-release task model. The task models described so far are non-work-conserving in that, the
second and later subtasks remain ineligible to be scheduled before their release times, even if they are
otherwise ready and some processor is idle. The early-release (ER) task model is a work-conserving variant
of the other models that allows subtasks to be scheduled before their release times [1]. Early releasing can be
applied to subtasks in any of the task models considered so far, and unless otherwise specified, it should be
assumed that early releasing is enabled. However, whether subtasks are actually released early is optional.
To facilitate this, in this model, each subtask Ti has an eligibility time e(Ti) that specifies the first time slot
in which Ti may be scheduled. The interval [e(Ti), d(Ti)) is referred to as the IS-window of Ti. Figure 1(d)
gives an example. It is required that the following hold:

(∀i ≥ 1 :: e(Ti) ≤ r(Ti) ∧ e(Ti) ≤ e(Ti+1)). (3)

Note that the model is very flexible in that it does not preclude a job from becoming eligible before its release
time, but provides mechanisms to restrict such behavior, if so desired. Such flexibility, in conjunction with
the sporadic or the IS task model, can be used to schedule rate-based tasks, whose arrival pattern may be
jittered, and whose instantaneous workload may deviate from the average or expected workload, such as in
distributed multimedia and digital signal processing applications [7, 10].



b-bit. The b-bit or boundary bit is associated with each subtask Ti and is denoted b(Ti). b(Ti) is as defined
by (4) below.

b(Ti) =
⌈

i

wt(T )

⌉
−

⌊
i

wt(T )

⌋
. (4)

From (1), it can be verified that if Θ(Ti) < Θ(Ti+1), then d(Ti) ≤ r(Ti+1). Therefore, the PF-windows of
Ti and Ti+1 can overlap only if Θ(Ti) = Θ(Ti+1). It can also be verified that if Θ(Ti) = Θ(Ti+1), then
d(Ti) − r(Ti+1) = b(Ti). Hence, b(Ti) determines whether the PF-window of Ti can overlap that of Ti+1.
Observe that b(Ti) is either zero or one. Therefore, the PF-windows of Ti and Ti+1 are either disjoint or
overlap by at most one slot. In Figure 1, b(T2) = 1, while b(T3) = 0. Therefore, the PF-window of T2

overlaps T3’s when Θ(T3) = Θ(T2) as in insets (a), (b), and (d). Further, as shown in [6], the following
lemma holds.

Lemma 2. (from [6]) For all i ≥ 1, k ≥ 1, the following holds.

r(Ti+k) ≥
{

d(Ti) + k − 1, b(Ti) = 0
d(Ti) + k − 2, b(Ti) = 1

Group deadlines. Like the b-bit, the group deadline is a parameter that is associated with each subtask
and is used by some Pfair scheduling algorithms. The group deadline of subtask Ti is denoted D(Ti).

By Lemma 1, all the windows of a heavy task with weights in the range [1/2, 1) are of length two or three.
Informally, for such tasks, the group deadline marks the end of a sequence of subtasks whose PF-windows
satisfy the following two properties: each window, except possibly of the first subtask in the sequence, is of
length two, and every consecutive pair of windows is overlapping. In Figure 2(a), T1, T2 is one such sequence
in which the first window is of length two; T3, . . . , T5 and T6, . . . , T8 are other such sequences in which the
first window is of length three. In each sequence, if any subtask is not scheduled until its last slot, then all
subsequent subtasks will be forced to be scheduled in their last slots as well, and in that sense constitute a
“group.” In addition, if the last subtask in the group is followed by a subtask with a window of length three,
as in the first two groups considered above, then this subtask will also be precluded from being scheduled
in its first slot (when any subtask in the group is scheduled in its last slot). However, no later subtask is
directly impacted. Thus, the group deadline of Ti can be thought of as the earliest time t after r(Ti) such
that t is the release time of some subtask and no subtask released at or after t is directly influenced by
whether Ti is scheduled in its last slot.

Informally, for a heavy periodic task with weight less than one, the end of each slot that is not the first
slot of the PF-window of any of its subtasks is a group deadline. In Figure 2(a), times 4, 8, and 11 are group
deadlines for T in the interval [0, 11]. Note that no subtask is released at time 3, 7, or 10. Formally, the
group deadline of a subtask Ti is defined as D(Ti) = (min u : u ≥ d(Ti) ∧ u is a group deadline of T ). For
example, in Figure 2(a), D(T1) = 4 and D(T6) = 11.

The group deadline of a subtask Ti of an IS or GIS task is computed assuming that all later subtasks
are present and released as early as possible, that is, under the assumption that Θ(Ti) = Θ(Tj) holds for
all j ≥ i, regardless of how the subtasks are actually released. An illustration for an IS task is provided in
Figure 2(b).

Concrete and non-concrete task systems. A task system is said to be concrete if release and eligibility
times are specified for each subtask of each task, and non-concrete, otherwise. Note that an infinite number
of concrete task systems can be specified for every non-concrete task system. The type of the task system
is indicated only when necessary.

Pfair and ERfair schedules. The notion of a Pfair schedule is obtained by comparing the allocations that
each task receives in such a schedule to those received in an ideal fluid schedule. In an ideal fluid schedule,
each task executes at a precise rate given by its utilization whenever it is active. Let A(ideal, T, t1, t2) and
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Figure 2: Illustration of group deadlines using a task T with weight 8/11. Group deadlines are marked
with a “D.” (a) T is synchronous, periodic. The group deadlines of T1 and T2 are at time 4, and those of
T3, . . . , T5 and T6, . . . , T8 are at times 8 and 11, respectively. (b) T is an IS task. In this example, T2 and
T6 are released late. Nevertheless, the group deadline of T1 is still at time 4. However, the group deadline
of T2 is at time 5. Similarly, though T6 is released one time unit late, the group deadlines of T3, . . . , T5 are
computed under the assumption that T6 would be released in time, and hence, are at time 9. The group
deadlines of T6, . . . , T8 are at time 13.

A(S, T, t1, t2), denote the total allocation to T in the interval [t1, t2) in the ideal schedule and an actual
schedule, S, respectively. Then, the “error” in allocation to T in S at time t with respect to the ideal
schedule, referred to as the lag of T at t in S, is given by lag(T, t,S) = A(ideal, T, 0, t)− A(S, T, 0, t).

S is said to be a Pfair schedule for τ iff the following holds: (∀t, T ∈ τ :: −1 < lag(T, t,S) < 1).
Informally, each task’s allocation error must always be less than one quantum. If early releases are allowed,
then it is not required that the negative lag constraint, lag(T, t) > −1, hold. A schedule for which (∀T, t :
lag(T, t) < 1) holds is said to be ERfair . The release times and deadlines in (1) are assigned such that
scheduling each subtask by its deadline is sufficient to generate an ERfair schedule for τ ; a Pfair schedule
can be generated if each subtask is scheduled at or after its release time, as well. Further, ensuring that
each task is scheduled in a Pfair or an ERfair manner is sufficient to ensure that the deadlines of all jobs are
met in a periodic or sporadic task system. A schedule that is Pfair or ERfair exists for a GIS task system
τ on M processors iff ∑

T∈τ

wt(T ) ≤ M (5)

holds [4, 2]. A GIS task system satisfying (5) and in which the weight of each task is at most 1.0 is said to
be feasible on M processors. (In general, a task system is said to be feasible on M processors if there exists
some way of correctly scheduling that task system on M processors.)

If T is synchronous and periodic, then A(ideal, T, 0, t) equals t · wt(T ). However, if T is GIS, then the
allocation it receives in the ideal schedule may be less due to IS separations or omitted subtasks. To facilitate
expressing A(ideal, T, 0, t) for GIS tasks, let A(ideal, Ti, 0, t) and A(ideal, Ti, t) denote the ideal allocations
to subtask Ti in [0, t) and slot t, respectively. In [2], Anderson and Srinivasan showed that A(ideal, Ti, t) is
given by (6) below. An example is given in Figure 3.

A(ideal, Ti, u) =





(
⌊

i−1
wt(T )

⌋
+ 1)× wt(T )− (i− 1), u = r(Ti)

i− (
⌈

i
wt(T )

⌉
− 1)× wt(T ), u = d(Ti)− 1

wt(T ), r(Ti) < u < d(Ti)− 1
0, otherwise.

(6)
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Figure 3: Per-slot ideal allocations to subtasks of a task T with weight 3/7. These allocations are marked above
the subtask windows. (a) T is synchronous, periodic. A(ideal, T, t) = 3/7 holds for every t. A(ideal, T2, 4) = 2

7

and A(ideal, T3, 4) = 1
7 . (b) T is GIS. T2’s release is delayed by one time slot. T4 is delayed by an additional

time slot and T5 is omitted. Here, A(ideal, T2, 4) = 3
7 and A(ideal, T3, 4) = 0.

Let A(ideal, T, t) denote the total allocation to task T in slot t. Then, A(ideal, T, t) is given by∑
i A(ideal, Ti, t). For example, in Figure 3, A(ideal, T, 4) = A(ideal, T2, 4)+A(ideal, T3, 4) = 1/7+2/7 = 3/7,

since no subtasks other than T2 and T3 receive a non-zero allocation in slot 4. Note that in the ideal schedule,
each subtask completes executing by its deadline.

As shown in Figure 3, A(ideal, T, u) usually equals wt(T ), but in certain slots, it may be less than wt(T )
due to omitted or delayed subtasks. Also, the total allocation that a subtask Ti receives in the slots that
span its window is exactly one in the ideal schedule. These and similar properties have been proved formally
in [9]. Later in this paper, we will use Lemma 3, and (7)–(10) given below (examples of which can be seen
in Figure 3).

(∀T, u ≥ 0 :: A(ideal, T, u) ≤ wt(T )) (7)

(∀Ti ::
d(Ti)−1∑

u=r(Ti)

A(ideal, Ti, u) = 1) (8)

(∀Ti, u ≥ 0 :: A(ideal, Ti, u) ≤ wt(T )) (9)
(∀Ti, u ∈ [r(Ti), d(Ti)) :: A(ideal, Ti, u) ≥ 1/T.p) (10)

Lemma 3. If b(Ti) = 1 and subtask Ti+1 exists, then A(ideal, Ti, d(Ti)−1)+A(ideal, Ti+1, r(Ti+1)) = wt(T ).

A task T ’s ideal allocation up to time t is simply

A(ideal, T, 0, t) =
t−1∑
u=0

A(ideal, T, u) =
t−1∑
u=0

∑

i

A(ideal, Ti, u),



and hence

lag(T, t,S) = A(ideal, T, 0, t)− A(S, T, 0, t) (11)

=
t−1∑
u=0

A(ideal, T, u)−
t−1∑
u=0

S(T, u) (12)

=
t−1∑
u=0

∑

i

A(ideal, Ti, u)−
t−1∑
u=0

S(T, u). (13)

From (12), lag(T, t + 1) (the schedule parameter is omitted in the lag and LAG functions when unam-
biguous) is given by

lag(T, t + 1) =
∑t

u=0(A(ideal, T, u)− S(T, u))
= lag(T, t) + A(ideal, T, t)− S(T, t). (14)

Similarly, by (12) again, for any 0 ≤ t′ ≤ t,

lag(T, t + 1) = lag(T, t′) +
∑t

u=t′(A(ideal, T, u)− S(T, u))
= lag(T, t′) + A(ideal, T, t′, t + 1)− A(S, T, t′, t + 1). (15)

Another useful definition, the total lag for a task system τ in a schedule S at time t, LAG(τ, t,S), or more
concisely, LAG(τ, t), is given by

LAG(τ, t) =
∑

T∈τ lag(T, t). (16)

Using (14)–(16), LAG(τ, t + 1) can be expressed as follows. In (18) below, 0 ≤ t′ ≤ t holds.

LAG(τ, t + 1) = LAG(τ, t) +
∑

T∈τ (A(ideal, T, t)− S(T, t)) (17)

LAG(τ, t + 1) = LAG(τ, t′) +
t∑

u=t′

∑

T∈τ

(A(ideal, T, u)− A(S, T, u))

= LAG(τ, t′) + A(ideal, τ, t′, t + 1)− A(S, τ, t′, t + 1) (18)

(17) and (18) above can be rewritten as follows using (7).

LAG(τ, t + 1) ≤ LAG(τ, t) +
∑

T∈τ (wt(T )− S(T, t)) (19)
LAG(τ, t + 1) ≤ LAG(τ, t′) + (t + 1− t′)·∑T∈τ wt(T )− A(S, τ, t′, t + 1) (20)

= LAG(τ, t′) + (t + 1− t′)·∑T∈τ wt(T )−∑t
u=t′

∑
T∈τ S(T, u) (21)

Soft real-time model. In soft real-time systems, tasks may miss their deadlines. As discussed in the
introduction, this paper is concerned with deriving a lateness or tardiness [8] bound for a GIS task system
scheduled under EPDF (described below). Formally, the tardiness of a subtask Ti in schedule S is defined as
tardiness(Ti,S) = max(0, t−d(Ti)), where t is the time at which Ti completes executing in S. The tardiness
of a task system τ under scheduling algorithm A is defined as the maximum tardiness of any subtask of any
task in τ in any schedule for any concrete instantiation of τ under A. If κ(M) is the maximum tardiness of
any task system with Usum ≤ M under A on M processors, then A is said to ensure a tardiness bound of
κ(M) on M processors. Though tasks in a soft real-time system are allowed to have nonzero tardiness, it
is assumed that missed deadlines do not delay future job releases. Hence, guaranteeing a reasonable bound
on tardiness that is independent of time is sufficient to ensure that in the long run each task is allocated a
processor share that is in accordance with its weight. Because each task is sequential and subtasks of a task
have an implicit precedence relationship, a later subtask cannot commence execution until all prior subtasks
of the same task have completed execution. Thus, a missed deadline effectively reduces the interval over



which the next subtask should be scheduled in order to meet its deadline.

Algorithm EPDF. Like most Pfair scheduling algorithms, the earliest-pseudo-deadline-first (EPDF) Pfair
algorithm functions by choosing subtasks for execution at the beginning of every slot. Under EPDF, higher
priority is accorded to subtasks with earlier deadlines; ties among subtasks with equal deadlines are resolved
arbitrarily. In prior work, Srinivasan and Anderson have shown that EPDF is optimal on at most two
processors [3]. They have also shown that on more than two processors, EPDF can correctly schedule task
systems in which the maximum task weight is at most 1/(M −1) [12], and that EPDF can ensure a tardiness
bound of q ≥ 1 if the weight of each task is restricted to q

q+1 [11]. (Since EPDF is optimal on two processors,
in deriving tardiness bounds under this algorithm, we assume that M ≥ 3 holds.)

The above is a fairly comprehensive summary of basic Pfair scheduling. The rest of this section presents
some additional definitions and results that we will use in this paper.

Active tasks. If subtasks are absent or are released late, then it is possible for a GIS (or IS) task to have
no eligible subtasks and an allocation of zero during certain time slots. Tasks with and without subtasks in
the interval [t, t + `) are distinguished using the following definition of an active task.

Definition 1: A GIS task U is active in slot t if it has one or more subtasks Uj such that e(Uj) ≤ t < d(Uj).
(A task that is active in t is not necessarily scheduled in that slot.)

Holes. If fewer than M tasks are scheduled at time t in S, then one or more processors are idle in slot t.
For each slot, each processor that is idle in that slot is referred to as a hole. Hence, if k processors are idle
in slot t, then there are said to be k holes in t. The following lemma is a generalization of one proved in
[10], and relates an increase in the total lag of τ , LAG, to the presence of holes.

Lemma 4. (Srinivasan and Anderson [10]) If LAG(τ, t + `,S) > LAG(τ, t,S), where ` ≥ 1, then there is at
least one hole in the interval [t, t + `).

Intuitively, if there is no idle processor in slots t, . . . , t+ `− 1, then the total allocation in S in each of those
slots to tasks in τ is equal to M . Since τ is assumed to be feasible, this is at least the total allocation that
τ receives in any slot in the ideal schedule. Therefore, LAG cannot increase.

Task classification (from [10]). Tasks in τ may be classified as follows with respect to a schedule S and
time interval [t, t+ `). (For brevity, we let the task system τ and schedule S be implicit in these definitions.)

A(t, t + `): Set of all tasks that are scheduled in one or more slots in [t, t + `).

B(t, t + `): Set of all tasks that are not scheduled in any slot in [t, t + `), but are active in one or more
slots in the interval.

I(t, t + `): Set of all tasks that are neither active nor scheduled in any slot in [t, t + `).

As a shorthand, the notation A(t), B(t), and I(t) is used when ` = 1. A(t, t + `), B(t, t + `), and I(t, t + `)
form a partition of τ , i.e., the following holds.

A(t, t + `) ∪B(t, t + `) ∪ I(t, t + `) = τ (22)
A(t, t + `)∩B(t, t + `)=B(t, t + `)∩I(t, t + `)=I(t, t + `)∩A(t, t + `)=∅ (23)

This classification of tasks is illustrated in Figure 4(a) for ` = 1. Using (16), (22), and (23) above, we have
the following.

LAG(τ, t + 1) =
∑

T∈A(t)

lag(T, t + 1) +
∑

T∈B(t)

lag(T, t + 1) +
∑

T∈I(t)

lag(T, t + 1) (24)

The next definition identifies the last-released subtask at t of any task U .
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Figure 4: (a) Task classification at time t. IS-windows of two consecutive subtasks of three GIS tasks T , U ,
and V are depicted. The slot in which each subtask is scheduled is indicated by an “X.” Because subtask Ti+1

is scheduled at t, T ∈ A(t). No subtask of U is scheduled at t. However, because the window of Uk overlaps
slot t, U is active at t, and hence, U ∈ B(t). Task V is neither scheduled at t, nor is it active at t. Therefore,
V ∈ I(t). (b) Illustration of displacements. If Ui, scheduled at time t, is removed from the task system, then
some subtask that is eligible at t, but scheduled later, can be scheduled at t. In this example, it is subtask
Vk (scheduled at t+3). This displacement of Vk results in two more displacements, those of Vk+1 and Ui+1,
as shown. Thus, there are three displacements in all: ∆1 = (Ui, t, Vk, t+3), ∆2 = (Vk, t+3, Vk+1, t+4), and
∆3 = (Vk+1, t + 4, Ui+1, t + 5).

Definition 2:. Subtask Uj is the critical subtask of U at t iff e(Uj) ≤ t < d(Uj) holds, and no other subtask
Uk of U , where k > j, satisfies e(Uk) ≤ t < d(Uk). For example, in Figure 4(a), the critical subtask of T at
both t− 1 and t is Ti+1, and that of U at t + 1 is Uk+1.

Displacements. To facilitate reasoning about Pfair algorithms, Srinivasan and Anderson formally defined
displacements in [10]. Let τ be a GIS task system and let S be an EPDF schedule for τ . Then, removing
a subtask, say Ti, from τ results in another GIS task system τ ′. Suppose Ti is scheduled at t in S. Then,
Ti’s removal can cause another subtask, say Uj , scheduled after t to shift left to t, which in turn can lead
to other shifts, resulting in an EPDF schedule S ′ for τ ′. Each shift that results due to a subtask removal
is called a displacement and is denoted by a four-tuple 〈X(1), t1, X

(2), t2〉, where X(1) and X(2) represent
subtasks. This is equivalent to saying that subtask X(2) originally scheduled at t2 in S displaces subtask
X(1) scheduled at t1 in S. A displacement 〈X(1), t1, X

(2), t2〉 is valid iff e(X(2)) ≤ t1. Because there can
be a cascade of shifts, there may be a chain of displacements. Such a chain is represented by a sequence of
four-tuples. An example is given in Figure 4(b).

The next lemma regarding displacements is proved in [9]. It states that in an EPDF schedule, a subtask
removal can cause other subtasks to shift only to their left.

Lemma 5. (from [9]) Let X(1) be a subtask that is removed from τ , and let the resulting chain of displace-
ments in an EPDF schedule for τ be C = ∆1, ∆2, . . . , ∆k, where ∆i = 〈X(i), ti, X

(i+1), ti+1〉. Then ti+1 > ti
for all i ∈ [1, k].

3. Tardiness Bounds for EPDF

In this section, we present results concerning tardiness bounds that can be guaranteed under EPDF.



Table 1: Counterexamples to show that tardiness under EPDF can exceed three.

Task Set Util. Tardiness
(M) (in quanta)

# of weight
tasks

τ1 4 1/2 10 2 at 50
3 3/4
6 23/24

τ2 4 1/2 19 3 at 963
3 3/4
5 23/24
10 239/240

τ3 4 1/2 80 4 at 43,204
3 3/4
3 23/24
1 31/32
4 119/120
4 239/240
6 479/480
8 959/960
15 1199/1200
15 2399/2400
20 4799/4800

It is easy to show that subtask deadlines can be missed under EPDF. In [11], it was conjectured that
EPDF ensures a tardiness of at most one for every feasible task system. We now show that this conjecture
is false.

Theorem 1. Tardiness under EPDF can exceed three quanta for feasible GIS task systems. In particular, if
EPDF is used to schedule task system τi (1 ≤ i ≤ 3) in Table 1, then a tardiness of i + 1 quanta is possible.

Proof: Figure 5 shows a schedule for τ1, in which a subtask has a tardiness of two at time 50. The
schedules for τ2 and τ3 are too lengthy to be depicted; we verified them using two independently-coded
EPDF simulators. ¥

The sufficient condition for a tardiness of q > 0 quanta as given by Srinivasan and Anderson requires
that the sum of the weights of the M − 1 heaviest tasks be less than qM+1

q+1 . This can be ensured if the
weight of each task is restricted to be at most q

q+1 . We next show that a weight restriction of q+2
q+3 per task

is sufficient to guarantee a tardiness of q quanta. This restriction is stated below.

(W) The weight of each task is at most q+2
q+3 .

In what follows, we prove the following theorem.

Theorem 2. Tardiness under EPDF is at most q quanta, where q ≥ 1, for every GIS task system that is
feasible on M ≥ 3 processors and satisfies (W ).
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Figure 5: Counterexample to prove that tardiness under EPDF can exceed one quantum. 13 periodic tasks
with total utilization ten are scheduled on ten processors. In the schedule, tasks of the same weight are
shown together as a group. Each column corresponds to a time slot. The PF-window of each subtask is
shown as a sequence of dashes that are aligned. An integer value n in slot t means that n tasks in the
corresponding group have a subtask scheduled at t. Subtasks that miss deadlines are shown scheduled after
their windows. In this schedule, 11 subtasks miss their deadlines at time 48. Hence, tardiness is 2 quanta
for at least one subtask.

We use a setup similar to that used by Srinivasan and Anderson in [10] and [11] to prove the above
theorem. Though the setup is similar and some fundamental properties are applicable, there are significant
differences in the core of the proof.

Our proof is by contradiction, hence, assume Theorem 2 does not hold. This assumption implies that
there exists a q ≥ 1, a time td, and a concrete task system σ defined as follows.

Definition 3:. td is the earliest deadline of a subtask with a tardiness of q + 1 under EPDF in any feasible
GIS task system satisfying (W), i.e., there exists some such task system with a subtask with deadline at td
and tardiness q + 1, and there does not exist any such task system with a subtask with deadline prior to td
and a tardiness of q + 1.

Definition 4:. σ is a feasible concrete GIS task system satisfying (W) with the following properties.
(S1) A subtask in σ with deadline at td has a tardiness of q + 1 under EPDF.
(S2) No feasible concrete task system satisfying (W) and (S1) releases fewer subtasks in [0, td) than σ.

In what follows, let S ′ denote an EPDF schedule for σ in which a subtask of σ with deadline at td has a
tardiness of q + 1.

By (S1) and (S2), exactly one subtask in σ has a tardiness of q + 1: if several such subtasks exist, then
all but one can be removed and the remaining subtask will still have a tardiness of q +1, contradicting (S2).
Similarly, a subtask with deadline later than td cannot impact how subtasks with deadlines at or before td
are scheduled. Therefore, no subtask in σ has a deadline after td. Based on these facts, Lemma 6 below can
be shown to hold. In proving Lemma 6, we use the following claim, proved in an appendix.

Claim 1. There is no hole in any slot in [td − 1, td + q) in S ′.



We now show that LAG of σ at td is exactly qM + 1.

Lemma 6. LAG(σ, td,S ′) = qM + 1.

Proof: By Claim 1, there is no hole in any slot in [td, td + q) in S ′. Further, the subtask with a tardiness
of q + 1 and deadline at td, as specified in (S1), is not scheduled until time td + q. (Also, recall that there is
exactly one such subtask.) Thus, because every subtask in σ has a deadline of at most td, there exist exactly
qM + 1 subtasks with deadlines at most td that are pending at td in S ′. In the ideal schedule, all of these
subtasks complete executing by time td. Therefore, the LAG of σ at td, which is the difference between the
ideal allocation and the allocation in S ′ in [0, td), is qM + 1. ¥

By Claim 1, there is no hole in slot td−1. Therefore, by the contrapositive of Lemma 4, LAG(σ, td−1,S ′) ≥
LAG(σ, td,S ′), which, by Lemma 6, is qM + 1. Thus, because LAG(σ, 0,S ′) = 0, there exists a time t, where
0 ≤ t < td − 1 such that LAG(σ, t,S ′) < qM + 1 and LAG(σ, t + 1,S ′) ≥ qM + 1. This further implies the
existence of a time 0 ≤ th < td − 1, a concrete task system τ , and an EPDF schedule S for τ defined as
follows.

Definition 5:. th, where 0 ≤ th < td − 1, is the earliest time such that the LAG in any EPDF schedule for
any feasible concrete GIS task system satisfying (W) is at least qM + 1 at th + 1.

Definition 6:. τ is a feasible concrete GIS task system satisfying (W) with the following properties.
(T1) LAG(τ, th + 1,S) ≥ qM + 1.
(T2) No feasible concrete task system satisfying (W) and (T1) releases fewer subtasks than τ .
(T3) No feasible concrete task system satisfying (W), (T1), and (T2) has a larger rank than τ where the
rank of a task system is the sum of the eligibility times of all its subtasks, i.e., rank(τ, t) =

∑
{Ti∈τ} e(Ti).

(T2) can be thought of as identifying a minimal task system in the sense of having LAG exceed qM +1 at
the earliest possible time with the fewest number of subtasks, subject to satisfying (W). As already explained,
if Theorem 2 does not hold for all task systems satisfying (W), then there exists some task system whose
LAG is at least qM +1. Therefore, some task system satisfying (W), (T1), and (T2) necessarily exists. (T3)
further restricts the nature of such a task system by requiring subtask eligibility times to be spaced as much
apart as possible.

We next prove some properties about the subtasks of τ scheduled in S.

Lemma 7. Let Ti be a subtask in τ . Then, the following properties hold for Ti in S.

(a) If Ti is scheduled at t, then e(Ti) ≥ min(r(Ti), t).

(b) If Ti is scheduled before td, then the tardiness of Ti is at most q.

Proof of part (a). Suppose e(Ti) is not equal to min(r(Ti), t). Then, by (3) and because Ti is scheduled at
t, it is before min(r(Ti), t). Hence, simply changing e(Ti) so that it equals min(r(Ti), t) will not affect how Ti

or any other subtask is scheduled. Therefore, the actual allocations in S to every task, and hence, the lag of
every task, will remain unchanged. Therefore, the LAG of τ at th + 1 will still be at least qM + 1. However,
changing the eligibility time of Ti increases the rank of the task system, and hence, (T3) is contradicted. ¥

Proof of part (b). Follows from Definition 3. ¥

In what follows, we show that if (W) is satisfied, then there does not exist a time th as defined in Definition 5,
that is, we contradict its existence, and in turn prove Theorem 2. For this, we deduce the LAG of τ at th +1
by determining the lags of the tasks in τ . But first, a brief digression on subtask categorization that will
help improve the accuracy with which task lags are bound.



3.1. Categorization of Subtasks

As can be seen from (13) and (6), the lag of a task T at t depends on the allocations that subtasks of T
receive in each time slot until t in the ideal schedule. Hence, a tight estimate of such allocations is essential
to bounding the lag of T reasonably accurately. If a subtask’s index is not known, then (6), which can
otherwise be used to compute the allocation received by any subtask in any slot exactly , is not of much help.
Hence, in this subsection, we define terms that will help in categorizing subtasks, and then derive upper
bounds for the allocations that these categories of subtasks receive in certain slots in the ideal schedule.

k-dependent subtasks. The subtasks of a heavy task with weight in the range [1/2, 1) can be divided
into “groups” based on their group deadlines in a straightforward manner: place all subtasks with identical
group deadlines in the same group and identify the group using the smallest index of any subtask in that
group. For example, in Figure 2, G1 = {T1, T2}, G3 = {T3, T4, T5}, and G6 = {T6, T7, T8}. If there are
no IS separations or GIS omissions among the subtasks of a group, then a deadline miss by q quanta for a
subtask Ti will necessarily result in a deadline miss by at least q quanta for the subsequent subtasks in Ti’s
group. Hence, a subtask Tj is dependent on all prior subtasks in its group for not missing its deadline. If T

is heavy, we say that Tj is k-dependent, where k ≥ 0, if Tj is the (k + 1)st subtask in its group, computed
assuming all subtasks are present (that is, as in the determinination of group deadlines, even if T is GIS
and some subtasks are omitted, k-dependency is determined assuming there are no omissions).

Recall that by Lemma 1, all subtasks of a heavy task with weight less than one are of length two or
three. Further, note that in each group, each subtask except possibly the first is of length two. This implies
that for a periodic task the deadlines of any two successive subtasks that belong to the same group differ by
exactly one. Also, in each group, each subtask except possibly the final subtask has a b-bit of one. Finally,
if the final subtask of a group has a b-bit of one, then the first subtask of the group that follows is of length
three. These properties are summarized in the following lemma.

Lemma 8. The following properties hold.

(a) Let T be a heavy task with wt(T ) < 1 and let Ti be a 0-dependent subtask of T . Then, one of the
following holds: (i) i = 1; (ii) b(Ti−1) = 0; (iii) |ω(Ti)| = 3.

(b) If Ti is a k-dependent subtask of a periodic task T , where i ≥ 2 and k ≥ 1, then d(Ti) = d(Ti−1) + 1
and r(Ti) = d(Ti−1)− 1.

(c) Let Ti, where i > 1, be a k-dependent subtask of T with wt(T ) < 1. If k ≥ 1, then |ω(Ti)| = 2 and
b(Ti−1) = 1.

If a task T is light, then we simply define all of its subtasks to be 0-dependent. In this case, each subtask
is in its own group.

Miss initiators. A subtask scheduled at t and missing its deadline by c quanta, where c ≥ 1, is referred
to as a miss initiator by c (or a c-MI, for short) for its group, if no subtask of the same task is scheduled at
t− 1. (A miss initiator by q, i.e., a q-MI, will simply be referred to as an MI.) Thus, a subtask is a c-MI if
it misses its deadline by c quanta and is either the first subtask in its group to do so or separated from its
predecessor by an IS or GIS separation, and its predecessor is not scheduled in the immediately preceding
slot. Such a subtask is termed a miss initiator by c because in the absence of future separations, it causes
all subsequent subtasks in its group to miss their deadlines by c quanta as well. Several examples of MIs for
q = 1 are shown in Figure 6.

Successors of miss initiators. The immediate successor Ti+1 of a c-MI Ti is called a successor of a c-MI
(or c-SMI, for short) if tardiness(Ti+1) = tardiness(Ti) = c, S(Ti+1, t) = 1 ⇒ S(Ti, t − 1) = 1, and Ti is
a c-MI. (A successor of a miss initiator by q, i.e., a q-SMI, will simply be referred to as an SMI.) Figure 6
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Figure 6: Possible schedules for the second job of (a) a periodic and (b) a GIS task of weight 7/9 under
EPDF. Subtasks are scheduled in the slots marked by an X. Solid (dotted) lines indicate slots that lie within
(outside) the window of a subtask. A subtask scheduled in a dotted slot misses its deadline. In (a), T8 and
T12 are MIs, T9 and T13 are SMIs, and the remaining subtasks fall within neither category. T10 and T14

have a tardiness of one, and T11 has a tardiness of zero. In (b), T8, T9, T11, and T13 are MIs, and T10 and
T14 are SMIs. Note that T8 and T9 (T11 and T13) belong to the same group G8 (G11). Thus, if there are IS
separations, there may be more than one MI in a group.

shows several examples for q = 1. Note that for Ti+1 to be a c-SMI, its predecessor in S must be Ti, rather
than some lower-indexed subtask of T . Also note that a c-SMI is at least 1-dependent.

The lemma below follows immediately from Lemma 8(a), which by (1) implies that the deadline of the
first subtask of a group is greater than that of the final subtask of the preceding group by at least two.

Lemma 9. Let Ti be a subtask that is scheduled at t and let Ti’s tardiness be c > 0 quanta. If Tj, where
j < i, is scheduled at t − 1 and Tj does not belong to the same dependency group as Ti, then the tardiness
of Tj is at least c + 1.

The next lemma bounds the allocation received by a k-dependent subtask in the first slot of its window
in the ideal schedule, and is proved in an appendix.

Lemma 10. The allocation received by a k-dependent subtask in its first slot in the ideal schedule are as
follows.

(a) The allocation A(ideal, Ti, r(Ti)) received in the ideal schedule by a k-dependent subtask Ti of a periodic
task T with wt(T ) < 1 in the first slot of its window is at most k · T.e

T.p − (k − 1)− 1
T.p , for all k ≥ 0.

(b) The allocation A(ideal, Ti, r(Ti)) received in the ideal schedule by a k-dependent subtask Ti of a GIS task
T in the first slot of its window is at most k · T.e

T.p − (k − 1)− 1
T.p , for all k ≥ 0.

(c) Let Ti, where i ≥ k+1 and k ≥ 1, be a subtask of T with wt(T ) < 1 such that |ω(Ti)| ≥ 3 and b(Ti−1) = 1.
Let the number of subtasks in Ti−1’s dependency group be at least k. Then, A(ideal, Ti, r(Ti)) ≤ k · T.e

T.p −
(k − 1)− 1

T.p .

The next lemma bounds the lag of a task at time t, based on the k-dependency of its last-scheduled
subtask. This is also proved in an appendix.

Lemma 11. Let Ti be a k-dependent subtask of a task T for k ≥ 0, and let the tardiness of Ti be s for some
s ≥ 1 (that is, Ti is scheduled at time d(Ti) + s− 1). Then lag(T, d(Ti) + s) < (k + s + 1) · wt(T )− k.



3.2. Subclassification of Tasks in A(t)

Recall from Section 2 that a task in A(t) is scheduled in slot t. We further classify tasks in A(t), based
on the tardiness of their subtasks scheduled at t, as follows.

A0(t): Includes T in A(t) iff its subtask scheduled at t has zero tardiness.

Aq(t): Includes T in A(t) iff its subtask scheduled at t has a tardiness of q.

Aq−1(t), q > 1: Includes T in A(t) iff its subtask scheduled at t has a tardiness greater than 0 but less
than q.

Aq(t) is further partitioned into A0
q(t), A1

q(t), and A2
q(t).

A0
q(t): Includes T in Aq(t) iff its subtask scheduled at t is an MI.

A1
q(t): Includes T in Aq(t) iff its subtask scheduled at t is an SMI.

A2
q(t): Includes T in Aq(t) iff its subtask scheduled at t is neither an MI nor an SMI.

A0
q−1(t), q > 1: Includes T in Aq−1(t) iff its subtask scheduled at t is a c-MI, where 0 < c < q.

From the above, we have the following.

A0(t) ∪ Aq(t) ∪ Aq−1(t) = A(t) and A0
q(t) ∪ A1

q(t) ∪A2
q(t) = Aq(t) (25)

A0(t) ∩ Aq(t) = Aq(t) ∩ Aq−1(t) = Aq−1(t) ∩ A0(t) = ∅ (26)
A0

q(t) ∩ A1
q(t) = A1

q(t) ∩ A2
q(t) = A2

q(t) ∩ A0
q(t) = ∅ (27)

.

3.3. Task Lags by Task Classes and Subclasses

By the definition there of th in Definition 5, LAG(τ, th + 1) > LAG(τ, th). Hence, by Lemma 4, the
following holds.

(H) There is at least one hole in slot th.

The next lemma gives bounds on the lags of tasks in A(t), B(t), and I(t) at t + 1, where t ≤ th is a slot
with a hole, and hence, hold the lemma holds for t = th, as well.

Lemma 12. Let t ≤ th be a slot with a hole. Then, the following bounds hold for lag at t + 1 of a task T
depending on whether it is scheduled at t and the type of its subtask scheduled at that time.

(a) (from [11]) For T ∈ I(t), lag(I, t + 1) = 0.

(b) (from [11]) For T ∈ B(t), lag(B, t + 1) ≤ 0.

(c) (from [6]) For T ∈ A0(t), lag(T, t + 1) < wt(T ).

(d) For T ∈ A0
q(t), lag(T, t + 1) < (q + 1) · wt(T ).

(e) For T ∈ A1
q(t), lag(T, t + 1) < (q + 2) · wt(T )− 1.



(f) For T ∈ A2
q(t), lag(T, t + 1) < (q + 3) · wt(T )− 2.

(g) For T ∈ Aq−1(t), lag(T, t + 1) < q · wt(T ).

Proof: parts (a) and (b) are proved in [11]. To see why they hold, note that no task in B(t) or I(t)
is scheduled at t. Because there is a hole in t, the critical subtask of a task in B(t) is scheduled before t;
similarly, the latest subtask of a task in I(t) with release time at or before t should have completed execution
by t. Hence, such tasks cannot be behind with respect to the ideal schedule. part (c) is proved in [6]. The
remaining parts are proved below.

Proof of part (d). If T ∈ A0
q(t), then the subtask Ti of T scheduled at t is an MI, and d(Ti) = t− q + 1.

Further Ti is k-dependent, where k ≥ 0. Hence, by Lemma 11, lag(T, t+1) is less than (k+q+1) ·wt(T )−k,
which (because wt(T ) ≤ 1) is at most (q + 1) · wt(T ), for all k ≥ 0. ¥

Proof of part (e). If T ∈ A1
q(t), then the subtask Ti of T scheduled at t is an SMI, and is k-dependent for

k ≥ 1. Also, d(Ti) = t− q +1. Thus, by part (11), lag(T, t+1) < (k + q +1) ·wt(T )− k ≤ (q +2) ·wt(T )− 1
for all k ≥ 1 (because wt(T ) ≤ 1). ¥

Proof of part (f). Similar to that of part (e). ¥

Proof of part (g). Let Ti be T ’s subtask scheduled at t and let s denote the tardiness of Ti. Then,
t + 1 = d(Ti) + s. Let Ti be k-dependent, where k ≥ 0. By the definition of Aq−1, 0 < s < q holds, and by
Lemma 11, lag(T, d(Ti) + s) = lag(T, t + 1) < (k + s + 1) · wt(T )− k ≤ (k + q) · wt(T )− k ≤ q · wt(T ), for
all k ≥ 0. ¥

3.4. Some Auxiliary Lemmas

In proving Theorem 2, we also make use of the following three lemmas, established in prior work by
Srinivasan and Anderson.

Lemma 13. (Srinivasan and Anderson [10]) If LAG(τ, t + 1) > LAG(τ, t), then B(t) 6= ∅.

The following is an intuitive explanation for why Lemma 13 holds. Recall from Section 2 that B(t) is the
set of all tasks that are active but not scheduled at t. Because e(Ti) ≤ r(Ti) holds, by Definition 1 and (6),
only tasks that are active at t may receive positive allocations in slot t in the ideal schedule. Therefore, if
every task that is active at t is scheduled at t, then the total allocation in S cannot be less than the total
allocation in the ideal schedule, and hence, by (17), LAG cannot increase across slot t.

Lemma 14. (Srinivasan and Anderson [10]) Let t < td be a slot with holes and let T ∈ B(t). Then, the
critical subtask at t of T is scheduled before t.

To see that the above lemma holds, let Ti be the critical subtask of T at t. By its definition, the IS-window
of Ti overlaps slot t, but T is not scheduled at t. Also, there is at least a hole in t. Because EPDF does not
idle a processor while there is a task with an outstanding execution request, Ti is thus scheduled before t.

Lemma 15. (Srinivasan and Anderson [10]) Let Uj be a subtask that is scheduled in slot t′, where t′ ≤ t ≤ th
and let there be a hole in t. Then, d(Uj) ≤ t + 1.



This lemma is true because it can be shown that if d(Uj) > t + 1 holds, then Uj has no impact on how
subtasks are scheduled after t. In particular, it can be shown that even if Uj is removed, no subtask scheduled
after t can be scheduled at or before t. Therefore, it can be shown that if the lemma does not hold, then
the GIS task system obtained from τ by removing Uj also has a LAG at least qM + 1 at th + 1, which is a
contradiction to (T2).

Arguments similar to those used in proving the above lemma can be used to show the following. This lemma
is proved in [6]

Lemma 16. (from [6]) Let t < td be a slot with holes. Let Uj be a subtask that is scheduled at t and let the
tardiness of Uj be zero. Then, d(Uj) = t + 1 and b(Uj) = 1.

In the rest of this subsection, we will establish three more lemmas for later use. But first, a couple of
definitions.

By Definition 5, LAG(τ, th + 1) > LAG(τ, th). Therefore, by Lemma 13, B(th) 6= ∅. By (H), there is at
least one hole in th. Hence, by Lemma 14, the critical subtask at th of every task in B(th) is scheduled
before th. The next definition identifies the latest time at which a critical subtask at th of any task in B(th)
is scheduled.

Definition 7:. tb denotes the latest time before th at which the subtask that is critical at th of any task in
B(th) is scheduled.

U and Uj are henceforth to be taken as defined below.

Definition 8 (U and Uj):. U denotes a task in B(th) with a subtask Uj that is critical at th scheduled at tb.

The lemma below shows that the deadline of the critical subtask at th of every task in B(th) is at th +1.

Lemma 17. Let T be a task in B(th) and let Ti be T ’s critical subtask at th. Then, d(Ti) = th + 1.

Proof: Because T is in B(th), T is active at th, but is not scheduled at th. Hence, Ti, which is critical at
th, should have been scheduled earlier. In this case, by Lemma 15, d(Ti) ≤ th + 1 holds. However, since Ti

is T ’s critical subtask at th, by Definition 2, d(Ti) ≥ th + 1 holds. Therefore, d(Ti) = th + 1 follows. ¥

The following lemma shows that at least one subtask scheduled in th has a tardiness of zero, i.e.,
|A0(th)| ≥ 1. It is proved in an appendix.

Lemma 18. There exists a subtask W` scheduled at th with e(W`) ≤ tb, d(W`) = th + 1, and S(W, t) = 0,
for all t ∈ [tb, th). Also, there is no hole in any slot in [tb, th). (Note that, by this lemma, A0(th) 6= ∅.)

The next lemma establishes some properties with respect to a slot in which at least one MI is scheduled.
It is also proved in an appendix.

Lemma 19. Let tm ≤ th be a slot in which an MI is scheduled. Then, the following hold.

(a) For all t, where tm − (q + 2) < t < tm, there is no hole in slot t, and for each subtask Vk that is
scheduled in t, d(Vk) ≤ tm − q + 1.

(b) Let W be a task in B(tm) and let the critical subtask W` of W at tm be scheduled before tm. Then,
W` is scheduled at or before tm − (q + 2).



3.5. Core of the Proof

Having classified the tasks at th and determined their lags at th + 1, we next show that if (W) holds,
then LAG(τ, th + 1) < M + 1 in each of the following cases.

For conciseness, in what follows, we denote subsets A(th), B(th), and I(th) as A, B, and I, respectively.
Subsets Aq−1(th) and Aq(th) and their subsets are similarly denoted without the time parameter.

Case A: Aq = ∅.

Case B: A0
q 6= ∅ or (A1

q 6= ∅ and A0
q−1 6= ∅).

Case C: A0
q = ∅ and A1

q 6= ∅ and A0
q−1 = ∅.

Case D: A0
q = A1

q = ∅.

The following notation is used to denote subset cardinality.

a0 = |A0|; aq = |Aq|; a0
q = |A0

q|; a1
q = |A1

q|; a2
q = |A2

q|;
a0

q−1 = |A0
q−1|; aq−1 = |Aq−1|.

h is defined as follows. (There is no correspondence between h as defined here and the subscript h in th.
The subscript h in th is just an indication that th is a slot with holes.)

h
def= number of holes in th

Because there is at least one hole in th
h > 0. (28)

In the remainder of this paper, let Wmax denote the maximum weight of any task in τ . That is,

Wmax = max
T∈τ

{wt(T )}. (29)

In each of the above cases, LAG(τ, th + 1) can be expressed as follows.

LAG(τ, th + 1) =
∑

T∈τ

lag(T, th + 1)

≤
∑

T∈A0

lag(T, th + 1) +
∑

T∈Aq−1

lag(T, th + 1) +
∑

T∈A0
q

lag(T, th + 1) +

∑

T∈A1
q

lag(T, th + 1) +
∑

T∈A2
q

lag(T, th + 1) ((by (22), (23), (25), and
Lemmas 12(a) and (b)))

<
∑

T∈A0

wt(T ) +
∑

T∈Aq−1

q · wt(T ) +
∑

T∈A0
q

(q + 1) · wt(T ) +

∑

T∈A1
q

((q + 2) · wt(T )− 1)+
∑

T∈A2
q

((q + 3) · wt(T )− 2) (by Lemmas 12(c)–(g))

Using (29), LAG(τ, th + 1) can be bounded as

LAG(τ, th + 1)



< a0 ·Wmax + aq−1 · q ·Wmax + a0
q(q + 1)Wmax + a1

q((q + 2)Wmax − 1) +

a2
q((q + 3)Wmax − 2) (30)

≤





a0 ·Wmax + a0
q · (q + 1)Wmax + a1

q · ((q + 2)Wmax − 1) +
(aq−1 + a2

q) · ((q + 3)Wmax − 2) , Wmax ≥ 2
3

a0 · (2/3) + a0
q · (q + 1)(2/3) + a1

q · ((q + 2)(2/3) − 1) +
(aq−1 + a2

q) · (q · (2/3)) , Wmax < 2
3

(31)

(because (q + 3)Wmax − 2 ≥ q ·Wmax for Wmax ≥ 2/3).

Note that though (q +3)Wmax−2 < q ·Wmax holds, for Wmax < 2/3, (q +3) · (2/3)−2 = (2/3) · q > q ·Wmax

holds for all Wmax < 2/3. Therefore, if the values of a0, aq−1, and ai
q are not dependent on whether

Wmax ≥ 2/3 or Wmax < 2/3, determining a bound on LAG(τ, th + 1) using the expression corresponding
to Wmax ≥ 2/3 in (31) (of course, assuming that Wmax ≥ 2/3) serves as an upper bound for LAG when
Wmax < 2/3. Hence, later in the paper, when a0, aq−1, and ai

q are not dependent on Wmax, we bound
LAG(τ, th + 1) in this way.

The total number of processors, M , expressed in terms of the number of subtasks in each subset of A
scheduled at th, and the number of holes in th, is as follows.

M = a0 + aq−1 + a0
q + a1

q + a2
q + h (32)

3.6. Case A: Aq = ∅

Case A is dealt with as follows.

Lemma 20. If Aq = ∅, then LAG(τ, th + 1) < qM + 1.

Proof: If Aq = ∅, then

LAG(τ, th + 1)
< a0 ·Wmax + aq−1 · q ·Wmax (by (30) and a0

q = a1
q = a2

q = 0)
≤ a0 · q ·Wmax + aq−1 · q ·Wmax

< (M − h) · q ·Wmax (by (32), a0 + aq−1 = M − h for this case)
< qM + 1. ¥

Hence, if no subtask with a tardiness of q is scheduled in th, then (T1) is contradicted.

3.7. Case B: A0
q 6= ∅ or (A1

q 6= ∅ and A0
q−1 6= ∅)

By Lemma 12(d), lag(T, th +1) could be as high as (q+1) ·wt(T ), if the subtask Ti of T scheduled at th is
an MI , i.e., is in A0

q. Therefore, if a0
q is large, then LAG at th +1 could exceed qM +1. However, as we show

below, if the number of MIs and SMIs scheduled at th is large, then the number of tasks that are inactive
at th is also large, which can in turn be used to show that LAG does not increase across th. Specifically,
we show that if a0

q + a1
q > (q + 1)(h − 1), then LAG(τ, th + 1) ≤ LAG(τ, th) < qM + 1, contradicting (T1).

(Otherwise, the number of MIs and SMIs is not large enough for LAG to equal or exceed qM + 1.)

We begin by giving a lemma concerning the sum of the weights of tasks in I.

Lemma 21. If LAG(τ, th + 1) > LAG(τ, th), then
∑

V ∈I wt(V ) < h.



Proof: By (17),

LAG(τ, th + 1) = LAG(τ, th) +
∑

T∈τ

(A(ideal, T, th)− S(T, th))

= LAG(τ, th) +
∑

T∈A∪B

(A(ideal, T, th))− (M − h)

(by (23) and A(ideal, T, th) = 0 for T in I, and (32))

≤ LAG(τ, th) +
∑

T∈A∪B

wt(T )− (M − h) (by (7)).

If LAG(τ, th + 1) > LAG(τ, th), then by the derivation above,
∑

T∈A∪B

wt(T ) > M − h. (33)

By (5), (22), and (23),
∑

T∈I wt(T ) ≤ M −∑
T∈A∪B wt(T ), which by (33) implies that

∑
T∈I wt(T ) < h.

¥

We next determine the largest number of MIs and SMIs that may be scheduled at th, for
∑

T∈I wt(T ) < h
to hold. We begin with a lemma that gives the latest time that a subtask of a task in B may be scheduled
if a0

q > 0 or (a1
q > 0 and a0

q−1 > 0).

Lemma 22. If a0
q > 0 (that is, an MI is scheduled at th), or (a1

q > 0 and a0
q−1 > 0) (that is, an SMI, and

a c-MI, where 0 < c < q, is scheduled at th), then subtask Uj defined by Definition 8 is scheduled no later
than th − (q + 2), i.e., tb ≤ th − (q + 2).

Proof: If a0
q > 0 holds, then this lemma is immediate from Definitions 8, 7, and Lemma 19(b). (Note that

Definitions 8 and 7 imply that Uj is scheduled before th.)

If a0
q−1 > 0 holds, then a c-MI, where 0 < c < q, say Ti, is scheduled at th. Hence, d(Ti) = th +1− c ≤ th

holds. By the definition of c-MI, the predecessor of Ti is not scheduled at th − 1. Hence, the deadline of
every subtask scheduled at th − 1 is at most th. By Definition 2, d(Uj) ≥ th + 1. Therefore, Uj is not
scheduled at th − 1.

If a1
q > 0 holds, then an SMI is scheduled at th, and its predecessor, which is an MI, is scheduled at

th − 1. Therefore, by Lemma 19(b), Uj is not scheduled in [th − 1− (q + 1), th − 1) = [th − (q + 2), th − 1).

Thus, if both a0
q−1 > 0 and a1

q > 0 hold, Uj is not scheduled later than th − (q + 3). ¥

The lemma that follows is used to identify tasks that are inactive at th.

Lemma 23. Let T be a task that is not scheduled at th. If T is scheduled in any of the slots in [tb + 1, th),
then T is in I.

Proof: T clearly is not in A. Because T is scheduled in [tb + 1, th), T is also not in B, by Definiton 7. ¥

In the rest of this subsection, we let s denote the number of slots in [tb + 1, th). That is,

s
def= th − tb − 1 ≥ q + 1 (by Lemma 22). (34)

We now determine a lower bound on the number of subtasks of tasks in I that may be scheduled in
[tb + 1, th) as a function of a0

q, a1
q, h, and s. For this purpose, we assign subtasks scheduled in [tb + 1, th)



to processors in a systematic way. This assignment is only for accounting purposes; subtasks need not be
bound to processors in the actual schedule.

Processor groups. The assignment of subtasks to processors is based on the tasks scheduled at th. The
M processors are partitioned into four disjoint sets, P1, P2, P3, and P4, based on the tasks scheduled at th,
as follows.

P1 : By Lemma 18, there is at least one subtask W` scheduled at th such that e(W`) ≤ tb and S(W, t) = 0,
for t in [tb, th). We assign one such subtask to the lone processor in this group. Hence, |P1| = 1.

P2 : The h processors that are idle at th comprise this group. Thus, |P2| = h.

P3 : This group consists of the a0
q +a1

q processors on which the a0
q MIs and a1

q SMIs are scheduled. Because
either a0

q > 1 or a1
q > 1 holds, |P3| ≥ 1. τ3 denotes the subset of all tasks scheduled on processors in

P3 at th.

P4 : Processors not assigned to P1, P2, or P3 belong to this group. τ4 denotes the subset of all tasks
scheduled on processors in P4 at th.

Subtask assignment in [tb + 1, th). Subtasks scheduled in [tb + 1, th) are assigned to processors by the
following rules. Tasks in τ3 and τ4 are assigned to the same processor that they are assigned to in th, in
every slot in which they are scheduled in [tb + 1, th). (It is trivial that such an assignment is possible since
by the processor groups defined above, |τ3| + |τ4| = P3 + P4 ≤ M − h − 1 < M .) Subtasks of tasks not in
τ3 or τ4 may be assigned to any processor.

The next three lemmas bound the number of subtasks of tasks in I scheduled in [tb + 1, th). These lemmas
assume that the assignment of subtasks to processors in [tb + 1, th) follows the rules described above. In
these lemmas we assume that either a0

q ≥ 1 or (a1
q ≥ 1 and a0

q−1 ≥ 1) holds.

Lemma 24. The number of subtasks of tasks in I that are scheduled in [tb + 1, th) is at least s · (h + 1) +
(a0

q + a1
q).

Proof: We first make the following two claims.

Claim 2. Let Ti be a subtask assigned to a processor in P1 or P2 in [tb + 1, th). Then, T is in
I.
Proof: By our assignment of subtasks to processors, tasks assigned to processors in P1 or P2 in
[tb + 1, th) are not scheduled at th. Therefore, T is not scheduled at th. Hence, by Lemma 23, T
is inactive at th, i.e., is in I. ¥

Claim 3. At least one of the subtasks assigned to each processor in P3 in [tb + 1, th) is a subtask
of a task in I.

Proof: Let P x
3 be any processor in P3, and let Ti be the subtask scheduled on P x

3 at th. Then,
Ti is either an MI or an SMI. In the former case, by the definition of an MI, S(T, th − 1) = 0,
and in the latter, by the definition of an SMI, S(T, th− 2) = 0. By Lemma 22, tb ≤ th− (q + 2).
Thus, since q ≥ 1, and by Lemma 18, there is no hole in any slot in [tb, th), there is no hole in
slot th − 2 or th − 1. Thus, a subtask of a task V other than T is assigned to P x

3 in one of these
two slots. By our subtask assignment, V is not scheduled at th; thus, by Lemma 23, V ∈ I. ¥



The lemma follows from the definition of s in (34), and Claims 2 and 3 above. ¥

Lemma 25. The sum of the weights of the tasks in I is at least (h+1)·s
s+q+1 + a0

q+a1
q

s+q+1 .

Proof: Let Vk be a subtask of a task V in I that is scheduled in [tb + 1, th). Then, by Definition 1,
d(Vk) ≤ th. By Definition 8, Uj is scheduled at tb, and by Definition 2, d(Uj) ≥ th + 1. Because Vk with an
earlier deadline than Uj is scheduled later than tb, either r(Vk) ≥ tb + 1 or Vk’s predecessor Vj , where j < k,
is scheduled at tb. In the latter case, by Lemma 7(b), tardiness(Vj) ≤ q, and hence, d(Vj) ≥ tb − q + 1,
which, by Lemma 2, implies r(Vk) ≥ tb − q. Thus, we have the following.

(∀Vk :V ∈I :: ((u ∈ [tb + 1, th) ∧ S(Vk, u) = 1)⇒(r(Vk) ≥ tb − q ∧ d(Vk) ≤ th)))
(35)

We next show that wt(V ) ≥ V.n
s+q+1 , where V.n is the number of subtasks of V scheduled in [tb + 1, th). Let

Vk and V` denote the first and final subtasks of V scheduled in [tb + 1, th). Then, by (35), r(Vk) ≥ tb − q
and d(V`) ≤ th. Hence,

d(V`)− r(Vk) ≤ th − tb + q = s + q + 1 (by the definition of s in (34)). (36)

By (1),

d(V`)− r(Vk) =
⌈

`

wt(V )

⌉
−

⌊
k − 1
wt(V )

⌋
+ Θ(V`)−Θ(Vk)

≥
⌈

`

wt(V )

⌉
−

⌊
k − 1
wt(V )

⌋
(by ` > k and (2)). (37)

By (36) and (37), we have
⌈

`
wt(V )

⌉
−

⌊
k−1

wt(V )

⌋
≤ s + q + 1, which implies `

wt(V ) − k−1
wt(V ) ≤ s + q + 1, i.e.,

wt(V ) ≥ `− k + 1
s + q + 1

≥ V.n

s + q + 1
(because V.n = ` − k + 1 if V is periodic and
V.n ≤ `− k + 1 if V is IS or GIS) .

Therefore, we have
∑

V ∈I wt(V ) ≥ ∑
V ∈I

V.n
s+q+1 ≥ (h+1)·s

s+q+1 + a0
1+a1

1
s+q+1 , where the last inequality is by Lemma 24. ¥

Lemma 26. If LAG(τ, th + 1) > LAG(τ, th) and either a0
q ≥ 1 or (a1

q ≥ 1 and a0
q−1 ≥ 1), then a0

q + a1
q ≤

min((h− 1)(q + 1)− 1,M − h− 1).

Proof: By Lemma 21, if LAG(τ, th + 1) > LAG(τ, th), then
∑

V ∈I wt(V ) < h. By Lemma 25, (h+1)·s
s+q+1 +

a0
q+a1

q

s+q+1 ≤
∑

V ∈I wt(V ). Therefore, (h+1)·s
s+q+1 + a0

q+a1
q

s+q+1 < h, which implies that

a0
q + a1

q < h(q + 1)− s

≤ h(q + 1)− (q + 1) (by (34))
= (h− 1)(q + 1). (38)

Also, there are h holes in th, and by Lemma 18, a0 ≥ 1. Therefore, by (32),

a0
q + a1

q ≤ M − h− 1. (39)

(38) and (39) imply that a0
q + a1

q ≤ min((h− 1)(q + 1)− 1,M − h− 1). ¥



We now conclude Case B by establishing the following.

Lemma 27. If a0
q > 0 or (a1

q > 0 and a0
q−1 > 0), then LAG(τ, th + 1) < qM + 1.

Proof: Because Wmax < 1, assuming Wmax ≥ 2/3 (because, as discussed earlier, a0, aq−1, and ai
q are not

dependent on Wmax), by (31), we have

LAG(τ, th + 1) < a0 ·Wmax + ((q + 1) ·Wmax) · (a0
q + a1

q)

+(aq−1 + a2
q) · ((q + 3) ·Wmax − 2). (40)

By Lemma 26, if LAG(τ, th + 1) > LAG(τ, th), then a0
q + a1

q ≤ min((h − 1)(q + 1) − 1, M − h − 1). By
Lemmas 12(a)–(g) (and as can be seen from the coefficients of the ai terms in (40)), the lag bounds for
tasks in A0

q ∪ A1
q are higher than those for the other tasks. Hence, LAG(τ, th + 1) is maximized when

a0
q + a1

q = min((h− 1)(q + 1)− 1,M − h− 1). We assume this is the case. Note that

min((h− 1)(q + 1)− 1,M − h− 1) =
{

(h− 1)(q + 1)− 1, h ≤ M+1+q
q+2

M − h− 1, otherwise.
(41)

Based on (41), we consider two cases.

Case 1: h > M+1+q
q+2

. For this case, LAG is maximized when a0
q + a1

q = M − h − 1, and hence, by (32),
a0 + aq−1 + a2

q = M − h − (a0
1 + a1

1) = 1. Because, by Lemma 18, a0 > 0, we have a0 = 1, and hence,
aq−1 = a2

q = 0. Substituting a0 = 1, a2
q = aq−1 = 0, and a0

q +a1
q = M−h−1 in (40), we have LAG(τ, th+1) <

Wmax+(q+1)·Wmax ·(a0
q+a1

q) = Wmax+(q+1)·Wmax ·(M−h−1) < Wmax+(q+1)·Wmax ·
(
M − M+q+1

q+2 − 1
)

(where the last inequality is by the condition of Case 1, namely, h > M+1+q
q+2 ). If qM + 1 ≤ LAG(τ, th + 1),

then Wmax + (q + 1) ·Wmax ·
(
M − M+q+1

q+2 − 1
)

> qM + 1, which implies that Wmax > Mq(q+2)+q+2
M(q+1)2−(2q2+4q+1) ,

which is greater than q+2
q+3 for all q ≥ 1 and M ≥ 2. This contradicts (W), and hence, LAG(τ, th+1) < qM+1.

Case 2: h ≤ M+1+q
q+2

. For this case, LAG is maximized when a0
q + a1

q = (h − 1)(q + 1) − 1. By (32), we
have aq−1 + a2

q = M − h− (a0 + a0
q + a1

q) = M − h− a0 − (hq + h− q − 2). Therefore, by (40),

LAG(τ, th + 1)
< a0 ·Wmax + (q + 1) ·Wmax · (a0

q + a1
q) + ((q + 3) ·Wmax − 2) · (aq−1 + a2

q)
= a0 ·Wmax + (q + 1) ·Wmax · (hq + h− q − 2)

+((q + 3) ·Wmax − 2)(M − 2h− a0 − hq + q + 2). (42)

If qM +1 ≤ LAG(τ, th +1), then the expression on the right-hand side of (42) exceeds qM +1, which implies
that Wmax > (q+2)M+2q+5−4h−2a0−2hq

(q+3)M+2q+4−5h−(2+q)a0−3hq . Let f
def= (q+2)M+2q+5−4h−2a0−2hq

(q+3)M+2q+4−5h−(2+q)a0−3hq , and let Y denote the
denominator, (q + 3)M + 2q + 4− 5h− (2 + q)a0 − 3hq, of f . To show that the lemma holds for this case,
we show that unless Wmax exceeds q+2

q+3 , qM + 1 > LAG(τ, th + 1). For this purpose, we determine a lower
bound to the value of f . Note that for a given number of processors, M , and tardiness, q, f varies with a0

and h. Because a0
q + a1

q = (h − 1)(q + 1) − 1 > 0, we have h > q+2
q+1 ; hence, because h is integral, h ≥ 2

holds. The first derivative of f with respect to h is M(q2+q−2)+a0(2q2+2q−2)+2q2+9q+9
Y 2 , which is non-negative

for all a0 ≥ 0, and that with respect to a0 is M(q2+2q−2)+h(2−2q−2q2)+2q2+5q+2
Y 2 , which is non-negative for

h ≤ M(q2+2q−2)+2q2+5q+2
2q2+2q−2 . Thus, f is minimized when h = 2, and because M(q2+2q−2)+2q2+5q+2

2q2+2q−2 ≥ M+1+q
q+2

(where M+1+q
q+2 ≥ h holds for this case), when a0 = 1. When h = 2 and a0 = 1 hold, f = qM+2M−2q−5

qM+3M−5q−8 > q+2
q+3 ,



for all M (since when h = 2 and a0 = 1, we have M ≥ 4). Hence, Wmax > q+2
q+3 , which is a violation of (W),

and the lemma follows for this case. ¥

Thus, if an MI or an SMI and a c-MI are scheduled in th, then (T1) is contradicted.

3.8. Case C: (A0
q = ∅ and A1

q 6= ∅ and A0
q−1 = ∅)

For this case, we show that if LAG(τ, th +1,S) > qM +1, then there exists another concrete task system
τ ′, obtained from τ by removing certain subtasks, such that LAG of τ ′ at th − 1 in an EPDF schedule S ′ is
greater than qM + 1 contradicting the minimality of th (in Definition 5). Our approach is to identify task
subsets, determine the lag for tasks in each subset in S ′ at th − 1, and use task lags to determine the LAG
of τ ′ at th − 1. We begin by defining needed subsets of subtasks and tasks.

In this case, since no MI is scheduled in slot th, tb (in Definition 7) can be as late as th − 1. This is
stated below.

tb ≤ th − 1 (43)

Let t′b be defined as follows.

Definition 9:. t′b denotes the latest time, if any, before th − 1 that a subtask with deadline at or after th
is scheduled.

Since at least one SMI is scheduled at th, at least one MI is scheduled at th−1. Therefore, by Lemma 19(a),
the following holds.

(C) The deadline of every subtask scheduled in any slot in [th − (q + 2), th − 1) is at or before
th − q.

Since q ≥ 1 holds, (C) implies the following.

when it exists, t′b ≤ th − (q + 3) (44)

Let τ1
s through τ8

s be subsets of subtasks defined as follows. In the definitions that follow, when we say
that Ti is ready at t′b, we mean that e(Ti) ≤ t′b, and Ti’s predecessor, if any, is scheduled before t′b.

τ1
s

def=
{Ti | Ti is either the critical subtask at th of a task in B(th) or the critical subtask
at th − 1 of a task in B(th − 1), t′b exists, Ti is scheduled at or before t′b, and T is
not scheduled at th}

τ2
s

def= {Ti | d(Ti) ≥ th, Ti is scheduled at th − 1, and T is not scheduled at th}
τ3
s

def= {Ti | T ∈ A0(th), Ti is scheduled at th, and Ti is ready at or before th − (q + 3) in
S}

τ4
s

def= {Ti | T ∈ A0(th), Ti is scheduled at th, and Ti is not ready at or before th− (q +3)
in S}

τ5
s

def= {Ti | T ∈ (A1
q(th) ∪ A2

q(th) ∪ Aq−1(th)), Ti is scheduled at th, and T is scheduled
at th − 1}

τ6
s

def= {Ti | Ti is scheduled at th− 1, Ti 6∈ τ2
s (i.e., d(Ti) < th), and T is not scheduled at

th}
τ7
s

def= {Ti | Ti is the predecessor of a subtask in τ1
s and d(Ti) = th}

τ8
s

def= {Ti | Ti is the predecessor of a subtask in τ2
s and d(Ti) = th}



Let τ i denote the set of all tasks with a subtask in τ i
s, for all 1 ≤ i ≤ 8. Note that τ7 ⊆ τ1 and τ8 ⊆ τ2

hold.

The following lemma establishes some properties concerning the subsets of subtasks and tasks defined
above. It is proved in an appendix.

Lemma 28. The following properties hold for subsets τ i
s and τ i defined above, where 1 ≤ i ≤ 8.

(a) For every task T , there is at most one subtask in (τ1
s ∪ τ2

s ∪ τ6
s ).

(b) Let Ti scheduled at th be the subtask of a task T in Aq(th) or Aq−1(th). Then, Ti is in τ5
s .

(c) τ7 ⊆ τ1 and τ8 ⊆ τ2.

(d) Subsets τ i, where 1 ≤ i ≤ 6, are pairwise disjoint.

Let
τR
s

def= τ1
s ∪ τ2

s ∪ τ3
s ∪ τ7

s ∪ τ8
s , (45)

and let τ ′ be a concrete GIS task system obtained from τ by removing all the subtasks in τR
s . Let S ′ be an

EPDF schedule for τ ′ such that ties among subtasks with equal deadlines are resolved in the same way as
they are resolved in S. Our goal is to show that LAG(τ ′, th − 1,S ′) ≥ qM + 1, and derive a contradiction
to the minimality of th in Definition 5. For this purpose, in the next few lemmas (proved in an appendix),
we establish lag bounds in S ′ for tasks with subtasks in the subsets defined above. We will denote the ideal
schedule for τ as idealτ and that for τ ′ as idealτ ′ .

Lemma 29. Let T be a task with a subtask in τ1
s or τ2

s . Then, lag(T, th − 1,S ′) = lag(T, th + 1,S).

Lemma 30. Let T be a task with a subtask in τ3
s . Then, lag(T, th − 1,S ′) > lag(T, th + 1,S)− 1/(q + 2).

Lemma 31. Let T be a task with a subtask in τ4
s . Then, lag(T, th− 1,S ′) ≥ lag(T, th +1,S)− 2 ·Wmax +1.

Lemma 32. Let T be a task with a subtask in τ5
s . Then, lag(T, th− 1,S ′) ≥ lag(T, th +1,S)+2− 2 ·Wmax.

Lemma 33. Let T be a task with a subtask in τ6
s . Then, lag(T, th − 1,S ′) > lag(T, th + 1,S).

Let τ c = τ ′\(∪6
i=1τi). Because τ and τ ′ are concrete instantiations of the same non-concrete task system,

they both contain the same tasks, and hence, τ c = τ \ (∪6
i=1τi). We show the following concerning the lag

of a task in τ c at th − 1 in S ′. (This lemma is also proved in an appendix.)

Lemma 34. Let T be a task in τ c. Then, lag(T, th − 1,S ′) = lag(T, th + 1,S).

Having determined bounds for the lags of tasks at th − 1 in S ′, we now determine a lower bound for the
LAG of τ ′ at th − 1 in S ′, and show that if (W) holds, then LAG(τ ′, th − 1,S ′) ≥ qM + 1.

Lemma 35. If either (Wmax ≤ q+3
2q+4 and a0 ≤ (M−h)·(q+1)

q+2 ) or (Wmax > q+3
2q+4 and a0 ≤ 2(M − h)(1 −

Wmax)), then LAG(τ ′, th − 1,S ′) ≥ qM + 1.



Proof: By (16),

LAG(τ ′, th − 1,S ′)
=

∑

T∈τ ′
lag(T, th − 1,S ′)

=
∑

T∈τ

lag(T, th − 1,S ′) (by the construction of τ ′)

=
6∑

i=1

∑

T∈τ i

lag(T, th − 1,S ′) +
∑

T∈τc

lag(T, th − 1,S ′)

(by Lemmas 28(c) and (d), and because τ c = τ \ ∪6
i=1τ

i)

≥
∑

T∈τ1∪τ2∪τ6∪τc

lag(T, th + 1,S) +
5∑

i=3

∑

T∈τ i

lag(T, th − 1,S ′)

(by Lemmas 29, 33, and 34)

≥
6∑

i=1

∑

T∈τ i

lag(T, th + 1,S) +
∑

T∈τc

lag(T, th + 1,S)− |τ3| · 1
q + 2

+|τ4| · (1− 2Wmax) + |τ5| · (2− 2Wmax) (by Lemmas 30–32)

= LAG(τ, th + 1,S)− |τ3| · 1
q + 2

− |τ4| · (2Wmax − 1) + |τ5| · (2− 2Wmax)

(46)
(by the definitions of sets τ i, where 1 ≤ i ≤ 6, and τ c).

Note that
|τ3|+ |τ4| = a0. (47)

By Lemma 28(b), |τ5| = |Aq| + |Aq−1| = aq + aq−1. By the definitions of Aq, A0
q, A1

q, and A2
q, and by

(25)–(27), aq = a0
q +a1

q +a2
q. However, because no MI is scheduled at th by the conditions of Case C, a0

q = 0,
and hence,

|τ5| = a1
q + a2

q + aq−1 = M − h− a0 (by (32)). (48)

We now consider the following two cases based on the statement of the lemma.

Case 1: Wmax > q+3
2q+4

and a0 ≤ 2(M − h)(1 − Wmax). Since Wmax > q+3
2q+4 , 2Wmax − 1 > 1

q+2 holds.
By (46),

LAG(τ ′, th − 1,S ′)
≥ LAG(τ, th + 1,S)− |τ3| · 1

q + 2
− |τ4| · (2Wmax − 1) + |τ5| · (2− 2Wmax)

≥ LAG(τ, th + 1,S)−|τ3|·(2Wmax−1)−|τ4|·(2Wmax−1)+|τ5|·(2−2Wmax)
(because as mentioned above, 2Wmax − 1 > 1

q+2 )

= LAG(τ, th + 1,S)− a0 · (2Wmax − 1) + (M − h− a0) · (2− 2Wmax)
(by (47) and (48))

= LAG(τ, th + 1,S)− a0 + (M − h) · (2− 2Wmax)
≥ LAG(τ, th + 1,S) (because 2(M − h) · (1−Wmax) ≥ a0 for this case)
≥ qM + 1 (by (T1)). (49)



Case 2: Wmax ≤ q+3
2q+4

and a0 ≤ (M−h)·(q+1)
q+2

. Since Wmax ≤ q+3
2q+4 , 2 ·Wmax − 1 ≤ 1

q+2 holds. As with
Case 1, by (46),

LAG(τ ′, th − 1,S ′)
≥ LAG(τ, th + 1,S)− |τ3| · 1

q + 2
− |τ4| · (2Wmax − 1) + |τ5| · (2− 2 ·Wmax)

≥ LAG(τ, th + 1,S)− |τ3| · 1
q + 2

− |τ4| · 1
q + 2

+ |τ5| · (2− 2 ·Wmax)

(because 2 ·Wmax − 1 ≤ 1
q+2 )

≥ LAG(τ, th + 1,S)− |τ3| · 1
q + 2

− |τ4| · 1
q + 2

+ |τ5| · 2q + 2
2(q + 2)

(because Wmax ≤ q+3
2(q+2) )

= LAG(τ, th + 1,S)− a0 · 1
q + 2

+ (M − h− a0) · q + 1
q + 2

(by (47) and (48))

= LAG(τ, th + 1,S)− a0 + (M − h) · q + 1
q + 2

≥ LAG(τ, th + 1,S) (because a0 ≤ (M−h)·(q+1)
q+2 for this case)

≥ qM + 1 (by (T1)). (50)

The lemma follows from (49) and (50), and by the conditions of Cases 1 and 2, respectively. ¥

In completing Case C, we make use of this auxiliary algebraic lemma, proved in an appendix.

Lemma 36. The roots of f(Wmax)
def= 2(M −h)(q +1)W 2

max− (q +2)(M −h)Wmax− ((q−1)M +1+h) = 0

are Wmax = (q+2)(M−h)±
√

9q2(M−h)2+∆

4(M−h)(q+1) , where ∆ = 4(M − h)(M(q − 1) + h(2q2 + q + 1) + 2q + 2).

We conclude this case by establishing the following lemma.

Lemma 37. If either (Wmax ≤ q+3
2q+4 and a0 > (M−h)·(q+1)

q+2 ) or (Wmax > q+3
2q+4 and a0 > 2(M − h)(1 −

Wmax)), then LAG(τ, th + 1,S) < qM + 1.

Proof: We consider two cases based on the statement of the lemma.

Case 1: Wmax > q+3
2q+4

and a0 > 2(M − h)(1 − Wmax). By (30),

LAG(τ, th + 1,S)
< a0 ·Wmax + a0

q(q + 1)Wmax + aq−1 · q ·Wmax + a1
q((q + 2)Wmax − 1)

+a2
q((q + 3)Wmax − 2)

< a0 ·Wmax + a0
q(q + 1)Wmax + (aq−1 + a1

q)((q + 2)Wmax − 1)

+a2
q((q + 3)Wmax − 2)

(by the conditions of Case 1, Wmax > q+3
2q+4 ≥ 1

2 ; thus,
q ·Wmax < (q + 2)Wmax − 1 holds)

< a0 ·Wmax + a0
q(q + 1)Wmax + (aq−1 + a1

q + a2
q)((q + 2)Wmax − 1)

(because Wmax < 1)



≤ a0 ·Wmax + (M − h− a0) · ((q + 2)Wmax − 1)
(by (32) because a0

q = 0 by the conditions of Case C)
= a0 · (1− (q + 1)Wmax) + (M − h) · ((q + 2)Wmax − 1)
< 2(M − h)(1−Wmax) · (1− (q + 1)Wmax) + (M − h) · ((q + 2)Wmax − 1)

(because Wmax > q+3
2q+4 ≥ 1

q+1 for all q ≥ 1, 1 − (q + 1)Wmax < 0; also, by the
conditions of Case 1, a0 > 2(M − h)(1−Wmax))

= 2(M − h)(q + 1)W 2
max − (q + 2)(M − h)Wmax + M − h.

We next show that LAG(τ, th+1,S) < qM +1 holds (if (W) holds). Suppose to the contrary that LAG(τ, th+
1,S) ≥ qM + 1; then by the derivation above

2(M − h)(q + 1)W 2
max − (q + 2)(M − h)Wmax − ((q − 1)M + 1 + h) > 0. (51)

By Lemma 36, the roots of f(Wmax) = 2(M −h)(q + 1)W 2
max− (q + 2)(M −h)Wmax− ((q− 1)M + 1 + h) =

0 are Wmax = (q+2)(M−h)±
√

9q2(M−h)2+∆

4(M−h)(q+1) , where ∆ = 4(M − h)(M(q − 1) + h(2q2 + q + 1) + 2q + 2).

Let Wmax,1 = (q+2)(M−h)+
√

9q2(M−h)2+∆

4(M−h)(q+1) and Wmax,2 = (q+2)(M−h)−
√

9q2(M−h)2+∆

4(M−h)(q+1) . Since 0 < h < M

and q ≥ 1 hold, ∆ > 0 holds, and hence,
√

9q2(M − h)2 + ∆ is greater than 3q(M − h). Note that
Wmax,1 > (q+2)(M−h)+3(M−h)q

4(M−h)(q+1) = 4q+2
4q+4 > 0. Also, because h < M , 3q(M − h) ≥ (q + 2)(M − h) for

all q ≥ 1. Therefore, Wmax,2 < 0. The first derivative of f(Wmax) with respect to Wmax is given by
f ′(Wmax) = 4(M − h)(q + 1)Wmax − (q + 2)(M − h), which is positive for Wmax > q+2

4q+4 . Hence, f(Wmax)
is an increasing function of Wmax for Wmax ≥ q+2

4q+4 ; further, the following hold: Wmax,1 > 4q+2
4q+4 > q+2

4q+4 ,
f(Wmax,1) = 0, and f(Wmax) is quadratic. Therfore, we have f(Wmax) < 0 for Wmax,2 < 0 < Wmax <

Wmax,1. Because as mentioned earlier, Wmax,1 > (q+2)(M−h)+3(M−h)q
4(M−h)(q+1) = 4q+2

4q+4 > q+2
q+3 , it follows that, for all

0 < Wmax ≤ q+2
q+3 , f(Wmax) < 0. By (W), Wmax ≤ q+2

q+3 holds, and hence, (51) does not hold, implying that
LAG(τ, th +1) < qM +1. Thus, by the conditions of Case 1, if Wmax > q+3

2q+4 and a0 > 2(M −h)(1−Wmax),
then LAG(τ, th + 1,S) < qM + 1 follows.

Case 2: Wmax ≤ q+3
2q+4

and a0 > (M−h)·(q+1)
q+2

. Because q+3
2q+4 ≤ 2

3 , for all q ≥ 1, q · Wmax ≥ (q +
3)Wmax − 2 holds. Hence, by (30), we have

LAG(τ, th + 1,S)
< a0 ·Wmax + (aq−1 + a2

q)q ·Wmax + a0
q(q + 1)Wmax + a1

q((q + 2)Wmax − 1)

= a0 ·Wmax + (aq−1 + a2
q)q ·Wmax + a1

q((q + 2)Wmax − 1) (52)
(because a0

q = 0 by the conditions of Case C).

We consider two subcases based on the value of Wmax.

Subcase 2(a): 1
2

< Wmax ≤ q+3
2q+4

. For this case, (q + 2)Wmax − 1 > q ·Wmax holds. Hence, by (52), we
have

LAG(τ, th + 1,S)
< a0 ·Wmax + (aq−1 + a2

q + a1
q)((q + 2)Wmax − 1)

≤ a0 ·Wmax + (M − h− a0) · ((q + 2)Wmax − 1) (by (32) because a0
q = 0)

= a0 · (1− (q + 1)Wmax) + (M − h) · ((q + 2)Wmax − 1). (53)

Let f(a0,Wmax)
def= a0 · (1− (q + 1)Wmax) + (M − h) · ((q + 2)Wmax − 1), the right-hand side of the above

inequality. Our goal is to determine an upper bound for f(a0,Wmax). We first show that f(a0,Wmax) is an
increasing function of Wmax for all a0 ≥ 0, and a decreasing function of a0, for any Wmax ≥ 1

q+1 . (In the



description that follows, we assume a0 and Wmax are non-negative.) The first derivative of f(a0,Wmax) with
respect to Wmax is (M − h)(q + 2)− a0(q + 1). Therefore, since a0 ≤ M − h and M − h > 0, it follows that
(M −h)(q +2)−a0(q +1) is positive for all q ≥ 0. Hence, f(a0,Wmax) is an increasing function of Wmax for
all valid a0. Further, f(a0,Wmax) is a non-decreasing function of a0 for all Wmax ≤ 1

q+1 , and is a decreasing
function of a0 for all Wmax > 1

q+1 . Therefore, since Wmax ≤ q+3
2q+4 , a0 ≤ M − h, and a0 ≥ 1 (by Lemma 18),

f(a0,Wmax) is maximized when either Wmax = q+3
2q+4 and a0 = 1 or Wmax = 1

q+1 and a0 = M − h. It can

easily be verified that f(a0,
q+3
2q+4 ) = a0 ·

(
−q2−2q+1

2q+4

)
+ M · ( q+1

2

)− h · ( q+1
2

)
< qM + 1 for all a0 ≥ 1. It can

also be verified that f(a0,
1

q+1 ) = M−h
q+1 < qM + 1 for all a0. Hence, f(a0,Wmax) < qM + 1, and therefore,

LAG(τ, th + 1,S) < qM + 1 holds.

Subcase 2(b): Wmax ≤ 1
2
. For this case, (q + 2)Wmax − 1 ≤ q ·Wmax holds. Hence, by (52), we have

LAG(τ, th + 1,S)
< a0 ·Wmax + (aq−1 + a1

q + a2
q) · q ·Wmax

≤ a0 ·Wmax + (M − h− a0) · q ·Wmax (by (32) because a0
q = 0)

= a0 ·Wmax(1− q) + (M − h) · q ·Wmax

≤ (M − h) · q ·Wmax (because q ≥ 1)
< qM + 1.

By the reasoning in subcases 2(a) and 2(b), it follows that if Wmax ≤ q+3
2q+4 and a0 ≥ (M−h)·(q+1)

q+2 , then
LAG(τ, th + 1,S) < qM + 1.

Finally, the lemma holds by the conclusions drawn in Cases 1 and 2. ¥

By Lemmas 35 and 37, for any a0 and Wmax, either LAG(τ, th + 1,S) < qM + 1 or LAG(τ ′, th − 1,S ′) ≥
qM + 1 holds. Thus, either (T1) or Definition 5 is contradicted.

3.9. Case D: (A0
q = A1

q = ∅)
Lemma 38. If A0

q = A1
q = ∅, then LAG(τ, th + 1) < qM + 1.

Proof: Because a0
q = a1

q = 0, and a0, aq−1, and a2
q are independent of Wmax, as explained earlier (when

(31) was established), we bound LAG(τ, th + 1) assuming Wmax ≥ 2/3. Hence, by (31), and A0
q = A1

q = ∅,
we have LAG(τ, th + 1) < a0 ·Wmax + ((q + 3)Wmax − 2) · (a2

q + aq−1), which, by (32), equals a0 ·Wmax +
((q + 3)Wmax − 2) · (M − h− a0).

Contrary to the statement of the lemma, assume LAG(τ, th + 1) ≥ qM + 1. This assumption implies
that a0 ·Wmax + ((q + 3)Wmax − 2) · (M − h − a0) > qM + 1, which, in turn, implies that Wmax > f

def=
(q+2)M−2h−2a0+1

(q+3)M−(q+3)h−(q+2)a0
. We now determine a lower bound for f and show that f lies outside the range of

values assumed for Wmax and arrive at a contradiction. Let Y denote the denominator of f . The first
derivative of f with respect to h is given by q(q+3)M−2a0+q+3

Y 2 , which is non-negative for all M ≥ 1, a0 ≥ 1,

and q ≥ 1. The first derivative of f with respect to a0 is given by M(q2+q−2)+2h+q+2
Y 2 , which is also non-

negative for all M ≥ 1, q ≥ 1, and h ≥ 0. Hence, since h and a0 are greater than zero, f is minimized when
h = a0 = 1, for which f = (q+2)M−3

(q+3)M−2q−5 > q+2
q+3 holds, for all q ≥ 1, M > 1. This violates (W), and hence,

our assumption is false, and the lemma follows. ¥

By Lemmas 20, 27, 35, 37, and 38, if (W) is satisfied, then either LAG(τ, th +1) < qM +1 or there exists
another task system with LAG under EPDF at least qM + 1 at th − 1. Thus, either (T1) or the minimality
of th is contradicted. So, task system τ as defined in Definition 6 does not exist, and Theorem 2 holds.



Theorem 2 implies that if each task weight is at most Wmax, then tardiness under EPDF is at most⌈
3·Wmax−2
1−Wmax

⌉
, and we have the following corollary.

Corollary 1. If the weight of each task in a feasible GIS task system τ is at most Wmax, then EPDF ensures
a tardiness bound of max(1,

⌈
3·Wmax−2
1−Wmax

⌉
) for τ .

Proof: Assume to the contrary that the tardiness for some subtask in τ is q, where q > max(1,
⌈

3·Wmax−2
1−Wmax

⌉
).

Then, q > max(1, 3·Wmax−2
1−Wmax

) holds, which implies that q > 1 and Wmax < q+2
q+3 . This contradicts Theorem 2.

¥

4. Conclusion

We have presented counterexamples that show that, in general, tardiness under the EPDF Pfair algorithm
can exceed a small constant number of quanta for feasible recurrent real-time task systems. Thus, the
conjecture that EPDF ensures a tardiness bound of one quantum for all feasible task systems is proved false.
We have also presented sufficient per-task utilization restrictions that are more liberal than those previously
known for ensuring a tardiness of q quanta under EPDF, where q ≥ 1. EPDF is more efficient than known
optimal Pfair algorithms and may be preferable for systems instantiated on less-powerful platforms, systems
with soft timing constraints, and systems whose task composition can change at run-time.

For q = 1, our result presents an improvement of 50% over the previous one. This improvement is mainly
due to the categorization of subtasks (presented in Section 3.1) and the ability to bound the number of miss
initiators and successors of miss initiators scheduled in a slot with a hole (Lemmas 21–26), and the technique
of relating the lag of a task system at a given time to that at an earlier time, developed for reasoning about
Case C (presented in Section 3.8). Though we have not shown the per-task utilization restriction derived
to be tight and do not believe it to be the case, we do believe that this result cannot be improved upon
without adding significantly to the complexity of the analysis.

Acknowledgement. The first author is grateful to Anand Srinivasan for his EPDF simulator and for
sharing the details of a task system that is close to missing a deadline by two quanta (specifically, whose
LAG can be M − 1). Examination of that task system served as a starting point for the construction of
several task systems that can miss their deadlines by two or more quanta, including those reported in this
paper.

References

[1] J. Anderson and A. Srinivasan. Early-release fair scheduling. In Proceedings of the 12th Euromicro Conference on
Real-Time Systems, pages 35–43, June 2000.

[2] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond periodic task systems. In Proceedings of the 7th International
Conference on Real-Time Computing Systems and Applications, pages 297–306, December 2000.

[3] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous periodic tasks. Journal of Computer and
System Sciences, 68(1):157–204, February 2004.

[4] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in resource allocation.
Algorithmica, 15(6):600–625, June 1996.

[5] U. Devi and J. Anderson. Improved conditions for bounded tardiness under EPDF fair multiprocessor scheduling. In
Proceedings of the 12th International Workshop on Parallel and Distributed Real-Time Systems, April 2004. 8 pages (On
CD-ROM).

[6] U. Devi and J. Anderson. A schedulable utilization bound for the multiprocessor EPDF Pfair algorithm. Real-Time
Systems, 38(3):237–288, February 2008.

[7] K. Jeffay and S. Goddard. A theory of rate-based execution. In Proceedings of the Real-Time Systems Symposium, pages
304–314, Phoenix, AZ, December 1999. IEEE Computer Society Press.



[8] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and A.K.
Mok. Real time scheduling theory: A historical perspective. Real-Time Systems, 28(2/3):101–155, November/December
2004.

[9] A. Srinivasan. Efficient and Flexible Fair Scheduling of Real-Time Tasks on Multiprocessors. PhD thesis, University of
North Carolina at Chapel Hill, December 2003.

[10] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multiprocessors. In Proceedings of the 34th ACM
Symposium on Theory of Computing, pages 189–198, May 2002.

[11] A. Srinivasan and J. Anderson. Efficient scheduling of soft real-time applications on multiprocessors. In Proceedings of
the 15th Euromicro Conference on Real-Time Systems, pages 51–59, July 2003.

[12] A. Srinivasan and J. Anderson. Fair scheduling of dynamic task systems on multiprocessors. Journal of Systems and
Software, 77(1):67–80, April 2005.

A. Appendix: Proofs Omitted in the Main Text

In this appendix, we present all proofs omitted in the main paper. We begin with Claim 1.

A.1. Proof of Claim 1

Claim 1 There is no hole in any slot in [td − 1, td + q) in S ′.
Proof: By Definition 3, (S1), and (S2), exactly one subtask in σ has a tardiness of q + 1. Let Ti denote
that subtask. By (S1) again, the deadline of Ti is at td, and hence, Ti is scheduled at time td + q.

The proof of the claim is by induction on decreasing time t. We start by showing that there is no hole
in slot td + q − 1.

Base Case: t = td + q −1. Let Th denote the predecessor, if any, of Ti. Because the deadlines of any two
successive subtasks of the same task differ by at least one time unit, d(Th) ≤ td − 1 holds. Therefore, by
Definition 3, the tardiness of Th is at most q, and Th completes executing by td + q − 1. Hence, no subtask
of T is scheduled in slot td + q− 1. Thus, there is no hole in slot td + q− 1; otherwise, EPDF would schedule
Ti there.

Induction Hypothesis. Assume that there is no hole in any slot in [t′, td + q), where td− 1 < t′ < td + q.

Induction Step: t = t′ − 1. We show that there is no hole in slot t′ − 1. The deadline of every subtask
scheduled in t′ is at most td. Hence, the release time and the eligibility time of every such subtask is at
or before td − 1. Since td − 1 ≤ t′ − 1, every subtask scheduled at t′ can be scheduled at t′ − 1 unless its
predecessor is scheduled there. By the induction hypothesis, there is no hole in slot t′. Hence, if there is a
hole in t′ − 1, then at most M − 1 of the M subtasks scheduled at t′ can have their predecessors scheduled
at t′ − 1, implying that at least one of the subtasks scheduled at t′ should have been scheduled at t′ − 1,
which is a contradiction. Therefore, there can be no hole in t′ − 1. ¥

A.2. Proofs from Section 3.1

Lemma 10 The allocation received by a k-dependent subtask in its first slot in the ideal schedule are as
follows.

(a) The allocation A(ideal, Ti, r(Ti)) received in the ideal schedule by a k-dependent subtask Ti of a periodic
task T with wt(T ) < 1 in the first slot of its window is at most k · T.e

T.p − (k − 1)− 1
T.p , for all k ≥ 0.

(b) The allocation A(ideal, Ti, r(Ti)) received in the ideal schedule by a k-dependent subtask Ti of a GIS task
T in the first slot of its window is at most k · T.e

T.p − (k − 1)− 1
T.p , for all k ≥ 0.



(c) Let Ti, where i ≥ k+1 and k ≥ 1, be a subtask of T with wt(T ) < 1 such that |ω(Ti)| ≥ 3 and b(Ti−1) = 1.
Let the number of subtasks in Ti−1’s dependency group be at least k. Then, A(ideal, Ti, r(Ti)) ≤ k · T.e

T.p −
(k − 1)− 1

T.p .

Proof: Each part is proved below in turn.

Proof of part (a). The proof is by induction on k.

Base Case: k = 0. Because wt(T ) < 1, and T.e and T.p are integral, T.e ≤ T.p − 1. Thus, by (9),
A(ideal, Ti, r(Ti)) ≤ wt(T ) = T.e/T.p ≤ (T.p− 1)/T.p = 1− 1/T.p, and the lemma holds for the base case.

Induction Step. Assuming that the lemma holds for (k − 1)-dependent subtasks, we show that it holds
for k-dependent subtasks, where k ≥ 1. Because k ≥ 1, by the definition of k-dependency, i > 1 and T is
heavy. Hence, by Lemma 1, |ω(Ti−1)| is either two or three. We consider two cases.

Case 1: |ω(Ti−1)| = 2. Since k ≥ 1, Ti−1 is (k − 1)-dependent. Therefore, by the induction hypothesis,

A(ideal, Ti−1, r(Ti−1)) ≤ (k − 1) · (T.e/T.p)− (k − 2)− (1/T.p). (54)

Because |ω(Ti−1)| = 2, by (8), A(ideal, Ti−1, d(Ti−1) − 1) = 1 − A(ideal, Ti−1, r(Ti−1)). Hence, by (54),
A(ideal, Ti−1, d(Ti−1)− 1) ≥ (k− 1) + (1/T.p)− (k− 1) · (T.e/T.p). Because Ti is k-dependent, where k ≥ 1,
by Lemma 8(c), b(Ti−1) = 1, and by Lemma 3, A(ideal, Ti, r(Ti)) = (T.e/T.p)−A(ideal, Ti−1, d(Ti−1)− 1) ≤
k · (T.e/T.p)− (k − 1)− (1/T.p).

Case 2: |ω(Ti−1)| = 3. By the contra-positive of Lemma 8(c), Ti−1 is 0-dependent; hence, Ti is 1-dependent,
i.e., k = 1. By Lemma 8(c), b(Ti−1) = 1, and hence, by Lemma 3,

A(ideal, Ti, r(Ti)) =
T.e

T.p
− A(ideal, Ti, d(Ti−1)− 1) ≤ T.e

T.p
− 1

T.p
(by 10).

¥

Proof of part (b). Follows from part (a) and the definition of GIS tasks. (The allocation that Ti receives
in each slot of its window is identical to the allocation that it would receive if T were periodic.) ¥

Proof of part (c). Since |ω(Ti)| ≥ 3, by Lemma 8(c), Ti is 0-dependent and is the first subtask in its
group. Hence, Ti−1 is the final subtask in its dependency group, and since there are at least k subtasks
in Ti−1’s group, Ti−1 is at least (k − 1)-dependent. Hence, by Lemma 10(b), A(ideal, Ti−1, r(Ti−1)) ≤
(k−1) · T.e

T.p−(k−2)− 1
T.p . (What follows is similar to the reasoning used in the induction step in the proof of

Lemma 10(a).) If |ω(Ti−1)| = 2, then, by (8), A(ideal, Ti−1, d(Ti−1)−1) ≥ 1− ((k−1) · T.e
T.p − (k−2)− 1

T.p ) =
(k − 1) − (k − 1) · T.e

T.p + 1
T.p . By the statement of the lemma, b(Ti−1) = 1, and hence, by Lemma 3,

A(ideal, Ti, r(Ti)) = wt(T )−A(ideal, Ti−1, d(Ti−1)−1) ≤ k · T.e
T.p − (k−1)− 1

T.p . Thus, the lemma holds when
|ω(Ti−1)| = 2.

On the other hand, if |ω(Ti−1)| ≥ 3, then by Lemma 8(c), Ti−1 is 0-dependent. By (10), A(ideal, Ti−1, d(Ti−1)−
1) ≥ 1

T.p , and hence, because b(Ti−1) = 1, by Lemma 3, A(ideal, Ti, r(Ti)) = wt(T )−A(ideal, Ti−1, d(Ti−1)) ≤
T.e
T.p − 1

T.p . By the statement of the lemma, |ω(Ti)| = 3, and hence, Ti is also 0-dependent. Thus, Ti−1 is the
only subtask in its group, and hence, k = 1. (Note that k here denotes the number of subtasks that are in
the same dependency group as Ti−1.) Therefore, the lemma holds for this case too. ¥

Lemma 11 Let Ti be a k-dependent subtask of a task T for k ≥ 0, and let the tardiness of Ti be s for some
s ≥ 1 (that is, Ti is scheduled at time d(Ti) + s− 1). Then lag(T, d(Ti) + s) < (k + s + 1) · wt(T )− k.
Proof: By the statement of the lemma, Ti and all prior subtasks of T are scheduled in [0, d(Ti)+s). Hence,
lag(T, d(Ti) + s) depends on the number of subtasks of T after Ti released prior to d(Ti) + s, the allocations



they receive in the ideal schedule, and when they are scheduled in S. It can be verified from (1) and (2) that
at most s + 1 successors of Ti — Ti+1, . . . , Ti+s+1 — are released before d(Ti) + s. Hence, the lag of T at
d(Ti)+ s in S is maximized if all those subtasks are present and are released without any IS separations and
S has not scheduled any of them by time d(Ti) + s. We will assume that this is the case. (The statement
of the lemma implies that none of those subtasks is scheduled by d(Ti) + s.) By Lemma 2, at most one
successor of Ti, namely Ti+1, can have a release time that is before d(Ti). Further, r(Ti+1) ≥ d(Ti) − 1
holds. Hence, lag(T, d(Ti)+s) ≤ A(ideal, Ti+1, d(Ti)−1))+A(ideal, T, d(Ti), d(Ti)+s). If r(Ti+1) > d(Ti)−1
holds, then A(ideal, Ti+1, d(Ti) − 1) = 0. On the other hand, if r(Ti+1) = d(Ti)− 1, then by (4), b(Ti) = 1.
Further, either |ω(Ti+1)| = 2 or |ω(Ti+1)| > 2. In the former case, T is heavy, and because b(Ti) = 1, by
the definition of k-dependency (and given by Lemma 8(a)), Ti+1 belongs to the same dependency group as
Ti and is (k + 1)-dependent. Hence, by Lemma 10(b), A(ideal, Ti+1, r(Ti+1)) ≤ (k + 1) · wt(T )− k − 1

T.p . If
the latter holds, i.e., |ω(Ti+1)| > 2, we reason as follows. Since Ti is k-dependent, the number of subtasks
in Ti’s group is at least k + 1. Therefore, since b(Ti) = 1, Lemma 10(c) applies for Ti+1 and it follows
that A(ideal, Ti+1, r(Ti+1)) ≤ (k + 1) · wt(T ) − k − 1

T.p . Thus, in either case, A(ideal, Ti+1, d(Ti) − 1) =
A(ideal, Ti+1, r(Ti+1)) ≤ (k + 1) · wt(T )− k − 1

T.p .

By (7), A(ideal, T, d(Ti), d(Ti) + s) ≤ s · wt(T ). Hence, lag(T, d(Ti) + s) ≤ A(ideal, Ti+1, d(Ti) − 1)) +
A(ideal, T, d(Ti), d(Ti) + s) ≤ (k + s + 1) · wt(T )− k − 1

T.p < (k + s + 1) · wt(T )− k. ¥

A.3. Proofs from Section 3.4

Lemma 18 There exists a subtask W` scheduled at th with e(W`) ≤ tb, d(W`) = th + 1, and S(W, t) = 0,
for all t ∈ [tb, th). Also, there is no hole in any slot in [tb, th). (Note that, by this lemma, A0(th) 6= ∅.)
Proof: We first show that the first subtask to be displaced upon Uj ’s removal (where Uj is as defined in
Def. 8) has properties as stated for W`, i.e., is eligible at or before tb and has its deadline at th + 1.

Let τ ′ be the task system obtained by removing Uj from τ , and let S ′ be the EPDF schedule for τ ′. Let
∆1 = 〈X(1), t1, X

(2), t2〉 be the first valid displacement, if any, that results due to the removal of Uj . Then,
X(1) = Uj , t1 = tb, and by Lemma 5,

t2 > t1 = tb. (55)

We first show that t2 ≥ th.

Assume to the contrary that t2 < th. Then, by (55) and Definition 7, T is not in B(th). Therefore, T is
in I(th) or in A(th). In either case,

d(X(2)) ≤ th. (56)

To see this, note that if T ∈ I(th), then because T is not active at th, by Definition 1, d(X(2)) ≤ th. On the
other hand, if T ∈ A(th), then consider T ’s subtask, say Tk, scheduled at th. By Lemma 16, d(Tk) ≤ th + 1.
Because X(2) is scheduled at t2 < th, X(2) is an earlier subtask of T than Tk, and hence, by (1) and (2),
d(X(2)) ≤ th. Because is Uj is U ’s critical subtask at th and U is in B(th), by Lemma 17, we have

d(Uj) = th + 1. (57)

By (56) and (57), d(Uj) > d(X(2)). However, since EPDF selects Uj over X(2) at time tb (which follows
because the displacement under consideration is valid), this is a contradiction. Thus, our assumption that
t2 < th holds is false.

Having shown that t2 ≥ th, we next show t2 = th. Assume, to the contrary, that t2 > th. Since
displacement ∆1 =〈Uj , tb, Ti, t2〉is valid, e(X(2)) ≤ tb. This implies that X(2) is eligible to be scheduled at
th (i.e., T is not scheduled at th), and because there is a hole in th, it should have been scheduled there in
S, and not later at t2. It follows that t2 = th.

Finally, because Uj is scheduled at tb in preference to X(2), d(Ti) ≥ d(Uj) = th + 1 (from (57)), which



by Lemma 15 (since X(2) is scheduled in slot th) implies that

d(X(2)) = th + 1. (58)

Thus, the first subtask, if any, to be displaced upon Uj ’s removal satisfies the properties specified for W` in
the statement of the lemma. Hence, if a subtask with such properties does not exist, then Uj ’s removal will
not lead to any displacements.

Next, we show that unless the other two conditions specified in the lemma also hold, no subtask will be
displaced upon Uj ’s removal. For this, first note that by (57) and (58) X(2) and Uj have equal deadlines,
and hence, X(2) is not Uj ’s successor. Next, note that because 〈Uj , tb, X

(2), th〉 is valid, no subtask of T
prior to X(2) is scheduled in [tb, th), and also if there is a hole in any slot t in [tb, th), then EPDF would have
scheduled X(2) at t.

Thus, if the lemma is false, then removing Uj does not result in any displacements. We now show that,
in such a case, LAG(τ ′, th + 1,S ′) ≥ qM + 1. LAG(τ ′, th + 1,S ′) = A(ideal, τ ′, 0, th + 1)− A(S ′, τ ′, 0, th + 1).
τ ′ contains every subtask that is in τ except Uj . Uj is scheduled before th in S, and by (57), d(Uj) = th +1.
Therefore, Uj receives an allocation of one quantum by time th + 1 in the ideal schedule for τ , and hence,
A(ideal, τ ′, 0, th + 1) = A(ideal, τ, 0, th + 1)− 1. Similarly, since no subtask other than Uj of τ is displaced or
removed in S ′, the total allocation to τ ′ in S ′ up to time th + 1, A(S ′, τ ′, 0, th + 1), is A(S, τ, 0, th + 1)− 1.
Therefore, LAG(τ ′, th + 1,S ′) = A(ideal, τ, 0, th + 1) − A(S, τ, 0, th + 1) = LAG(τ, th + 1,S) ≥ qM + 1 (by
(T1)). To conclude, we have shown that, τ ′ with one fewer subtask than τ also has a LAG of at least qM +1
at th + 1, which contradicts (T2). ¥

Lemma 19 Let tm ≤ th be a slot in which an MI is scheduled. Then, the following hold.

(a) For all t, where tm−(q+2) < t < tm, there is no hole in slot t, and for each subtask Vk that is scheduled
in t, d(Vk) ≤ tm − q + 1.

(b) Let W be a task in B(tm) and let the critical subtask W` of W at tm be scheduled before tm. Then, W`

is scheduled at or before tm − (q + 2).

Proof of part (a). The proof is by induction on decreasing t. We start with t = tm − 1.
Base Case: t = tm − 1. Let Ti be an MI scheduled at tm. (By the statement of the lemma, at least one
MI is scheduled in tm.) Then, d(Ti) = tm− q +1, and S(T, tm−1) = 0, from the definition of an MI. Hence,
Ti is eligible at tm − 1. Because Ti is not scheduled at tm − 1, it follows that there is no hole in tm − 1 and
that the priority of every subtask Vk scheduled at tm−1 is at least that of Ti, i.e., d(Vk) ≤ d(Ti) = tm−q+1.

Induction Hypothesis. Assume that the claim in part (a) holds for all t, where t′ + 1 ≤ t ≤ tm − 1 and
tm − (q + 1) < t′ + 1 < tm.
Induction Step. We now show that the claim holds for t = t′. By the induction hypothesis, there is no
hole in t′+1 and d(Ti) ≤ tm−q+1 holds for every subtask Ti scheduled in t′+1. Therefore, since wt(T ) < 1,
by (1), r(Ti) ≤ tm − q − 1. Thus, there are M subtasks with a release time at or before tm − q − 1 and
deadline at or before tm − q + 1 scheduled at t′ + 1 ≥ tm − q. If there is either a hole in t′ or a subtask
with deadline later than tm − q + 1 scheduled in t′, then there is at least one subtask scheduled in t′ + 1
whose predecessor is not scheduled in t′. Such a subtask is eligible at t′, since its release time is at or before
tm − q − 1 ≤ t′. Hence, if there is a hole in t′, then the work-conserving behavior of EPDF is contradicted.
Otherwise, the pseudo-deadline-based scheduling of EPDF is contradicted. Hence, the claim holds for t = t′.

¥

Proof of part (b). By Definition 2, d(W`) ≥ tm + 1. Hence, since q ≥ 1, this part easily follows from
part (a). ¥



A.4. Proofs from Section 3.8

Lemma 28 The following properties hold for subsets τ i
s and τ i defined in Section 3.8, where 1 ≤ i ≤ 8.

(a) For every task T , there is at most one subtask in (τ1
s ∪ τ2

s ∪ τ6
s ).

(b) Let Ti scheduled at th be the subtask of a task T in Aq(th) or Aq−1(th). Then, Ti is in τ5
s .

(c) τ7 ⊆ τ1 and τ8 ⊆ τ2.

(d) Subsets τ i, where 1 ≤ i ≤ 6, are pairwise disjoint.

Proof: Each of the above properties is proved below.

Proof of part (a). We first show that each task T has at most one subtask in τ1
s . Let Ti in τ1

s be the
critical subtask at th of T , which is in B(th). Then, by Lemma 17, d(Ti) = th +1 holds. Because wt(T ) < 1,
by (1), r(Ti) ≤ d(Ti)− 2 = th − 1 holds. Hence, by the definition of a critical subtask in Definition 2, Ti is
critical at th − 1 also. Thus, if T has a critical subtask Ti at th and T is in B(th), then T cannot have a
subtask that is different from Ti that is critical at th − 1. Hence, it follows that each task has at most one
subtask in τ1

s .

We next show that each task can have at most one subtask in τ2
s ∪ τ6

s . Note that a subtask is in τ2
s or

τ6
s only if it is scheduled at th − 1. Further, each task T can have at most one subtask scheduled at th − 1.

Hence, if T ’s subtask Ti scheduled at th − 1 has its deadline at or after th, then Ti is in τ2
s ; else, in τ6

s .

Finally, we show that if T has a subtask Ti in τ1
s , then it does not have a subtask in τ2

s ∪ τ6
s , and vice

versa. If Ti is in B(th − 1), then T cannot have a subtask scheduled at th − 1, and hence, cannot have a
subtask in τ2

s ∪ τ6
s (because every subtask in these sets is scheduled at th − 1). On the other hand, if Ti is

in B(th) and is T ’s critical subtask at th, then note the following. (i) τ1
s is non-empty only if t′b exists; (ii)

by Lemma 17, d(Ti) = th + 1 holds; and (iii) Ti is scheduled at or before t′b, whereas a subtask in τ2
s ∪ τ6

s is
scheduled at th − 1. By (44), t′b ≤ th − (q + 3). Thus, by (ii) and (iii), no subtask of T with a deadline at
or before th can be scheduled at th − 1, and hence, can be in τ2

s ∪ τ6
s . On the other hand, if a subtask of T

with a deadline after th is scheduled at th − 1, then it contradicts the fact that Ti is T ’s critical subtask at
th. So, no such subtask can be in τ2

s ∪ τ6
s either. ¥

Proof of part (b). By the conditions of Case C, no c-MI, where c > 0, is scheduled at th. Further, because
T is in Aq(th) or Aq−1(th), tardiness of Ti is greater than zero. Hence, by the definition of c-MI and because
T is not a c-MI, T is also scheduled at th − 1. Therefore, Ti is in τ5

s . ¥

Proof of part (c). Immediate from the definitions. ¥

Proof of part (d). By part (a), every task T has at most one subtask in τ1
s ∪ τ2

s ∪ τ6
s . Therefore, τ1, τ2,

and τ6 are pairwise disjoint. By (25) and (26), A0, Aq, and Aq−1 are pairwise disjoint, and hence, by their
definitions, τ3

s , τ4
s , and τ5

s are pairwise disjoint, and subtasks in them are scheduled at th. However, by the
definitions of τ1

s , τ2
s , and τ6

s , no task of a subtask in any of these subsets is scheduled at th. Therefore, a
task in τ1, τ2, or τ6 is not in ∪5

i=3τ
i, that is τ1 ∪ τ2 ∪ τ6 is disjoint from ∪5

i=3τ
i. Since τ1, τ2, and τ6 are

pairwise disjoint, as are τ3, τ4, and τ5, all six subsets are pairwise disjoint. ¥

We make the following two claims before proving the remaining lemmas.

Claim 4. No subtask with deadline at or before th − 1 is removed or displaced in S ′.



Proof: Follows from the fact that the deadline of every subtask removed, that is, the deadline of every
subtask in τR

s (refer 45), is at or after th. Hence, because ties in S and S ′ are resolved identically, the
removed subtasks cannot impact how subtasks with earlier deadlines are scheduled, and hence, cannot cause
such subtasks to be displaced. (Subtasks in τ1

s are critical subtasks at th or at th − 1, and hence their
deadlines are at or after th. Similarly, subtasks in τ3

s are scheduled at th and have a tardiness of zero,
implying that their deadlines are at or after th + 1.) ¥

Claim 5. The release time of every subtask in τ is at or before th.

Proof: Because there is a hole in th (by (H)), by Lemma 15, no subtask scheduled at or before th can have
a deadline after th + 1, implying that the release time of every such subtask is at or before th. Hence, a
subtask with release time after th is scheduled after th in S. For every such subtask, allocations in both the
ideal schedule and S are zero in [0, th + 1). Therefore, the LAG of τ at th + 1 does not depend on such a
subtask. Further, if such a subtask is removed, the schedule before th + 1 is not impacted and no subtask
scheduled at or after th + 1 can shift to th or earlier. Hence, the LAG of τ at th + 1 is not altered. Thus, the
presence of subtasks released after th contradicts (T2). ¥

Lemma 29 Let T be a task with a subtask in τ1
s or τ2

s . Then, lag(T, th − 1,S ′) = lag(T, th + 1,S).
Proof: By (11),

lag(T, th − 1,S ′) = A(idealτ ′ , T, 0, th − 1)− A(S ′, T, 0, th − 1). (59)

To prove this lemma, we will express the allocation to T in idealτ ′ and S ′ in terms of its allocations in idealτ
and S, respectively. We will establish some properties needed for this purpose.

By Lemma 28(a), T has exactly one subtask in τ1
s ∪ τ2

s . Let Ti denote the distinct subtask of T that is in
τ1
s or τ2

s , and Tj , its predecessor in τ7
s or τ8

s , respectively, if any. Note that Tj does not exist if d(Ti) = th,
and need not necessarily exist otherwise.

Regardless of whether Ti is in τ1
s or τ2

s , Ti is scheduled at or before t′b in S, which by (44), is before
th − 1. Hence, because there is a hole in th, by Lemma 15, d(Ti) ≤ th + 1 holds. We next show that the
following holds.

(D) No subtask of T has its deadline after th + 1.

Since T is not scheduled in th and there is a hole in th, Ti’s successor, if any, cannot have its eligibility time
at or before th and deadline after th + 1. By Claim 5, no subtask in τ has a release time at or after th + 1.
Thus, (D) holds.

We next claim that of T ’s subtasks, only Ti and/or Tj may receive non-zero allocations in the ideal
schedule for τ in slots th − 1 and/or th. For this, note that the following hold: (i) since d(Tj) = th
(by the definitions of τ7

s and τ8
s ), no subtask of T prior to Tj has its deadline after th − 1; (ii) because

there is a hole in th, and T is not scheduled at th in S (by the definitions of τ1
s and τ2

s ), no subtask
of T released after Ti has its eligibility time, and hence, release time at or before th. Hence, by (6), no
subtask of T other than Ti and Tj receives any allocation in th − 1 and/or th. By (i) and (ii) above and
because τ ′ contains every subtask of T that is in τ except Ti and Tj , we have A(idealτ ′ , T, 0, th − 1) =
A(idealτ , T, 0, th + 1)−A(idealτ , Ti, 0, th + 1)−A(idealτ , Tj , 0, th + 1). Because the deadlines of Ti and Tj are
at most th + 1, both these subtasks receive ideal allocations of one quantum each by th + 1. Hence,

A(idealτ ′ , T, 0, th − 1) =
{

A(idealτ , T, 0, th + 1)− 2, if Tj exists
A(idealτ , T, 0, th + 1)− 1, if Tj does not exist. (60)

We now express the allocation to T in S ′ in terms of its allocation in S. If Ti is in τ1
s , then, in S, Ti is

scheduled at or before t′b ≤ th − (q + 3) ≤ th − 1 (refer (44)); if it is in τ2
s , then Ti is scheduled at th − 1.



Thus, in either, case Ti is scheduled at or before th − 1 in S. Hence, Tj , if it exists, is scheduled at or
before th − 1 in S. As for where other subtasks of T are scheduled in S, there is a hole in th, and (by the
definitions of τ1

s and τ2
s ) T is not scheduled at th. Therefore, if some subtask of T is scheduled after th, then

its eligibility time is at or after th + 1, and hence its deadline is after th + 1. However, by (D), no subtask
of T has a deadline after th + 1. Hence, there does not exist a subtask of T that is scheduled after th in S,
which implies that there does not exist a subtask of T that is scheduled after th in S and before th−1 in S ′.
Further, because no subtask can displace to the right, there does not exist a subtask of T that is scheduled
before th − 1 in S, and at or after th − 1 in S ′. As already mentioned, every subtask of T except Ti and Tj

is present in τ ′. Therefore,

A(S ′, T, 0, th − 1) =
{

A(S, T, 0, th + 1)− 2, if Tj exists
A(S, T, 0, th + 1)− 1, if Tj does not exist. (61)

By (59)–(61), regardless of whether Tj exists, lag(T, th−1,S ′) = A(idealτ , T, 0, th+1)−A(S, T, 0, th+1) =
lag(T, th + 1,S). ¥

Lemma 30 Let T be a task with a subtask in τ3
s . Then, lag(T, th − 1,S ′) > lag(T, th + 1,S)− 1/(q + 2).

Proof: Let Ti be T ’s subtask in τ3
s . In S, Ti is scheduled at th and is ready at or before th − (q + 3).

Therefore, by Lemma 7(a), r(Ti) ≤ th − (q + 3) holds. Since T is in A0(th), and Ti is scheduled at th in S,
the tardiness of Ti is zero in S. Therefore, d(Ti) ≥ th + 1 holds, which by (H) and Lemma 16 implies that

d(Ti) = th + 1. (62)

Hence, |ω(Ti)| = d(Ti)− r(Ti) ≥ q + 4 holds, and using Lemma 1, it can be shown that wt(T ) < 1/(q + 2).
By Lemma 12(c), lag(T, th + 1,S) < wt(T ), and hence, because wt(T ) < 1/(q + 2), it follows that

lag(T, th + 1,S) < 1/(q + 2). (63)

We next show that lag(T, th − 1,S ′) = 0. For this, we need to show that the total allocation to T in
[0, th − 1) is equal in idealτ ′ and S ′. We first show that the total allocation in [0, th − 1) to subtasks of T
released after Ti is zero in both S ′ and idealτ ′ . By (62) and Lemma 2, the release time of the successor, Tj ,
if any, of Ti is at or after th. Hence, the allocation to every subtask of T released after Ti is zero in [0, th−1)
in the ideal schedule for τ ′. Also, because Ti is scheduled at th in S, Tj is scheduled at or after th + 1 in S.
Hence, by Lemma 7(a), e(Tj) ≥ th holds. Therefore, every subtask of T released after Ti is scheduled at or
after th in S ′, that is, receives zero allocation in [0, th − 1) in S ′.

We now show that subtasks of T released before Ti receive equal allocations in [0, th − 1) in both idealτ ′
and S ′. Since Ti is ready at or before th − (q + 3), Ti’s predecessor, if any, and all prior subtasks of T , if
any, complete executing at or before th − (q + 3) in S, and hence, in S ′, as well (because no subtask can
displace to the right). Furthermore, as discussed above, r(Ti) ≤ th − (q + 3) holds, and hence, by Lemma 2,
the deadline of Ti’s predecessor is at or before th − (q + 2). Hence, all subtasks released before Ti complete
executing by th − (q + 2) in idealτ ′ as well.

Therefore, because Ti is not present in τ ′, the total allocation to all the subtasks of T in τ ′ in [0, th − 1)
is equal in S ′ and idealτ ′ . Hence, lag(T, th − 1,S ′) = 0, and because (63) holds, the lemma follows. ¥

Lemma 31 Let T be a task with a subtask in τ4
s . Then, lag(T, th− 1,S ′) ≥ lag(T, th +1,S)− 2 ·Wmax +1.

Proof: First, we show that (R) below holds.

(R) No subtask of T is removed.

For this, note that because T is in τ4, by Lemma 28(d), T is not in τ i, where 1 ≤ i ≤ 6 and i 6= 4. Hence,



by Lemma 28(c), T is also not in τ7 or in τ8. Thus, T does not have a subtask in τR
s , and hence, (R) holds.

Let Ti be T ’s subtask in τ4
s and let tc = th − (q + 3). Then, Ti is not ready at tc in S. We show that Ti

is not ready at tc in S ′ also. Let Tj denote Ti’s predecessor, if any, in τ .

We now show that no subtask of T that is scheduled at or after th − 1 in S is scheduled before th − 1 in
S ′. Note that Ti is scheduled at th in S. Hence, it suffices to show that Ti is not scheduled before th − 1 in
S ′ (which would imply that no later subtask is scheduled before th − 1), and if Tj is scheduled at th − 1 in
S, then it is not scheduled earlier in S ′.

Because Ti is scheduled at th in S and Ti is not ready at tc in S, Lemma 7(a) implies that either
r(Ti) > tc, or r(Ti) ≤ tc and Tj exists and does not complete executing by tc. If the former holds, then
because r(Ti) > tc and Ti is scheduled at th > th − (q + 3) = tc in S, by Lemma 7(a), e(Ti) > tc holds,
and hence, Ti is not eligible, and hence, not ready, at tc in S ′ either. If the latter holds, then by Lemma 2,
d(Tj) ≤ tc + 1 ≤ th − (q + 2) holds, and hence, by Claim 4, Tj is not displaced, and does not complete
executing by tc in S ′ also. Therefore, Ti is not ready at tc in this case too.

Given that Ti is not ready at tc in S ′, it is easy to show that Ti is not scheduled before th − 1 in S ′. For
this, note that by Claim 4, no subtask with deadline at or before th − 1 is displaced or removed. Hence,
since (C) holds, no subtask scheduled in [th − (q + 2), th − 1) is displaced or removed. Therfore, because Ti

is not ready at or before tc = th − (q + 3), Ti cannot be scheduled before th − 1 in S ′.
We next show that if Ti’s predecessor Tj exists and is scheduled at th − 1 in S, then it is not scheduled

earlier in S ′. Because Ti is scheduled at th and T is in A0(th), Ti’s tardiness is zero, and hence, by Lemma 16,
d(Ti) = th+1. Hence, d(Tj) ≤ th holds. If d(Tj) < th holds, then, by Claim 4, Tj is not displaced. In the other
case, namely, d(Tj) = th, by Lemma 2, r(Ti) ≥ th−1, and hence, |ω(Ti)| = d(Ti)−r(Ti) ≤ (th+1)−(th−1) = 2
holds. Therefore, by Lemma 1, |ω(Tj)| ≤ 3, and hence, r(Tj) ≥ d(Tj) − 3 = th − 3. If Tj is scheduled at
th − 1 in S, then by Lemma 7(a), e(Tj) ≥ th − 3. However, because q ≥ 1, by (C), the deadline of every
subtask scheduled in [th−3, th−1) is at or before th−q, and hence, by Claim 4, no such subtask is displaced
or removed. Therefore, in this case too, if Tj is scheduled at th − 1 in S, it is not scheduled earlier in S ′.
Thus, no subtask of T that is scheduled at or after th − 1 in S is scheduled before th − 1 in S ′.

We are now ready to establish the lag of T at th − 1 in S ′. By (11), we have

lag(τ ′, th − 1,S ′)
= A(idealτ ′ , T, 0, th − 1)− A(S ′, T, 0, th − 1)
= A(idealτ , T, 0, th + 1)− A(idealτ , T, th − 1, th + 1)

−(A(S, T, 0, th + 1)− A(S, T, th − 1, th + 1))
(because, by (R), no subtask of T is removed, and no subtask of T scheduled
at or after th − 1 in S is scheduled before th − 1 in S ′)

≥ A(idealτ , T, 0, th + 1)− 2 ·Wmax−(A(S, T, 0, th + 1)−A(S, T, th − 1, th + 1))
(by (7) and (29))

≥ A(idealτ , T, 0, th + 1)− 2 ·Wmax − A(S, T, 0, th + 1) + 1
(because at least subtask Ti of T is scheduled in [th − 1, th + 1) in S)

= lag(T, th + 1,S)− 2 ·Wmax + 1. ¥

Lemma 32 Let T be a task with a subtask in τ5
s . Then, lag(T, th− 1,S ′) ≥ lag(T, th +1,S)+ 2− 2 ·Wmax.

Proof: As with Lemma 31, we first show that no subtask of T is removed. Because T is in τ5, by
Lemma 28(d), T is not in τ i, where 1 ≤ i ≤ 6 and i 6= 5. Hence, by Lemma 28(c), T is also not in τ7 or in
τ8. Thus, T does not have a subtask in τR

s , and hence, no subtask of T is removed.

We next show that the subtasks of T scheduled at th or th − 1 are not displaced.



Let Ti be T ’s subtask scheduled at th. By the definition of Aq and Aq−1, the tardiness of Ti is greater
than zero, and hence, d(Ti) ≤ th. Let Tj be Ti’s predecessor. By the definition of τ5

s , Tj exists. Further,
d(Tj) ≤ th − 1 holds and Tj is scheduled at th − 1.

We now show that Ti and Tj are not displaced. For this, observe that because d(Tj) ≤ th − 1 holds, Tj

is not displaced by Claim 4. Therefore, because Ti is Tj ’s successor, Ti is not ready to be scheduled until
th, and hence, is not displaced either.

The above facts can be used to determine the lag of T at th − 1 in S ′ as follows. By (11), we have

lag(τ ′, th − 1,S ′)
= A(idealτ ′ , T, 0, th − 1)− A(S ′, T, 0, th − 1)
= A(idealτ , T, 0, th + 1)− A(idealτ , T, th − 1, th + 1)

−(A(S, T, 0, th + 1)− A(S, T, th − 1, th + 1))
(because no subtask of T is removed, and because neither Ti nor Tj is displaced,
no subtask of T scheduled at or after th − 1 in S is scheduled before th − 1 in S ′)

≥ A(idealτ , T, 0, th + 1)−2 ·Wmax−(A(S, T, 0, th + 1)−A(S, T, th − 1, th + 1))
(by (7) and (29))

= A(idealτ , T, 0, th + 1)−2 ·Wmax−A(S, T, 0, th + 1) + 2
(because exactly two subtasks of T , Ti and Tj , are scheduled in [th − 1, th + 1))

= lag(T, th + 1,S)− 2 ·Wmax + 2 ¥

Lemma 33 Let T be a task with a subtask in τ6
s . Then, lag(T, th − 1,S ′) > lag(T, th + 1,S).

Proof: Let Ti denote T ’s subtask in τ6
s . Because there is a hole in th (by (H)) and T is not scheduled at

th, the eligibility time, and hence, the release time of Ti’s successor is at least th + 1. However, by Claim 5,
the release time of every subtask in τ is at most th. Therefore, Ti does not have a successor.

Since Ti is not in τ2
s , d(Ti) ≤ th − 1 holds. Thus, all subtasks of T have their deadlines by th − 1 and

complete executing by th in both idealτ and S. Therefore, T ’s lag at th + 1 in S is zero.

Because d(Ti) ≤ th−1 and Ti does not have a successor, by Claim 4, no subtask of T is displaced. Thus,
in the ideal schedule for τ ′, subtasks of T complete executing by th − 1, whereas Ti is not complete until th
in S ′. Thus, lag(T, th − 1,S ′) > 0, from which the lemma follows. ¥

Lemma 34 Let T be a task in τ c. Then, lag(T, th − 1,S ′) = lag(T, th + 1,S).
Proof: Because T is in τ c, T does not contain a subtask in sets τ i

s, where 1 ≤ i ≤ 8. Hence, T does not
have a subtask that is removed. We next show that T does not have a subtask that is scheduled at th or
th − 1.

If T has a subtask Ti that is scheduled at th, then T is in A. By the condition of this case (Case C),
A0

q = ∅ and A0
q−1 = ∅. Hence, by (25), T is in one of A0(th), A1

q(th), A2
q(th), and Ai

q−1(th), where i ≥ 1.
However, if T is in A0(th), then Ti is in τ3

s or τ4
s . On the other hand, if T is in one of the remaining sets,

then Ti has a tardiness greater than zero, but is not a c-MI, and hence, T is scheduled at th − 1; therefore,
Ti is in τ5

s . Thus, Ti is in one of τ3
s , τ4

s , and τ5
s , and hence, T is in one of τ3, τ4, and τ5. This contradicts

the fact that T is in τ c. Therefore, T cannot have a subtask scheduled at th.

We now show that T does not have a subtask scheduled at th − 1. By the definitions of τ2
s and τ6

s , any
subtask that is scheduled at th− 1, but does not have a later subtask of its task scheduled at th, is in one of
these two subsets. Therefore, if T has a subtask Ti scheduled at th − 1, then because T is in τ c (and hence
not in τ2 or τ6), T is scheduled at th also. But as was shown above, T is not scheduled at th, and hence, is
not scheduled at th − 1 either. Thus, T is not scheduled in either th or th − 1.



By Claim 5, no subtask of T is released at or after th +1. Therefore, because there is a hole in th, and T
is not scheduled in either th or th−1, every subtask of T is scheduled before th−1, and completes executing
by th − 1 in S. Hence, because there is a hole in th, by Lemma 15, the deadline of every subtask of T is at
or before th + 1.

To complete the proof, we show that the deadline of every subtask of T is at most th−1. Suppose to the
contrary some subtask of T has its deadline after th − 1. Let Ti be such a subtask with the largest index.
Then, Ti is the critical subtask of T at either th or th − 1 or at both times. Because T is not scheduled at
either th or th − 1, Ti is scheduled before th − 1. Hence, T is in B(th − 1) or B(th) or both. Also, because
d(Ti) ≥ th holds, by Definition 9, t′b exists and T is scheduled at or before t′b. But then, by the definition of
τ1
s , Ti is in τ1

s , which contradicts the fact that Ti is in τ c. Therefore, our assumption that T has a subtask
with deadline after th − 1 is incorrect.

Thus, all subtasks of T complete executing by th − 1 in both the ideal schedules. Hence, the lag of T in
S at th + 1 is zero.

Because no subtask of T is removed or displaced, and every subtask of T is scheduled before th − 1 in
S, all subtasks of T complete executing by th − 1 in S ′ also. Therefore, lag(T, th − 1,S ′) = 0. The lemma
follows. ¥

Lemma 36 The roots of f(Wmax) = 2(M − h)(q + 1)W 2
max− (q + 2)(M − h)Wmax− ((q− 1)M + 1 + h) = 0

are Wmax = (q+2)(M−h)±
√

9q2(M−h)2+∆

4(M−h)(q+1) , where ∆ = 4(M − h)(M(q − 1) + h(2q2 + 2q + 1) + 2q + 2).

Proof: The roots of f(Wmax) are given by (q+2)(M−h)±
√

(q+2)2(M−h)2+8(M−h)(q+1)((q−1)M+1+h)

4(M−h)(q+1) . Let I =
(q + 2)2(M − h)2 + 8(M − h)(q + 1)((q − 1)M + 1 + h) (the term within the square root). Then,

I = (q + 2)2(M − h)2 + 8(M − h)(q + 1)((q − 1)M + 1 + h)
= q2(M − h)2 + (4q + 4)(M − h)2 + 8q2(M − h)2 − 8q2(M − h)2

+8(M − h)(q + 1)((q − 1)M + 1 + h)
(splitting the first term, and adding and subtracting 8q2(M − h)2)

= 9q2(M − h)2 + 4(M − h)(M(q − 1) + h(2q2 + q + 1) + 2q + 2)
= 9q2(M − h)2 + ∆. ¥


