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Abstract— In soft real-time applications, tasks are allowed to
miss their deadlines. Thus, less-costly scheduling algorithms can
be used at the price of occasional violations of timing constraints.
This may be acceptable if reasonable tardiness bounds (i.e.,
bounds on the extent to which deadlines may be missed) can
be guaranteed.

In this paper, we consider soft real-time applications im-
plemented on multiprocessors. Pfair scheduling algorithms are
the only known means of optimally schedulinghard real-time
applications on multiprocessors. For this reason, we consider the
use of such algorithms here. In the design of Pfair scheduling
algorithms, devising schemes to correctly break ties when several
tasks have the same deadline is a critical issue. Such tie-breaking
schemes entail overhead that may be unacceptable or unnecessary
in soft real-time applications. In this paper, we consider the
earliest pseudo-deadline first (EPDF) Pfair algorithm, which
avoids this overhead by usingno tie-breaking information. Our
main contributions are twofold. First, we establish a condition
for ensuring a given tardiness under EPDF. The condition
for ensuring a tardiness of one is very liberal and should
often hold in practice. Second, we present simulation results
involving randomly-generated task sets, including those that do
not satisfy our condition. In these experiments, deadline misses
rarely occurred, and no misses by more than one quantum ever
occurred.

Index Terms— Fairness, real-time scheduling, multiprocessors,
quality-of-service, soft real-time applications, tardiness.

I. INTRODUCTION

REAL-TIME SYSTEMS are typically categorized as be-
ing either hard or soft. In a hard real-time system, task

deadlines must be guaranteed, while in a soft real-time system,
some task deadlines may be (occasionally) missed. Examples
of hard real-time systems include fly-by-wire controllers for
airplanes, monitoring systems for nuclear reactors, and auto-
motive braking systems. Examples of soft real-time systems
include multimedia and gaming systems.

While deadline misses are tolerated in soft real-time sys-
tems, they are obviously undesirable, and system quality and
performance may be negatively impacted if tasks miss their
deadlines either too often or by too much. One criterion
used to measure system quality in the study of soft real-
time scheduling algorithms is tardiness. If a job (i.e., task
invocation) with a deadline at time d completes at time t,
then its tardiness is max(0, t− d). That is, if a job misses its
deadline, then its tardiness indicates by how much.

In this paper, we consider the problem of scheduling soft
real-time applications implemented on tightly-coupled multi-
processors, where minimizing tardiness is the main concern.
Our specific focus is fair scheduling algorithms based on
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Pfairness [1]. Such algorithms are the only known way of
optimally scheduling recurrent hard real-time tasks on mul-
tiprocessors [1]–[4]. Our main contribution is to show that
Pfair scheduling algorithms that are optimal for hard real-time
systems can be substantially simplified if deadline misses can
be tolerated.

While optimality is certainly desirable, fairness is interesting
in its own right because it results in temporal isolation,
i.e., each task’s processor share is guaranteed even if other
tasks “misbehave” by attempting to execute for more than
their prescribed shares. For this reason, fair (uniprocessor)
scheduling mechanisms have been proposed in the networking
literature as a means for supporting differentiated service
classes in connection-oriented networks [5]–[9]. (Here, packet
transmissions from various connections or flows are the enti-
ties to be scheduled.) In addition, by using fair algorithms to
schedule operating system activities, problems such as receive
livelock [10] can be ameliorated. In the following paragraphs,
we consider in more detail three soft real-time applications
in distributed systems in which simplified fair scheduling is
useful.

a) Connection scheduling in web servers: A web server
may need to service a large number of connections concur-
rently, some of which involve audio or video streaming that
requires quality-of-service (QoS) guarantees. Such guarantees
can be ensured by using fair scheduling disciplines. To handle
a large number of connections, a multiprocessor platform
may be necessary [11], [12]. Ensim Corp. has deployed fair
multiprocessor scheduling algorithms in its product line for
this very reason [13]. (The fair algorithms employed by them
use heuristics for which tardiness bounds have not been
derived.)

b) Packet scheduling on parallel links: Next-generation
multimedia applications such as immersive reality systems
will result in high bandwidth usage. One way to increase
network bandwidth is to install multiple parallel links between
pairs of connected routers. The problem of scheduling packets
on outgoing links at a router then becomes a multiprocessor
scheduling problem [14]. Fairness is desirable in this setting,
just as it is in single-link scheduling. Similar scheduling issues
also arise in optical networks where wavelength-division-
multiplexing (WDM) techniques are used to transmit multiple
“light packets” at different wavelengths simultaneously [15].

c) Packet processing in multiprocessor routers: As a final
example, consider multiprocessor router platforms that process
multiple packets simultaneously. The need for multiproces-
sor platforms in this context is necessitated by the growing
disparity between link capacities and processor speeds [16],
[17]. Routers built using programmable network processors
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are destined to implement fairly complex packet-processing
functions in software, making processing capacity (as opposed
to link capacity) a critical resource to be managed [18]. In this
setting, fair scheduling is needed to ensure that QoS guarantees
can be provided to different flows.

Note that in each of the above applications, an extreme
degree of fairness that requires all deadlines to be met is
not warranted. That is, these systems fall within the class of
soft real-time applications. Having motivated the usefulness
of efficient fair multiprocessor scheduling algorithms for soft
real-time systems, we now describe the fair scheduling con-
cepts used in this paper in greater detail. (Formal definitions
are given in Sec. II.) After that, we present a more detailed
overview of the contributions of this paper.

Pfair scheduling. Periodic task systems can be optimally
scheduled on multiprocessors using Pfair scheduling algo-
rithms [1]–[3]. Under Pfair scheduling, each task must execute
at a uniform rate, while respecting a fixed-size allocation
quantum. Uniform rates are ensured by requiring the allocation
error for each task to be always less than one quantum, where
“error” is determined by comparing to an ideal fluid system.
Due to this requirement, each task T is effectively subdivided
into quantum-length subtasks T1, T2, . . . that must execute
within windows of approximately equal lengths: if a subtask
of a task T executes outside of its window, then T ’s error
bounds are exceeded. The length and alignment of a task’s
windows is determined by its weight or utilization, which is the
ratio of its per-job execution cost and period. A task’s weight
determines the processor share it requires. Fig. 1(a) illustrates
the subtasks and windows for the first job of a periodic task of
weight 8/11. The end of a subtask’s window defines a pseudo-
deadline for that task; for example, in Fig. 1(a), subtask T2

has a pseudo-deadline at time 3. (Fig. 1(b) gives an example
of an intra-sporadic task, a notion generalizing the concept of
a periodic task that is defined later in Sec. III.)

At present, three optimal Pfair scheduling algorithms are
known: PF [1], PD [2], and PD2 [3]. These algorithms priori-
tize subtasks on an earliest-pseudo-deadline-first (EPDF) basis,
but differ in the choice of tie-breaking rules. PD2 is the most
efficient of the three and uses two tie-break parameters. In hard
real-time systems, the choice of tie-breaking rules is crucial.
In particular, if either of the PD2 tie-breaks is eliminated, then
task sets exist in which deadlines are missed [3].

Contributions. In this paper, we consider the following
question: Under the simpler EPDF algorithm, in which no tie-
break parameters are used, by how much can deadlines be
missed? If deadline misses are rare under EPDF, then it may
be preferable to use EPDF in soft real-time systems than the
more-costly ones noted above. Nonetheless, it is important to
note that the two tie-break parameters of PD2 can be calculated
and maintained with only an O(1) cost. Still, using EPDF may
be a much better choice. Consider the following.

• For good throughput, a router must process each packet
very quickly (typically within 10 ns. in today’s technol-
ogy). Moreover, the number of bits that can be allo-
cated for storing priority information in a packet header
may be very limited. (Such information can be sent in
packet headers to avoid storing per-flow information in

routers [19], [20].) Thus, incurring an additional constant
overhead to store and evaluate tie-breaking information
may be costly and unnecessary.

• In prior work on fairness in networks [5]–[8], much
work was done on mechanisms for reallocating spare
bandwidth as connections are created and destroyed. In
Pfair terminology, this amounts to reweighting tasks so
that all processing capacity is utilized as tasks dynam-
ically join and leave the system. As explained later, it
is possible to reweight a task so that its next pseudo-
deadline is preserved. However, weight changes can cause
tie-breaking information to change. In the worst case, this
may necessitate a complete resorting of the scheduler’s
priority queue at a Θ(N logN) cost, where N is the num-
ber of tasks (connections). In a networking application,
this cost might be incurred every time a connection is
created or destroyed. If no tie-breaking information is
maintained, this extra overhead can be eliminated.

The main contributions of this paper are twofold. First, we
establish a condition for ensuring a given tardiness in EPDF-
scheduled systems. The condition corresponding to a tardiness
of one is very liberal and should often hold in practice. For
example, it imposes no restrictions on systems of four or fewer
processors. We also consider larger tardiness thresholds and
briefly discuss conditions under which EPDF ensures zero
tardiness. The latter provides us scenarios in hard real-time
systems where EPDF is preferable over PF, PD, or PD2.
Second, we present simulation results involving randomly-
generated task sets, including those that do not satisfy our
condition (for any tardiness threshold). In these experiments,
deadline misses rarely occurred, and no misses by more than
one quantum ever occurred.

The rest of the paper is organized as follows. In Sec. II,
we give relevant definitions related to Pfair scheduling, and in
Sec. III, we describe the different task models considered in
this paper. In Sec. IV, we present some schedulability results
involving EPDF-scheduled hard real-time systems. In Sec. V,
the tardiness bounds mentioned above are derived. Simulation
results are presented in Sec. VI. We conclude in Sec. VII.

II. PFAIR SCHEDULING

In defining notions relevant to Pfair scheduling, we limit
attention (for now) to periodic tasks.1 A periodic task T with
an integer period T.p and an integer execution cost T.e has a
weight wt(T ) = T.e/T.p, where 0 < wt(T ) ≤ 1. A task is
called light if its weight is less than 1/2, and heavy otherwise.

Pfair algorithms allocate processor time in discrete quanta;
the time interval [t, t + 1), where t is a nonnegative integer,
is called slot t. (Hence, time t refers to the beginning of slot
t.) A task may be allocated time on different processors, but
not in the same slot (i.e., interprocessor migration is allowed
but parallelism is not permitted). The sequence of allocation
decisions over time defines a schedule S. Formally, S : τ ×
N �→ {0, 1}, where τ is a set of tasks and N is the set of
nonnegative integers. S(T, t) = 1 iff T is scheduled in slot t.

1Unless specified otherwise, we assume that each periodic task begins
execution at time 0.
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Fig. 1. (a) Windows of the first job of a periodic task T with weight 8/11. This job consists of subtasks T1, . . . , T8, each of which must be scheduled
within its window, or else a lag-bound violation will result. (This pattern repeats for every job.) (b) The Pfair windows of an IS task. Subtask T5 becomes
eligible one time unit late.

In any schedule for M processors,
∑

T∈τ S(T, t) ≤M holds
for all t.

Lags and subtasks.The notion of a Pfair schedule is
defined by comparing such a schedule to an ideal fluid
schedule, which allocates wt(T ) processor time to task T
in each slot. Deviance from the fluid schedule is formally
captured by the concept of lag. Formally, the lag of task T at
time t is2 lag(T, t) = wt(T )·t−∑t−1

u=0 S(T, u). T is said to be
over-allocated at time t if lag(T, t) < 0, and under-allocated
if lag(T, t) > 0. A schedule is defined to be Pfair iff

(∀T, t :: −1 < lag(T, t) < 1). (1)

Informally, the allocation error associated with each task must
always be less than one quantum.

These lag bounds have the effect of breaking each task
T into an infinite sequence of quantum-length subtasks. We
denote the ith subtask of task T as Ti, where i ≥ 1. As in [1],
we associate a pseudo-release r(Ti) and pseudo-deadline3

d(Ti) with each subtask Ti, as follows. (For brevity, we often
drop the prefix “pseudo-.”)

r(Ti) =
⌊
i− 1
wt(T )

⌋
(2)

d(Ti) =
⌈

i
wt(T )

⌉
(3)

To satisfy (1), Ti must be scheduled in the interval w(Ti) =
[r(Ti), d(Ti)), termed its window. Note that r(Ti+1) is either
d(Ti)− 1 or d(Ti). Thus, consecutive windows either overlap
by one slot or are disjoint. The length of Ti’s window, denoted
|w(Ti)|, is d(Ti) − r(Ti). As an example, consider subtask
T1 in Fig. 1(a). Here, we have r(T1) = 0, d(T1) = 2 and
|w(T1)| = 2. Therefore, T1 must be scheduled at either time
0 or time 1.

Pfair scheduling algorithms. In earlier work [21], we
proved that the earliest-pseudo-deadline-first (EPDF) Pfair
algorithm is optimal on one or two processors, but not on more
than two processors. As its name suggests, EPDF gives higher
priority to subtasks with earlier deadlines. A tie between
subtasks with equal deadlines is broken arbitrarily. At present,

2For conciseness, we leave the schedule implicit and use lag(T, t) instead
of lag(T, t, S).

3In our earlier work [3], [4], [21], pseudo-deadlines were defined to refer
to slots; here, they refer to time. Hence, the formula for d(Ti) given here is
slightly different.

three Pfair scheduling algorithms are known to be optimal
on an arbitrary number of processors: PF [1], PD [2], and
PD2 [3]. These algorithms prioritize subtasks on an EPDF
basis, but differ in the choice of tie-breaking rules. Selecting
appropriate tie-breaks turns out to be the most important
concern in designing optimal Pfair algorithms. PD2 is the most
efficient among the three Pfair algorithms cited above and it
uses two tie-break parameters, which are described below.

The first tie-break parameter used by PD2 is a bit, denoted
by b(Ti). By (2) and (3), r(Ti+1) is either d(Ti) or d(Ti)−1,
i.e., consecutive windows are either disjoint or overlap by one
slot. b(Ti) distinguishes between these two possibilities:

b(Ti) =
⌈

i
wt(T )

⌉
−

⌊
i

wt(T )

⌋
(4)

For example, in Fig. 1(a), b(Ti) = 1 for 1 ≤ i ≤ 7 and
b(T8) = 0. PD2 favors a subtask with a b-bit of 1 over one
with a b-bit of 0. Informally, it is better to execute Ti “early”
if its window overlaps that of Ti+1, because this potentially
leaves more slots available to Ti+1.

The second PD2 tie-break, the “group deadline,” is needed
in systems with heavy tasks of weight less than one. It is
easy to show that all windows of such a task are of length
two or three (see Fig. 1(a)). Consider a sequence Ti, . . . , Tj

of subtasks of such a task T such that b(Tk) = 1 and
|w(Tk+1)| = 2 for all i ≤ k < j. Then, scheduling Ti in its last
slot forces the other subtasks in this sequence to be scheduled
in their last slots. For example, in Fig. 1(a), scheduling T3

in slot 4 forces T4 and T5 to be scheduled in slots 5 and
6, respectively. A group deadline corresponds to a time by
which any such “cascade” of scheduling decisions must end.
Formally, it is a time t such that either (t = d(Ti) ∧ b(Ti) = 0)
or (t + 1 = d(Ti) ∧ |w(Ti)| = 3) for some subtask Ti. For
example, the task in Fig. 1(a) has group deadlines at times 4,
8, and 11.

The group deadline of subtask Ti is denoted D(Ti). If T is
a heavy task of weight less than one, then D(Ti)=(min u ::
u ≥ d(Ti) and u is a group deadline of T ). For example,
in Fig. 1(a), D(T1) = 4 and D(T6) = 11. If T is light
or of weight one, then D(Ti) = 0. In the event of a tie
between heavy tasks, PD2 favors the subtask with the larger
group deadline because not scheduling it can lead to a longer
cascade, which places more constraints on the future schedule.
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Fig. 2. A partial schedule on four processors is shown for a task set consisting
of eight tasks of weight 1/3 and four tasks of weight 4/9 (tasks of a given
weight are shown together). The Pfair window of each subtask is shown on a
separate line. An integer value n in slot t means that n of the corresponding
subtasks are scheduled in slot t. No integer value means that no such subtask
is scheduled in slot t.

Having explained the notion of a group deadline, we can
now state the PD2 priority definition.

PD2 Priority Definition: Subtask Ti’s priority at slot t
is defined to be (d(Ti), b(Ti),D(Ti)), if it is eligible at t.
Priorities are ordered using the following relation.

(d, b,D) � (d′, b′,D′) ≡ [d < d′] ∨ [(d = d′) ∧ (b > b′)]
∨ [(d = d′) ∧ (b = b′) ∧ (D ≥ D′)]

If Ti and Uj are both eligible at t, then priority of subtask
Ti is at least that of Uj at t if (d(Ti), b(Ti),D(Ti)) �
(d(Uj), b(Uj),D(Uj)).

According to the definition above, Ti has higher priority
than Uj if it has an earlier deadline. If Ti and Uj have equal
deadlines, but b(Ti) = 1 and b(Uj) = 0, then the tie is broken
in favor of Ti. If Ti and Uj have equal deadlines and b-
bits, then the tie is broken in favor of the one with the later
group deadline. Any ties not resolved by PD2 can be broken
arbitrarily.

In earlier work [3], we showed that both PD2 tie-breaks are
necessary for optimality. In particular, if either is eliminated,
then tasks can miss their deadlines. To see that the b-bit is
necessary, consider Fig. 2. In the example schedule, the tasks
of weight 1/3 are favored over those of weight 4/9 at times
0 and 1 even though the former have a b-bit of 0. Note that
8
3 + 4

3 = 4. Thus, all four processors are fully utilized, which
implies that no processor should ever be idle. However, in
[2, 3), only three tasks can be scheduled, implying that a
deadline is missed in the future. (Note that this schedule would
be allowed by EPDF.) Other examples exist that show that the
group deadline is also necessary.

III. TASK MODELS

In this paper, we mainly consider the intra-sporadic (IS)
task model proposed by us in earlier work [4], [21] because it
provides a general notion of recurrent execution that subsumes

that found in the well-studied periodic and sporadic models.
The IS model generalizes the sporadic model. The sporadic
model generalizes the periodic model by allowing jobs to be
released “late”; the IS model allows subtasks to be released
late, as illustrated in Fig. 1(b). More specifically, the separation
between r(Ti) and r(Ti+1) is allowed to be more than
�i/wt(T )�− �(i− 1)/wt(T )�, which would be the separation
if T were periodic. Thus, an IS task is obtained by allowing
a task’s windows to be right-shifted from where they would
appear if the task were periodic. Fig. 1(b) illustrates this.

Let θ(Ti) denote the offset of subtask Ti, i.e., the amount
by which w(Ti) has been right-shifted. Then, by (2) and (3),
we have the following.

r(Ti) = θ(Ti) +
⌊
i− 1
wt(T )

⌋
(5)

d(Ti) = θ(Ti) +
⌈

i
wt(T )

⌉
(6)

The offsets are constrained so that the separation between
any pair of subtask releases is at least the separation between
those releases if the task were periodic. Formally, the offsets
satisfy the following property.

k ≥ i⇒ θ(Tk) ≥ θ(Ti) (7)

Each subtask Ti has an additional parameter e(Ti) that
specifies the first time slot in which it is eligible to be
scheduled. It is assumed that e(Ti) ≤ r(Ti) and e(Ti) ≤
e(Ti+1) for all i ≥ 1. Allowing e(Ti) to be less than r(Ti)
is equivalent to allowing “early” subtask releases as in ERfair
scheduling [3]. The interval [r(Ti), d(Ti)) is called the PF-
window of Ti and the interval [e(Ti), d(Ti)) is called the IS-
window of Ti. (Note that the notion of a job is not mentioned
here. For systems in which subtasks are grouped into jobs that
are released in sequence, the definition of e would preclude
a subtask from becoming eligible before the beginning of its
job.)

The IS model is more suitable than the periodic model for
the networking examples described in Sec. I. Due to network
congestion and other factors, packets may arrive late or in
bursts. The IS model treats these possibilities as first-class
concepts and handles them more seamlessly. In particular, a
late packet arrival corresponds to an IS delay. On the other
hand, if a packet arrives early (as part of a bursty sequence),
then its eligibility time will be less than its Pfair release time.
Note that its Pfair release time determines its deadline. Thus,
in effect, an early packet arrival is handled by postponing its
deadline to where it would have been had the packet arrived
on time. This is very similar to the approach taken in the
(uniprocessor) virtual-clock scheduling scheme [9].

Feasibility. In [21], we showed that an IS task system τ is
feasible on M processors iff∑

T∈τ

wt(T ) ≤M. (8)

In [4], we proved the following theorem, which implies the
optimality of PD2 for scheduling IS tasks.

Theorem 1: PD2 correctly schedules any feasible IS task
system on multiprocessors.
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Fig. 3. Fluid schedule for the first five subtasks (T1, . . . , T5) of a task T of weight 5/16. The share of each subtask in each slot of its PF-window is
shown. In (a), no subtask is released late; in (b), T2 and T5 are released late. Note that share(T, 3) is either 5/16 or 1/16 depending on when subtask T2

is released.

Shares and lags in IS task systems.The lag of T at time
t is defined in the same way as it is defined for periodic tasks.
Let ideal(T, t) denote the share that T receives in an ideal
fluid (processor-sharing) schedule in [0, t). Then,

lag(T, t) = ideal(T, t) −
t−1∑
u=0

S(T, u). (9)

Before defining ideal(T, t), we define share(T, u), which is
the share assigned to task T in slot u. share(T, u) is defined
in terms of a function f that indicates the share assigned to
each subtask in each slot.

f(Ti, u) =




(
⌊

i−1
wt(T )

⌋
+ 1) × wt(T ) − (i− 1), u = r(Ti)

i− (
⌈

i
wt(T )

⌉
− 1) × wt(T ), u = d(Ti) − 1

wt(T ), r(Ti) < u < d(Ti) − 1
0, otherwise

(10)
Fig. 3 shows the values of f for different subtasks of a task of
weight 5/16. share(T, u) is simply defined as share(T, u) =∑

i f(Ti, u). Observe that share(T, u) usually equals wt(T ),
but in certain slots, it may be less than wt(T ), so that each
subtask of T has a unit share. Using (10), it is easy to show
the following.

(F1) For all time slots t, share(T, t) ≤ wt(T ).
We can now define ideal(T, t) as

∑t−1
u=0 share(T, u).

Hence, from (9), lag(T, t + 1) =
∑t

u=0(share(T, u) −
S(T, u)) = lag(T, t) + share(T, t) − S(T, t). Similarly, the
total lag for a schedule S and task system τ at time t + 1,
denoted by LAG(τ, t+ 1), is defined as follows. (LAG(τ, 0)

is defined to be 0.)

LAG(τ , t+ 1) = LAG(τ , t) +
∑
T∈τ

(share(T, t) − S(T, t)).

(11)

A. Dynamic Tasks

In each of the examples considered in Sec. I, connections are
not permanent. Thus, in addition to mechanisms for handling
burstiness and delays, support for task dynamism is needed.
When considering dynamic task systems, a key issue faced is
that of devising conditions under which tasks may join and
leave the system.

A condition for joining is an immediate consequence of
the feasibility test in (8), i.e., admit a task if the total
utilization is at most M after its admission. The important
question left is: when should a task be allowed to leave the
system? (Here, we are referring to the time when the task’s
utilization can be reclaimed. The task may actually be allowed
to leave the system earlier.) As shown in [23], [24], if an
over-allocated task (a task with negative lag) is allowed to
leave, then it can re-join immediately and effectively execute
at a rate higher than its specified rate causing other tasks to
miss their deadlines. It is easy to show that, in such a case,
tardiness cannot be bounded by any constant value even on
one processor.

Consider a task system consisting of one task of weight
1
2 and k ≥ 2 tasks of weight 1

2k to be EPDF-scheduled on
one processor. At time 0, the task of weight 1

2 is scheduled.
Suppose that it leaves after completing its job and re-joins
immediately. Again, at time 1, it will be assigned higher
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priority and hence, will be scheduled again. Repeating this
2k − 2 times gives us the schedule shown in Fig. 4. The task
of weight 1

2 effectively executes at a rate of(2k− 1)/2k over
the interval[0, 2k), andk − 1 of the tasks of weight12k miss
their deadlines at time2k. This implies that at least one subtask
completesk − 1 time units after its deadline.

This example applies to PF, PD, and PD2 as well. The
above situation can be averted if all future task arrival times
are known. However, the problem under consideration is
inherently an online problem in which such information is not
available. Therefore, as in [23], [24], we allow only non-over-
allocated tasks (i.e., tasks with non-negative lags) to leave the
system.

(J) Join condition: A task T can join at timet iff the
total utilization after joining is at mostM . If T joins
at timet, thenθ(T1) is set tot. (A task that re-joins
after having left can be viewed as a new task.)

(L) Leave condition: A task T can leave at timet iff
t ≥ d(Ti), whereTi is the last-released subtask of
T .

The conditiont ≥ d(Ti) implies thatlag(T, t) ≥ 0. To see
why, note that sinceTi is the last-released subtask ofT , by
time d(Ti) it receives a share equal toi in the ideal schedule.
In the EPDF schedule, it cannot have received more thani
time units. Thus,lag(T, t) ≥ 0.

Actually, assuming that tasks leave only with zero lag is
consistent with Condition (L), so we assume this in our proofs
(Sec. V). To see why this is reasonable, suppose thatT
leaves with positive lag; this implies that it has released more
subtasks than have been scheduled. LetTi beT ’s last-released
subtask andTk (k < i) be its last-scheduled subtask. SinceT
leaves at timet, Tk+1, . . . , Ti do not need to be scheduled;
thus, we can assume they were never released. In that case,
the share in the ideal schedule forT equalsk, and hence,
lag(T, t) = 0.

Partitioning versus Pfair scheduling. One commonly-
used approach in multiprocessor scheduling is partitioning,
in which each task is statically assigned to a particular
processor. Unfortunately, finding an optimal assignment of

tasks to processors is NP-hard and non-optimal heuristics
need to be used. Another problem with partitioning is that
it is inherently sub-optimal: task sets with utilization at most
M cannot always be partitioned. Nonetheless, partitioning
has its advantages: migration overhead is zero and simpler
and widely-studied uniprocessor scheduling algorithms can
be used on each processor. However, partitioning is quite
problematic if task dynamism is allowed. In particular, every
new task that joins can potentially cause a re-partitioning of
the entire system. The resulting overhead would clearly be
unacceptable in many applications.

While the frequency of preemptions under Pfair scheduling
may be a potential concern, a recent experimental compari-
son conducted by us and colleagues [25] showed that PD2

has comparable performance (in terms of schedulability) to
earliest-deadline-first (EDF) scheduling with partitioning. In
this study, real system overheads such as context-switching
costs were considered. Moreover, the study was biasedagainst
Pfair scheduling in that only static systems with independent4

tasks of low utilization5 were considered. In short, PD2 and
multiprocessor-EDF were comparable because the schedula-
bility loss due to migration and preemption costs under PD2

was comparable to the loss in schedulability due to partitioning
under EDF.

B. Task Reweighting

As mentioned in Sec. I, task reweighting might be necessary
to fully utilize all processors as tasks join and leave the
system. A task can be reweighted by allowing it to leave
with its old weight and re-join with its new weight. In EPDF-
scheduled systems, this reweighting can be done in a simple
manner using the following procedure, which ensures that the
relative priorities of the current subtasks do not change. This
procedure has the significant advantage that the scheduler’s
current priority queue of eligible subtasks does not have to be
resorted when reweighting occurs. Suppose that taskT needs
to be reweighted at timet. Let Ti be the subtask ofT that is
eligible att. TaskT can be reweighted by simply replacing it
by a new taskU with the new weight and by aligningU1’s
window so thatd(U1) = d(Ti) and e(U1) ≤ t. (In reality,
T ’s weight can simply be redefined, instead of creating a new
task. Further, this new weight comes into effect only when
the next subtask of that task is released, at which time the
subtask’s deadline is calculated using the new weight.) This
procedure is problematic under PF, PD, or PD2 because tie-
break parameters also have to be matched to avoid changing
task priorities, and this is not always possible (refer to Fig. 5).

4Considering only independent tasks is advantageous to EDF. While effi-
cient synchronization techniques for Pfair-scheduled systems exist [26], to the
best of our knowledge, no general synchronization protocols that are directly
applicable to multiprocessor-EDF have been proposed in the literature. While
the multiprocessor priority ceiling protocol [27] probably could be adapted
for this purpose, its overhead in EDF-scheduled systems would likely be quite
high.

5The performance of partitioning approaches is relatively good when
individual task utilizations are low. As the mean task utilization increases,
the schedulability loss due to partitioning increases. Note that tasks with high
utilization may arise in systems that are hierarchically scheduled [28], [29].
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Fig. 5. A reweighting example on five processors. At time 0, there are ten
tasks of weight2/5 and one task of weight1. At time 1, the task of weight
1 leaves. The excess capacity of1 is re-distributed among the remaining ten
tasks. The new weight obtained is1/2. The dotted lines indicate the original
PF-windows of those tasks. The new PF-windows can be aligned so that the
new and old deadlines match. However, it is impossible to match the tie-break
parameters used in PF, PD or PD2, causing the priority of every subtask to
change.

IV. H ARD REAL-TIME SYSTEMS

Though our focus in this paper is on soft real-time systems,
we also present some results involving hard real-time systems
scheduled using EPDF. It is sometimes useful to view a soft
real-time system as a hard real-time system in order to simplify
the specification of timing constraints. There are some cases
in which EPDF is preferable to PD2 for use in hard real-time
systems because it provides the same guarantees as PD2. In
earlier work [22], we proved the following.

Theorem 2: EPDF correctly schedules any IS task system
τ on M processors if

∑
T∈H T.f < 1, where T.f =

T.e−gcd(T.e,T.p)
T.p andH is any set ofM − 1 tasks inτ .

As a corollary of the above theorem, it follows that EPDF
is optimal for scheduling IS tasks in one or two-processor
systems, and optimal in aM -processor system if the weight
of each task is at most 1

M−1 [22]. We now show that this result
is tight and later present different schedulability tests that do
not place restrictions on individual task weights.

A. Tightness of Theorem 2

Let τ be a periodic task system consisting of the following
(M − 1)2 tasks to be scheduled onM(> 2) processors: a
setA consisting ofM − 1 tasks of weight 1

M−1 + 1
(M−1)2(

= M
(M−1)2

)
and a setB consisting ofM(M − 2) tasks

of weight 1
M−1 . (Fig. 6 illustrates the case forM = 5.)

Note thatτ fully utilizes the M processors because(M −
1) × M

(M−1)2 + M(M−2)
M−1 = M+M(M−2)

M−1 , which simplifies

to M2−M
M−1 = M . Further note that for each taskT ∈ A,

T.f = M−1
(M−1)2 becausegcd(M, (M − 1)2) = 1. Thus,∑

T∈A T.f = (M − 1) ×
(

1
M−1

)
= 1.

We first show that for all tasksT ∈ τ , d(T1) = M −
1. If T ∈ B, then by (3), we haved(T1) = �M − 1� =
M − 1. If T ∈ A, then by (3),d(T1) =

⌈
(M−1)2

M

⌉
. Note that

(M−1)2

M = M2−2M+1
M = M − 2 + 1

M . Therefore,d(T1) =⌈
M − 2 + 1

M

⌉
= M − 1.

0       1       2       3       4       5       6       7       8       9     10     11     12     13     14     15     16

5
B (15 x 1/4)

4

5 5

An idle processor

A (4 x 5/16)

Fig. 6. Theorem 3. A partial EPDF schedule is depicted for four tasks of
weight5/16 and15 tasks of weight1/4 on 5 processors. (The notation used
in this figure is the same as that in Fig. 2.) A processor is idle in slot4; since
the total utilization is5, this implies a deadline miss in the future.

Thus, EPDF may assign higher priority to all the tasks in
setB at time0, thereby scheduling them for the firstM − 2
slots (refer to Fig. 6). The tasks in setA will be scheduled
in slot M − 2 (i.e., the interval[M − 2,M − 1)). Because
r(T2) = �M − 1� = M − 1 for all T ∈ B, no other tasks
are eligible to be scheduled in slotM − 2. SinceA has only
M − 1 tasks, a processor will be idle in slotM − 2. Because
τ fully utilizes M processors, this implies that a deadline is
missed in the future. Thus, we have the following theorem.

Theorem 3: There exists a feasible periodic (and hence, IS)
task systemτ that misses a deadline onM (> 2) processors
under EPDF if

∑
T∈H T.f is allowed to be at least1 for some

setH ⊆ τ of at mostM − 1 tasks.

B. New Schedulability Results

We now present new schedulability tests that are based on
the following result.

Theorem 4: EPDF correctly schedules any feasible IS task
system if the weight of each task is a reciprocal of some
integer.

Proof: Let τ be a feasible IS task systemτ in which the
weight of each task is a reciprocal of some integer,i.e., for
each taskT ∈ τ , wt(T ) = 1

k for some integerk. We show
that, for such a task system, theb-bit and the group deadline
can be eliminated from the PD2 priority definition without any
change in its scheduling decisions. Ifwt(T ) = 1

k , then by (6),
we haved(Ti) = θ(Ti) + ik for all i.

Also, by (4), b(Ti) = �ik� − �ik� = 0 for all i. Thus, the
b-bit is zero for all subtasks of each task inτ . Further, by the
definition of a group deadline, becauseb(Ti) = 0, it follows
thatD(Ti) = d(Ti).

Thus, ifd(Ti) = d(Uj) for any two subtasksTi andUj , then
b(Ti) = b(Uj) andD(Ti) = D(Uj). This implies that PD2

breaks ties between equal subtask deadlines in an arbitrary
manner, and hence behaves identically to EPDF. It follows
from the optimality of PD2 that EPDF correctly schedulesτ .

Now, given any task systemτ , we can transform it into a
new task systemτ ′ that satisfies the conditions of Theorem 4.
We modify the parameters of every task inτ to obtainτ ′ as
follows. For every taskT ∈ τ , we construct a taskT ′ ∈ τ ′
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Fig. 7. Example illustrating transformation of a taskT of weight 3/10 into a taskT ′ of weight 1

�10/3� = 1/3. The subtask windows ofT ′ are placed so

that the release times of its subtasks coincide with those ofT ’s subtasks.

with weight 1

�1/wt(T )� . The parameters of each subtaskT ′
i

of T ′ is obtained from those of subtaskTi as follows.
(a) e(T ′

i ) = e(Ti),
(b) r(T ′

i ) = r(Ti),
(c) θ(T ′

i ) = r(T ′
i ) −

⌊
i−1

wt(T ′)

⌋
= r(T ′

i ) −⌊
(i− 1) ·

⌊
1

wt(T )

⌋⌋
= r(T ′

i )− (i−1) ·
⌊

1
wt(T )

⌋
, and

(d) d(T ′
i ) = θ(T ′

i )+
⌈

i
wt(T ′)

⌉
= θ(T ′

i )+
⌈
i ·

⌊
1

wt(T )

⌋⌉
=

θ(T ′
i ) + i ·

⌊
1

wt(T )

⌋
.

Thus, the window ofT ′
i is set to start at the same time as

Ti’s window. Fig. 7 illustrates this for a task of weight3/10.
The scheduler schedulesτ by effectively schedulingτ ′ using
EPDF and selectingTi for execution whenever EPDF selects
T ′

i .
By (c) and (d),d(T ′

i ) = r(T ′
i ) +

⌊
1

wt(T )

⌋
, and by (5) and

(6), d(Ti) = r(Ti) +
⌈

i
wt(T )

⌉
−

⌊
i−1

wt(T )

⌋
. Thus, by (b), we

have the following.

d(Ti) − d(T ′
i ) =

⌈
i

wt(T )

⌉
−

⌊
i−1

wt(T )

⌋
−

⌊
1

wt(T )

⌋

≥
⌈

i
wt(T )

⌉
−

⌊
i

wt(T )

⌋
≥ 0

(The second step above follows from the fact that�x�+�y� ≤
�x + y�.) Thus, d(T ′

i ) ≤ d(Ti). Therefore, ifT ′
i meets its

deadline, thenTi also meets its deadline. By Theorem 4, EPDF
correctly schedulesτ ′ on M processors if

∑
T ′∈τ ′ wt(T ′) ≤

M . Thus, we have the following theorem.
Theorem 5: EPDF(with deadlines determined by(d)) cor-

rectly schedulesτ on M processors if
∑

T∈τ
1

�1/wt(T )� ≤
M .

The following results follow as simple corollaries to Theo-
rem 5.

Corollary 1: EPDF (with deadlines determined by(d))
correctly schedulesτ on M processors if

∑
T∈τ

wt(T )
1−wt(T ) ≤

M .
Proof: Note that

⌊
1

wt(T )

⌋
> 1

wt(T ) − 1 , i.e.,
⌊

1
wt(T )

⌋
>

1−wt(T )
wt(T ) . Therefore, 1

�1/wt(T )� < wt(T )
1−wt(T ) . The required

result follows from Theorem 5.

The following corollary states that EPDF correctly sched-
ules any IS task system onM processors if its total utilization
is at mostM/2.

Corollary 2: EPDF(with deadlines determined by(d)) cor-
rectly schedulesτ on M processors if

∑
T∈τ wt(T ) ≤M/2.

Proof: We show that2 · wt(T ) ·
⌊

1
wt(T )

⌋
> 1, which

implies that 1

�1/wt(T )� < 2 ·wt(T ). The required result then

follows from Theorem 5. Letk ≥ 1 be such that 1
k+1 <

wt(T ) ≤ 1
k . Then, 1

wt(T ) ≥ k. Since k is an integer, this

implies that
⌊

1
wt(T )

⌋
≥ k. Becausewt(T ) > 1

k+1 , we obtain

2 · wt(T ) ·
⌊

1
wt(T )

⌋
> 2k

k+1 . Note that2k ≥ k + 1 because

k ≥ 1. Thus,2 · wt(T ) ·
⌊

1
wt(T )

⌋
> 1.

The above-described schedulability tests are useful in sys-
tems in which some tasks have weights more than1(M−1) , and
the task system as a whole does not fully utilize all processors.

V. TARDINESSBOUNDS FOREPDF

In this section, we focus on soft real-time systems in which
deadline misses are tolerated and the goal is to minimize the
tardiness of all the jobs in the system.

The notion of tardiness for jobs was defined earlier in Sec. I.
Tardiness for subtasks is defined similarly: ift is the time at
which subtaskTi completes, thenmax(0, t − d(Ti)) is its
tardiness. Thetardiness of a task system is defined as the
maximum tardiness among all of its subtasks in any schedule.
In this section, we first present a condition on task weights
that is sufficient for ensuring that EPDF maintains a tardiness
of at most one quantum. Later, we generalize this condition
for tardiness thresholds that exceed one.

Before continuing, we introduce some notation to refer to
slots in which some processors are idle. In a scheduleS, if
k processors are idle in slott, then we say that there are
k holes in S in slot t. Note that holes may exist because of
late subtask releases, even if total utilization isM . The lemma
below concerningLAG values and holes is used in our proofs.

Lemma 1: If LAG(τ , t) < LAG(τ , t+ 1), then there is a
hole in slott.
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Proof: Suppose there is no hole in slott, i.e.,M subtasks
are scheduled in slott. Then, the total share in the EPDF
schedule increases byM from t to t+ 1. On the other hand,
the share in the ideal schedule can increase by at mostM ,
since the total weight of all tasks at any time is at mostM
(by (J)). Thus,LAG cannot increase fromt to t+ 1.

A. Sufficient Condition for Tardiness of at most One

We prove that any feasible task system that satisfies the
following condition has a tardiness of at most one.

(M1) At all times, the sum of theM − 1 largest task
weights is at mostM+1

2 .

Assume to the contrary that there exists a feasible task
systemτ satisfying (M1) with tardiness greater than one. Let
Ti be the subtask (in some given schedule) with the earliest
deadline among all subtasks with tardiness greater than one,
and lettd = d(Ti). Thus, all subtasks with deadlines less than
td have tardiness at most one.

It is easy to see that the tardiness ofTi is not affected
by subtasks with deadlines greater thantd. Note that any
such subtask is scheduled beforetd only if no subtask with
a deadline at mosttd is eligible at that slot. In other words,
the presence or absence of subtasks with deadlines beyondtd
does not change the scheduling of subtasks with deadlines at
most td. Thus, we can assume that no task inτ releases any
subtask with a deadline greater thantd. In other words,

for every subtaskUj ∈ τ, d(Uj) ≤ td. (12)

We first show that forTi to have a tardiness of at least two,
at leastM + 1 subtasks miss their deadlines attd. This, in
turn, implies that theLAG of τ at time td is at leastM + 1.

Lemma 2: At leastM+1 subtasks inτ miss their deadlines
at td.

Proof: Consider any subtaskUj such thatUj misses
its deadline attd. Becaused(Uj) = td, by (6) and (7), the
deadline ofUj−1 is at or beforetd − 1. Therefore, by the
definition ofTi andtd, Uj−1 has tardiness at most one and is
scheduled in[0, td). Hence,Uj is eligible to be scheduled at
time td. If there are at mostM subtasks likeUj (includingTi),
then each of these subtasks will be scheduled in[td, td + 1).
Therefore, subtaskTi cannot have tardiness greater than one.
Contradiction.

Lemma 3: LAG(τ, td) ≥M + 1.
Proof: By (11), we have

LAG(τ , td) =
td−1∑
t=0

∑
T∈τ

share(T, t) −
td−1∑
t=0

∑
T∈τ

S(T, t).

The first term on the right-hand side of the above equation is
the total share in the ideal schedule in[0, td), which equals
the total number of subtasks inτ . (This follows from (12) and
becauseτ is feasible.) The second term corresponds to the
number of subtasks scheduled by EPDF in[0, td). Since at
leastM+1 subtasks miss their deadlines attd (by Lemma 2),
the difference between these two terms is at least M+1.

BecauseLAG(τ, 0) = 0, it follows by Lemma 3 that there
exists a timet < td such thatLAG(τ, t) < M + 1 and

LAG(τ, t + 1) ≥ M + 1. We now prove some properties
about task lags at timet+1; using these properties and (M1),
we later derive a contradiction concerning the existence oft.

By Lemma 1, there is at least one hole in slott (i.e., in
[t, t+ 1)). Therefore, ifA denotes the set of tasks scheduled
in slot t, then we have

|A| ≤M − 1. (13)

Let B denote the set of tasks not inA that are “active” at
t. A taskU is active at timet if it has a subtaskUj such that
e(Uj) ≤ t < d(Uj). (A task may be inactive either because
it has already left the system or because of a late subtask
release.) Consider any taskU ∈ B and letUj be such that
e(Uj) ≤ t < d(Uj). Because slott has a hole and no subtask
of U is scheduled att, and sincee(Uj) ≤ t < d(Uj), Uj must
be scheduled in[0, t).

Let I denote the set of the remaining tasks that are not
active at timet. Fig. 8(a) shows how the tasks inA, B, andI
are scheduled. We now estimate thelag values for the tasks
in each ofA, B, andI at time t+ 1.

Lemma 4: ForW ∈ I, lag(W, t+ 1) = 0.
Proof: Consider any subtaskWh of taskW . If e(Wh) ≥

t+1, thenr(Wh) ≥ t+1. Therefore, by (10),f(Wh, u) = 0 for
all slotsu ≤ t < r(Wh). Hence, the share ofWh in the ideal
schedule in[0, t+1) is zero. Also, in the EPDF schedule,Wh is
scheduled at or aftert+ 1. On the other hand, ife(Wh) ≤ t,
then by the definition ofI, d(Wh) ≤ t < td. Because the
tardiness of such a subtask is at most one,Wh is scheduled
in [0, t + 1). Hence, the share received byWh in [0, t + 1)
is one in both the ideal and EPDF schedules. (This is true
even ifW is reweighted at any instant.) Thus, for all subtasks
of W , the share of that subtask in[0, t + 1) is the same in
both the ideal and EPDF schedules. Furthermore, recall from
Sec. III-A that any task that leaves the system does so with
zero lag. Therefore,lag(W, t+ 1) = 0.

Lemma 5: For V ∈ B, lag(V, t+ 1) ≤ 0.
Proof: Consider any subtaskVk of task V . Again, as

in the proof of Lemma 4, ifr(Vk) ≥ t + 1, then by (10),
the share ofVk in [0, t+ 1) in the ideal schedule is zero. On
the other hand, ifr(Vk) ≤ t, then, as discussed earlier,Vk

is scheduled beforet because of the hole in slott. Thus, the
share ofVk in [0, t + 1) is one in the EPDF schedule, and
at most one in the ideal schedule. Note thatd(Vk) may be
greater thant+1, in which case a portion ofVk’s share in the
ideal schedule is allocated aftert + 1. Thus, for any subtask
of V , its share in[0, t + 1) in the EPDF schedule is at least
its share in[0, t + 1) in the ideal schedule. (Note that this is
true even ifV is reweighted duringV ’s window because the
new weight takes effect only for subtasks afterVk.) Hence,
lag(V, t+ 1) ≤ 0.

Lemma 6: For U ∈ A, lag(U, t+ 1) < 2 × wt(U).
Proof: Let Uj be the subtask ofU scheduled at timet.

If d(Uj) ≤ t, then becauset < td, d(Uj) < td. By the choice
of Ti andtd, it follows that the tardiness ofUj is at most one.
Therefore,d(Uj) = t in this case. Thus, in general,d(Uj) ≥ t.
We now consider four cases depending on the value ofd(Uj).

• Case 1: d(Uj) > t + 1. In this case, by (5)–(7),
r(Uj+1) ≥ t + 1. Reasoning exactly as in the proof of
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Fig. 8. In this figure, PF-windows are denoted by line segments. An arrow over a release (respectively, deadline) indicates that the release (respectively,
deadline) could be anywhere in the direction of the arrow. There is a hole in slot t. (a) Sets A, B, and I . The PF-windows of a sample task of each set are
shown. (b) Case 4 of Lemma 6. The excess share received by U in [0, t + 1) in the ideal schedule is equal to the shares received by subtasks after Uj in
[0, t + 1). (Note that if Uj+1 has a deadline at time t + 1, then the PF-window of Uj+2 may begin at time t, in which case part of the wt(U) share in slot
t is due to Uj+2.)

Lemma 5, we can show that lag(U, t+ 1) ≤ 0.
• Case 2: d(Uj) = t+1∧b(Uj) = 0. Again, by (5)–(7),
r(Uj+1) ≥ t+1. It follows that the share received by any
subtask Uk (k > j) in the ideal schedule in [0, t+ 1) is
zero. Thus, the share received by task U in [0, t+1) is the
same in both the ideal and EDPF schedules. Therefore,
lag(U, t+ 1) = 0.

• Case 3: d(Uj) = t + 1 ∧ b(Uj) = 1. By (5)–(7), we
have

r(Uj+1) ≥ d(Uj) − 1. (14)

Therefore, r(Uj+1) ≥ t. Similarly, by (5)–(7), we obtain
r(Uj+2) ≥ t+ 1. Therefore, the share of any subtask Uk

(k > j + 1) is zero in [0, t+ 1) in the ideal schedule.
Now, the total share that U receives in [0, t + 1) in the
EPDF schedule is j. However, in the ideal schedule, the
share received by U in [0, t + 1) may be more because
of the share that Uj+1 (if it exists) receives in [0, t+ 1).
This share will be non-zero only if r(Uj+1) ≤ t, i.e.,
r(Uj+1) ≤ d(Uj) − 1. In this case, by (14), we have
r(Uj+1) = d(Uj)−1. This implies that θ(Uj+1) = θ(Uj).
It also implies that the excess share in the ideal schedule
in [0, t+ 1) is at most f(Uj+1, t). Because r(Uj+1) = t,
by (10), we have f(Uj+1, t) = (�j/wt(U)�+1)·wt(U)−
j.
Because θ(Uj+1) = θ(Uj), by (5) and (6), �j/wt(U)� =
�j/wt(U)� − 1. Hence, �j/wt(U)� < j/wt(U). There-
fore, f(Uj+1, t) < (j/wt(U) + 1) · wt(U) − j, i.e.,
f(Uj+1, t) < wt(U). Thus, lag(U, t+ 1) < wt(U).

• Case 4: d(Uj) = t. In this case, by (5)–(7), we have
r(Uj+1) ≥ t− 1 and r(Uj+2) ≥ t. Note that all subtasks
of U up to and including Uj receive a share of one over
[0, t + 1) in both the EPDF and ideal schedules (see
Fig. 8(a)). By (10), no subtask receives a share in the
ideal schedule before its Pfair release time. Therefore,
the only subtask after Uj that may contribute to U ’s share
in the ideal schedule in [0, t) is Uj+1. Further, by (F1),
the share of U in slot t (i.e., in [t, t + 1)) is at most

its weight. Thus, it follows that the excess share that U
can receive in [0, t + 1) in the ideal schedule is at most
f(Uj+1, t−1)+wt(U) (refer to Fig. 8(b)). The first term,
f(Uj+1, t−1), will be non-zero only if r(Uj+1) = t−1,
i.e., r(Uj+1) = d(Uj) − 1. Reasoning exactly as in
Case 3, it follows that f(Uj+1, t − 1) < wt(U). Hence,
lag(U, t+ 1) < 2 × wt(U).

Thus, in all cases, we have lag(U, t + 1) < 2 × wt(U). All
the above cases apply even if U is reweighted. Note that if U
is reweighted in the interval [r(Uj), t), then the new weight
comes into effect only for Uj+1 and later subtasks, and wt(U)
above refers to the new weight.

Because LAG(τ, t + 1) =
∑

U∈A∪B∪I lag(U, t + 1), by
Lemmas 4–6, LAG(τ, t + 1) < 2 × ∑

U∈A wt(U). By (13),
|A| ≤ M − 1. Therefore, by (M1), LAG(τ, t + 1) < M + 1,
contradicting our assumption about t. Thus, we have the
following theorem.

Theorem 6: Every feasible IS task system satisfying (M1)
has a tardiness of at most one under EPDF.

Discussion. One way to ensure (M1) is to restrict the weight
of every task to at most M+1

2M−2 . Note that M+1
2M−2 >

1
2 . Thus,

EPDF guarantees a tardiness of at most one for a task system
consisting solely of light tasks.

It is possible to improve (M1) by more accurately bounding
the lag values for tasks in set A. In particular, using the proof
technique used in [4], we can show that there must be at least
one task in A with a deadline at t + 1. Thus, either Case 2
or 3 in the proof of Lemma 6 applies for such a task. Thus,
the lag for that task at time t + 1 is bounded by its weight.
Using this information, we can obtain the following (slightly)
improved condition.

(M1′) Let w1, w2, . . . , wM−1 denote the M−1 largest task
weights in non-increasing order. Then, wM−1 + 2×∑M−2

i=1 wi ≤M + 1.

This allows us to improve the individual weight restriction to
M+1
2M−3 . Note that, for M ≤ 4, we have 2M − 3 ≤M +1, i.e.,
M+1
2M−3 ≥ 1. Because the weight of any task is at most one,
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Fig. 9. The notation used in this figure is the same as that in Fig. 2; in addition, subtasks that miss their deadlines are shown scheduled after their windows.
In the schedule shown, EPDF breaks ties in favor of the tasks of weight 1/2. Note that the schedule over [16, 24] repeats after time 24. Thus, a maximum
of three subtasks miss their deadlines simultaneously, and hence, the tardiness of each subtask is at most one.

the individual weight restriction is always satisfied if M ≤
4. That is, if the number of processors is at most 4, then
EPDF guarantees a tardiness of at most one with no weight
restriction.

Tightness. At present, we do not know whether the above
condition is tight. Though we have not been able to find an
M -processor schedule in which more than M subtasks miss
their deadlines simultaneously, we do have examples in which
up to M − 2 simultaneous misses occur.

Consider the following set of periodic tasks: three tasks of
weight 1

2 andM−1 tasks of weight 2M−3
2M−2 . Fig. 9 illustrates the

case M = 5. In these examples, the number of simultaneous
deadline misses increases up to some multiple of the least
common multiple of the task periods, and then remains steady
after that. Note that, in these examples, the percentage of jobs
that miss their deadlines is quite high (approaches 25% for
large M ). However, as our simulation experiments (described
in Sec. VI) indicate, such cases are very rare indeed.

B. Generalizing the Condition

The above approach can be easily extended to obtain
conditions similar to (M1) for guaranteeing a tardiness of
at most k. In particular, the following condition ensures that
tardiness is never more than k.

(Mk) At all times, the sum of the M − 1 largest task
weights is at most kM+1

k+1 .

The proof for this result is very similar to the sufficiency proof
for (M1). Suppose that td, Ti, and τ are defined in the same
manner, except that the tardiness of Ti is k + 1. Similar to
Lemma 2, we can show that for a subtask to have tardiness
k+ 1, kM + 1 subtasks simultaneously miss their deadline at
time td. Hence, LAG(τ, td) ≥ kM+1, implying the existence
of time t as follows: t < td and LAG(τ, t) < kM + 1 and
LAG(τ, t+ 1) ≥ kM + 1.

The rest of the proof is the same except for Lemma 6, which
is modified as follows.

Lemma 7: For U ∈ A, lag(U, t+ 1) < (k + 1) × wt(U).
Proof: Let Uj be the subtask of U scheduled in slot

t. Since t < td, Uj has a tardiness of at most k. Since Uj

completes at time t+1, we have d(Uj) ≥ t+1−k. It follows
that r(Uj+1) ≥ t− k. Since Uj is scheduled in slot t in S, it
follows that the excess share in the ideal schedule over [0, t+1)
is at most f(Uj+1, t−k) plus the share over [t−k+1, t+1).
By (F1), the second term is at most k × wt(U). Further, as
in Lemma 6, we can show that f(Uj+1, t − k) < wt(T ).
Therefore, LAG(U, t+ 1) < (k + 1) × wt(U).

In other words, the lag of a task U in A may be up to (k+1)
times the weight of U . By Lemmas 4, 5, and 7, LAG(τ, t+
1) <

∑
U∈A(k+1)×wt(U). By (Mk), the right-hand-side of

this inequality is at most M+1. Thus, LAG(τ, t+1) < M+1;
a contradiction. Thus, we have the following result.

Theorem 7: Every feasible IS task system satisfying (Mk)
has a tardiness of at most k under EPDF on M processors.
As before, we can improve (Mk) to (Mk′) as follows.

(Mk′) Let w1, w2, . . . , wM−1 denote the M−1 largest task
weights in non-increasing order. Then, wM−1 +(k+
1) × ∑M−2

i=1 wi ≤ kM + 1.
Condition (Mk) gives us an individual weight restriction of

kM+1
(k+1)(M−1) , while (Mk′) gives us a slightly better value of

kM+1
(k+1)(M−2)+1 . Note that both these values are at least k

k+1 .

VI. SIMULATION RESULTS

To determine how frequently deadlines are missed under
EPDF, and by how much, we computed EPDF schedules for
a number of randomly generated task sets. Only periodic (not
IS) task sets were considered in these experiments. Intuitively,
introducing IS delays should only reduce demand and hence
lessen the likelihood of missed deadlines. In addition, each
task set was defined to fully utilize all available processors to
further increase the possibility of deadline misses.

The following procedure was followed in every run of the
simulation. First, the number of processors was chosen as
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Fig. 10. Percentage of task sets with non-zero tardiness versus the number of processors.

a random number between 1 and 32. Then, task weights
were generated randomly in the interval (0, 1]. (No weight
restrictions were applied, i.e., weights were allowed to be as
large as one.) The weight of the last task was chosen so that
the total weight equaled the number of processors. For each
generated task set, we constructed an EPDF schedule over the
time interval [0, 10L), where L is the least common multiple
of all task periods. We repeated this procedure approximately
195,000 times. Thus, the number of data points obtained per
processor in each graph is approximately 6,000.

In all the runs, no subtask ever missed its deadline by
more than one quantum. In other words, the tardiness for each
generated task set was at most one. Though this is not a proof,
it does strongly indicate that any task set for which tardiness
is greater than one (if such a task set exists) is probably
pathological and rare.

The graph in Fig. 10 plots the percentage of task sets with
tardiness greater than zero versus the number of processors.
(Recall that a task set has tardiness greater than zero even
if just a single job misses its deadline.) For example, EPDF
misses at least one deadline for approximately 19% of the
generated task sets on five processors. (No task set misses a
deadline for systems of one or two processors because of the
optimality of EPDF for such systems [22].) The percentage
of task sets with non-zero tardiness initially increases as
the number of processors increases and then steadies. The
maximum is around 25%. Though this value may seem high,
as the remaining graphs show, the fraction of deadlines that
were missed tended to be extremely low.

Fig. 11 shows the average percentage of missed deadlines
versus the number of processors. Inset (a) shows the average
over all generated task sets, while inset (b) shows the average
over task sets that have at least one deadline miss. Both the
percentage of job deadlines missed and the percentage of
subtask deadlines missed are plotted. As can be seen from
these graphs, deadline misses are quite rare.

Note that the percentage of job deadlines missed is more

than the percentage of subtask deadlines missed. There are two
reasons for this. First, the total number of subtask deadlines
is much more than the total number of job deadlines. Second,
subtask deadline misses within a job have a tendency to
cascade, causing the later subtasks within a job (and hence
the job itself) to have a higher likelihood of missing their
deadlines.

Surprisingly, the largest average of job deadlines missed in
Fig. 11 is obtained for three processors: 0.04% in inset (a) and
0.55% in inset (b). It is also surprising that the percentage
of misses decreases as the number of processors increases.
Recall from Sec. IV that EPDF is optimal on M processors if
the weight of each task is at most 1

M−1 . (Also recall that this
condition is fairly tight.) As M increases, 1

M−1 decreases and
hence, intuitively, the chance of a deadline miss should also
increase.

However, as M increases, more tasks need to be generated
to fully utilize the system. Because our samples are generated
randomly, the probability of having low-weight tasks in the
system also increases. This in turn drives the number of tasks
(and hence, the total number of deadlines) up. Thus, though the
number of missed deadlines may increase, the percentage of
deadline misses decreases. Analogously, for fewer processors,
deadline misses are more common when most tasks have
a large weight. In this case, the number of tasks is small
and therefore, the percentage of deadlines missed tends to be
higher.

VII. CONCLUSIONS

We have considered the scheduling of soft real-time tasks on
multiprocessors. We presented some new schedulability results
for EPDF-scheduled hard real-time systems and established
a sufficient condition for ensuring that the EPDF algorithm
meets a given tardiness threshold in soft real-time systems.
Our simulation results indicate that the percentage of deadlines
missed is very low even for systems that do not satisfy our
condition (for any threshold). These experiments also indicate
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Fig. 11. Solid (dotted) lines denote the percentage of job (subtask) deadlines missed. (a) Percentage of deadlines missed averaged over all task sets. (b)
Percentage of deadlines missed averaged over task sets with non-zero tardiness. (99% confidence intervals were computed for each graph but are not shown
because the relative error associated with each point is very small — less than 0.2% of the reported value.)

that the performance (in terms of tardiness and percentage
of missed deadlines) of EPDF scales well as the number of
processors increase.
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