
1

Adapting Pfair Scheduling for Symmetric
Multiprocessors

Philip Holman and James H. Anderson

Abstract— We consider the implementation of a Pfair real-
time scheduler on a symmetric multiprocessor (SMP). Although
SMPs are in many ways well-suited for Pfair scheduling, ex-
perimental results presented herein suggest that bus contention
resulting from the simultaneous scheduling of all processors can
substantially degrade performance. To correct this problem, we
propose a staggered model for Pfair scheduling that strives to
improve performance by more evenly distributing bus traffic over
time. Additional simulations and experiments with a scheduler
prototype are presented to demonstrate the effectiveness of the
staggering approach. In addition, we discuss other techniques for
improving performance while maintaining worst-case predictability.
Finally, we present an efficient scheduling algorithm to support
the proposed model and briefly explain how existing Pfair results
apply to staggered scheduling.

Keywords: SMP, Pfairness, real-time, scheduling, bus, multi-
processor

I. Introduction

In traditional systems, programs (or tasks) must exhibit log-
ical correctness. Informally, logical correctness requires that
each task produce appropriate results when executed, relative
to its specification. Real-time systems strengthen this notion of
correctness by also requiring temporal correctness. Informally,
temporal correctness constrains each task invocation (or job)
to execute in a predictable manner so that specified timing
constraints are met. For instance, the most common form of
timing constraint is a job deadline, which specifies the latest
time by which that job must complete.

When sharing processors among a collection of real-time
tasks, the choice of scheduling policy is key to the correct
operation of the system. Systems can be characterized as either
soft or hard, depending on whether some timing violations can
be tolerated at runtime or not, respectively. In the case of hard
real-time systems, analytical guarantees are needed to ensure
that timing violations cannot occur, regardless of runtime
conditions. Such guarantees are provided by showing that all
constraints will be met even under worst-case conditions.

In this paper, we consider task scheduling in hard real-
time multiprocessor systems. Multiprocessor scheduling tech-
niques fall into two general categories: partitioning and global
scheduling. In the partitioning approach, each processor sched-
ules tasks independently from a local ready queue. When a
new task arrives, it is assigned to one of these ready queues
and executes only on the associated processor. In contrast, all

Work supported by NSF grants CCR 9988327, ITR 0082866, CCR
0204312, and CCR 0309825, and by a grant of software from the QNX
corporation. Some content was previously presented in preliminary form at
the 10th IEEE Real-time Technology and Applications Symposium [13].

ready tasks are stored in a single queue under global schedul-
ing. Since a single system-wide priority space is assumed,
the highest-priority task is selected to execute whenever the
scheduler is invoked, regardless of which processor is being
scheduled. Whereas partitioning avoids moving tasks between
processors (called migration), global scheduling may result in
frequent migration due to the use of a shared queue.

At present, partitioning is the preferred approach on real-
time multiprocessors, largely because it has been well-studied
and has performed reasonably well in practice. Despite this, re-
cent research has shown that global scheduling provides many
advantages over partitioning approaches, including improved
schedulability1 and flexibility [1], [2], [19]. Furthermore, these
benefits can be achieved without incurring significantly more
(worst-case) overhead [21]. However, there remain questions
as to whether global scheduling can achieve comparable
average-case performance.

Though partitioning provides many performance advan-
tages, such as improved cache performance (on average) and
low scheduling overhead, it is inherently suboptimal: some
systems are schedulable only when migration is permitted.
In addition, optimal partitioning methods are costly, i.e.,
partitioning is a variation of the bin-packing problem, which
is known to be NP-hard in the strong sense [7]. Thus, in
on-line settings, suboptimal heuristics must be employed.
Furthermore, the actual benefit obtained from characteristics
like improved cache performance can be difficult to determine
analytically. Hence, many of the advantages of partitioning do
not benefit worst-case analysis.

Proportionate-fair (Pfair) scheduling [4] is a particularly
promising global-scheduling approach. Indeed, Pfair schedul-
ing is presently the only known optimal means for scheduling
periodic [15], sporadic [17], and rate-based tasks2 on a real-
time multiprocessor [19]. Hence, Pfair scheduling is seemingly
well-suited for systems in which worst-case predictability is
required. Unfortunately, some aspects of Pfair scheduling may
degrade performance and have led to questions regarding its
practicality. These aspects are discussed in detail below.

Characteristics. First, Pfair scheduling is based on syn-
chronized tick (or quantum-based) scheduling. Scheduling
points occur periodically and, at each point, all processors are

1A task set is schedulable under an approach if that approach can guarantee
that all timing constraints are met.

2A periodic (respectively, sporadic) task is repeatedly invoked to generate a
sequence of identical jobs; invocations occur with a known fixed (respectively,
minimum) separation. Rate-based tasks exhibit more variability in their
instantaneous rate of execution, but still execute at a consistent rate over
long intervals.

2

��
��
��
��

Processor Idle

Task Executing

Scheduler Executing1
2
3
4Pr

oc
es

so
r

��
��
��
��
��

��
��
��
��
�� A

B
C

D

Processor Yielded

Scheduling
Points

(a)

Task A

Task B

(ticks)Time

Fluid

Pfair

Optimal

(b)

Fig. 1. (a) Two of the four scheduled tasks yield before the
next scheduling point. (b) Relationship between a Pfair schedule
(middle), the corresponding fluid schedule (upper), and a schedule
that minimizes context switching (lower).

simultaneously scheduled. If a scheduled task yields before
the next scheduling point, then that task is still charged for the
unused processor time and the processor is idled. Figure 1(a)
illustrates this characteristic.

Second, Pfair scheduling uses weighted round-robin
scheduling to track the allocation of processor time in a fluid
schedule, i.e., a schedule in which each task executes at a
constant rate. This achieves theoretical optimality, but at the
cost of more frequent context switching. In practice, this cost
is undesirable since it may increase scheduling overhead (de-
pending on the quantum size) and reduces cache performance.
Figure 1(b) shows a Pfair schedule, the corresponding fluid
schedule, and a schedule with minimal switching.

Finally, task migration is unrestricted under Pfair schedul-
ing. In the worst case, a task may be migrated each time it is
scheduled. In practice, this may also negatively impact cache
performance.

Prior work. In recent work, we have extended Pfair schedul-
ing to address the above concerns and to enable its im-
plementation and eventual comparison to partitioning. These
extensions include task synchronization mechanisms [10],
[11], techniques for accounting for system overheads [21],
and support for hierarchal scheduling [9], [10], [11], [12].
To evaluate Pfair scheduling and its extensions, we have
developed a Pfair prototype (from which we obtained some of
the results presented later) that runs on a bus-based symmetric
multiprocessor (SMP). This choice of platform follows from
the fact that tight coupling is needed to keep preemption and
migration overheads low. In addition, the worst-case cost of a
migration is effectively the same as that of a preemption under
a cache-based SMP. (Both worst-case scenarios correspond to

0

1

2

3

4

5

6

7

8

3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

B
us

 L
oa

d
fo

r
8

C
P

U
s

Cycles

Aligned Slots, CPU = 200 MHz, Quantum = 10 ms, Cache = (1x256KB), Line = 32B

(a) Aligned Model

0

1

2

3

4

5

6

7

8

3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

B
us

 L
oa

d
fo

r
8

C
P

U
s

Cycles

Staggered Slots, CPU = 200 MHz, Quantum = 10 ms, Cache = (1x256KB), Line = 32B

(b) Staggered Model

Fig. 2. Each graph shows the bus load across three slots in an eight-processor
system using blocking caches. Graphs show contention (a) under the aligned
model, the (b) under the (proposed) staggered model.

the case in which the local processor cache is cold, but filled
with dirty lines.)

Contributions of this paper. In this paper, we show how
Pfair scheduling actually promotes bus contention, and then
propose an alternative scheduling model that strives to avoid
this problem. The contention problem stems from the fact that
a preempted task may encounter a cold cache when it resumes.
Since bus traffic increases while reloading data into the cache,
scheduling all processors simultaneously can result in very
heavy bus contention at the start of each quantum. The worst-
case duration of this contention grows with both the processor
count and working-set sizes.

Figure 2(a) illustrates this contention on eight processors.
The number of pending bus requests across three schedul-
ing points (i.e., spanning three quanta) are shown. In this
experiment, each task was given an array that matched the
cache’s size and simply wrote to each cache line in sequence.
(This experiment is considered in detail later.) As shown,
heavy contention follows each scheduling point. Other results,
presented later, suggest that such contention can significantly
lengthen the execution times of tasks.

3

��
��
��
��Scheduling

Executing

Idling

KEY

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�A1

A2
A3
A4

B1
B2
B3
B4

��
��
��
��
��
��
��
��
��
��
��
��1
2
3
4Pr

oc
es

so
r

Time (ticks)

(a) Aligned Model

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��1
2
3
4Pr

oc
es

so
r

Time (ticks)

A1
A2

A3
A4

B1
B2

B3
B4

(b) Staggered Model
Fig. 3. (a) Under the aligned model, processors are simultaneously scheduled and all decisions are made on a single processor. (b) Under the staggered
model, scheduling points are uniformly distributed and each processor can make its own scheduling decision.

The primary contribution of this paper is a new staggered
model for Pfair scheduling that more uniformly distributes
these predictable bursts of bus traffic. Results of simulations
and experimental measurements obtained from our prototype
system suggest that this model can significantly reduce bus
contention and hence improve performance. This model pro-
vides the additional benefit that scheduling overhead can
be distributed across processors, thereby reducing the per-
processor overhead. Our second contribution is an efficient
distributed scheduling algorithm for the staggered model and
an evaluation of its performance. Finally, we characterize the
impact of the new model on prior results and explain how
these results can be modified for use under the new model.

Figure 3(b) shows the proposed staggered model along with
the traditional aligned model. Repeating the earlier experiment
using the staggered model results in dramatically lower con-
tention, as shown in Figure 2(b). In addition, all scheduling
decisions are made by processor 1 under the aligned model
(see Figure 3(a)). As a result, cycles are lost due to stalling the
other processors. Under the staggered model, each processor
can make its own scheduling decision (see Figure 3(b)). By
avoiding processor stalls, both the worst-case and average-case
scheduling overhead is reduced.

Relevance. The problem of bus contention will obviously
not be addressed solely by adopting this new model. If task
behaviors are not restricted, then bus contention can also arise
on-the-fly due to working-set changes that naturally occur
within any task. Although we restrict attention in this paper
to preemption-related bursts of bus traffic, we briefly sketch a
more complete strategy for addressing the broader problem of
bus contention below.

One approach for managing the bus that has already re-
ceived much attention is time-division multiplexing. Under
this approach, each processor is guaranteed exclusive access
to the bus during statically chosen intervals of time. For
instance, processor k could be guaranteed exclusive access
to the bus at the start of each slot by reserving the interval

[
i + k

M , i + k+1
M

)
for all i ≥ 0. However, this also implies that

processor k cannot access the bus for the remainder of each
slot because the bus is reserved for other processors during that
time. Under such a division, the interval

[
i + k

M , i + k+1
M

)
acts

as a loading phase for the ith slot of processor k, during which
the scheduled task should load the data it requires into the local
processor cache. The remainder of the slot, i.e., the interval[
i + k+1

M , i + 1 + k
M

)
, then acts as a work phase, during which

the task is permitted to manipulate only the cached data.

The primary disadvantage of this approach is that perfor-
mance depends heavily on whether tasks can be restructured
to respect such a restriction without wasting processor time. If
a task is within its slot’s work phase but requires uncached data
to make further progress, then the task will be stalled until the
next loading phase. As a result, the remainder of the current
quantum will be wasted. Determining the degree of waste that
is likely to occur is a daunting task since it requires fairly
extensive knowledge of how real task sets are structured.

Another complication that impacts this approach is that
performance will depend on the cache structure and coherence
policy. Since bus traffic should not be generated during a work
phase, a write back or similar policy is clearly necessary for
this approach to be successful. Furthermore, low associativity
is undesirable since it may prevent two segments of memory
that map to the same cache line from co-existing in the cache,
even if some lines in the cache are unused. Such restrictions
reduce the amount of data that can be used during the work
phase, and hence will likely increase waste.

In practice, it may be impractical to restrict bus access to
a single processor, as assumed in the above discussion of
time-division multiplexing. Due to operating system activities,
such as the scheduling, it may be necessary to allow more
than one processor to access the bus. However, such activities
differ from task activities because the algorithms used by the
operating system are known prior to runtime. Due to this
increased knowledge, we expect the pessimism in the analysis
to remain reasonable as long as access to the bus is restricted

4

to at most one task at a given time. However, further study
is certainly needed to determine if this expectation is accurate
and to investigate the related issues discussed above.

Related work. Unfortunately, little (if any) prior work
has considered techniques for improving performance in
multiprocessor systems that require worst-case predictability.
Consequently, available techniques are typically heuristic in
nature and lack supporting analysis. Affinity-based schedul-
ing algorithms are one common example. Such algorithms
dynamically manipulate the priorities of tasks to make pre-
emption less likely. By resisting preemption, these algorithms
tend to improve cache performance, and hence reduce task
execution times. Although the use of such techniques does
improve average-case performance, the complexity of the
priority definitions used makes worst-case analysis difficult.
As a result, these techniques are not appropriate for hard
real-time systems.3 Though we are interested in average-case
performance and soft real-time systems, our primary focus is
on determining the inherent cost of guaranteeing predictable
operation in multiprocessor systems. Techniques for optimiz-
ing Pfair scheduling for a general-purpose environment in
which worst-case predictability is not required were previously
proposed by Chandra, Adler, and Shenoy [6].

The remainder of the paper is organized as follows. Sec-
tion II summarizes Pfair scheduling. An efficient scheduling
algorithm for the staggered model is presented in Section III.
In Section IV, we explain how to adapt prior results for
use under the proposed model. Experimental results are then
presented in Section V. We conclude in Section VI.

II. Background

In this section, Pfair scheduling is formally defined and
previous work is summarized.

A. Basics of Pfair Scheduling

Let τ denote a set of N tasks to be scheduled on M
processors. Each task T ∈ τ is assigned a rational weight T.w
in the range (0, 1]. Conceptually, T.w is the rate at which T
should be executed, relative to the speed of a single processor.
(When scheduling periodic or sporadic tasks, each task is
assigned a weight that approximately equals its utilization. See
[8] for a detailed discussion of weight assignment.)

Pfair scheduling algorithms allocate processor time in dis-
crete time units called quanta. The time interval [t, t + 1),
where t ≥ 0, is called slot t. In each slot, each processor can be
assigned to at most one task and each task can be assigned to at
most one processor. Task migration is allowed. For simplicity,
we assume that the quantum size is given. (We leave as future
work the problem of selecting an optimal quantum size for a
given system.)

Scheduling. Scheduling decisions are based on comparing
each task’s allocation to that granted in an ideal (fluid) system.

3Later, we consider a more limited use of processor affinity when assigning
scheduled tasks to processors. This limited use differs from that described here
in that task priorities are not dependent on processor affinity.

Ideally, a task T receives T.w · L units of processor time
in any interval of length L. This quantity is referred to as
the ideal or fluid allocation. We let fluid(T, t1, t2) denote
the fluid allocation of T over the interval [t1, t2). Formally,
fluid(T, t1, t2) = T.w · (t2 − t1). (To facilitate the discussion,
the equations presented herein do not account for scheduling
overhead. Equations that do account for this overhead are
presented in [8].)

The concept of tracking the ideal system is formalized by
the notion of lag. Letting received(T, t1, t2) denote the amount
of processor time allocated to task T over the time interval
[t1, t2), the lag of T at time t can be formally defined as
lag(T, t) = fluid(T, 0, t) − received(T, 0, t) = T.w · t −
received(T, 0, t). A schedule respects Pfairness if and only if
the magnitude of all task lags is strictly less than one always,
i.e., (∀T, t :: |lag(T, t) | < 1). As shown in [4], a schedule
respecting Pfairness exists if and only if

∑
T∈τ T.w ≤ M .

Due to the use of a scheduling quantum, the above lag
constraint effectively sub-divides each task T into a series
of evenly distributed quantum-length subtasks. Let Ti denote
the ith subtask of T . Figure 4(a) shows the slot interval
(or window) in which each subtask must execute to achieve
Pfairness when T.w = 3/10. For example, T2’s window spans
slots 3 through 6: T2 is released at time 3 and has a deadline
at time 7.

Schedulers. At present, PF [4], PD [5], and PD2 [2] are
the only known optimal Pfair scheduling algorithms. These
algorithms prioritize subtasks on an earliest-deadline-first ba-
sis, but differ in the choice of (non-trivial) tie-breaking rules.
Since the PD2 prioritization is the most efficient, we assume
its use. For our purposes, it is sufficient to know that PD2

priorities can be determined and compared in constant time.

Model specifications. Let t(i, k) denote the time (in quanta)
at which the ith scheduling point occurs on processor k, where
0 ≤ k < M . The aligned model is then defined by the
expression t(i, k) = i, while the staggered model is defined
by t(i, k) = i + k

M . We assume that the duration of processor
scheduling under the staggered model does not exceed 1

M .

B. Extensions

We now discuss extensions to Pfair scheduling. We consider
adapting these extensions for use under the staggered model
later in the paper.

Increased flexibility. Srinivasan and Anderson [1], [19]
introduced three variants of Pfairness to improve scheduling
flexibility. They also proved that PD2 correctly schedules each
variant whenever the cumulative task weight does not exceed
M . Early-release fairness (ERfairness) allows subtasks to
execute before their Pfair release times, provided that they are
still prioritized by their Pfair deadlines. Intra-sporadic fairness
(ISfairness) extends ERfairness by allowing windows to be
right-shifted (i.e., delayed relative to their Pfair placement).
However, the relative separation between each pair of windows
must be at least that guaranteed under Pfairness. Finally, gener-
alized intra-sporadic fairness (GISfairness) extends ISfairness
by allowing subtasks to be omitted. Figure 4 illustrates these

5

PF-Window IS-Window Absent PF-Window

LEGEND

T1

T2

T3

T4

T5

T

5 10 15 20

6

0

(a) Pfair task

T1

T4

T2

T3

IS Delay

5 10 15 200

(c) ISfair task

T1

T3
T2

T6
T5
T4

5 10 15 200

(b) ERfair task

T1

T4

T2

5 10 15 20

IS Delay

0

(d) GISfair task

Fig. 4. The windowing for a task with weight 3
10

is shown under the Pfair task model and its variants. (a) Normal windowing under the Pfair task model.
(b) Early releasing has been used so that each grouping of three subtasks becomes eligible simultaneously. (In reality, each subtask will not be eligible until
its predecessor is scheduled.) (c) Windows appear as in inset (b) except that T2’s release is now preceded by an intra-sporadic delay of six slots. (T5 and T6

are not shown.) (d) Windows appear as in inset (c) except that T3’s window is now absent.

variants. In addition to these variants, Srinivasan and Anderson
also derived conditions under which tasks may leave and join
a system [20].

Supertasking. Supertasks were first proposed to support fixed
tasks, i.e., tasks that must execute on a specific processor [16].
Each supertask represents a set of component tasks, which
are scheduled as a single entity. Whenever a supertask is
scheduled, one of its component tasks is selected to execute
according to an internal scheduling algorithm. In previous
work, we presented reweighting algorithms for deriving super-
task weights from component task sets using either quantum-
based [9] or fully preemptive [12] scheduling. (Our work does
not restrict attention to the problem of scheduling fixed tasks.)
In addition to supporting hierarchal scheduling, supertasks
provide a means to selectively restrict which tasks may execute
in parallel. Such restrictions can be imposed to reduce the
worst-case contention for shared resources [10], [11]. Finally,
the use of fully preemptive scheduling within supertasks can
reduce loss caused by partially used quanta (see Figure 1(a))
by permitting other component tasks to consume unused time
within the supertask’s quanta.

Synchronization. In other prior work, we developed tech-
niques for supporting lock-free and lock-based synchroniza-
tion under Pfair scheduling [8], [10], [11]. For lock-based
synchronization, we investigated two approaches: zone-based
and server-based protocols. Zone-based protocols are designed
to delay the start of short critical sections that are at risk
of being preempted before completion. Hence, this approach
exploits the quantum-based nature of Pfair scheduling to
ensure that tasks will never hold locks while preempted.
On the other hand, the server-based protocol uses a simple
client-server model in which a server task executes all critical
sections guarded by its associated locks.

C. Comparison with Partitioning

Conventional event-driven schedulers can usually be tested
by replacing the schedulers in conventional operating sys-
tems, such as Linux or FreeBSD. However, due to its time-
driven approach, forcing a Pfair scheduler into a conventional
system will almost certainly produce both poor performance
and measurements that are not reflective of a from-scratch
implementation. Accurate assessment is essential to making
an unbiased comparison to partitioning. Hence, mechanisms
that exploit strengths and compensate for weaknesses are an
important factor. Unfortunately, such mechanisms must first
be developed for Pfair scheduling.

To determine whether such a (time-consuming) comparison
was warranted, we conducted a study of scheduling overhead
and schedulability loss based on analysis and simulation [21].
We found that the schedulability loss is comparable under
both approaches and that Pfair scheduling does not incur
prohibitively high scheduling overhead. We also noted several
potential benefits to using Pfair scheduling, including efficient
synchronization across processors, support for dynamic task
sets, temporal isolation, and improved failure/overload toler-
ance. These results are promising since Pfair scheduling was
proposed relatively recently and will likely improve signifi-
cantly as it receives more attention. Partitioning, on the other
hand, is well-studied and hence is not likely to improve.

III. SCHEDULING ALGORITHM

In this section, we present an efficient scheduling algorithm
for the staggered model. For compactness, the presented algo-
rithms use short-circuit condition evaluation, i.e., we assume
that the B term in A ∨ B is only evaluated when A is false.

6

A. Safety and Assignment Affinity

Unfortunately, staggered scheduling is slightly more com-
plicated than traditional Pfair scheduling. Under staggering,
quanta from different slots can overlap, as the A3 and B1
quanta illustrated in Figure 3(b). Hence, the scheduler must
ensure that tasks scheduled back-to-back (i.e., in consecutive
slots) do not execute within overlapping quanta.

The algorithm that we present must ensure that this case
is handled appropriately unless it can be shown that back-to-
back scheduling never occurs. To disprove this latter claim,
it is sufficient to consider the problem of avoiding back-to-
back scheduling. Consider having to schedule a task x times.
In order to avoid back-to-back scheduling, scheduling must
be done over a range of at least 2x − 1 slots. Since a task
with weight a

b must be scheduled a times over a range of b
slots to satisfy Pfairness, it follows that any task with weight
exceeding x

2x−1 for some integer x > 0 must be scheduled
back-to-back. Furthermore, since lim

x→∞
x

2x−1 = 1
2 , it follows

that any task with weight exceeding 1
2 must eventually be

scheduled back-to-back. In addition, such heavyweight tasks
are likely to occur in practice due, in part, to the use of
techniques like supertasking. This observation suggests that
back-to-back scheduling is likely to occur frequently in real
systems, and hence that safety in the event of back-to-back
scheduling is an essential requirement for correctness.

Affinity-based processor assignment. Safety can be en-
sured by employing an affinity-based policy when assigning
scheduled tasks to processors. A variety of policies can be
implemented by maintaining the small amount of scheduling
history summarized below.

• Previous Processor (PP): the most recent processor on
which a task executed;

• Previous Slot (PS): the most recent slot in which a task
executed;

• Previous Task (PT): the most recent task to execute on
a processor.

Each of the above fields can be maintained by the scheduling
algorithm at the cost of only a trivial increase in scheduling
overhead. All of the following affinity-based policies, except
for the last, can be implemented using one or more of the
above fields.

• Back To Back (BTB): When scheduled in consecutive
slots, a task must be granted the same processor. Requires
the PP and PS fields.

• Last Scheduled (LS): Each processor must be assigned
to the task to which it was last assigned, if that task is
selected. Requires the PT field.

• Most Recent Processor (MRP): Each selected task is
assigned to the processor to which it was most recently
assigned; if multiple tasks should be assigned the same
processor, the tie is broken in favor of the task that most
recently executed. Requires the PP and PS fields.

• Most Recent Available Processor (MRAP): An exten-
sion of the MRP policy that considers processors beyond
the most recently assigned processor. Specifically, when

a task loses a tie for its desired processor, the task tries
to execute on the processor on which it executed prior
to the unavailable processor. This continues until the
task is assigned a processor or its scheduling history is
exhausted. This policy can be efficiently implemented by
maintaining a list of processors in affinity order for each
task, i.e., the assigned processor is moved to the head
of the list each time the task is scheduled. By using a
doubly linked list, this list update can be implemented
with constant time complexity.

Unfortunately, assignment policies are more difficult to im-
plement under staggering, as we explain below. However,
at least the BTB and LS policies can be implemented with
minimal effort. Since the BTB policy is sufficient to prevent
the allocation of overlapping quanta, we focus on it for the
remainder of the paper.

In addition to ensuring safety under staggered scheduling,
these policies are desirable because they can improve cache
performance. When used with supertasks, the benefits of such
a policy can be substantial, i.e., the cache performance of
a group of component tasks in a heavily weighted, fully
preemptive supertask resembles that of using fully preemptive
scheduling on a dedicated uniprocessor. Indeed, when using
any of the policies described above, a unit-weight supertask
effectively becomes a dedicated uniprocessor.

B. Concept

Before presenting the algorithm, we consider the problem of
distributed scheduling with assignment affinity abstractly. By
doing so, we intend to motivate the design of the algorithm
presented later. Consider scheduling slot k on the first pro-
cessor after executing task T on that processor in slot k − 1.
To be computationally efficient, the scheduler must require
only O(log N) time on each processor. (PD2 schedules all M
processors in O(M log N) time [19].) In addition, the decision
should respect the BTB policy described above to ensure safety
of the executing task, i.e., if T is selected to execute in slot
k, then it needs to execute on the first processor. However,
simply identifying all tasks that are selected for slot k is an
Ω(M) operation.

The implication is that the tasks scheduled in slot k must
be identified before invoking the scheduler at the start of slot
k. This can be achieved by dividing scheduling into two steps:
(i) up to M tasks (if that many are eligible) are selected to
execute in slot k and stored in k’s scheduling set, and (ii)
each processor (later) selects a task to execute in its local
slot k from those in k’s scheduling set. To ensure that k’s
scheduling set is known before slot k begins on any processor,
Step (i) can be performed one slot early (i.e., by the scheduler
invocations associated with slot k−1). Specifically, processor
p’s scheduler invocation in slot k − 1 first selects a task to
execute on processor p in slot k−1 from that slot’s scheduling
set, and then selects a task to add to the scheduling set of slot
k (if an eligible task exists).

Necessity. Safety can actually be ensured by using a weaker
policy than BTB. Specifically, the policy described below is
both necessary and sufficient to ensure safety.

7

typedef task:
record

elig: integer;
prio: ADT

shared var
k: integer initially −1;
SchedCount: integer initially M;
Running: array 1 . . . M of task ∪ {⊥}

initially ⊥;
SchedNow: min-heap of task initially ∅;
ReschedNow: min-heap of task initially ∅;
SchedNext: min-heap of task initially ∅;
ReschedNext: min-heap of task initially ∅;
Eligible: max-heap of task initially ∅;
Incoming: array 0 . . . ∞ of max-heap

private var
p: 1 . . . M ; T : task ∪ {⊥}

procedure Initialize()
1: Eligible := Eligible ∪ Incoming[0];
2: while |Eligible| > 0 ∧ |SchedNext | < M do
3: SchedNext :=

SchedNext ∪ {ExtractMax(Eligible)}
do

procedure SelectTask(T)
4: if T ∈ S k then
5: ReschedNext := ReschedNext ∪ {T}

else
6: SchedNext := SchedNext ∪ {T}

fi

procedure Schedule(p)
7: if SchedCount = M then
8: k := k + 1;
9: Eligible := Eligible ∪ Incoming[k + 1];
10: Swap(SchedNow, SchedNext);
11: Swap(ReschedNow, ReschedNext)

fi;
12: if Running[p] ∈ ReschedNow then
13: T := Running[p];
14: ReschedNow := ReschedNow / {T}
15: else if |SchedNow | > 0 then
16: T := ExtractMin(SchedNow)

else
17: T := ⊥

fi;
18: Running[p] := T ;
19: if T �= ⊥ then
20: UpdatePriority(T);
21: if T .elig ≤ k + 1 then
22: Eligible := Eligible ∪ {T}

else
23: Incoming[T .elig] :=

Incoming[T .elig] ∪ {T}
fi

fi;
24: if |Eligible| > 0 then
25: SelectTask(ExtractMax(Eligible))

fi;
26: SchedCount := (SchedCount mod M) + 1

Fig. 5. Basic staggered scheduling algorithm.

• Directed Migration (DM): When scheduled back-to-
back, a task that executed on processor p in the earlier
slot must execute on a processor with index at least p in
the later slot. Requires the PP and PS fields.

Under staggered scheduling, this policy provides an advantage
over the BTB policy in that look-ahead scheduling, like that
described above, is not necessary. However, because we are
also interested in improving cache performance, we consider
the BTB policy here.

Related work. As mentioned earlier, affinity-based policies
are nothing new. Indeed, even assignment affinity has been
considered in prior work. For instance, the (independently
developed) preemption-aware dispatcher proposed by Ander-
sson and Jonsson also focuses on providing a BTB guar-
antee [3]. Not surprisingly, the structure of their dispatcher
strongly resembles the corresponding parts of our algorithm.
However, in noting these similarities, it is important to keep
in mind the goal of our algorithm: to distribute the scheduler
overhead across processors. Though an interesting facet of the
algorithm, assignment affinity is considered here only because
it is the simplest method of ensuring safety under staggering.

C. Basic Algorithm

We begin by presenting procedures (shown in Figure 5)
needed to support Pfair or ERfair scheduling of static task

sets. Later, we present additional procedures to support the
remaining extensions to Pfair scheduling.

Data structures. Scheduling sets are implemented by the
SchedNow, ReschedNow, SchedNext, and ReschedNext heaps.
When scheduling slot k , tasks scheduled in slot k (respectively,
k + 1) are stored in the Now (respectively, Next) heaps. The
Sched (respectively, Resched) heaps store tasks that are not
(respectively, are) scheduled back-to-back. The Eligible heap
stores all remaining tasks that are eligible in slot k + 1. All
heaps are ordered according to task priorities. (The � and
� relations, which define this ordering, are defined below.)
In addition, the Incoming[k] heap stores tasks that will not
be eligible to execute until slot k . (We present these heaps
as an unbounded array solely to simplify the presentation.)
We assume that each task is initially stored in the appropriate
Incoming heap.

Each task is represented by a record that contains (at
least) the earliest slot in which the task may next execute
(elig) and the task’s current priority (prio). We assume that
task priorities are implemented as an abstract data type that
supports the ≺, �, 	, and � comparisons, where ρ1 ≺ ρ2

(respectively, ρ1 � ρ2) implies that priority ρ1 is strictly higher
than (respectively, at least as high as) priority ρ2. We further
assume that UpdatePriority encapsulates the algorithm
for updating prio and elig.

The remaining variables include two counters (k and Sched-

8

IdlingInitializing Scheduler Executing

P2 P2

P2 P2

P1 P1

w = 3/10
T2

P1

P1

��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������TASK VIEW

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������PROCESSOR VIEW

�
�
�
�

��
��
��
��

��
��
��
��

T3

T4
w = 4/5

w = 1/2

w = 3/10
T1

P1

P1

A B

EVENTS

C D E F G HI K LJ M N O

P1 P1

P2

0 1 2 3 4 5 6TIME

P2

P1 T3 T3 T3T2 T2T1

T1T4 T4 T4 T4 T4

T3

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

DESTINATIONEVENT

A

B

C

D

Schedule(P1): Slot 0 decisions committed.

Initialize(): T3 selected to execute in slot 0.

Initialize(): T3 is eligible to execute in slot 0.Eligible

SchedNext

SchedNow

Incoming[2]

T3’s HEAP TRANSITIONS

E

F

G

H Eligible

SchedNow

SchedNext

Eligible

Schedule(P1): Slot 3 decisions committed.

Schedule(P1): T3 is eligible to execute in slot 2.

Schedule(P1): T3 is selected to execute in slot 3.

I Schedule(P1): T3 is selected to execute in slot 4ReschedNext

J

K

ReschedNow Schedule(P1): Slot 4 decisions committed.

Incoming[6]

L

M

N

Eligible

O

SchedNext

SchedNow

Incoming[8]

Schedule(P1): T3 is eligible to execute in slot 6.

Schedule(P1): T3 is selected to execute in slot 6.

Schedule(P1): Slot 6 decisions committed.

CAUSE OF TRANSITION

Schedule(P1): T3 begins executing on P1 and its

Schedule(P1): T3 begins executing on P1 and its

Schedule(P1): T3 begins executing on P1 and its

Schedule(P1): T3 begins executing on P1 and its

priority is updated (next eligible at time 4).

priority is updated (next eligible at time 2).

and will execute back-to-back.

priority is updated (next eligible at time 6).

priority is updated (next eligible at time 8).

Fig. 6. Four tasks (T1–T4) are executed on two processors (P1–P2) under the staggered model. Left: The schedule is shown from two different views.
Right: Scheduling events affecting task T3 are summarized in the table; event labels correspond to those shown on the timeline in the example schedule.

Count) and the Running array. k is the index of the current
slot. SchedCount indicates the number of scheduler invocations
that have been performed for slot k. Finally, the Running array
indicates which task is currently executing on each processor.

To simplify the presentation, some branches test for set
inclusion (∈) and the branch at line 4 uses S k to denote the
set of tasks selected to execute in slot k , i.e., the scheduling
set of k . All of these tests can be implemented in O(1) time
complexity and O(N) space complexity by associating a few
additional variables with each task.

Detailed description. Initialize is invoked before all
other procedures to create slot 0’s scheduling set. First, tasks
present at time 0 are merged into the Eligible heap at line 1.
Lines 2–3 then make the scheduling decisions.
SelectTask schedules a task T in slot k + 1. Line 4

determines whether T is scheduled back-to-back. T is then
stored in the proper heap in lines 5–6.
Schedule(p) is invoked to schedule processor p. Lines 8–

11 initialize a round of scheduler invocations by incrementing
k, by merging newly eligible tasks into Eligible, and by initial-
izing SchedNow, ReschedNow, SchedNext, and ReschedNext.
Lines 12–18 select the task to execute on processor p and
record the decision. The task is then updated and stored
according to the priority of its successor subtask in lines 20–
23. Lines 24–25 then select a task to execute in the slot
k + 1. Finally, progress is recorded by updating SchedCount
at line 26.

Example. Figure 6 shows a sample schedule produced by
the staggered algorithm. To illustrate the operation of the
algorithm, a trace of task T3’s heap-membership changes is
also shown.

D. Extensions

We now present the procedures needed to support tasks
leaving and joining the system (shown in Figure 7). Systems
consisting of dynamic task sets and those supporting ISfair
and GISfair tasks require such support. In addition, systems
that permit tasks to change weights at runtime will also require
this support.4

Concerns. Two problems arise from tasks leaving and joining.
First, these actions require modification of the scheduler’s
data structures. Hence, access to these structures must be
synchronized.5 Second, adding and removing tasks can lead
to incorrect scheduling decisions. To avoid this potential
problem, the presented procedures are designed to ensure that
one of the two conditions given below holds after the execution
of every procedure.

• (I1) |SchedNext | + |ReschedNext | = SchedCount and,
for all T ∈ (SchedNext ∪ ReschedNext) and U ∈ Eligible,
T.prio � U.prio.

• (I2) |SchedNext | + |ReschedNext | < SchedCount and
|Eligible| = 0.

Since SchedCount records the number of completed sched-
uler invocations in the current round of decisions, it should be
the case that SchedCount tasks have been scheduled in the
upcoming slot after each invocation. Informally, (I1) states
that SchedCount tasks have been tentatively scheduled in the

4A weight change can be achieved by having the task leave with the old
weight and re-join with the new weight.

5The need for explicit synchronization can potentially be avoided by
postponing handling of all leave and join requests until the next slot boundary.
However, this approach has its own disadvantages in that postponed processing
may lead to unnecessary idling and will also increase the overhead of
boundary processing.

9

private var
H: pointer to min-heap of task

procedure Deactivate(T)
27: if T ∈ SchedNext ∪ ReschedNext then
28: if T ∈ ReschedNext then
29: ReschedNext := ReschedNext / {T}

else
30: SchedNext := SchedNext / {T}

fi;
31: if |Eligible| > 0 then
32: SelectTask(ExtractMax(Eligible))

fi
33: else if T ∈ SchedNow ∪ ReschedNow then
34: if T ∈ ReschedNow then
35: ReschedNow := ReschedNow / {T}

else
36: SchedNow := SchedNow / {T}

fi;
37: UpdatePriority(T)
38: else if T ∈ Eligible then
39: Eligible := Eligible / {T}

else
40: Incoming[T .elig] :=

Incoming[T .elig] / {T}
fi

procedure Activate(T)
41: if T .elig ≤ k + 1 then
42: if |SchedNext | + |ReschedNext |

< SchedCount then
43: SelectTask(T)

else
44: if |SchedNext | = 0 ∨ (|ReschedNext | > 0

∧ Min(SchedNext).prio

Min(ReschedNext).prio) then

45: H := &ReschedNext
else

46: H := &SchedNext
fi;

47: if T .prio ≺ Min(*H).prio then
48: SelectTask(T);
49: T := ExtractMin(*H)

fi;
50: Eligible := Eligible ∪ {T}

fi
else

51: Incoming[T .elig] := Incoming[T .elig] ∪ {T}
fi

Fig. 7. Extensions to support task departures (left) and task arrivals (right).

upcoming slot (first clause) and that each scheduled task has
higher priority than each unscheduled task (second clause).
In the event that too few eligible tasks exist, (I1) cannot be
satisfied. This possibility is addressed by (I2). Informally, (I2)
states that less than SchedCount tasks have been tentatively
scheduled (first clause), which suggests an idle processor in the
upcoming slot, and that no other tasks are eligible for that slot
(second clause). We explain how our algorithm guarantees that
either (I1) or (I2) always holds by exhaustively considering all
possible scenarios below.

Detailed description. Invoking Deactivate(T) in slot k
causes task T to be ignored when scheduling slots at and after
k + 1. If T has been selected to execute in slot k but has not
been granted a processor, then the decision to execute T is
nullified; however, T is still charged as if it did execute. (This
is analogous to having a task suspend immediately after it is
granted the processor: the entire quantum is wasted.) When
removing T , three cases must be considered to ensure that
either (I1) or (I2) holds after execution: (i) T is scheduled in
slot k + 1 (it is in either SchedNext or ReschedNext), (ii) T
is scheduled in slot k but has not been granted a processor
(it is in either SchedNow or ReschedNow), and (iii) T is not
scheduled in slot k + 1 (but may be currently executing in
slot k). Lines 28–32 handle Case (i) by locating and removing
T from either SchedNext or ReschedNext at lines 28–30 and
then scheduling a replacement task at lines 31–32. Lines 33–
37 handle Case (ii) by locating and removing T from either
SchedNow or ReschedNow at lines 33–36 and then charging
T for the unused quantum at line 37. Lines 38–40 handle
Case (iii).

Invoking Activate(T) within slot k causes task T to be
considered when scheduling slots at and after k + 1. Again,

three cases must be considered to ensure that either (I1) or
(I2) holds after execution: (i) T is not eligible to execute in
slot k + 1, (ii) T is eligible to execute in slot k + 1 and a
processor will idle in that slot, and (iii) T is eligible to execute
in slot k + 1 but no processor will idle in that slot. Lines 51
and 42–43 handle Cases (i) and (ii), respectively. Lines 44–50
handle Case (iii). Specifically, lines 44–46 determine which of
SchedNext and ReschedNext contains the lowest-priority task
that is scheduled in slot k + 1. If this task’s priority is lower
than T ’s priority, then it is removed and replaced by T at
lines 47–49. Whichever task is not scheduled in slot k + 1 is
then stored in Eligible at line 50.

Usage. Observe that Deactivate neither halts executing
tasks nor modifies Running. The presented procedures are
designed to be used as subroutines when implementing more
complex services. Consequently, each procedure takes only
those actions that are essential to achieving its goals. Indeed,
it is not possible to present universal procedures for most
services because their designs are based, at least in part, on
policy decisions. For instance, a policy must be adopted to
define how the system reacts to weight changes that cannot
be immediately applied. Such policies are outside the scope
of this discussion.

E. Time Complexity

Since task priorities can be updated and compared in
constant time, the only significant complexity results from
heap operations. Each procedure performs a constant number
of heap operations and a constant number of calls to other
procedures. Therefore, the time complexity of each procedure
is O(log N) when using binomial heaps and PD2 task pri-
orities, and the aggregate time complexity of M scheduler

10

invocations is O(M log N). Hence, the presented algorithm is
computationally efficient.

Recall that under the aligned model, all scheduling decisions
are made on a single processor, resulting in O(M log N)
time complexity on that processor. The per-processor overhead
under the staggered model is proportional to the time required
by one invocation of Schedule, which has only O(log N)
time complexity. This suggests that the staggered model can
provide up to a factor-of-M improvement with respect to
scheduling overhead. (The actual improvement will depend
on the system architecture, as we later show.)

IV. IMPACT ON ANALYSIS

The most problematic aspect of shifting from an aligned
to a staggered model is the impact on prior results. Though
supporting the new model is reasonably straightforward (as
we demonstrated in the last section), we must also consider
the impact of staggering on analytical results and mechanisms
proposed for Pfair scheduling. Unfortunately, it would be
impractical to consider each prior result in detail here. For
brevity, we discuss this issue more broadly in this section
by focusing on the side effects produced by staggering. We
then illustrate the adaptation of prior results by explaining the
impact of these side effects on the extensions described earlier
in Section II.

Interestingly, the shift from aligned to staggered quanta is a
superficial change in that it does not actually impact the basic
properties of Pfair algorithms. Under these algorithms, items
are simply assigned to locations so that a given set of weight
constraints are satisfied. (The problem is somewhat akin to
a bin-packing problem using an infinite sequence of bins.)
Weights serve only to restrict where the algorithm is allowed to
assign each item. It is in the post-processing that we interpret
items to be tasks and locations to correspond to fixed time
intervals. The use of staggering impacts only the latter action.
Consequently, staggering alters neither the operation of the
algorithms nor their basic properties, such as the necessity of
tie-breaking rules and the validity of known counterexamples.
Hence, we need only be concerned in this section with the
side effects produced by altering the interpretation of results
produced by Pfair algorithms.

Side effects. By the specifications given earlier, a staggered
slot extends up to ∆def= M−1

M beyond the placement of the
corresponding slot under the aligned model. Hence, slot k on a
processor may overlap slots k+1 and k−1 on other processors,
leading to the following side effects.

• (E1) An event occurring at time t under the aligned model
may be delayed until time t + ∆ under staggering.

• (E2) Each slot overlaps M − 1 other slots when aligned,
but 2(M − 1) when staggered.

A. Independent Tasks

We begin by considering the scheduling of independent
tasks, which do not synchronize or share resources. Indepen-
dent tasks are oblivious to the concurrent execution of other

�
�
�

�
�
�

t t+2 t+3
Time (ticks)

T

Suspension requested Suspended

Slots on T’s Current Processor at Time t (ticks)

t+1

(a) Aligned Model

Wasted Quantum
�
�
�

�
�
�

Slots on T’s Current Processor at Time t+1 (ticks)

t+1t t+2 t+3
Time (ticks)

T

Suspension requested Suspended

(b) Staggered Model

Fig. 8. Illustration of how event timing differs between (a) the aligned model
and (b) the staggered model. An event in slot t is no longer guaranteed to
occur before time t + 1 under the staggered model. Due to this, a task may
have already been scheduled in the next slot before a suspension request is
issued, as shown in (b).

tasks and, hence, are unaffected by (E2). (E1), on the other
hand, has two implications, which are discussed below.

First, deadlines guaranteed under the aligned model may
be missed by up to ∆ under staggering. We expect such
misses, which are bounded by the slot length, to be acceptable
in many cases. For instance, such a guarantee is inherent
under proportional-share uniprocessor scheduling [22]. Strict
deadlines can be enforced simply by treating task deadlines as
if they are ∆ units earlier than they actually are. The resulting
loss depends on the task’s parameters: a task T requiring a
quanta every b slots will need T.w ≈ a

b under the aligned
model, but T.w ≈ a

b−1 under staggering. (This overhead
can be more precisely characterized for specific tasks by
adapting the analysis presented in [8].) This change in weight
characterizes how staggering impacts the Pfair schedulability
condition, which was presented earlier in Section II. As is
common under Pfair scheduling, the penalty is not accessed
to the right-hand side (M) of the condition, but rather to the
left-hand side in the form of inflated task weights. In this case,
the magnitude of the penalty is a function of the task weights
prior to staggering. (We discuss how costly we expect this
penalty to be at the end of the section.)

Second, events (such as suspension requests) occurring in
slot k may occur after time k+1, at which point the scheduling
decisions for slot k+1 are committed. As a result, a suspending
task may occasionally cause a quantum to be wasted, as
illustrated in Figure 8. (Recall that a quantum is wasted when
a scheduled task leaves before being assigned a processor.)

Server tasks that suspend when no requests are pending
will likely be most impacted by this property since worst-case
analysis must pessimistically assume that a quantum is wasted
each time the server suspends. Figure 9 depicts the worst-
case scenario for a single request and response pair. Under
the aligned model (see Figure 9(a)), task T sends a request to

11

server S in slot 0. S then becomes active at time 1, services the
request in slot 1, sends the response before time 2, and then
suspends at time 2. Having received the response, T becomes
ready at time 2 and is immediately scheduled in slot 2.

On the other hand, under the staggered model (see Fig-
ure 9(b)), T is scheduled on processor 2 in slot 0. As a result,
its request is sent after time 1, at which point the scheduling
decisions for slot 1 are committed. Because of this, T is
scheduled in slot 1 even though it cannot make progress, and
S remains suspended until time 2. T ’s suspension is finally
processed at time 2. Upon becoming active, S is scheduled in
slot 2 and executes on processor 3. S’s response is then sent
after time 3. As a result, T remains suspended until time 4,
while S is re-scheduled in slot 3 and idles. T finally resumes
at time 4.

In the staggering scenario, both the requesting task and
the server waste a quantum (in slots 1 and 3, respectively).
In addition, notice that the delay between the request and
response is longer under staggering. Though unlikely, this
worst-case scenario must be assumed to occur (under worst-
case analysis) each time a request is issued unless other
restrictions are placed on the runtime behavior of tasks.

B. Supertasking

Under the reweighting approach proposed by us in [8],
[12], supertask weights are selected by comparing the least
amount of processor time guaranteed to a supertask (called
supply) to the maximum requirement of all component tasks
(called demand). Only the first of these two quantities requires
adjustment due to staggering. In addition, this quantity is
unaffected by (E2).

The primary impact of (E1) is that the amount of processor
time guaranteed to the supertask is slightly lower under
staggering. In this case, the delay suggested by (E1) can be
accounted for by reducing the estimate of each supertask’s
supply by ∆. Figure 10 shows how (E1) can impact the supply
in this way. However, notice that this impact only occurs when
the supertask is scheduled in the last slot of the interval, as
depicted in Figure 10. Hence, staggering only affects estimates
of supply that are based on such intervals. By taking this fact
into account when deriving the supply function, tighter bounds
can be obtained.

C. Lock-free Synchronization

Lock-free algorithms avoid locking by simply retrying op-
erations until successful. Under lock-free analysis (e.g., [10]),
such operations are typically assumed to fail only if a concur-
rent operation succeeds. As a result, the worst-case number
of retries is bounded by the worst-case number of concurrent
operations.

Under the aligned model, it is sufficient to assume a worst-
case mix of M − 1 interfering tasks when determining the
worst-case number of retries. By (E2), similar reasoning can
still be applied under staggering; however, 2(M − 1) tasks
must be considered, which potentially doubles the overhead.
It is possible to derive tighter bounds by considering that only
a fraction of each of those 2(M−1) overlapping slots actually

10

t
minimum supply is 4 when L=14

20150 5

S

(a) Aligned Model

t

On processor 4

minimum supply is 3.25 when L=14

0 5 10 15 20

On processor 1

S

(b) Staggered Model

Fig. 10. The interval that defines the supply of a supertask (i.e., minimum
guaranteed allocation) when M = 4 (and hence ∆ = 3

4
= 0.75) and L = 14

is shown (a) under the aligned model and (b) under the staggered model. Due
to staggering, the supply under the staggered model is ∆ units lower than that
under the aligned model.

overlaps the slot in question. However, the resulting analysis
would be much more complex (and time-consuming) than that
presented in [10].

D. Zone-based Lock Synchronization

Zone-based protocols [8], [11] delay lock requests to
prevent the preemption of short critical sections. This
is accomplished by introducing an interval of automatic
blocking at the end of each quantum, as illustrated below;
when a critical section is at risk of being preempted before
completion (due to starting late within a quantum), the
associated lock request is ignored until a new quantum starts.

B

Q

Blocked

Normal

��
��
��
��

QUANTUM
���
���
���
���

(In the diagram, Q denotes the quantum length, while B
denotes the length of the automatic-blocking zone.)

Because the use of zones ensures that each critical section
executes entirely in a single quantum, the analysis of these
protocols is very similar to that of lock-free techniques [8],
[10]: bounds on a task T ’s worst-case blocking overhead are
computed by considering the interference of M−1 tasks under
the aligned model and 2(M − 1) tasks under the staggered
model. Unlike the lock-free case discussed above, there is little
benefit provided by the property that only a fraction of each
overlapping slot actually overlaps. This follows from the fact
that each task that executes in parallel with the requesting task
can interfere with (i.e., block) the lock request only once under
a zone-based approach. (Under lock-free analysis, a task can
interfere with the same operation multiple times within the
same slot.)

12

����

4 51 2
TIME

TASK STATES

0

KEY

3

PROCESSOR STATES

6

��
��
��
��

P3

P4

P1

P2
T

S

T

T

S

running

idling

re
qu

es
t

suspended running ready

suspended running idling suspended

response

Executing Idling

����������

����
��������

�� �� �� �� ����������������������������

����
��������������������������������

�� ��

�
�
�

�
�
�

���
���
���
���

(a) Aligned Model

��
��
��
��
�����
�����
�����
�������

��
��
��

PROCESSOR STATES

6

TASK STATES

43 510 2

�����
�����
�����
�����

TIME

T

suspended
S

ready

ready

suspended

running

idlingrunning running

suspended

ready

re
qu

es
t

response

����

idling

������������

������������

������ ������������������������

�������������������� �� �� ��

�� �� �� ��

T

�
�
�

�
�
�

P4

P3

P2

P1

����������������������

T

SS

T

����
��

(b) Staggered Model

Fig. 9. Illustration of how staggering adversely impacts client/server designs. The servicing of one request is shown (a) under the aligned model and (b)
under the staggered model.

E. Server-based Lock Synchronization

In [8], [11], a simple analysis is presented for a server-based
locking protocol, called the Static-weight Server Protocol.
Because this analysis is based on the assumption that every
competing task has its critical-section request executed before
that of the requesting task T , the worst-case time required to
process T ’s request is unaffected by (E1) and (E2). However,
since both the requesting task and lock server may suspend
under this protocol, they can suffer from the suspension-
related problems mentioned earlier in Section IV-A. For the
server, this problem translates into slightly inflated worst-case
response times.

F. Evaluating the Trade-off

Staggering represents a trade-off between off-line schedula-
bility and on-line performance. Based on the above discussion,
staggering introduces additional overhead in four areas: task
weight assignment, supertask weight assignment, suspensions,
and synchronization. We consider each below.

First, consider task weight assignment. Based on the obser-
vations made in Section IV-A, the increase in weight that is
required to ensure strict deadlines for a task T is approximately

a
b−1 − a

b . This estimate simplifies to a
b(b−1) . It follows that

mapping overhead is most impacted when b is small, i.e.,
comparable to the slot size. However, quantum-based schedul-

13

ing cannot efficiently support tasks with such tight constraints
because many forms of overhead are prohibitively high in
such cases, regardless of the scheduling model. (See [8] for a
detailed discussion of this issue.) For such cases, alternative
scheduling approaches must be considered. Hence, such cases
should occur rarely, if at all, in systems using Pfair scheduling.

Second, consider supertask weight assignment using our
reweighting approach [9], [12]. To estimate the impact of stag-
gering on this aspect of Pfair-scheduled systems, we conducted
a simple experiment. To facilitate the discussion, we omit the
details of the experiment here. (The setup and results of the
experiment are discussed in detail in [8].) The results suggest
that staggering increases supertasking overhead by a factor of
approximately 2.5. However, other experimental results (which
can also be found in [8]) suggest that supertasking overhead
is typically very low. Consequently, we expect supertasking
overhead to remain reasonably low, despite the influence of
staggering.

Third, consider the overhead introduced by suspensions.
As explained earlier in Section I, a task that yields before
the next scheduling point under quantum-based scheduling is
still charged for the unused processor time. Hence, frequent
suspensions lead to both poor task performance and low
processor utilization. To achieve good performance, tasks
exhibiting such behaviors should not be included in the
global schedule, if it can be avoided. Indeed, this observation
was a driving motivation behind our consideration of fully
preemptive supertasking [12], which allows such tasks to be
scheduled as a group rather than individually. The benefit of
this approach is that the global scheduler must handle only the
supertask, which never suspends. In addition, component tasks
can be scheduled using a uniprocessor algorithm that is more
flexible with respect to suspensions. Given the availability of
mechanisms that avoid this problem, suspensions are expected
to occur infrequently in the global schedule and, hence, should
contribute little to the actual cost of staggering.

Finally, consider synchronization overhead. To optimize
performance, synchronization at the global level should be
limited to lock-free and zone-based locking synchronization,
if possible. Prior experimental work [8] suggests that these
approaches tend to produce very low overhead in most cases.
Since staggering at most doubles this overhead, the cost of
synchronization should remain reasonable under staggering.

Based on the above reasoning, staggering is expected to
produce a reasonable increase in overhead in most systems.
Indeed, it seems that staggering introduces significant over-
head primarily in situations in which Pfair scheduling is likely
to perform poorly anyway. More importantly, experimental
results presented in the next section suggest that substantial
performance gains can be achieved through staggering. These
gains translate into decreased execution times, which are
beneficial in both the average and worst cases. We expect
the losses considered in this section to be exceeded by the
suggested gains.

V. EXPERIMENTAL RESULTS

In this section, we present the results of an experimental
study of staggering and the proposed scheduling algorithm.

A. Simulations

In this subsection, we present a simulation-based compar-
ison of the Pfair models. The advantage of simulation over
direct measurement is that the processor count can be varied
and the cache characteristics can be set arbitrarily. The latter
trait was used to test performance on a simple blocking cache.

Experimental setup. These experiments used the Limes [14]
simulator. Limes simulates execution close to the hardware
level. As such, it provides no process management. However,
Limes permits hardware-level aspects of the system to be more
easily controlled than more complex simulators. Due to the
limitations of Limes, preemption effects were only simulated.
Specifically, caches were initially filled with dirty lines. Each
task then performed writes to a local array until a “preemption”
was detected. Tasks reacted to preemptions by exchanging
their arrays for other uncached local ones. Hence, the cold-
cache effect of preemptions was simulated using working-set
changes.

We considered processor counts in the range 1, . . . , 16 and
reported behavior across three slots. The system consisted of
200 MHz i86 processors using a 10 millisecond quantum.
Caching consisted of blocking, direct-mapped caches with
256 KB capacity, 32-byte lines, and a MESI6 coherency
protocol [18]. Since our goal was to measure only preemption-
related contention, both actual and false data sharing was
avoided.7

Bus contention was measured by counting pending bus
requests at each cycle. Since only one request could be
serviced in each cycle, the presence of i requests implied that
i − 1 tasks wasted that cycle waiting for bus access. Cycles
required to service a task’s bus requests were not counted as
wasted cycles.

Relevance. These simulations focused on simultaneously
scheduled tasks that process large data sets. Consideration
of this scenario is motivated by the fact that many real-time
multiprocessor systems consist of significant numbers of such
tasks. Signal-processing and virtual-reality systems are two
examples. Hence, we believe that these scenarios do represent
situations that can arise in practice.

Worst-case contention under the aligned model. The first
experiment estimated the worst-case bus contention under
the aligned model (when working sets are fully cacheable).
(This experiment does not characterize the worst case for
staggering.) The worst case occurs when each task writes to
each cache line in its working set at the start of each quantum.
Figure 11 shows the average number of cycles lost per task.

Notice that both curves converge as the processor count
increases; this indicates an overload of the bus. When tasks fail
to completely load their working sets within a single quantum,
the resulting traffic pattern is approximately uniform across
every quantum. As a result, staggering provides no benefit.

6MESI is an acronym based on the four possible states of a cache line:
modified, exclusive, shared, and invalid.

7False sharing occurs when two or more tasks access a common cache line,
but do not share any data.

14

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

0 2 4 6 8 10 12 14 16

C
yc

le
s

Lo
st

 d
ue

 to
 C

on
te

nt
io

n
(p

er
 C

P
U

)

CPU Count

Array Scan: CPU = 200 MHz, Quantum = 10 ms, Cache = (1x256KB), Line = 32B

Aligned
Staggered

Fig. 11. Cycles lost to bus contention under each of the aligned and
staggered models. Each working set completely fills the cache and lines are
systematically written.

Hence, increasing the volume of bus traffic must eventually
cause performance under both models to converge.

Random-access contention. Our second experiment mea-
sured performance under a random-access pattern when
working-set sizes vary. Each task randomly selected cells to
access from a fraction α of the full array. This behavior results
in a burst of bus traffic at the start of each slot, followed
by a gradual decline as the probability of referencing an
uncached line decreases. The value of α was chosen from
{ 0.2k | 1 ≤ k ≤ 5 }.

Results are shown in Figure 12. As shown, staggering pro-
duces significantly less loss in all cases. This experiment was
repeated several times, producing virtually identical results.
(These simulations were unfortunately too long to produce
confidence intervals.)

B. Prototype Measurements

In this subsection, we present a comparison of the staggered
and aligned models using a simple prototype of a Pfair system.

Experimental setup. The prototype microkernel executes
as a thread package within QNX Neutrino 6.2.8 The system
consisted of four 200 MHz Pentium Pro processors, each
of which had a 4-way, 512 KB L2 cache. These proces-
sors provide several latency-hiding features, including out-
of-order execution, branch prediction, non-blocking caches,
and support for multiple pending bus operations. Hence, this
experiment will demonstrate whether staggering can improve
upon simply applying common hardware-based techniques.
Staggering should provide a much greater benefit to systems
with fewer latency-hiding features.

Both experiments described in the previous section were
conducted on the prototype. Due to the hardware complexity,
performance was measured at the user level by calculating the
average number of cycles per write operation in each quantum.

8The prototype takes control of the system when running. The underlying
kernel activates only to process timer interrupts and to generate the signals
that drive the prototype kernel. Neutrino was selected specifically to support
this design.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

0 2 4 6 8 10 12 14 16

C
yc

le
s

Lo
st

 d
ue

 to
 C

on
te

nt
io

n
(p

er
 C

P
U

)

CPU Count

Random Access: Aligned, CPU = 200 MHz, Quantum = 10 ms, Cache = (1x256KB), Line = 32B

alpha=1.0
alpha=0.8
alpha=0.6
alpha=0.4
alpha=0.2

(a) Aligned Model

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

0 2 4 6 8 10 12 14 16

C
yc

le
s

Lo
st

 d
ue

 to
 C

on
te

nt
io

n
(p

er
 C

P
U

)

CPU Count

Random Access: Staggered, CPU = 200 MHz, Quantum = 10 ms, Cache = (1x256KB), Line = 32B

alpha=1.0
alpha=0.8
alpha=0.6
alpha=0.4
alpha=0.2

(b) Staggered Model

Fig. 12. Cycles lost to bus contention under each of the (a) aligned and (b)
staggered models. Random writes are performed and working-set sizes are
varied.

Results. Figure 13 shows the average number of cycles per
write under the linear-access and random-access reference
patterns. 99% confidence intervals were computed, but are
omitted due to scale. (Marked intervals show the observed
sample range.) As shown, staggering provides an increasing
improvement until the array size reaches approximately 150
KB, at which point overload occurs.

Figure 14 shows the ratios of corresponding sample means
from the previous graphs. As shown, up to 7 (respectively, 2.5)
times more writes were performed under the staggered model
with the linear-access (respectively, random-access) pattern.
Recall that this comparison is on a platform with latency-
hiding features: improvement should be more dramatic without
such features.

C. Scheduling Overhead

In the final series of experiments, the per-slot scheduling
overhead of our staggered algorithm was compared to that of
the master/slave PD2 algorithm from [1].

Experimental setup. Each experiment tested 1,000 ran-
domly generated sets of independent tasks for each pairing

15

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300

C
yc

le
s

pe
r

W
rit

e
O

pe
ra

tio
n

Array Size (KB)

Linear Access, Aligned Model

Observed Range
Sample Means

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300

C
yc

le
s

pe
r

W
rit

e
O

pe
ra

tio
n

Array Size (KB)

Linear Access, Staggered Model

Observed Range
Sample Means

Linear Access

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300

C
yc

le
s

pe
r

W
rit

e
O

pe
ra

tio
n

Array Size (KB)

Random Access, Aligned Model

Observed Range
Sample Means

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300

C
yc

le
s

pe
r

W
rit

e
O

pe
ra

tio
n

Array Size (KB)

Random Access, Staggered Model

Observed Range
Sample Means

Random Access

A
l
i
g
n
e
d

S
t
a
g
g
e
r
e
d

Fig. 13. Results of linear- (left) and random-access (right) experiments conducted in the prototype Pfair system.

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300

Im
pr

ov
em

en
t i

n
W

rit
e

T
hr

ou
gh

pu
t d

ue
 to

 S
ta

gg
er

in
g

Array Size (KB)

Linear Access

(a) Linear Access

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300

Im
pr

ov
em

en
t i

n
W

rit
e

T
hr

ou
gh

pu
t d

ue
 to

 S
ta

gg
er

in
g

Array Size (KB)

Random Access

(b) Random Access
Fig. 14. Ratio of write throughput measured under the aligned model to that measured under the staggered model using the prototype Pfair system.

of N ∈ { 10n | 1 ≤ n ≤ 50 } and M ∈ {2, 4, 8, 16}. From
the execution-time measurements, the ratio of the average per-
slot overhead of the master/slave algorithm to that of the
staggered algorithm was computed. Again, 99% confidence
intervals were computed, but are omitted due to scale.

Warm cache. In the first experiment, we considered perfor-
mance when scheduler invocations are performed iteratively
on a uniprocessor (a 700-MHz Dell PC running Red Hat

Linux 2.4). After a warm-up delay, all memory references
hit in cache. This experiment approximates the best-case
performance of each algorithm. Architectures with highly ef-
fective latency-hiding features should provide comparable per-
formance on average. Figure 15(a) shows the results from this
experiment. As shown, the staggered algorithm approaches,
and often matches, the factor-of-M improvement suggested
by its time complexity.

16

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400 450 500

R
at

io
 o

f A
ve

ra
ge

 S
ch

ed
ul

in
g

O
ve

rh
ea

d

Task Count (N)

Comparison of Average Scheduling Overhead with Unrealistic Caching

M=2
M=4
M=8

M=16

(a) Ideal Latency Hiding

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400 450 500

R
at

io
 o

f A
ve

ra
ge

 S
ch

ed
ul

in
g

O
ve

rh
ea

d

Task Count (N)

Comparison of Average Scheduling Overhead with Realistic Caching

M=2
M=4
M=8

M=16

(b) Realistic Caching
Fig. 15. Ratio of the average per-slot scheduling overhead of master/slave scheduling to that of staggered scheduling. Measurements reflect performance (a)
when all memory latency is hidden, and (b) when realistic caching is assumed.

Cold cache. Due to idealized cache behavior, the previ-
ous experiment provides no insight into how the algorithms
perform on simpler architectures or in worst-case situations.
To provide more realistic estimates, we performed a second
comparison on an SGI Reality Monster with 32 300-MHz
R10000 processors in which multiple copies of the scheduler
were distributed on the processors. Control was then trans-
fered between these copies at appropriate points so that the
scheduler would encounter a (somewhat) cold cache.9 Under
master/slave (respectively, staggered) scheduling, these trans-
fers occurred after each scheduler (respectively, Schedule)
invocation. Figure 15(b) shows the results from this experi-
ment. Caching effects close the performance gap substantially
compared to the previous experiment. Despite this, staggering
still provides a significant improvement. Indeed, since each in-
vocation of Schedule makes fewer memory references than
the master/slave algorithm, staggered scheduling should never
produce more overhead, regardless of the platform. However,
the magnitude of the improvement may vary significantly, as
these experiments suggest.

VI. CONCLUSION

Although SMPs are well-suited to Pfair scheduling in
many ways, experimental results presented herein suggest that
preemption-related bus contention can significantly degrade
performance. To address this problem, we proposed and
demonstrated the effectiveness of a staggered model under
which preemption-related bus traffic is more evenly distributed
over time. Furthermore, we developed and experimentally
evaluated an efficient scheduling algorithm to support this
model that also produces less scheduling overhead than current
Pfair algorithms. Finally, we explained how existing results
can be applied, with minor modification, to the proposed
model. In future work, we intend to extend our Pfair prototype
to enable an empirical comparison to the partitioning approach.

9There is no way to accurately predict the cache states that a scheduler
will encounter in a real system. We chose this approach because it seemed
reasonable and straightforward to implement.

As the discussion in Section IV illustrated, there are many
advantages to using aligned quanta. Most notably, a task
executes in parallel with at most M − 1 other tasks. Such a
guarantee is particularly helpful when bounding the worst-case
contention for shared resources. Because staggering sacrifices
these advantages, it must inevitably suffer some negative
side effects. However, as explained in Section IV, it appears
that these side effects most impact cases in which Pfair and
similar techniques are likely to perform poorly anyway. For the
remaining cases, the loss appears to be modest and strongly
offset by the potential performance gains demonstrated by the
experiments described in Section V. However, those gains are
a function of the contention for the bus, and hence of the
amount of data used by tasks. When tasks primarily use very
small data sets, the negative side effects of staggering will
likely outweight the benefits.

Acknowledgement: We are grateful to the anonymous
reviewers for their helpful suggestions regarding an earlier
draft of this paper.

REFERENCES

[1] J. Anderson and A. Srinivasan. Early-release fair scheduling.
In Proceedings of the 12th Euromicro Conference on Real-time
Systems, pages 35–43, June 2000.

[2] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling
of asynchronous periodic tasks. In Proceedings of the 13th
Euromicro Conference on Real-time Systems, pages 76–85, June
2001.

[3] B. Andersson and J. Jonsson. Fixed-priority preemtive multipro-
cessor scheduling: to partition or not to partition. In Proceedings
of the Seventh International Conference on Real-time Computing
Systems and Applications, pages 337–346, December 2000.

[4] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate
progress: a notion of fairness in resource allocation. Algorith-
mica, 15:600–625, 1996.

[5] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast scheduling of
periodic tasks on multiple resources. In Proceedings of the 9th
International Parallel Processing Symposium, pages 280–288,
April 1995.

17

[6] A. Chandra, M. Adler, and P. Shenoy. Deadline fair scheduling:
bridging the theory and practice of proportionate fair scheduling
in multiprocessor systems. In Proceedings of the 7th IEEE Real-
time Technology and Applications Symposium, May 2001.

[7] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman. 1979.

[8] P. Holman. On the implementation of Pfair-scheduled multipro-
cessor systems. Ph.D. Thesis, University of North Carolina at
Chapel Hill. 2004.

[9] P. Holman and J. Anderson. Guaranteeing Pfair supertasks by
reweighting. In Proceedings of the 22nd IEEE Real-time Systems
Symposium, pages 203–212, December 2001.

[10] P. Holman and J. Anderson. Object sharing in Pfair-scheduled
multiprocessor systems. In Proceedings of the 14th Euromicro
Conference on Real-time Systems, pp. 111-120, June 2002.

[11] P. Holman and J. Anderson. Locking in Pfair-scheduled multi-
processor systems. In Proceedings of the 23rd IEEE Real-time
Systems Symposium, pages 149–158, December 2002.

[12] P. Holman and J. Anderson. Using hierarchal scheduling to
improve resource utilization in multiprocessor real-time systems.
In Proceedings of the 15th Euromicro Conference on Real-time
Systems, pages 41–50, July 2003.

[13] P. Holman and J. Anderson. Implementing Pfairness on a
symmetric multiprocessor. In Proceedings of the 10th IEEE
Real-time Technology and Applications Symposium, pages 544–
553, May 2004.

[14] I. Ikodinovic, D. Magdic, A. Milenkovic, and V. Milutinovic.
Limes: a multiprocessor simulation environment for PC plat-
forms. In Proceedings of the 3rd International Conference
on Parallel Processing and Applied Mathematics, pp. 398–412,
September 1999.

[15] C. Liu and J. Layland. Scheduling algorithms for multiprogram-
ming in a hard real–time environment. Journal of the ACM,
30:46–61, January 1973.

[16] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and
migrating periodic tasks on multiple resources. In Proceedings
of the Twentieth IEEE Real-time Systems Symposium, pages
294–303, December 1999.

[17] A. Mok. Fundamental design problems for the hard real-
time environment. Ph.D. Thesis, Massachussetts Institute of
Technology. 1983.

[18] M. Papamarcos and J. Patel. A low overhead solution for
multiprocessors with private cache memories. In Proceedings
of the 11th International Symposium on Computer Architecture,
pages 348–354, June 1984.

[19] A. Srinivasan and J. Anderson. Optimal rate-based scheduling
on multiprocessors. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing, pp. 189-198, May 2002.

[20] A. Srinivasan and J. Anderson. Fair scheduling of dynamic task
systems on multiprocessors. Presented at the 11th International
Workshop on Parallel and Distributed Real-time Systems (on
CD-ROM), April 2003.

[21] A. Srinivasan, P. Holman, J. Anderson, and S. Baruah. The
case for fair multiprocessor scheduling. Presented at the 11th
International Workshop on Parallel and Distributed Real-time
Systems (on CD-ROM), April 2003.

[22] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and
G. Plaxton. A proportional share resource allocation algorithm
for real-time, time-shared systems. In Proceedings of the Seventh
IEEE Real-time Systems Symposium, pp. 288–299, December
1996.

