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Abstract

We consider the problem of task reweighting in fair-scheduled multiprocessor systems wherein each task’s processor share

is specified as a weight. When a task is reweighted, a new weight is computed for it, which is then used in future scheduling.

Task reweighting can be used as a means for consuming (or making available) spare processing capacity. The responsiveness of

a reweighting scheme can be assessed by comparing its allocations to those of an ideal scheduler that can reweight tasks instan-

taneously. A reweighting scheme is fine-grained if any additional per-task “error” (in comparison to an ideal allocation) caused

by a reweighting event is constant. In prior work on uniprocessor notions of fairness, a number of fine-grained reweighting

schemes were proposed. However, in the multiprocessor case, prior work has failed to produce such a scheme. In this paper, we

remedy this shortcoming by presenting a multiprocessor reweighting scheme that is fine-grained. We also present an experimen-

tal evaluation of this scheme that shows that it is often much more responsive than prior (non-fine-grained) schemes in enacting

weight-change requests.
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1 Introduction

Two trends are evident in recent work on real-time systems. First, multiprocessor designs are becoming common. This is due

both to the advent of reasonably-priced multiprocessor platforms and to the prevalence of computationally-intensive applications

with real-time requirements that have pushed beyond the capabilities of single-processor systems. Second, many applications

now exist that require fine-grained adaptivity, i.e., the ability to react to external events within short time scales by adjusting

task parameters, particularly processor shares. Examples of such applications include human-tracking systems, computer-vision

systems, and signal-processing applications such as synthetic aperture imaging.

To better motivate the need for fine-grained adaptivity, we consider in this paper one particular example application in some

detail—namely, the Whisper tracking system designed at the University of North Carolina to perform full-body tracking in virtual

environments [14]. Like many tracking systems, Whisper uses predictive techniques to track objects. The computational cost

of making the “next” prediction in tracking an object depends on the accuracy of the previous one, as an inaccurate prediction

requires a larger space to be searched. Thus, the processor shares of the tasks that are deployed to implement these tracking

functions vary with time. In fact, the variance can be as much as two orders of magnitude. Moreover, share changes must be

enacted within time scales as short as 10 ms.

In this paper, we consider the specific issue of how to support adaptive behavior such as this on (tightly-coupled) identical

multiprocessors when using fair global scheduling algorithms, specifically Pfair algorithms [3], as introduced later. In fair

scheduling schemes, correctness is defined by comparing to an ideal scheduler that can guarantee each task precisely its required

share over any time interval. Such an ideal scheduler can instantaneously enact share changes, but is impractical to implement,

as it requires the ability to preempt and swap tasks at arbitrarily small time scales. In practical schemes, share allocations track

the ideal scheduler with only bounded “error.” We consider an allocation policy to be fine-grained if any additional per-task

“error” (in comparison to an ideal allocation) caused by a task share-change request is constant. We use the term drift to refer to

this source of error, and refer to the process of changing a task’s share as reweighting.

Srinivasan and Anderson [12] have given sufficient conditions (described in Sec. 2) under which tasks may dynamically join

and leave a running Pfair-scheduled system without causing any missed deadlines. These rules can be applied to reweight tasks:

such a task simply leaves with its old weight and rejoins with its new weight. However, as discussed later, these rules require that

tasks sometimes be delayed when leaving the system. Because of these “leaving delays,” any reweighting scheme constructed

from these rules is coarse-grained, i.e., susceptible to non-constant drift.

After the presentation of the results herein in preliminary form [6], we subsequently considered the use of partitioned [4]

and global earliest-deadline-first (EDF) [8] scheduling algorithms to schedule highly-adaptive symmetric multiprocessor work-

loads. While partitioning and global EDF provide excellent average-case performance and can reduce migration and preemption

costs associated with Pfair scheduling, both algorithms have substantial drawbacks. Specifically, under partitioning, fine-grained

reweighting is (provably) impossible; under global EDF, fine-grained reweighting is possible only if deadline misses are per-

missible.

In this paper, we show that fine-grained reweighting (without deadline misses) is possible under Pfair scheduling by pre-
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senting reweighting rules that ensure constant drift. These rules are introduced in the following way. After first presenting a

more careful review of prior work in Sec. 2, we present in Sec. 3 a new task model that allows task weights to vary with time

and associated reweighting rules. In Sec. 4, we prove that, under our reweighting rules, no task misses a deadline and drift is

constant. (The proof that deadline misses are avoided is rather lengthy; much of this proof is deferred to an expanded version

of this paper, which is available as a technical report [7].) We also show that zero drift is not possible; hence, our rules cannot

be substantially improved. In Sec. 5, we assess the efficacy of these rules via an experimental evaluation involving the Whisper

system.

2 Preliminaries

Under Pfair scheduling, processor time is allocated in discrete time units, called quanta; the time interval [t, t + 1), where t is a

nonnegative integer, is called slot t. (Hence, time t refers to the beginning of slot t.) In this paper, all time values are assumed

to indicate an integral number of quanta, unless specified otherwise. Throughout the paper, we use M to denote the number

processors in the system.

As mentioned in the introduction, under Pfair scheduling, correctness is defined by comparing to an “ideal” scheduling

algorithm that can guarantee each task precisely its required share over any time interval. Thus, as we introduce increasingly

flexible task models, we also introduce increasingly more general (and complex) notions of ideal scheduling. The behavior

of each scheduling algorithm (ideal or otherwise) presented in this paper is defined by the sequence of its allocation decisions

over time. The total time allocated to a task T in an arbitrary schedule S over the range [t1, t2) is denoted as A(S , T , t1, t2).

Similarly, we use A(S , Tj , t1, t2) and A(S , τ , t1, t2) to denote, respectively, the total allocations to the “subtask” Tj (as defined

below) and to all tasks in the set τ over the range [t1, t2). As a shorthand, we use A(S , T , t) (resp., A(S , Tj , t)) to denote

A(S , T , t, t + 1) (resp., A(S , Tj , t, t + 1)), and we say that T is scheduled at time t if A(S , T , t) = 1. In order to compare

the difference between the allocations to a task T up to time t in two schedules S and I, where S is an “actual” schedule and

I is an “ideal” one, we use the function lag(S , I, T , t) = A(I, T , 0, t) − A(S , T , 0, t). Additionally, we use the function

LAG(S , I, τ , t) =
∑

T∈τ lag(S , I, T , t) to compare the differences in allocations for all tasks in the task set τ in schedules S

and I. We assume lag(S , I, T , 0) = 0. Thus, LAG(S , I, τ , t) can be rewritten as

LAG(S , I, τ , t) = LAG(S , I, τ , t − 1) + (A(I, τ , t − 1) − A(S , τ , t − 1)). (1)

For brevity, we denote lag(S , I, T , t) as lag(T , t) and LAG(S , I, τ , t) as LAG(τ , t), when S and I are well-defined and

obvious. (Examples illustrating the concepts in this paragraph are given shortly.)

Periodic Pfair scheduling. In defining notions relevant to Pfair scheduling, we limit attention (for now) to periodic tasks, all

of which begin execution at time 0. A periodic task T with an integer period T.p and an integer execution cost T.e has a weight

(or utilization) wt(T ) = T.e/T.p, where 0 < wt(T ) ≤ 1. The period of a task defines both the relative deadline of each of its

job and the allowed separation between jobs: successive jobs of a periodic (sporadic) task T are released exactly (at least) T.p

time units apart. The execution cost of a task is the amount of time for which each job of that task must be scheduled. Due to
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page limitations, we focus exclusively in this paper on tasks with weight at most 1/2. Tasks of weight greater than 1/2, called

heavy tasks, require additional reasoning, which can be found in the first author’s forthcoming Ph.D. dissertation. (It is worth

noting that the Whisper system used as a test case herein requires task weights of at most 1/3.)

The ideal schedule for a periodic task system allocates wt(T ) processing time to each task in each time slot. Thus, for

a periodic system τ , lag(T , t) is defined as wt(T ) · t − A(S , T , 0, t), where S is some “real” schedule of τ . The schedule
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Figure 1: A(I, Tj , t) for a (a) periodic and
(b) IS task of weight 5/16. The windows
of successive subtasks are as indicated (e.g.,
T1’s window in both insets is [0, 4)).

S is Pfair iff (∀T ∈ τ , t :: −1 < lag(T , t) < 1). Informally, each task’s alloca-

tion error must always be less than one quantum. These error bounds are ensured

by treating each quantum of a task’s execution, henceforth called a subtask, as a

schedulable entity. Scheduling decisions are made only at quantum boundaries.

The ith subtask of task T , denoted Ti, where i ≥ 1, has an associated pseudo-

release r(Ti) = b(i − 1)/wt(T )c and pseudo-deadline d(Ti) = di/wt(T )e. (For

brevity, we often drop the prefix “pseudo-.”) It can be shown that if each subtask

Ti is scheduled in the interval w(Ti) = [r(Ti), d(Ti)), termed its window, then

(∀T ∈ τ , t :: −1 < lag(T , t) < 1) is maintained [2]. As an example, in Fig. 1(a),

r(T2) = 3, d(T2) = 7, and w(T2) = [3, 7). (This figure also depicts per-slot ideal

allocations for each subtask, which are considered below.) Thus, T2 must be sched-

uled in slots 3–6. (Tasks execute sequentially, so if T1 is scheduled in slot 3, then

T2 must be scheduled in slots 4–6.)

IS model. The intra-sporadic (IS) task model [11] generalizes the well-known

sporadic task model [10] by allowing subtasks to be released late. This extra

flexibility is useful in many applications where processing steps may be delayed.

Fig. 1(b) illustrates the Pfair windows of an IS task of weight 5/16 in which the release of T2 is delayed by two quanta and the

release of T3 is delayed by an additional quantum. Each subtask Ti of an IS task has an offset θ(Ti) that gives the amount by

which its release has been delayed. For example, in Fig. 1(b), θ(T1) = 0, θ(T2) = 2, and for i ≥ 3, θ(Ti) = 3. The release and

deadline of a subtask Ti of an IS task T are defined as r(Ti) = θ(Ti) + b(i− 1)/wt(T )c and d(Ti) = θ(Ti) + di/wt(T )e, where

the offsets satisfy the property k ≥ i ⇒ θ(Tk) ≥ θ(Ti). A subtask Ti is active at time t iff r(Ti) ≤ t < d(Ti), and a task T is

active at t iff it has an active subtask at t. For example, in Fig. 1(b), T is active in every slot except slot 4. If θ(Ti) < θ(Ti+1),

then we say that there is an IS separation between Ti and Ti+1. (Note that an extension of the IS model exists in which a subtask

Ti can become eligible before r(Ti) [11]. All the results of this paper can be easily extended to such a model, but for clarity, we

do not consider this extension to the IS model.)

The PD2algorithm. The PD2 Pfair scheduling algorithm [11] is optimal for scheduling IS tasks on an arbitrary number of

processors. It prioritizes subtasks on an earliest-pseudo-deadline-first (EPDF) basis, and uses two tie-breaking rules. For the

case wherein all task weights are at most 1/2 (our focus here), PD2 uses one tie-break, b(Ti), which is defined as di/wt(T )e −

bi/wt(T )c. In a periodic task system, b(Ti) is 1 if Ti’s window overlaps Ti+1’s, and is 0 otherwise. For example, in each inset in
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Fig. 1, b(Ti) = 1 for 1 ≤ i ≤ 4 and b(T5) = 0. If two subtasks have equal deadlines, then a subtask with a b-bit of 1 is favored

over one with a b-bit of 0. Further ties are broken arbitrarily. (See [2] for an explanation of this tie-breaking rule.) Notice that,

in the absence of IS separations, r(Ti+1) = d(Ti) − b(Ti). For example, in Fig. 1(a), r(T2) = d(T1) − b(T1) = 4 − 1 = 3, and

r(T6) = d(T5) − b(T5) = 16 − 0 = 16.

IS ideal schedule. Ideal allocations within the IS task model can be defined in much the same way as for periodic tasks [11];

however, we must modify this definition to allow for IS separations. Before continuing, notice that since the total allocation to a

A(IIS, Ti, t)
1: if t < r(Ti) ∨ t ≥ d(Ti)) then
2: A(IIS, Ti, t) := 0
3: else if t = r(Ti) then
4: if i = 1 ∨ b(Ti−1) = 0 then
5: A(IIS, Ti, t) := wt(T )
6: else
7: A(IIS, Ti, t) :=

wt(T ) − A(IIS, Ti−1, d(Ti−1) − 1)
8: fi
9: else
10: A(IIS, Ti, t) :=

min(wt(T ), 1 − A(IIS, Ti, 0, t))
11: fi

Figure 2: Pseudo-code defining A(IIS, Ti, t).

task in a given time slot equals the total allocation to all of its subtasks in that

slot, A(S , T , t) =
∑

Tj∈T A(S , Tj , t). For example, in Fig. 1(a), A(I, T , 6) =

A(I, T1, 6)+A(I, T2, 6)+A(I, T3, 6)+... = 0+2/16+3/16+0+... = 5/16.

Thus, per-task and per-task-set allocations in a schedule S over an arbitrary

interval can be defined by simply defining A(S , Tj , t) for an arbitrary subtask

Tj and time slot t.

For an arbitrary IS task system τ , we let IIS denote the ideal schedule of τ .

A(IIS, Tj , t) can be defined using an arithmetic expression, but we have opted

instead for a more intuitive pseudo-code-based definition in Fig. 2. The ideal IS

schedule allocates each subtask Tj some amount of processing time in each slot

of its window. For slots other than r(Ti) and d(Ti) − 1, this allocation is wt(T ). Ti’s allocation in slots r(Ti) and d(Ti) − 1

are adjusted so that (i) Ti’s entire allocation (across all slots in its window) is one, and (ii) Ti’s allocation in slot r(Ti) (resp.,

d(Ti) − 1) plus Ti−1’s (resp., Ti+1’s) allocation in slot d(Ti−1) − 1 (resp., r(Ti+1)) equals wt(T ) (assuming those subtasks

exist). Examples of such allocations are given in Fig. 1.

Dynamic task systems. The dynamic IS task model an extension of the IS model in which tasks can leave and join by the

aforementioned conditions by Srinivasan and Anderson [12], which are stated below.

J: (join condition) A task T can join at time t iff the sum of the weights of all tasks after joining is at most M .

L: (leave condition) A task T can leave at time t iff either it has not been scheduled prior to t, or t ≥ d(Ti) + b(Ti) holds,

where Ti is its last-scheduled subtask prior to t.

For example, in Fig. 1(b), if T were to leave after T1, then T could not leave until time 5 because 5 = d(T1) + b(T1) = 4 + 1.

On the other hand, if T were to leave after T5, then T could not leave until time 19 because 19 = d(T5) + b(T5) = 19 + 0.

Theorem 1 ([12]). PD2 correctly schedules any dynamic IS task system satisfying J and L.

By Theorem 1, a task T can be reweighted by leaving with its old weight (at a time that satisfies the leave condition, which

may be after the reweighting event occurs) and then rejoining with its new weight (provided the join condition holds).
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3 Adaptable Task Model and Fine-Grained Reweighting

In this section, we introduce the adaptable IS (AIS) task model, and define corresponding fine-grained reweighting rules, which

allow the PD2 algorithm to schedule each subtask without missing a deadline and to ensure constant drift per weight change.

The AIS task model is an extension of IS task model, where the weight of each task T , wt(T , t), is a function of time t. (Note

that, in this paper, we do concern ourselves with how task weights are determined. Such weights could be determined, for

example, based upon application-specific criteria, feedback information, etc.)

3.1 Adaptable Task Model

A task T changes weight or reweights at time t + 1 if wt(T , t) 6= wt(T , t + 1). If a task T changes weight at a time tc between

the release and the deadline of some subtask Tj , then the following three actions may occur: (i) if Tj has not been scheduled by

tc, then Tj may be “halted” at tc; (ii) r(Tj+1) may be redefined to be less than d(Tj) − b(Tj); and (iii) if (ii) holds, then the

windows of Tj and Tj+1 may overlap by more than b(Tj) time slots. (In the IS model defined earlier, every subtask’s deadline

is at most b(Tj) time slots after its successor’s release.)
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Figure 3: Per-task allocations for a task in an AIS
system for (a) a task T with an initial weight of
3/19 that enacts a weight change to 2/5 and halts
at time 8; (b) a task X with an initial weight of
3/19 that enacts a weight change to 2/5 at time 8
but does not halt; (c) a periodic task U with weight
2/5. The dotted window lines indicate that the win-
dow that would have existed if the subtask task did
not reweight.

The reweighting rules we present at the end of this section state the condi-

tions under which the above actions may occur and the number of slots before

d(Tj) − b(Tj) that subtask Tj+1 can be released. If Tj is halted before it is

scheduled, then it is never scheduled. (Note that a subtask can only be halted

if it has not yet been scheduled in the PD2 schedule.) For example, consider

Fig. 3(a), which depicts a task T that increases its weight from 3/19 to 2/5

at time 8. (The per-slot allocations and the terms “enacted” and “complete”

mentioned in the figure are discussed shortly.) In this inset, T2 halts at time

2, but for j ∈ {1, 3, 4, 5}, Tj does not halt. Since a subtask is only halted as

a result of a reweighting event, if we do not have a priori knowledge of such

events, then we cannot determine whether a released subtask will be halted

in the future. For example, in Fig. 3(a), we have no knowledge when T2 is

released at time 6 that it will be halted at time 8.

Definition 1 (Initiated and Enacted). When a task reweights, there can be

a difference between when it “initiates” the change and when the change is

“enacted.” The time at which the change is initiated is a user-defined time;

the time at which the change is enacted is determined by a set of conditions

dictated by the reweighting algorithm. We use the scheduling weight of a task

T at time t, denoted swt(T , t), to represent the “last enacted weight of T .”

Formally, swt(T , t) equals wt(T , u), where u is the last time at or before t

that a weight change was enacted for T . (We assume an initial weight change
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occurred for T where it initially joined the system.) It is important to note that, henceforth, we compute subtask deadlines

and releases using scheduling weights. We use En(T , t) to denote the last time at or before time t that T enacted a weight

change, and Id(Tj) to denote the smallest index k such that En(T , r(Tj)) ≤ r(Tk). For example, in Fig. 3(b), En(X , t) = 0, for

0 ≤ t < 8; for j ∈ {1, 2}, Id(Xj) = 1; for t ≥ 8, En(X , t) = 8; and for j ∈ {3, 4, 5}, Id(Xj) = 3. Note that if Id(Tj) = j,

then Tj is the first subtask of T released after a weight change for T has been enacted.

Definition 2 (Complete). If S is a schedule for the task system τ , then a subtask Tj of T ∈ τ is said to have completed by time

t in S iff t ≥ r(Tj) and one of the following holds: (i) Tj has been allocated one quantum by t in S; or (ii) Tj is halted by time

t. As an example, consider the schedule depicted in Fig. 4, which depicts a one-processor PD2 schedule of two tasks, T , with

weight 2/5, and U , with an initial weight of 2/5 that increases to 1/2 at time 3 by halting U2. In this example, T1 completes

at time 1 because it is scheduled in slot 0, whereas U1 does not complete until time 2 because it is not scheduled until slot 1.

Notice that, since U2 is halted at time 3, it is complete at time 3 even though it is never scheduled. We use the function D(S , Tj)

to denote the (integral) time at which Tj is complete in S.

For an adaptable task, the deadline, b-bit, and release of a subtask Tj , respectively, are defined by Eqns. (2)–(4), where

X
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T3T2
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Figure 4: A one-processor PD2

schedule for two tasks, T , with a
weight 2/5, and U , which has an
initial weight of 2/5 that increases
to 1/2 at time 3 by halting U2. The
X’s denote where each subtask is
scheduled.

z = Id(Tj) − 1, θ(Tj+1) ≥ θ(Tj), and r(T1) equals the time that T joins the system.

d(Tj) = r(Tj) +

⌈

j − z

swt(T , r(Tj))

⌉

−

⌊

j − z − 1

swt(T , r(Tj))

⌋

(2)

b(Tj) =

⌈

j − z

swt(T , r(Tj))

⌉

−

⌊

j − z

swt(T , r(Tj))

⌋

(3)

r(Tj+1) = d(Tj) − b(Tj) + (θ(Tj+1) − θ(Tj)) (4)

It is important to note that since reweighting events may change a subtask’s release time,

Eqn. (4) holds for the subtask Tj+1 only if a weight change is not enacted for T over the

range (r(Tj), d(Tj)]. The above equations differ from the earlier definitions of releases,

deadlines, and b-bits (given in Sec. 2) in two ways. First, (2) and (3) define the deadline

and b-bit of a subtask based on the scheduling weight of the task at the time the subtask is

released. Second, after a task enacts a weight change, its release, deadline, and b-bit are defined as though a new task with

the new weight joined the system. (Recall that a subtask Tj is the first-released subtask after a weight change is enacted iff

Id(Tj) = j.) For example, in Fig. 3(a), after T changes its weight to 2/5, the subtasks T3–T5 have similar releases, deadlines,

and b-bits as the first three subtasks of the task U with weight 2/5 in inset (c).

Ideal schedules. In order to state and prove that the reweighting algorithm that we present at the end of this section does not

schedule a subtask after its deadline and that it has constant drift, we introduce three notions of an ideal schedule for an AIS task

system. The first ideal schedule, ISW (used for stating the reweighting rules), allocates each task a share based on its scheduling

weight in each time slot. The second ideal schedule, ICSW (used for proving the reweighting rules and drift bounds), is the same

as ISW except that ICSW is “clairvoyant” so that it does not allocate capacity to tasks that will halt. The third ideal schedule,

IPS (used for proving drift bounds), allocates each task a share based on its actual weight in each time slot. We now formally
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define the allocations to a subtask in ISW and ICSW; IPS is considered in the next section.

As with IS tasks, A(ISW, Ti, t) can be defined mathematically, but we opt instead for a pseudo-code-based definition, shown

A(ISW, Ti, t)
1: if t < r(Ti) ∨ t ≥ D(ISW, Ti) then
2: A(ISW, Ti, t) := 0
3: else if t = r(Ti) then
4: if i = Id(Ti) ∨ b(Ti−1) = 0 then
5: A(ISW, Ti, t) := swt(T , t)
6: else
7: A(ISW, Ti, t) := swt(T , t)−

A(ISW, Ti−1, D(ISW, Ti−1) − 1)
8: fi
9: else
10: A(ISW, Ti, t) :=

min(swt(T , t), 1 − A(ISW, Ti, 0, t))
11: fi

Figure 5: Pseudo-code defining the A(ISW, Ti, t).

in Fig. 5. There are three differences between the definitions of A(IIS, Ti, t)

and A(ISW, Ti, t): in lines 5, 7, and 10, swt(T , t) is used instead of wt(T );

and in lines 1 and 7, D(ISW, Ti) is used instead of d(Ti). These two changes

account for T ’s time-varying weight. The final change is that, in line 4,

i = Id(Ti) is used instead of i = 1. This change causes the per-slot allo-

cations to Tz , where z = Id(Ti), to equal that of a task that joins the sys-

tem at r(Tz). For example, in Fig. 3(a), since 3 = Id(T3), by lines 4 and 5,

A(ISW, T3, r(T3)) = swt(T , r(T3)) = 2/5, which is the same per-slot allo-

cation that U1 in Fig. 3(c) receives at time r(U1). Before continuing, there

are two important issues to note. First, in the absence of reweighting events,

D(ISW, Tj) = d(Tj). Second, when a task is halted via the reweighting rules given below, it is halted in both the PD2 sched-

ule and ISW. Since ISW is not clairvoyant, it will allocate “normally” to a subtask until that subtask halts, after which the

subtask’s per-slot allocations are zero, as with T2 in Fig. 3(a). Also note that in Fig. 3(b), X2 is complete at time 10, since

A(ISW, X2, 0, 10) = 1. Several examples of ISW allocations are given in Fig. 3. Using the definition of ISW, we can simply

define ICSW as follows: A(ICSW, Ti, t) = A(ISW, Ti, t), if Ti never halts, and A(ICSW, Ti, t) = 0, otherwise. For example,

in Fig. 3(a) A(ISW, Ti, t) = A(ICSW, Ti, t) except for T2, where A(ICSW, T2, t) = 0 for all t.

3.2 Reweighting Rules

We now introduce two new fine-grained reweighting rules that improve upon coarse-grained reweighting by changing future

subtask releases. It is important to note that in the following rules, for a given subtask Tj , the value d(Tj) is used to determine

the scheduling priority of Tj in the PD2 algorithm and does not change once Tj has been released. Furthermore, D(ISW, Tj)

is used to determine the release time of Tj’s successor, Tj+1. As mentioned earlier, the completion time of a subtask cannot

be accurately predicted without a priori knowledge of weight changes; however, in the reweighting rules below, the completion

time of a subtask in ISW is only used after the subtask has completed, and therefore it is well-defined.

Let τ be a task system in which some task T initiates a weight change from weight w to weight v at time tc. If there does

not exist a subtask Tj of T such that r(Tj) ≤ tc, then the weight change is enacted immediately; otherwise, let Tj denote the

last-released subtask of T . If d(Tj) ≤ tc, then the weight change is enacted at time max(tc, d(Tj) + b(Tj)). In the following

rules, we consider the remaining possibility, i.e., that Tj exists and r(Tj) ≤ tc < d(Tj). For simplicity, we assume that the first

subtask after a weight change by the corresponding task is released as early as possible. This assumption can be removed at the

cost of more complex notation.

The choice of which rule to apply depends on whether Tj has been scheduled by tc. We say that T is ideal-changeable at

time tc from weight w to v if Tj is scheduled before tc, and otherwise is omission-changeable at time tc from w to v. Because

T initiates its weight change at tc, wt(T , tc) = v holds; however, T ’s scheduling weight does not change until the weight
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Figure 6: A four-processor system consisting of a set C of 19 tasks of weight 3/20 each, and a task T of weight 3/20, and in (a), a task U of
weight 1/2. In (a) and (b), all ties are broken in favor of tasks from C, and in (c), all ties are broken in favor of task T . The notation T :[u, v]
denotes that T ’s weight ranges over [u, v]. The windows of the various task groups are shown together. The numbers in each slot in a window
denote the number of tasks from each set scheduled in that slot. (Similar notation is used in later figures.) In insets (b)–(d), T ’s allocation up
to time t in ISW, ICSW, and IPS as well as T ’s drift are labeled at the top. (a) T leaves at time 8 and U joins at time 10. (b) T reweights
to 1/2 via rule O at slot 10. (Notice that T2 is halted at tc and is never scheduled.) (c) T reweights to 1/2 via rule I at slot 10. (d) T has an
initial weight of 2/5 that decreases to 3/20 via rule I at time 1. Rule O or I is applied depending on whether T2 (in (b) and (c)) or T1 (in (d))
is scheduled prior to slot 10 (in (b) and (c)) or 1 (in (d)).

change has been enacted, as specified in the rules below. Note that, if tc occurs between the initiation and enaction of a previous

reweighting event of T , then the previous event is skipped, i.e., treated as if it had not occurred. As discussed later, any “error”

associated with skipping a reweighting event like this is accounted for when determining drift.

Rule O: If T is omission-changeable at time tc from weight w to v and j > 1, then at time tc, subtask Tj is halted and at time

max(tc, D(ISW, Tj−1) + b(Tj−1)), T ’s weight change is enacted, and a new subtask is released. If j = 1, then at time

tc, Tj is halted, T ’s weight change is enacted, and a new subtask is released.

Rule I: If T is ideal-changeable at time tc from weight w to v, then one of two actions is taken: (i) if v > w, then the weight

change is immediately enacted, and at time D(ISW, Tj)+b(Tj), a new subtask is released for T ; (ii) otherwise, the weight

change is enacted at time D(ISW, Tj) + b(Tj), at which time a new subtask is released.
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Both rules are extensions of the leave/join rules L and J given earlier in Sec. 2. However, the rules above exploit the specific

circumstances that occur when a task changes its weight to “short circuit” rules L and J, so that reweighting is accomplished

faster. By rule L, T can leave at time d(Tk)+b(Tk), where Tk is its last-scheduled subtask. We can easily extend rule L to show

that T can leave at time D(ISW, Tk) + b(Tk). If task T (as defined above) is omission-changeable, then its subtask Tj has not

been scheduled by time tc. Such a task can be viewed as having “left” the system at time max(tc, D(ISW, Tj−1) + b(Tj−1)),

in which case, it can rejoin the system immediately. For example, in Fig. 6(a), task T of weight 3/20 leaves at time 8 and task

U of weight 1/2 joins at time 10. In Fig. 6(b), task T increases its weight from 3/20 to 1/2 via rule O. Note that, in Fig. 6(b), T

behaves as if it leaves at time 8 and rejoins at time 10 with its new weight.

If T is ideal-changeable, then by rule L, it may “leave and rejoin” with a new weight at time d(Tj) + b(Tj) (i.e., its weight

change can be enacted at d(Tj) + b(Tj)). However, if D(ISW, Tj) < d(Tj), then T may “leave and rejoin” with a new weight

at D(ISW, Tj) + b(Tj). (“Ideal-changeable” refers to the fact that the time at which the subtask can leave and rejoin is based

on that subtask’s allocations in an ideal schedule.) For example, in Fig. 6(c), task T increases its weight from 3/20 to 1/2 at

time 10 via rule I. Since at time 11 the total allocation to T2 in ISW is one, D(ISW, T2) = 11. Hence, by rule I, T can

“leave” at time D(ISW, T2) + b(T2) = 12, which is two time units earlier than its deadline. In Fig. 6(d), task T decreases

its weight from 2/5 to 3/20 at time one. Since T decreases its weight, by rule I, this weight change is not enacted until time

D(ISW, T1) + b(T1). Since no weight change is enacted before d(T1), d(T1) = D(ISW, T1) = 3. Thus, by rule I, T “leaves”

at time D(ISW, T1) + b(T1) = 4. Notice that the difference in rule I between cases (i) and (ii) is that, when a task increases its

weight, the weight change is immediately enacted, whereas when a task decreases its weight, its weight change is not enacted

until time D(ISW, Tj) + b(Tj). Thus, T ’s scheduling weight is redefined at different times.

Throughout this paper we use PD2-OI (respectively, PD2-LJ) to refer to reweighting via rules O and I (resp., the leave/join

rules L and J) under PD2. Since these rules change the ordering of a task in the priority queues that determine scheduling, the

time complexity for reweighting one task is O(logN), where N is the number of tasks in the system.

4 Scheduling Correctness and Drift Bounds

In the prior section, we used ISW to determine the release times of future subtasks. Notice that ISW and PD2-OI treat halted

subtasks differently. Specifically, ISW will “partially” allocate a halted subtask, whereas PD2-OI will never schedule a halted

subtask. Because of this difference, it is convenient, when proving correctness and drift bounds, to slightly alter ISW by

eliminating halted subtasks. Therefore, we use ICSW instead, since ICSW does not allocate any capacity to any halted subtask.

In this section, we discuss the scheduling correctness of PD2-OI (the full proof can be found in an expanded version of this

paper, which is available as a technical report [7]), formally define drift, and discuss the drift bounds of PD2-LJ, PD2-OI, and

any EPDF reweighting algorithm.

We first show that initiating multiple reweighting events without enacting them does not increase the time of the next weight-

change enactment. We show this by proving the following.

(C) If T initiates two weight-change events at tc and t′c, where tc < t′c and t′c < te, and te and t′e denote the time the changes
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initiated at tc and t′c, respectively, would have been enacted in the absence of other reweighting events, then t′e ≤ te.

Proof of (C). Assume that tc, te, t′c, and t′e are as defined in (C). Notice that any type of reweighting events initiated at tc

except for ideal-changeable decreasing-weight events and (some) omission-changeable events, are enacted within one quantum.

Thus, we assume that T is either omission-changeable (and not immediately enacted) or decreasing-weight ideal-changeable

at tc. Before continuing, notice that if d(Tj) ≤ t′c, where Tj is as defined in rules O and I, then the change initiated at t′c is

enacted by t′c + 1. Since t′c < te, this implies that t′e ≤ te. Thus, we assume in the rest of the proof that t′c < d(Tj). We

first consider the case wherein T is omission-changeable at tc and this change is not immediately enacted. In this case, the

change initiated at tc is enacted at time te = D(ISW, Tj−1) + b(Tj−1). Since T is omission-changeable at tc, it is halted at

tc and no successor subtask can be released until the change initiated at tc (or a future change) has been enacted. Hence, since

t′c < te, Tj+1 is not released until after t′c. Since r(Tj) < tc < t′c < d(Tj), Tj is the last-released subtask of T at or before

t′c. Because Tj was halted at tc, T is therefore omission-changeable at t′c. Thus, by rule O, the change initiated at t′c is enacted

at time t′e = min(t′c,D(ISW, Tj−1) + b(Tj−1)). Thus, t′e = te. We next consider the case wherein T is decreasing-weight

ideal-changeable at tc. By rule I, such a change initiated at tc will be enacted at time te = D(ISW, Tj) + b(Tj). Since T

is ideal-changeable at tc, no subtask can be released until the change which was initiated at tc (or a future change) has been

enacted. Hence, since t′c < te, Tj+1 is not released until after the change at t′c is initiated. Since r(Tj) < tc < t′c < d(Tj), Tj

is the last-released subtask of T at or before t′c. Because Tj is scheduled before t′c, T is ideal-changeable at t′c. If the event at t′c

is a decreasing-weight event, then by rule I, it is enacted at time t′e = D(ISW, Tj) + b(Tj) = te; if it is an increasing-weight

event, then t′e = t′c < te.

When Srinivasan and Anderson [12] proved the scheduling correctness for PD2-LJ for an IS task system, they assumed

that the weight of all tasks is at most M and utilized the property that in an IS system, the windows for any subtask Tj and its

successor Tj+1 do not “overlap” by more than b(Tj) quanta, i.e., d(Tj) − b(Tj) ≤ r(Tj+1). However, this property can be

weakened without affecting most of their proof, so that their proof can be applied to an AIS task system. Specifically, their proof

can be used to establish the scheduling correctness of PD2-OI for any AIS task system τ , if the following conditions hold, which

parallel the assumption that the weight of all tasks is at most M and the property that in an IS system d(Tj)− b(Tj) ≤ r(Tj+1).

(In these properties, we denote the PD2-OI schedule of τ as S.)

(W) For any time t,
∑

T∈τ swt(T , t) ≤ M , where M is the number of processors.

(V) For the subtasks Ti and Ti+1, if d(Ti) − b(Ti) > r(Ti+1), then D(ICSW, Ti) ≤ r(Ti+1) and D(S, Ti) ≤ r(Ti+1).

Since (W) can be satisfied by policing weight-change requests, we focus our attention on showing that S and ICSW satisfy (V).

Proof of (V). Before we begin, notice that by the rules O and I, when T initiates a weight change at time tc, it is enacted no

later than time r(Tk), where Tk is the next-released subtask of T . (By (C), no sequence of reweighting events can delay the next

weight-change enactment after a weight change has been initiated, and by the rules I and O, a subtask is released within one

quantum of a weight-change enactment. Thus, Tk is eventually released.) Hence, if a weight change is enacted over the range

(r(T`), d(T`)], then that change must have been initiated over the range [r(T`), d(T`)].
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Let Ti be some subtask such that d(Ti)−b(Ti) > r(Ti+1). By the definition of a subtask release, if d(Ti)−b(Ti) > r(Ti+1),

then T enacted a weight change at te ∈ (r(Ti), r(Ti+1)]; otherwise, we would have d(Ti)− b(Ti) ≤ r(Ti+1), by Eqn. (4). Since

a weight change is enacted in the range (r(Ti), d(Ti)], (as established above) a change must have been initiated in the range

[r(Ti), d(Ti)]. Thus, since a weight change is initiated before it is enacted (and by assumption te ≤ r(Ti+1) < d(Ti) − b(Ti) ≤

d(Ti)), a change must have been initiated in [r(Ti), r(Ti+1)]. Without loss of generality, let tc be the earliest time in this range

that T initiates a weight change.

At time tc, T is either omission- or ideal-changeable. We now consider these two cases. If at tc, T is omission-changeable,

then by rule O, Ti is halted at tc. In this case, Ti is complete by tc ≤ te ≤ r(Ti+1) in both S and the ICSW schedule. If T is

ideal-changeable at tc, then Ti has been scheduled in S before tc, and hence, Ti is complete by tc in S . Furthermore, in this case

Ti+1 is not released until time D(ICSW, Ti) + b(Ti).

By (V), it is possible to use Srinivasan and Anderson’s correctness proof for PD2-LJ [12] to prove the following theorem.

(The full proof can be found in [7].)

Theorem 2. Under PD2-OI, no subtask is scheduled after its scheduling deadline, provided that (W) holds.

4.1 Drift

We now turn our attention to the issue of measuring drift under PD2-OI. For most real-time scheduling algorithms, the difference

between the ideal and actual allocations a task receives lies within some bounded range centered at zero (that is, lag bounds are

maintained). For example, under PD2 (i.e., PD2-OI without weight changes), the difference between the ideal and actual

allocations for a task lies within (−1, 1). When a weight change occurs, the same range is maintained except that it may be

centered at a different value. This lost allocation is called drift. In general, a task’s drift per reweighting event will be non-

negative (non-positive) if it increases (decreases) its weight. Let S denote a PD2-OI schedule of some task system τ . Since

Thm. 2 established that no subtask misses its deadline, and neither S nor ICSW schedules any halted subtasks, A(S , T , 0, t)

differs from A(ICSW, T , 0, t) by ±1. Hence, we can bound the drift that a task T incurs under PD2-OI up to time t by comparing

T ’s total allocation up to time t in ICSW to that in the “ideal processor sharing” schedule, in which all weight changes are enacted

instantaneously.

In the ideal processor sharing (IPS) schedule, at each instant t, each task T in τ is allocated a share equal to its weight

wt(T , t). Hence, over the interval [t1, t2), the task T is allocated A(IPS, T , t1, t2) =
∫ t2

t1
wt(T , u)du time. (For the remainder

of this section, we assume that every subtask in T is released as early as possible. This assumption can be removed at the cost

of more complex notation. If we did not make this assumption, then the allocation function for IPS would equal zero between

active subtasks.) IPS is similar to ISW and ICSW, with three major exceptions: (i) tasks in IPS continually receive allocations,

whereas tasks in ISW and ICSW receive allocations only at quantum boundaries; (ii) under IPS, each task receives an allocation

equal to its weight, whereas under ISW and ICSW, each task receives allocations according to its scheduling weight; and (iii)

the total allocation each task receives in ISW and ICSW is calculated based on the releases and completion times of its active

subtasks, whereas allocations in IPS are independent of subtask releases and completion times. Hence, even if all active subtasks
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Figure 7: Allocations for a task X with an initial
weight of 3/19 that changes to 2/5. (a) The value
of A(ICSW, Xj , u) for each slot and subtask. (b)
The allocations to X in IPS at each instant. (c)
The total allocations to X in ICSW and IPS.

of a given task are halted, IPS still allocates capacity to that task. For example,

consider Fig. 7, which depicts the allocations in the schedules ICSW and IPS

(insets (a) and (b), resp.) to a task X that has an initial weight of 3/19 that

increases to 2/5 (via rule I) at time 8. Notice that in IPS over the range [9, 11),

X receives an allocation equal to its weight at every instant (for a total alloca-

tion of 4/5 over [9, 11)). Compare this to ICSW, in which X receives only an

allocation of 32/95 over the same range.

Formally, under PD2-OI, the drift of a task T is defined1 as

drift(T , t) = A(IPS, T , 0, u) − A(ICSW, T , 0, u), (5)

where u is defined as follows: if t < r(T1), then u = t; otherwise, u = r(Ti),

where Ti is the last-released subtask of T at or before t such that Id(Ti) = i. For

example, in Fig. 6(b), the drift of task T at time t = 9 is A(IPS, T , 0, r(T1)) −

A(ICSW, T , 0, r(T1)) = 0 − 0 = 0, whereas at time t = 10, the drift of T

is A(IPS, T , 0, r(T3)) − A(ICSW, T , 0, r(T3)) = 3/2 − 1 = 1/2. Notice that,

since T2 is halted at time 10, A(ICSW, T2, 0, 10) = 0. We say that a reweighting

algorithm is fine-grained iff there exists some constant value c such that the drift per weight change is less than c. We say that a

reweighting algorithm is coarse-grained otherwise.
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Figure 8: The PD2-LJ schedule of a four-
processor system with a set A of 35 tasks with
weight 1/10 and a task T with weight 1/10 that
increases to 1/2 at time 4. The allocations of T in
ICSW and IPS and its drift are labeled.

We now prove that PD2-LJ is not fine-grained.2 Consider the four-processor

system depicted in Fig. 8. This system consists of a set A of 35 tasks with weight

1/10 and a task T with weight 1/10 that increases to 1/2 at time 4. By rule L,

T cannot “leave” until time 10. Hence, the change is not enacted until time 10.

Thus, over the range [4, 10), T receives a 1/10 per-slot allocation in ICSW and

1/2 in IPS. Hence, T ’s drift reaches a value of 24/10 at time 10. This example

can be generalized to generate any value of drift for T , by decreasing its initial

weight. Under PD2-LJ, such a task cannot change its weight until the end of the

first window generated by its initial weight. Hence, by decreasing the weight of

T to 1/(2(c + 1)), we have drift(T , d(T1)) ≥ c. The theorem below follows.

Theorem 3. PD2-LJ is not fine-grained.

Next, we show that any EPDF scheduling algorithm incurs some drift.3 This

follows from the two-processor counterexample depicted in Fig. 9. This system consists of a set A of 10 tasks with weight 1/7
1The definition of drift presented in (5) is designed specifically for EPDF systems. This concept can be more generally defined to pertain to other systems

like global EDF and partitioning schemes.
2Given that PD2-OI is simply an extension of PD2-LJ that allows faster reweighting, it should be clear that the PD2-OI-centric definition of drift given in

(5) can be extended to apply to PD2-LJ by simply basing the definition of ICSW on PD2-LJ instead of PD2-OI.
3As before, the drift definition in (5) can be applied to such an algorithm by simply redefining ICSW accordingly.
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that leave at time 7, a set B of two tasks with weight 1/6 that leave at time 6, a set C of two tasks with weight 1/14 that join at

time 6, and a set D of five tasks with a weight of 1/21 that increases to 1/3 at time 7. With subtask deadlines defined by IPS, the

deadline for each task in set D changes at time 7 from 21 to 9. The tasks in D have an original deadline of 21 because that is the

projected time at which their IPS allocations will equal one if their weights do not change. These tasks change their deadlines

to 9 at time 7 because the new weight, 1/3, changes the projected time by which their IPS allocations will equal one to time 9.

Hence, any EPDF algorithm will not schedule the tasks in D until time 7. As a result, a deadline is missed. Notice that any

EPDF algorithm would need to use projections for determining subtask deadlines if we assume no prior knowledge of weight

changes. To prevent a deadline miss, the lag-bound range must be shifted, thus incurring drift. The theorem below follows.

Theorem 4. All EPDF algorithms can incur non-zero drift per reweighting event.

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

9 9 9 99

2

2

0

2 2 2

2

2 2 1

21 21 21 21 21 21 21 9 9 9 9 9 9 9 9 9 9

D:5x[1/21,1/3]

A:10x1/7

B:2x1/6

C:2x1/14

Deadline of D

Figure 9: A two-processor system consisting of a set A of 10 tasks
with weight 1/7 that leave at time 7, a set B of two tasks with weight
1/6 that leave at time 6, a set C of two tasks with weight 1/14 that join
at time 6, and a set D of five tasks with a weight of 1/21 that increases
to 1/3 at time 7. The projected deadlines of tasks in D based on their
true ideal allocations are labeled above. Notice that a task in D misses
its deadline at time 9 since its “true” deadline is unknown until time 7.

Finally, we show that PD2-OI is fine grained. By the def-

inition of drift, in order to prove that PD2-OI is fine-grained,

we merely need to consider the window placement of a task

after it is reweighted. Suppose that a task T initiates a weight

change at tc. Let te be the next time at which T enacts

a change at or after tc, and let Tj be the last-released sub-

task of T at or before tc, if Tj exists. (If Tj does not exist,

then T ’s drift does not change.) We now show that if the

change initiated at tc is enacted at te, then the added drift

is bounded by showing that the maximal absolute difference

between ICSW and IPS in allocations to T over the interval

[tc, r(Tj+1)) is at most two. Notice that such a result implies that if T were to initiate a change at time t′c such that tc < t′c ≤ te,

then the absolute difference in allocation between ICSW and IPS to T over the interval [tc, t
′

c) is at most two. This implies that

the absolute value of the added drift per reweighting event is at most two, even for those events that are “canceled” by future

reweighting events that occur before any change is enacted.

If d(Tj) ≤ tc, then the weight change is enacted within one quantum. Since the maximal weight of a task is 1/2, the maximal

increase in the absolute value of drift in such a case is 1/2. If Tj exists and r(Tj) ≤ tc < d(Tj), then T is either omission- or flow-

changeable. If T changes its weight via rule O, then the resulting allocation error is at most two quanta. One quantum of the error

can be incurred because Tj is halted at tc, resulting in an allocation of up to one subtask being “lost.” For example, in Fig. 6(b),

A(ICSW, T2, 0, 10) = 1/2 quanta is “lost” when T initiates and enacts a weight change at time 10. The second quantum of error

can be incurred because the change T initiated at tc may not be enacted until time max(tc, D(ICSW, Tj−1) + b(Tj−1)). By

(V), if a change is enacted in the range [r(Tj−1), d(Tj−1)], then D(ICSW, Tj−1)− r(Tj) ≤ b(Tj−1). Further, by Eqn. (4), if no

change is enacted in the range [r(Tj−1), d(Tj−1)], then D(ICSW, Tj−1) − r(Tj) ≤ b(Tj−1). Thus, since r(Tj) ≤ tc, the range

[tc, max(tc, D(ICSW, Tj−1) + b(Tj−1))) has a length of at most two. Hence, the change initiated at tc may not be enacted for

two quanta, and since the maximal weight for any task is 1/2, the IPS allocations may “get ahead” (if T increases its weight at
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tc) or “fall behind” (if T decreases its weight at tc) by 2 · 1/2 = 1 quantum.

If T increases its weight at tc via rule I, then the weight change is immediately enacted and Tj+1 is released at time

D(ICSW, Tj) + b(Tj). Since the weight change is immediately enacted, the only period of time during which T receives

less allocation in ICSW than in IPS is between D(ICSW, Tj) − 1 and r(Tj+1). Since r(Tj+1) = D(ICSW, Tj) + b(Tj), the

length of this interval is at most two. Since the maximal weight of a task is 1/2, the maximal increase in drift is 2 · 1/2. For

example, in Fig. 6(c), A(ICSW, T , 10, 12) = A(ICSW, T , 0, 12) − A(ICSW, T , 0, 10) = 4/2 − 3/2 = 1/2 < 1 = 2 − 1 =

A(IPS, T , 0, 12)−A(IPS, T , 0, 10) = A(IPS, T , 10, 12). If T decreases its weight at tc via rule I, then Tj+1 is released at time

D(ICSW, Tj)+b(Tj). Since T decreases its weight, over the range [tc,D(ICSW, Tj)), T is allocated at most one quantum more

in ICSW than in IPS. Furthermore, over the range [D(ICSW, Tj),D(ICSW, Tj) + b(Tj)), T is allocated at most 1/2 quanta

more in IPS than in ICSW, since the length of this range is one and the maximal weight of a task is 1/2. Thus, the maximal

possible decrease in drift is one and the maximal possible increase in drift is 1/2. For example, in Fig. 6(d), the drift incurred

by changing the weight of T from 2/5 to 3/20 is −3/20, i.e., drift(T , t) = −3/20, where t ≥ 4.

Theorem 5. PD2-OI is fine-grained; moreover, the absolute value of the per-event drift under PD2-OI for each task is at most

two.

5 Experimental Results

The results of this paper are part of a longer-term project on adaptive real-time allocation in which Whisper, described earlier,

will be used as a test application. In this section, we provide an extensive simulation of Whisper. Unfortunately, at this point

in time, it is not feasible to produce experiments involving a real implementation of Whisper for several reasons. First, the

existing Whisper system is single threaded (and non-adaptive) and consists of several thousand lines of code. All of this code

has to be re-implemented as a multi-threaded system, which is a nontrivial task. Indeed, because of this, it is essential that we

first understand the algorithmic tradeoffs involved in adapting tasks on multiprocessor real-time systems. The purpose of this

paper, as well as the two related ones we have written on adaption under partitioning [4] and global EDF [8], is to explore these

tradeoffs. Additionally, this paper is only concerned with scheduling methods that facilitate adaption—we have not addressed

the issue of devising mechanisms for determining how and when the system should adapt. Such mechanisms will be based on

issues involving virtual-reality systems that are well beyond the scope of this paper. For these reasons, we have chose to evaluate

PD2-OI via simulation.

Specifically, we present a simulated implementation of Whisper on a four-processor system, with 2.7 GHz processors and a 1-

ms quantum. The system was simulated for 10 s, with a sampling frequency of 1,000 Hz for each tracked object. Whisper tracks

users through a system of speakers attached to users and microphones attached to the ceiling. Each speaker emits a unique “white

noise” signal that is received by the microphones. As depicted in Fig. 10, we simulated three speakers (one per object) revolving

around a 5-cm pole in a 1m × 1m room with a microphone in each corner. The pole creates potential occlusions. Whisper is able
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Figure 10: The simulated Whisper system.

to compute the time-shift between the transmitted and received versions of the

sound by performing a correlation calculation on the most recent set of samples.

As the distance between the speaker and microphone changes, so does the num-

ber of correlation computations necessary to correctly track the speaker. This

distance is (obviously) impacted by a speaker’s movement, but is also length-

ened when an occlusion is caused by the pole. The range of weights of each task

was determined (as a function of a tracked object’s position) by implementing and timing the basic computation of the correlation

algorithm (an accumulate-and-multiply operation) on a testbed system that is the same as that assumed in the simulations.

Each simulation was run 61 times with the speakers placed randomly around the pole, at an equal distance from the pole,

and each rotating around the pole at the same speed. As mentioned above, as the distance between a speaker and microphone

changes, so does the amount of computation necessary to correctly track the speaker. This distance is (obviously) impacted by

a speaker’s movement, but is also lengthened by an occlusion.

In our simulations, we made several simplifying assumptions. First, all objects are moving in only two dimensions. Second,

there is no ambient noise in the room. Third, no speaker can interfere with any other speaker. Fourth, all objects move at

a constant rate. Fifth, for each speaker/microphone pair, there is only one task. Sixth, the weight of each task changes only

once for every 5 cm of distance between its associated speaker and microphone. Finally, all speakers and microphones are

omnidirectional. Because there are three speakers in this simulation, there is not sufficient capacity on the assumed system to

statically allocate each task the capacity it needs to perform all calculations in the worst case. Even with theses assumptions,

frequent share adaptations are required, since the share required by each task changes with the distance between its associated

speaker/microphone pair. (In the absence of these assumptions, we expect PD2-LJ to be completely inadequate, since required

adaptations would be even more pronounced and frequent than those occurring here.)

We conducted experiments in which we varied the distance of each object from the center of the room from 10 cm to 50 cm,

the speed of each object from 0.1 m/s to 3.5 m/s (such speeds typify human motion), and the presence of an occluding object

(the pole). However, due to page limitations, the graphs below present only a representative sampling of the data we collected.

All simulations are run for 1,000 time steps (10 s assuming a 1 ms quantum). While the ultimate metric for determining the

efficacy of a tracking system would be user perception, this metric is not currently available for reasons discussed earlier. Thus,

we compared PD2-OI and PD2-LJ by measuring the deviance of each from IPS. This metric should provide us with

a reasonable impression of how well these systems will fare when Whisper is fully re-implemented. We implemented and

timed both reweighting algorithms considered in our simulations on an actual testbed that is the same as that assumed in our

simulations, and found that all per-slot scheduling decisions could be made in approximately 5 µs for all task systems in our

experiments. We considered this value to be negligible in comparison to a 1-ms quantum and thus did not consider scheduling

overheads in our simulations. In each graph presented below, 98% confidence intervals are given.

In the first two graphs, in Fig. 11(a) and (b), the distance from the center of the room to each speaker is 25 cm, and the speed

at which the speakers move varies from 0.5 m/s to 3.5 m/s. Inset (a) depicts the maximal drift of any task in the system at time

1,000 as a function of the speed of the speakers. Inset (b) gives the per-task average total amount of computation completed by
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Figure 11: Selection of experiments. For clarity, the legend in each inset orders the curves in the (top-to-bottom) order they appear in that
graph. (a) Maximum drift as a function of object speed. (b) Percent of ideal allocation (as defined by IPS) as a function of object speed. (c)
Maximum drift as a function of radius of rotation. (d) Percent of ideal allocation as a function of radius of rotation.

time 1,000, as a percentage of the task’s allocations in IPS, as a function of the speed of the speakers. Notice that PD2-LJ’s

performance decreases (i.e., maximal drift increases and the percentage of the IPS allocation decreases) with an increase in

speed. PD2-OI’s performance, on the other hand, improves with speed. The most probable explanation for this is that not all

weight changes incur the same amount of drift. In particular, ideal-changeable tasks (i.e., tasks that are reweighted after being

scheduled) incur little drift under PD2-OI. However, when a ideal-changeable task’s weight change is “enacted” by PD2-LJ, the

amount of drift can be substantial. Hence, it is likely that, as the speed of the speakers increases, the number of ideal-changeable

tasks also increases. (Note that the system is not fully loaded, so a task can receive more than 100% of its ideal allocation.)

In the second two graphs, in Fig. 11(c) and (d), the speed of the speakers is 2.9 m/s, and the distance from the center of the

room to each speaker varies from 10 cm to 50 cm. Inset (c) depicts the maximal drift of any task in the system at time 1,000 as

a function of the distance of the speakers. Inset (d) gives the per-task average total amount of computation completed by time

1,000, as a percentage of the task’s allocations in IPS, as a function of the distance of the speakers. One interesting behavior in

inset (c) is that the performance of PD2-LJ, in the presence of occlusions, improves as the distance increases. Such behavior is

likely a consequence of the fact that, as the radius of the speakers increases and the speed remains constant, the distance between

each speaker and microphone is affected by the occluding object for longer periods of time. Hence, share changes that occur as

a speaker becomes (or ceases being) occluded are less frequent, thus improving performance.

Note that the Whisper experiments presented here are fairly generous to PD2-LJ. While weight changes occur frequently,
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all weight changes are of one order of magnitude; in fact, most weight changes are fairly incremental. However, even in this

scenario, PD2-LJ completes at most 85% of the allocations in IPS, while PD2-OI is always within 95% of IPS.

6 Concluding Remarks
We have shown (for the first time) that fine-grained reweighting is possible on fair-scheduled multiprocessor platforms. The

experiments reported herein show that our reweighting rules enable greater precision in adapting than PD2-LJ. However, this

added precision comes at the price of higher scheduling costs. Ω(max (N,M log N)) time is required to reweight N tasks

simultaneously. In contrast, PD2-LJ entails only O(M log N) time. However, as noted earlier, experiments conducted on our

testbed system indicate that scheduling overheads will likely be small in practice under either scheme. Moreover, we have

shown in a related paper that this precision-versus-overhead tradeoff can be balanced by using schemes that are hybrids of

“pure” PD2-OI and PD2-LJ [5].

As mentioned earlier in this paper, we have ignored the issue of reweighting heavy tasks. The inclusion of heavy tasks

complicates the reweighting rules, since such a task can release a new subtask with a window length of two in (nearly) every

time slot. As a result, one “wrong” scheduling decision can force a cascade of “wrong” scheduling decisions. For non-adaptive

systems, it is possible to calculate the length of such a cascade, and make scheduling decisions based on that information.

However, for adaptive systems, the lengths of these cascades will change with time. Thus, when scheduling adaptive heavy

tasks, particular care must be taken to “correct” such “cascades.” Because of the complexity involved in constructing and proving

reweighting rules for heavy tasks, we refer the reader to the first author’s upcoming Ph.D. dissertation, which addresses this issue.

One major drawback to PD2-OI scheduling is that it (like all Pfair algorithms) suffers from potentially high migration and

preemption costs. These costs can be mitigated by using adaption schemes based upon partitioning [4] and global EDF [8].

However, as noted earlier, under partitioning, fine-grained reweighting is (provably) impossible; and under global EDF, it is

possible only if deadline misses are permissible. Because of these various tradeoffs, all three approaches are of value.

As mentioned earlier, while our focus in this paper has been scheduling techniques that facilitate fine-grained adaptations,

techniques for determining how and when to adapt are equally important. Such techniques can either be application-specific (e.g.,

adaptation policies unique to a tracking system like Whisper) or more generic (e.g., feedback-control mechanisms incorporated

within scheduling algorithms [9]). Both techniques warrant further study, especially in the domain of multiprocessor platforms.
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