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Abstract

We consider various techniques for implementing shared objects and for account-
ing for object-sharing overheads in Pfair-scheduled multiprocessor real-time sys-
tems. Lock-free objects are more economical than locking techniques when imple-
menting relatively simple objects such as buffers, stacks, queues, and lists. In this
paper, we explain how to bound the duration of lock-free object accesses under
Pfair multiprocessor scheduling. We also show that these durations can be reduced
by combining tasks into supertasks, i.e., a group of tasks that are scheduled as a
single entity; this is because the use of supertasks can prevent interfering tasks from
executing in parallel, thereby reducing the worst-case durations of object accesses.
Indeed, we show that supertasking can even enable the use of less costly unipro-

cessor synchronization techniques when all tasks sharing an object reside in the
same supertask. We illustrate these optimizations with a case study that focuses on
shared queues. Finally, we present and experimentally evaluate a simple heuristic
for assigning tasks to supertasks.
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1 Introduction

There has been much recent work on scheduling techniques that ensure fair-
ness, temporal isolation, and timeliness among tasks multiplexed on a set of
processors. Under fair scheduling disciplines, tasks are assigned weights, and
each task is scheduled at a rate that is in proportion to its weight. Executing
tasks at predictable rates prevents “misbehaving” tasks from exceeding their
weight-defined rates (temporal isolation), and allows real-time deadlines to be
guaranteed when feasible (timeliness).

In recent years, there has been considerable interest in fair scheduling algo-
rithms for multiprocessor systems [3–5,7–10]. One reason for this interest is
the fact that fair scheduling algorithms, at present, are the only known means
for optimally scheduling recurrent real-time tasks on multiprocessors. In ad-
dition, there has been growing practical interest in such algorithms. Ensim
Corp., for example, an Internet service provider, has deployed multiprocessor
fair scheduling algorithms in its product line [10].

One limitation of prior work on multiprocessor fair scheduling algorithms is
that only independent tasks that do not synchronize or share resources have
been considered. In contrast, tasks in real systems usually are not indepen-
dent. Synchronization entails additional overhead, which must be taken into
account when determining system feasibility [2,6,26–29]. Unfortunately, prior
work on real-time synchronization has been directed at uniprocessor systems,
or systems implemented using non-fair scheduling algorithms (or both), and
thus cannot be directly applied in fair-scheduled multiprocessor systems. (In-
deed, fair-scheduled uniprocessor systems were first considered only very re-
cently [9,12,14,22].)

In this paper, we consider the problem of object sharing in fair-scheduled
multiprocessor systems. Unfortunately, the use of locking synchronization is
problematic in such systems because blocking prevents tasks from executing
at a consistent rate, thereby making rate-based scheduling more difficult. For
this reason, we consider the use of lock-free techniques, which appear to be
better-suited to rate-based scheduling.

Under lock-free synchronization, shared objects are implemented without crit-
ical sections or related mechanisms. Instead, operations are optimistically at-
tempted: if an operation fails, then it is simply retried until successful. As a
result, tasks never suspend (due to synchronization). Unfortunately, lock-free
techniques can only be effectively applied to implement simple shared objects.
To support complex objects and device synchronization, lock-based techniques
are needed. Support for lock-based synchronization is discussed in [16,19].
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Contributions of this paper. We consider the use of lock-free synchroniza-
tion under multiprocessor fair scheduling. We take as our notion of fairness
the Pfairness constraint proposed by Baruah et al. [7], which provides fairness
guarantees while allocating processor time in fixed-size quanta. Although we
consider only Pfair scheduling here, the results presented herein exploit the
use of a scheduling quantum and hence can be applied to other quantum-based
multiprocessor systems as well.

This paper includes three primary contributions. First, we explain how to
account for retry overhead under Pfair scheduling, i.e., we derive a bound on
the worst-case duration of an object access. Second, we consider the use of
supertasking [17,20,24] to reduce the worst-case number of retries experienced
by accesses. A supertask is merely a collection of tasks, called component tasks,
that is scheduled as a single entity; when a supertask is scheduled, it selects
one of its component tasks for execution. In addition to reducing contention for
shared objects, supertasking can also enable the use of less costly uniprocessor
lock-free algorithms (as explained later). We use a case study to illustrate this
last benefit. Finally, we present and experimentally evaluate a simple heuristic
for assigning tasks to supertasks in order to reduce retry overhead.

The rest of the paper is organized as follows. We summarize the basics of Pfair
scheduling and supertasking in Section 2. We then introduce lock-free synchro-
nization by illustrating the concept in Section 3. In Section 4, we explain how
to bound the duration of a lock-free access, both with and without supertask-
ing. Two implementations of a shared queue are then presented in Section 5
to demonstrate the algorithmic benefits that can be obtained by using super-
tasks. Our assignment heuristic is then presented in Section 6, followed by an
experimental evaluation in Section 7. We conclude in Section 8.

2 Background

In this section, we summarize background information that is related to the
results presented herein.

The problem. We consider the scheduling of a task set τ that consists of
tasks that access one or more lock-free shared objects on M processors using
a Pfair scheduler. We let Γ denote the set of lock-free objects shared by τ . The
goal of this work is to determine the maximum duration of each access to each
object ` (∈ Γ). These duration bounds can then be used when determining
whether all timing constraints can be met. We do not assume that tasks access
only lock-free objects. Support for other common complexities, including task
suspensions and locking synchronization, are discussed in [16].
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Pfair scheduling. Under Pfair scheduling, each task T is characterized by
a weight T.w in the range (0, 1]. Conceptually, T.w is the fraction of a single
processor to which T is entitled. We let T = PF(w) to denote a Pfair task
with T.w = w.

Time is subdivided into a sequence of fixed-length slots . To simplify the pre-
sentation, we use the slot length as the basic time unit, i.e., slot i corresponds
to the time interval [i, i + 1). Within each slot, each processor may be allo-
cated to at most one task. For instance, in Figure 1(b), task B is scheduled
in slot 3, which corresponds to the time interval [3, 4). (The rest of this figure
is considered in detail below.) Task migration is allowed. We let Q denote the
quantum size, i.e., the amount of processor time actually provided by each
processor within each slot. In a real system, some processor time is unavoid-
ably consumed in each slot by system activities, such as scheduling. We refer
to such overhead as per-slot overhead. When practical overheads are ignored,
as is commonly done in the literature, Q = 1.

Pfair scheduling tracks the allocation of processor time in a fluid schedule;
deviation is formally expressed as lag(T, t), which is defined below.

lag(T, t) = fluid(T, 0, t) − received(T, 0, t) (1)

In the above equation, received(T, t1, t2) denotes the amount of processor time
received by T over [t1, t2), while fluid(T, t1, t2) denotes the amount of processor
time guaranteed by fluid scheduling over this interval. As explained in [16],
fluid(T, t1, t2) is defined as shown below. 1

fluid(T, t1, t2) = T.w · (t2 − t1) · Q (2)

The above formula follows from the fact that each processor provides (t2−t1)·Q
units of processor time to tasks over [t1, t2). Each task T is then entitled to
a fraction T.w of this quantity. (See [16] for a more detailed explanation of
fluid scheduling.) Using this notion of lag, the Pfairness timing constraint for
a task T can be formally defined as shown below.

for all t, |lag(T, t) | < Q (3)

Informally, T ’s allocation must always be within one quantum of its fluid
allocation.

Figure 1(a) shows ideal (i.e., Q = 1) fluid and Pfair uniprocessor schedules
for a task set containing three Pfair tasks: A = PF(1/4), B = PF(1/4), and
C = PF(1/2). In Figure 1(b), changes in each task’s lag are shown across the
top of the schedule.

1 Because Q = 1 is commonly assumed, Q typically does not appear in similar
formulas in the literature.
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Fig. 1. Sample schedules for τ = {A,B,C} where A = PF(1/4), B = PF(1/4), and
C = PF(1/2). (a) Schedule produced by a fluid scheduler. (b) Schedule produced
by a Pfair lag-based scheduler.

Baruah et al. [7] showed that a schedule satisfying (3) exists on M processors
for a set τ of Pfair tasks if and only if the following condition holds.

∑

T∈τ

T.w ≤ M (4)

Subtasks and windows. The use of quantum-based scheduling effectively
subdivides each task into a sequence of quantum-length subtasks . Scheduling
constraints, e.g., (3), have the effect of specifying a window of slots in which
each subtask must be scheduled. We let Ti denote the ith subtask of task T ,
and let ω(Ti) denote the window of that subtask. Figure 2 shows the window
within which each subtask of the task PF(3/10) must execute based on (3).
For example, ω(T2) = [3, 7). ω(Ti) extends from Ti’s pseudo-release, 2 denoted
r(Ti), to its pseudo-deadline, denoted d(Ti). In Figure 2, r(T2) = 3 and d(T2) =
7. A schedule satisfies Pfairness if and only if each subtask Ti executes in the
interval [r(Ti) , d(Ti)).

Pfair schedulers. Several Pfair algorithms have been proposed, including
PF [7], PD [8], PD2 [5], and EPDF [4,30]. Each of PF, PD, and PD2 is optimal,
i.e., its use will result in a Pfair schedule whenever (4) is satisfied. EPDF has
been shown to be optimal only for systems of at most two processors [4]. De-
spite this, EPDF offers some practical advantages over the optimal algorithms,
such as lower scheduling overhead. For our purposes, the choice of scheduling

2 The “pseudo” prefix avoids confusion with other uses of the terms “release” and
“deadline” in the literature. This prefix will be omitted when the proper interpre-
tation is clearly implied.
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Fig. 2. The first six windows of a task with weight 3/10, as defined by the Pfairness
constraint, are shown up to time 20.

algorithm is unimportant, i.e., we focus on producing a scheduler-independent
bound on the duration of each lock-free object access. For this reason, we do
not provide further detail on the operation of these schedulers. (See the cited
papers for additional details.)

Supertasking. In supertasking [16,17,20,24], the task set τ is partitioned into
a collection of non-empty subsets, π. Each S ∈ π, called a supertask , is then
assigned a weight S.w (see below) and competes for the system’s processors in
place of the tasks in S, called S’s component tasks . Whenever S is scheduled,
it selects one of its component tasks for execution. When |S| = 1, the lone
component task is assumed to be scheduled directly by the global scheduler.
As explained in [24], a supertask would ideally be assigned a weight equal to
the cumulative weight of its component tasks. Unfortunately, such a weight is
not sufficient in general to ensure that all timing constraints are met.

To see why a supertask with an ideal weight can fail, consider the two-processor
Pfair schedule shown in Figure 3. The task set consists of four Pfair tasks
(V = PF(1/2), W = PF(1/3), X = PF(1/3), and Y = PF(2/9)) and
one supertask S that represents the two component tasks T = PF(1/5) and
U = PF(1/45) (shown in the lower region). In Figure 3(a), S competes with
its ideal weight, i.e., S.w = 1/5 + 1/45 = 2/9. All scheduling decisions in the
upper region are consistent with the PD2 policy. In the lower region, allocations
within S are shown, which are made according to the EPDF policy.

As the schedule shows, T misses a pseudo-deadline at time 10 despite the fact
that all pseudo-deadlines are met in the global schedule. This is because no
quantum is allocated to S in the interval [5, 10). Indeed, due to this under-
allocation within [5, 10), a deadline miss is unavoidable, regardless of which
scheduling policy is used within the supertask. In prior work [16,17,20], we
proposed a weight-selection technique for supertasks, called reweighting , that
ensures the timeliness of component tasks. The cost of such a guarantee is the
use of a supertask weight that is higher than the ideal weight, though usually
by a reasonably small degree. The difference between the ideal and selected
weight is referred to as weight inflation.

6



On Processor 1 � �� �
� �� �

On Processor 2

LEGEND

� � �� � �
� � �� � �

12840

� �� �
� �� �

� �� �
� �� �

� � �� � �
	 	 		 	 	


 

 

� �� �� � �� � �

  � �� �
� �� �

� �� �� �
� �� �� �� � �� � �

� � �� � �

� �� �
� �� �

� � �� � �� � �
� �� �� �

� � �� � �
� �� �

� �� �� �
� �� �� �

� �� �
� �� � � �� �

� �� �
         

! !! !! !

" "" "
# ## #

$ $$ $$ $
% %% %% %

& & && & &
' ' '' ' '

( (( (( (
) )) )) )

* * ** * ** * *
+ ++ ++ +

, ,, ,, ,
- -- -- -

. . .. . .. . .
/ / // / // / /

0 00 00 0
1 11 11 1

2 22 22 2
3 33 33 3

4 44 44 4
5 55 55 5

6 66 66 6
7 77 77 7
8 88 88 8
9 99 99 9

: :: :
; ;; ;

< < << < <
= = == = =

> >> >> >
? ?? ?? ?

TASKS SCHEDULE

1/2

1/3

1/3

1/5T

V

W

X

Y

WITHIN S

2/9

S 2/9

TIME

U 1/45

DEADLINE MISS

(a)

12840

@ @@ @
A AA A

B BB B
C CC C

D DD D
E EE E

F FF F
G GG G

H H HH H HH H H
I I II I II I I

J JJ J
K KK K

L L LL L LL L L
M MM MM M

N NN N
O OO O

P PP P
Q QQ Q

R R RR R R
S S SS S S

T T TT T T
U UU U

V V VV V VV V V
W WW WW W

X X XX X X
Y Y YY Y Y

Z Z ZZ Z Z
[ [[ [

\ \ \\ \ \
] ] ]] ] ]^ ^ ^^ ^ ^

_ _ __ _ _` ` `` ` `
a aa a

b b bb b b
c cc c d d dd d d

e ee e

f f ff f f
g g gg g g

h h hh h hh h h
i i ii i ii i i

j j jj j jj j j
k kk kk k

l ll ll l
m mm mm m

n n nn n nn n n
o o oo o oo o o

p p pp p pp p p
q qq qq q

r r rr r rr r r
s s ss s ss s s

t tt tt t
u uu uu u

v v vv v vv v v
w w ww w ww w w

x x xx x x
y y yy y y

z z zz z z
{ { {{ { {

| || |
} }} }

~ ~ ~~ ~ ~
� � �� � �

TASKS SCHEDULE

1/2

1/3

1/3

1/5T

V

W

X

Y

WITHIN S

2/9

S

TIME

U 1/45

2/5

X X

(b)

Fig. 3. Two-processor schedule with a (a) normal and (b) reweighted supertask S.

Figure 3(b) illustrates how reweighting can ensure timeliness. In this schedule,
S.w has been increased to 2/5, resulting in an inflation of 2/5 − 2/9 = 8/45.
(We use an unusually high degree of inflation here to simplify the example.)
As shown, no component task violates its timing constraints. However, an
unfortunate side effect of reweighting is that a supertask will inevitably be
allocated more processor time than its component tasks can utilize; quanta
marked with an “X” are allocated to the supertask but cannot be used.

Periodic and sporadic tasks. In the examples and experiments presented
later, we consider a task set τ consisting only of periodic [23] and sporadic [25]
tasks. (The analysis presented later in the paper does not require the use of
a particular task model.) Each periodic and sporadic task T is characterized
by four parameters: an offset T.φ, a per-job execution requirement T.e, a
period T.p, and a relative deadline T.d. Each time the task is invoked, a job

is released that must complete within T.d time units. The first invocation
occurs at time T.φ. Under the periodic (respectively, sporadic) task model, the
next invocation occurs exactly (respectively, at least) T.p time units after the
previous invocation. Each job requires T.e units of processor time to complete.

We make the simplifying assumption that T.p = T.d for each task T . Under
such an assumption, a task T is often characterized by its utilization T.u,
which is defined by T.e/T.p. Informally, a task’s utilization is the fraction of
a single processor’s time that will be consumed by the task in the limit. Such
tasks can be scheduled under a Pfair scheduler by applying a mapping rule,
which assigns a weight to each task based on its requirements. Mapping rules
for periodic and sporadic tasks are given in [16].
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typedef Qtype:
record data: valtype; next : pointer to Qtype

shared var Head , Tail : pointer to Qtype

private var old , new : pointer to Qtype; input: valtype;
addr : pointer to pointer to Qtype

procedure Enqueue(input)
∗new := (input, nil);
do old := Tail ;

if old 6= nil then addr := &((∗old).next)
else addr := &Head fi

while ¬CAS2(&Tail , addr , old , nil , new , new)

Fig. 4. Lock-free enqueue

3 Lock-free Object Sharing

Lock-free algorithms are an alternative to semaphore-based techniques when
implementing software-based shared objects. These algorithms work particu-
larly well for simple objects like buffers, queues, and lists. Lock-free algorithms
avoid locking by using retry loops. Figure 4 depicts a lock-free enqueue oper-
ation with such a loop. In this example, an &x operation returns the address
at which the variable x is stored in memory, while the ∗x operation returns
the data stored at the memory address given by x. The queue is implemented
as a singly linked list, where the next field acts as the inter-node link.

An item is enqueued by using a two-word compare-and-swap (CAS2) instruc-
tion 3 to atomically update both the tail pointer and either the next pointer
of the last node or the head pointer, depending on whether the queue is empty.
This loop is executed repeatedly until the CAS2 call succeeds. An important
property of lock-free implementations such as this is that operations may inter-

fere with each other. In this example, an interference results when a successful
CAS2 call by one task causes another task’s CAS2 call to fail.

We also consider the use of wait-free algorithms, which are stricter forms of
lock-free algorithms. Wait-freedom strengthens lock-freedom by requiring that
each operation eventually makes progress, i.e., starvation must be avoided.
To provide such a guarantee, wait-free algorithms must consist only of code
segments with a bounded number of loop iterations.

Requirements of analysis. When lock-free objects are used in real-time sys-

3 The first two parameters of CAS2 specify addresses of two shared variables, the
next two parameters are values to which these variables are compared, and the
last two parameters are new values to assign to the variables if both comparisons
succeed. Although CAS2 is uncommon, it makes for a simple example here.
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tems, bounds on loop retries must be computed to enable scheduling analysis.
On uniprocessors, aspects of priority schedulers can be taken into account to
determine such bounds [2]. On real-time multiprocessors, lock-free algorithms
have long been considered impractical, because the number of interferences
across processors 4 is difficult to bound. However, as we later show, the pre-
dictability of quantum-based scheduling can be exploited to help bound such
interferences more tightly than is possible under fully preemptive scheduling.

Limitations. Although lock-free algorithms are ideal for rate-based schedul-
ing, they are not always appropriate. Specifically, lock-free techniques tend to
produce efficient implementations only for simple objects, such as queues and
buffers, and often rely on the use of strong synchronization primitives, such
as the CAS2 instruction described above. For complex objects, overhead (both
time and space) can be prohibitive. In such cases, locking synchronization is
more suitable. Furthermore, lock-free synchronization can only be applied to
software-based shared objects. Locking must be used to synchronize accesses
to external devices. Hence, support for locking synchronization is a necessity
in many systems. Support for locking synchronization under Pfair scheduling
is discussed in detail in [16].

4 Analysis

We now describe how to account for lock-free retries in order to bound the du-
ration of an object access. The efficient use of lock-free algorithms is made pos-
sible by the quantum-based model underlying Pfair scheduling, as explained
below.

4.1 Definitions and Assumptions

Our analysis consists of showing how an access to a lock-free object ` can
be treated as an independent operation of duration e. This conversion is ac-
complished by defining e so that it includes not only the actual execution
requirement of the access, but also the worst-case retry overhead.

We define the following additional notation to simplify the statement of results:

– Let A(T, `) be the maximum number of accesses to object ` in a single

4 An interference is said to occur across processors if the interfering task resides
on a different processor than the task experiencing the failed retry-loop attempt.
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quantum. 5 When using supertasks, let A(S, `) = max{ A(T, `) | T ∈ S }.
– Let N(`) denote min(M, |{ T | A(T, `) > 0 }|) when not using supertasks;

when using supertasks, let it denote min(M, |{ S | A(S, `) > 0 }|). Infor-
mally, N(`) is the maximum number of processors that may try to access `
in a single slot.

– Let eB(`) and eR(`) denote the base and retry overhead of an operation on
`, i.e., an operation that retries k times consumes at most eB(`) + k · eR(`)
units of processor time.

– Let e
[m]
B (`) and e

[m]
R (`) denote the overheads of an m-processor implementa-

tion of `. In the analysis considered below, we assume that eB(`) = e
[N(`)]
B (`)

and eR(`) = e
[N(`)]
R (`)

To simplify the analysis, we consider only a single bound for all operations on
a given object `. The analysis presented here is easily extended to support a
separate bound for each operation.

We make the following assumptions regarding retries and interferences.

Interference Assumption (IA): Any pair of concurrent accesses to the
same object may potentially interfere with each other.

Retry Assumption (RA): A retry can be caused only by the completion
of an operation on the same object. (Hence, the number of retries is at
most the number of concurrent accesses to the object.)

Preemption Assumption (PA): Each operation spans at most two
quanta and hence can be preempted at most once.

(PA) stems from the observation that lock-free loop iterations are typically
very short relative to Q [1]. Determining whether this assumption holds is
straightforward. When (PA) does not hold for an object, lock-free techniques
do not provide an efficient means for implementing that object.

Some additional notation is defined below.

– Let I(T, `) = maxsumM−1 { A(U, `) | U ∈ τ/{T} }. Informally, I(T, `) is
the maximum number of retries that T can experience in a single quantum
without supertasking.

– Let I(S, `) = maxsumM−1 { A(T , `) | T ∈ π/{S} }. Informally, I(S, `) is
the maximum number of retries that T ∈ S can experience in a single
quantum.

5 Timing analysis is needed to obtain these bounds. This analysis focuses on de-
riving bounds on the time required to execute each code block in a source listing.
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4.2 Analysis without Supertasks

In this subsection, we consider the conversion of object accesses when super-
tasks are not used.

Theorem 1 When supertasking is not used, an access to lock-free object ` by

task T requires at most eB(`) + (2 · I(T, `) + 1) · eR(`) units of processor time.

Proof. By (PA), a single access to ` is preempted at most once before com-
pletion. In the worst case, this access experiences the maximum number of
retries during the quantum preceding the preemption and during the quan-
tum in which the access completes. By (RA), the worst-case number of retries
in a single quantum is bounded by the number of concurrent accesses to `
within that quantum. Since there are at most M − 1 tasks executing in par-
allel with T ’s job and each such task U makes at most A(U, `) accesses to `
within the quantum, it follows that I(T, `) is an upper bound on the number
of retries that T will perform in each quantum due to parallel interference.
(Note that (PA) implies that I(T, `) · eR(`) is much smaller than Q.) There-
fore, at most 2 · I(T, `) + 1 retries are performed before the access completes.
(At most I(T, `) retries are needed for each quantum in which T executes. In
addition, if T is preempted during an attempt, then an additional retry may
be needed due to accesses performed while T was not executing.) Therefore,
eB(`) + (2 · I(T, `) + 1) · eR(`) is an upper bound on the total processor time
required. 2

4.3 Analysis with Supertasks

Supertasking can improve performance in the following two ways.

– A supertask can prevent potentially-interfering tasks from executing in par-
allel. By doing so, the number of retries needed to complete an operation
can be reduced.

– By (PA), if all tasks that share an object are component tasks of the same
supertask, then a retry is necessary only if the access is preempted. As a
result, a simpler wait-free algorithm can often be used.

When supertasks are used, the worst-case number of interferences experienced
in a single quantum changes from I(T, `) to I(S, `), where T ∈ S. In addition,
algorithmic gains may be obtained by a reduction in N(`), which impacts eB(`)
and eR(`). As observed earlier, when N(`) = 1, ` can be implemented using a
uniprocessor algorithm. We demonstrate the benefit of such an implementation
later with a case study.
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Theorem 2 When supertasking is used, an access to lock-free object ` by task

T (∈ S) requires at most eB(`)+ (2 · I(S, `)+1) · eR(`) units of processor time.

Proof. The proof is virtually identical to that of Theorem 1. However, since
T can be scheduled in parallel with at most one component task from each of
the other supertasks, the worst-case number of retries that can occur during
each quantum is I(S, `) instead of I(T, `). 2

4.4 Examples

We now use the above theorems to derive weights for a sample task set in which
all shared objects use lock-free implementations. To simplify the example, we
assume that each task T is a synchronous (i.e., T.φ = 0) periodic task with an
integer period that equals the task’s relative deadline. We let J (T, `) denote
the number of accesses made to the lock-free object ` by each job of T . Also, we
let Q = 1 for this example. Under these assumptions, the weight assignment
T.w = dT.ee/T.p is sufficient to guarantee timeliness [16].

Consider the example four-processor task set shown in Figure 5(a)–(b). The
value given in the e column is the total execution requirement of each job
without considering lock-free object accesses. This example considers only two
implementations for each object `: a uniprocessor implementation (used when
N(`) = 1) and a multiprocessor implementation (used when N(`) > 1). We
use the above theorems to select task weights for this set below.

Without supertasks. Figure 5(c) summarizes the values that are com-
puted when applying Theorem 1. We explain each column in turn by stepping
through the computation of T10’s weight. First, we must bound the number
of retries for each of T10’s object accesses. Consider `1. Applying the defini-
tion of I(T10, `1) yields I(T10, `1) = maxsumM−1 { A(U, `1) | U ∈ τ/{T10} } =
maxsum3{2, 1, 1, 1, 1, 0, 0, 0, 0} = 4. This is shown in the column labeled I(`1)
in Figure 5(c). Next, we compute the worst-case execution cost of a single ac-
cess to object `1 by T10, labeled λ(`1) in the table. Since N(`1) = min(4, 6) = 4,

eB(`1) = e
[M ]
B (`1) = 0.05 and eR(`1) = e

[M ]
R (`1) = 0.16. From these values

and the expression λT10
(`1) = eB(`1) + (2 · I(T10, `1) + 1) · eR(`1), we get

λT10
(`1) = 0.05+ (2 · 4 + 1) · 0.16 = 1.49. We can now determine the total exe-

cution overhead of T10’s accesses to `1 in a single job, labeled Λ(`1) in the table,
by simply multiplying the value in the λ(`1) column by that in the A(`1) col-
umn. Doing so yields ΛT10

(`1) = 5 · 1.49 = 7.45. In a similar manner, it can be
shown that ΛT10

(`2) = 12.084. Hence, the execution requirement of an entire
job of T10 is upper-bounded by 50+7.45+12.084 = 69.534. Applying the map-
ping rule given earlier to T10 then yields the weight d69.534e/700 = 70/700,
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T e p, d A(`1) A(`1) A(`2) A(`2)

T1 10 100 2 1 0 0

T2 15 100 1 1 0 0

T3 15 100 0 0 1 1

T4 25 100 0 0 2 2

T5 25 200 2 1 1 1

T6 30 200 1 1 0 0

T7 20 200 0 0 1 1

T8 40 300 3 2 0 0

T9 65 500 0 0 2 1

T10 50 700 5 2 12 3

(a)

` e
[1]
B (`) e

[1]
R (`) e

[M ]
B (`) e

[M ]
R (`)

`1 0.012 0.08 0.05 0.16

`2 0.005 0.075 0.017 0.11

(b)

T I(`1) I(`2) λ(`1) λ(`2) Λ(`1) Λ(`2) w

T1 5 6 1.81 1.447 3.62 0.0 14/100

T2 5 6 1.81 1.447 1.81 0.0 17/100

T3 5 6 1.81 1.447 0.0 1.447 17/100

T4 5 5 1.81 1.227 0.0 2.454 28/100

T5 5 6 1.81 1.447 3.62 1.447 30/200

T6 5 6 1.81 1.447 1.81 0.0 32/200

T7 5 6 1.81 1.447 0.0 1.447 22/200

T8 4 6 1.49 1.447 4.47 0.0 45/300

T9 5 6 1.81 1.447 0.0 2.894 68/500

T10 4 4 1.49 1.007 7.45 12.084 70/700

(c)

Fig. 5. (a) A sample task set τ on M = 4 processors with two lock-free objects
`1 and `2. All parameters are expressed in units of quanta. (b) Parameters of `1

and `2. (c) Summary of computed values when applying Theorem 1. The λ and Λ
columns show selected temporary values.
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S Components A(`1) A(`2) I(`1) I(`2)

S1 T1, T2, 2 0 2 3

T6, T8

S2 T3, T4, T5, 2 3 2 0

T7, T9, T10

(a)

T I(`1) I(`2) λ(`1) λ(`2) Λ(`1) Λ(`2) w

T1 2 3 0.85 0.53 1.70 0.0 12/100

T2 2 3 0.85 0.53 0.85 0.0 16/100

T3 2 0 0.85 0.08 0.0 0.08 16/100

T4 2 0 0.85 0.08 0.0 0.16 26/100

T5 2 0 0.85 0.08 1.70 0.08 27/200

T6 2 3 0.85 0.53 0.85 0.0 31/200

T7 2 0 0.85 0.08 0.0 0.08 21/200

T8 2 3 0.85 0.53 2.55 0.0 43/300

T9 2 0 0.85 0.08 0.0 0.16 66/500

T10 2 0 0.85 0.08 4.25 0.96 56/700

(b)

Fig. 6. (a) Parameters computed for analysis when using the partitioning
π = {{T1, T2, T6, T8}, {T3, T4, T5, T7, T9, T10}}. (b) Summary of all values computed
when applying Theorem 2.

as shown in the last column of the table. Since the calculated weights of all
tasks are upper-bounded by unity and their sum is upper-bounded by M , (4)
implies that this task set is schedulable under any optimal Pfair scheduling
policy.

With supertasks. Figure 6(a) shows one possible partitioning of the example
task set from Figure 5(a). This partitioning assigns all tasks accessing `2 to S2

and then assigns all remaining tasks to S1. By doing so, we permit the use of
the more efficient uniprocessor algorithm for `2 in place of the multiprocessor
version. Therefore, eB(`2) = e

[1]
B (`2) = 0.005 and eR(`2) = e

[1]
R (`1) = 0.075.

However, notice that the multiprocessor version of `1’s algorithm must still
be used. Hence, eB(`1) = e

[M ]
B (`1) = 0.05 and eR(`1) = e

[M ]
R (`1) = 0.16. Since

the computations in Theorem 2 are similar to those already demonstrated, we
do not explain them here. The values resulting from each step can be seen

14



in Figure 6(b). Notice that many of the task weights are smaller than in the
previous example. In addition, the total weight has reduced from 1.57 to 1.45.
Unfortunately, as discussed earlier in Section 2, the use of supertasks produces
some loss, which somewhat offsets this improvement.

Remarks. In a later section, we present experimental results that suggest
that supertasking often improves schedulability, even with reweighting over-
head. However, in a system with relatively few processors, the benefit of super-
tasking is often negated by its cost. This is because of the limited parallelism
in such systems. Recall that the most significant component of the retry over-
head is caused by the parallel execution of tasks. Hence, this overhead scales
with M and may be insignificant for small values of M . For this reason, it is
always advisable to calculate the weights of task sets both with and without
supertasks in order to determine whether supertasking is beneficial.

5 Case Study: Queues

In this section, we illustrate the algorithmic benefits that can be obtained by
enabling the use of a uniprocessor object implementation instead of a multipro-
cessor implementation. This is accomplished by presenting two lock-free queue
implementations and comparing the number of primitive operations performed
by each. These queue implementations are presented only to demonstrate that
simpler lock-free implementations often suffice on uniprocessors, i.e., we do not
claim that these are the best lock-free queue implementations.

5.1 Variable Tagging

Lock-free algorithms often use the compare-and-swap (CAS) primitive to up-
date shared variables. CAS is similar to the CAS2 primitive (used in Figure 4),
but accesses only one memory location. Unlike CAS2, CAS (and similar prim-
itives) are fairly common. The primary benefit of CAS is that it can avoid
the late-write problem. This problem occurs when a task T ’s next instruction
updates a shared variable, but another update on that variable occurs first. If
T ’s update succeeds, then the result of the earlier update will be overwritten.

The late-write problem. To illustrate why late writes can be undesirable,
consider a simple shared counter that supports only an increment operation.
To perform the increment, a task must make a local copy of the current value,
increment that local value, and then overwrite the shared value with the local
value. Now, suppose two tasks simultaneously invoke the increment operation
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and read the value 2 from the shared variable, resulting in a local value of 3.
Once the first operation updates the counter, the second operation becomes
invalid due to the fact that its update is based on an out-of-date counter value
(i.e., the increment is based on the counter value 2, but the current value is 3).
Hence, the second update, which is called an enabled late write, must fail to
ensure correctness.

Preventing late writes. By using CAS, we can ensure that the value being
overwritten is equal to the value read by the task. Such a guarantee would
be sufficient for the above example because the shared variable’s value mono-
tonically increases; 6 hence, each value is uniquely associated with only one
successful increment operation. Unfortunately, when multiple operations may
successfully write the same value, simply comparing the current value to that
read earlier is not sufficient to determine whether other updates occurred after
that read.

The CAS primitive can be used to detect modification by subdividing a word of
memory into two sets of bits. One set stores the current value of the variable,
while the second stores a counter like that discussed above. This counter field
is called the variable’s tag . Each time an update is attempted, an increment
operation is applied to the tag. By the same reasoning given above, each value
of the tag is uniquely associated with a single operation. Hence, updates of the
variable can be detected by checking the tag. Since the tag and value comprise
a single word of memory, a CAS operation can be used to atomically compare
and update both values simultaneously. Both implementations presented here
use tagged variables.

template tagged(T ): record tag : integer; value: T

Our algorithms use the template definition shown above to define tagged vari-
ables. As stated above, each tagged variable is assumed to require only one
memory word. Though accounting for the bounded range of the tags is an
important issue, we ignore this complication here since such advanced issues
are outside the scope of this discussion. Instead, we make the simplifying as-
sumption that tag ranges are unbounded.

5.2 Algorithms

Our multiprocessor and uniprocessor queue implementations are shown in
Figures 8 and 9, respectively. Since we are introducing this algorithm only
to illustrate a point, we omit a proof of correctness. (The proof can be found

6 To simplify the discussion, we ignore the possibility of rollover.
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in [16].) Both implementations are based on a linked list, in which each list
node consists of a value field, value, and a tagged pointer to the next list
node, next . In addition, the tagged pointers Head and Tail record the start
and end, respectively, of the list. To allow safe concurrent enqueue and dequeue
operations, the linked list contains a dummy head node. The structure of the
queue is illustrated in Figure 7.

DUMMY

Tail Head

HeadTail

Representation
Physical

Representation
Logical

Fig. 7. Physical and logical representation of the shared queue.

The next and Tail pointers are tagged to support multiple enqueuers (writers).
For the single-enqueuer case, the enqueue procedure simplifies to Enqueue 1W,
shown below Enqueue MW in Figure 8, and these tag fields can be safely re-
moved. Similarly, the tag field in Head supports multiple dequeuers (read-
ers) and can be safely removed in the single-dequeuer case. In this case,
Dequeue MR simplifies to the procedure Dequeue 1R in Figure 8. Enqueue 1W

and Dequeue 1R are common to both implementations, and thus are not re-
peated in Figure 9.

Multiprocessor algorithm. In the multiprocessor version, an enqueue op-
eration invokes Enqueue MW and passes a node (in) containing the value to be
enqueued. The next field is initialized in lines 1–2 and the done flag cleared in
line 3. The next field of the last node is then read in lines 4–5. If the compar-
ison at line 6 fails, then another enqueue has completed and a retry occurs.
Otherwise, an update of the next field is attempted (line 7). If successful, then
the new node has been chained onto the end of the list and it remains only to
update Tail . This is done in lines 8–9. If the CAS at line 7 is not successful,
then another node, call it X, has already been chained onto the end of the
list by another task, in which case the operation must be retried. Lines 8–9
ensure that Tail is correctly updated before the retry is performed. (The task
enqueuing X may not have updated Tail yet.)

The Dequeue MR procedure returns either a pointer to a node that contains the
dequeued value or nil to signify an empty queue. Since Head always points to
a dummy node, the node following the dummy node, if one exists, contains the
value at the head of the queue. Thus, Dequeue MR seeks to remove the dummy
head node and return the data stored in the node after it. This latter node
then becomes the new dummy head node. The operation begins by initializing
the done flag at line 17 and then reading address of the dummy node at line 18.
This address is compared to Tail at line 19. If equal, then either the list is
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template tagged(T ):
record

tag : integer;
value: T

typedef node:
record

value: element;
next : tagged(pointer to node)

private var

x, h, t : tagged(pointer to node);
done: boolean; out : element;
in: pointer to node

procedure Enqueue MW(in)
1: x := *(in).next ;
2: *(in).next := (x.tag+1,nil);

do

3: done := false;
4: t := Tail ;
5: x := *(t .value).next ;
6: if t = Tail then

7: done := CAS(&(*(t .value).next),
(x.tag ,nil),(x.tag+1,in));

8: x := *(t .value).next ;
9: CAS(&Tail , t , (t .tag+1,x.value))

fi

10: while ¬done

procedure Enqueue 1W(in)
11: x := *(in).next ;
12: *(in).next := (x.tag+1,nil);
13: t := Tail ;
14: x := *(t .value).next ;
15: *(t .value).next := (x.tag+1,in);
16: Tail := (t .tag+1,in)

shared var

Head , Tail : tagged(pointer to node)

procedure Dequeue MR()
returns pointer to node

do

17: done := false;
18: h := Head ;
19: if h.value = Tail .value then

20: if h = Head then

21: return nil

fi

else

22: x := *(h.value).next ;
23: if x.value 6= nil then

24: out := *(x.value).value;
25: done := CAS(&Head , h,

(h.tag+1,x.value))
fi

fi

26: while ¬done;
27: *(h.value) := (out ,(x.tag+1,nil));
28: return h.value

procedure Dequeue 1R()
returns pointer to node

29: h := Head ;
30: if h.value = Tail .value then

31: return nil

else

32: x := *(h.value).next ;
33: out := *(x.value).value;
34: Head := (h.tag+1,x.value);
35: *(h.value) := (out ,(x.tag+1,nil));
36: return h.value

fi

Fig. 8. Multiprocessor (lock-free) shared queue.

empty or the node referenced by h has been dequeued and re-enqueued by
other concurrent operations. In the latter case, h 6= Head must hold due to
tagging. Thus, line 20 correctly distinguishes between these possibilities. If the
test at line 19 is not successful, then either an interference has occurred, or
the list is non-empty. In either case, an attempt is made to dequeue the head
node in lines 22-25. (If an interference has indeed occurred, then this dequeue
attempt will fail. Attempting the operation is the simplest way to detect the
interference.) If x.value is nil at line 23, then an interference has occurred,
and the operation is retried. In line 24, the data value in the node after the
dummy node is read, as explained above. In line 25, an attempt is made to
advance the Head pointer past the (old) dummy node. If this attempt fails,
then the operation is retried. (If the CAS at line 25 succeeds, then no other
enqueue could have completed between lines 18 and 25.) Line 27 simply stores
the dequeued value into the removed node so that it can be returned at line 28.

Uniprocessor algorithm. The uniprocessor wait-free queue implementation
is obtained by unrolling the loop in the multiprocessor version a constant
number of times and then simplifying the code listing. The result is shown in
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template tagged(T ):
record

tag : integer;
value: T

procedure Enqueue MW(in)
1: pm := false;
2: x := *(in).next ;
3: *(in).next := (x.tag+1,nil);
4: t := Tail ;
5: x := *(t .value).next ;
6: if x.value 6= nil then

7: if CAS(&Tail , t ,
(t .tag+1,x.value)) then

8: t := (t .tag+1,x.value);
9: x := *(t .value).next ;
10: pm := (x.value 6= nil)

else

11: pm := true

fi

fi;
12: if ¬pm ∧ t = Tail then

13: if CAS(&(*(t .value).next),x,
(x.tag+1,in)) then

14: CAS(&Tail , t , (t .tag+1,in))
else

15: pm := true

fi

fi;
16: if pm then

17: t := Tail ;
18: x := *(t .value).next ;
19: if x.value 6= nil then

20: Tail := (t .tag+1,x.value);
21: t := (t .tag+1,x.value);
22: x := *(t .value).next

fi;
23: *(t .value).next := (x.tag+1,in);
24: Tail := (t .tag+1,in)

fi

typedef node:
record

value: element;
next : tagged(pointer to node)

shared var

Head , Tail : tagged(pointer to node)

private var

x, h, t : tagged(pointer to node);
in: pointer to node; out : element;
pm: boolean

procedure Dequeue MR()
returns pointer to node

25: h := Head ;
26: if h.value = Tail .value then

27: if h = Head then

28: return nil

fi

else

29: x := *(h.value).next ;
30: if x.value 6= nil then

31: out := *(x.value).value;
32: if CAS(&Head , h,

(h.tag+1,x.value)) then

33: *(h.value) := (out ,(x.tag+1,nil));
34: return h.value

fi

fi

fi;
35: h := Head ;
36: if h.value = Tail .value then

37: return nil

else

38: x := *(h.value).next ;
39: out := *(x.value).value;
40: Head := (h.tag+1,x.value);
41: *(h.value) := (out ,(x.tag+1,nil));
42: return h.value

fi

Fig. 9. Uniprocessor (wait-free) shared queue.

Figure 9.

The loop in Enqueue MW (Figure 8) is unrolled three times to produce the
procedure shown in Figure 9. The need for three loop iterations is illustrated
by task B in Figure 10. In this scenario, task A begins an operation close
to the slot boundary and is preempted between lines 8 and 9. As a result,
it leaves its node linked to the tail of the queue (see the tA state shown in
the lower portion of Figure 10). Suppose no other operations occur until B
initiates its operation. Because the next pointer in the node referenced by
Tail is not nil (i.e., it references A’s node), the first CAS call in line 7 fails and
line 9 updates Tail to reference A’s node. B is then preempted immediately
before line 7 during the second iteration, and some other task (C) performs
an operation while B is preempted. In this case, B’s second execution of line 7
also fails (when B resumes) because the information stored in x and t is out-
of-date. Hence, a third iteration is performed. This last iteration is guaranteed
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Fig. 10. Illustration of the worst-case scenario when using the multiprocessor
lock-free queue implementation on a quantum-based uniprocessor. This same worst
case applies to the use of this implementation within a supertask.

to succeed. It follows that three loop iterations occur in the worst case. 7

In Figure 9, the first loop iteration, which checks for a partially completed
operation, produces lines 6–11. The second iteration, which attempts to per-
form the enqueue operation, produces lines 12–15. If preemption occurs during
either of these two “iterations,” then (PA) ensures that the next iteration is
effective non-preemptable. Therefore, the third iteration can be simplified, as
shown in lines 16–24.

By (PA), the multiprocessor version of Dequeue MR iterates at most twice on
a uniprocessor. The first loop iteration corresponds to lines 25–34 in Figure 9.
If the operation is preempted, then a second iteration is performed, which
corresponds to lines 35–42.

7 Notice that only one of these iterations was caused by a preemption. Thus, al-
though there are three loop iterations, there is only one retry. Hence, this scenario
is not a violation of (PA).
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M Procedure Path R W CAS 1×R 1×W 3.5×CAS Total

> 1 Enqueue MW 13 1 6 13 1 21 35

> 1 Dequeue MR 10 2 2 10 2 7 19

1 Enqueue MW pm 8 4 2 8 4 7 19

1 Enqueue MW ¬pm 5 1 3 5 1 10.5 16.5

1 Dequeue MR 8 3 1 8 3 3.5 14.5

Fig. 11. Shared-memory instruction counts along worst-case code paths for both
queue algorithms.

5.3 Comparison

One simple method of comparing the relative efficiency of these algorithms is
to count the number of shared-memory reads and writes (denoted R and W ,
respectively) and the number of CAS invocations (denoted CAS ) that occur
in the worst case. This comparison must necessarily be made on a uniproces-
sor. For the multiprocessor version of Enqueue MW, the worst-case path under
uniprocessor execution includes three loop iterations, with six CAS calls being
made in lines 7 and 9. In addition, lines 1–2 contribute one read and write,
and each loop iteration contributes four reads. Therefore, in the worst case,
the multiprocessor Enqueue MW algorithm has R = 13, W = 1, and CAS = 6.

A similar analysis can be applied the other procedures with the exception of
Enqueue MW in Figure 9. It is unclear which code path produces the worst-case
behavior in this procedure. For this reason, we consider two paths through the
code. Figure 11 summarizes the instruction counts along all considered paths.

The cost of synchronization primitives. Synchronization primitives usu-
ally require more cycles than uncached reads and writes. LaMarca [21] noted
that the load-linked/store-conditional instruction pair (which provides func-
tionality similar to CAS) on a DEC 3000-400 with a 130 MHz Alpha 2 21064
CPU requires approximately 3.5 times the number of cycles as an uncached
shared-memory read. Though it is not a modern processor, this and other older
architectures are still being used today, particularly in embedded systems.

Comparison. A simple method for comparing these algorithms is to calculate
the weighted sums of the previous instruction counts based on LaMarca’s
observations. Though this comparison is far from exact, it does provides some
insight into the relationship between these implementations. Figure 11 shows
the sums produced by the worst-case code paths. These sums suggest that
using the uniprocessor algorithm provides an improvement in Enqueue MW and
Dequeue MR of around 84% (35

19
≈ 1.84) and 31% ( 19

14.5
≈ 1.31), respectively.
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Improvement trends. For lock-free operations that update only one vari-
able, a uniprocessor implementation may provide only a marginal improve-
ment. However, for more complex operations that update multiple variables,
significant improvement is likely. This is demonstrated by Enqueue MW, which
shows significant improvement due to the need to update two variables.

Operations that perform multiple updates can be greatly simplified by using
a multi-word compare-and-swap (MWCAS). This primitive generalizes both CAS

and CAS2 by making the number of words involved in the operation an argu-
ment. Though it is impractical to provide a MWCAS primitive in hardware, it
can be efficiently implemented in software on a uniprocessor [1]. In contrast,
no efficient implementation is known for multiprocessors. For this reason, the
class of objects that have efficient uniprocessor lock-free implementations is far
larger than the class that can be efficiently implemented on multiprocessors.

6 Assigning Tasks to Supertasks

In this section, we present a simple heuristic for assigning tasks to super-
tasks in order to reduce lock-free overhead. In the next section, we present the
results of an experimental study that compares the overhead experienced un-
der several approaches, including the use of the heuristic presented here. The
purpose of this section and the experimental study is to demonstrate that
supertasking can be an effective means of reducing lock-free overhead, even
when reweighting overhead is considered. Since reducing lock-free overhead is
but one benefit of supertasking, the heuristic considered here is too simplistic
for most systems. Indeed, provisioning supertasks in order to minimize the
total overhead remains a prominent unsolved optimization problem.

6.1 The Heuristic

Since supertask assignment is a variation of the partitioning problem, which
is known to be NP-hard in the strong sense [15], we consider the use of a
heuristic. A pseudo-code version of our heuristic is shown in Figure 12. Tasks
are prioritized based upon the number of accesses made to each object and
the degree of contention for that object. We define the weighted contention for
object ` by the value e

[M ]
R (`) ·

∑
T∈τ

J(T,`)
T.p

. In this expression,
∑

T∈τ

J(T,`)
T.p

gives the

frequency of accesses to ` by all tasks in τ . e
[M ]
R (`) then represents the inter-

ference penalty. All tasks that access the object ` with the highest weighted
contention are assigned to supertasks first. Since each task T ’s interference
depends on A(T, `), tasks are assigned in non-increasing order by A(T, `).
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Create |τ | empty supertasks and add them to π;
τ ′ := τ ;
Γ′ := Γ;
while |Γ′| > 0 ∧ |τ ′| > 0 do

Select ` ∈ Γ′ with largest e
[M ]
R (`) ·

∑
T∈τ

J(T,`)
T.p

value;

Γ′ := Γ′/{`};
while there exists T ∈ τ ′ with A(T, `) > 0 do

Select T ∈ τ ′ with largest A(T, `);
τ ′ := τ ′/{T};
Assign T to a non-full supertask using the assignment rule

od
od;
Remove all empty supertasks from π

Fig. 12. Heuristic algorithm for assigning tasks to supertasks.

After these tasks are assigned, the remaining objects are considered in non-
increasing order by weighted contention.

Assignment rules. The act of assigning selected tasks to supertasks is dele-
gated to an assignment rule. We consider the use of two rules, which are taken
from prior work on partitioning [11,13]. The Next Fit (NF) rule begins by as-
signing tasks to the first (lowest-indexed) supertask. Whenever a supertask is
unable to accept a task, the rule moves to the supertask with the next higher
index and continues. Once a supertask fails to accept a task, no further at-
tempts are made to assign to that supertask. This rule intuitively matches the
goal of the heuristic due to the fact that tasks that are consecutively assigned
are likely to be assigned to the same supertask.

The First Fit (FF) rule, on the other hand, always assigns a task to the
lowest-indexed supertask that can accept the task. The advantage of this rule
is that it may use fewer supertasks on average, which results in less reweighting
overhead. However, the fact that supertasks are not considered in sequence,
as is done under the NF rule, implies that the FF rule will be less effective
at preventing object sharing across multiple supertasks. Hence, using the FF
rule may reduce reweighting overhead, but is also likely to increase lock-free
overhead (relative to that experienced when using the NF rule).

6.2 Implementation

Unfortunately, implementing this heuristic is a non-trivial task. The problem
that arises is that the lock-free overhead depends on the assignment of tasks
to supertasks. Hence, the ultimate weight of each task is not known at the
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time of the assignment. Effectively, each task’s weight may expand or contract
after being assigned to a supertask. If the total weight of a component task
set after these weight changes exceeds unity, then the task assignments are
not valid. In such a case, another round of assignments must be performed.

We address the dependency between task weights and supertask assignments
by applying the heuristic iteratively. Specifically, an initial round of assign-
ments is conducted using “ideal” weights 8 and an acceptance test of the form

∑

T∈S

T.w ≤ α,

where α is set to unity. Once assignments are made, the weights of the com-
ponent tasks are updated and each supertask is checked to ensure that the
cumulative weight does not exceed unity. If this requirement is satisfied, then
the assignment phase ends and the supertasks are reweighted. Otherwise, the
supertask assignments are nullified, α is decremented by 0.01, and another
round of assignments are conducted using the task weights computed at the
end of the previous round.

The benefit of decreasing α (and hence increasingly underestimating the max-
imum capacity of supertasks) each time a new round begins is that a fraction
1−α of each supertask’s maximum capacity is effectively reserved to account
for the inflation of task weights. The disadvantage of such compensation is that
lowering α can result in an unnecessarily high number of supertasks, thereby
increasing reweighting overhead. For this reason, we use a relatively small step
size (i.e., 0.01) when decreasing α. We found that termination typically occurs
after only two or three rounds when using this step size.

7 Experimental Results

In this section, we present the results of an experimental study that measured
the lock-free overhead produced by randomly generated task sets as an upper
limit, denoted B, imposed on A(T, `) values was systematically increased. The
goal of this study was to determine both the relative overhead of using lock-free
objects in different ways and how this overhead scales with increasing object
contention. Lock-free synchronization, both with and without supertasks, was
considered.

For the supertasking cases, two different approaches to internal scheduling,
called QB-EPDF and QB-EDF, were considered. Informally, QB-EPDF re-
quires that all subtask deadlines be met, while QB-EDF considers only job

8 Ideal weights are based on the assumption that no retries occur.
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deadlines. Stated differently, QB-EPDF requires component tasks to execute
at a steady rate by imposing intermediate deadlines within jobs, while QB-
EDF does not. When assigning supertask weights via our reweighting approach
[16,17,20], weights are assigned in proportion to the maximum amount of pro-
cessor time that can be consumed by all requests for processor time (i.e.,
either subtasks or jobs depending on which form of supertasking is used) over
time intervals of a given length. Due to the intermediate subtask deadlines
needed to ensure a steady rate of execution, the QB-EPDF approach typically
requires higher supertask weights and hence introduces more overhead. (A
more detailed discussion of supertasking and these alternatives can be found
in [16].)

For each supertasking approach, each of the NF and FF rules, given in the pre-
vious section, was considered. Since we are unable to reasonably estimate the
impact of algorithmic improvements obtained through the use of supertasks
(like those demonstrated by the case study in Section 5), such improvements
were not considered. (Improvements due to lower retry costs were, of course,
considered.) The study presented here is only part of a larger study; full details
can be found in [16].

Sampling. As stated, this study was based on randomly generating task sets
from a sample space. We begin by defining this sample space. Four experiments
was performed, each with a different processor count; the processor count
(M) was assigned each of 2, 4, 8, and 16. For each experiment, the task set
parameters were selected as follows:

– B was set to each value in the range 1, . . . , 8;
– the task count was varied across the range 6 · log2 M, . . . , 15 · log2 M ;
– the total base 9 utilization was varied across the range 0.2 · M, . . . , 0.6 · M ;
– the object count was varied across the range log2 M, . . . , 5 · log2 M ;
– each A(T, `) value was selected from the range 1, . . . , B.

These ranges were chosen somewhat arbitrarily so that the range of values that
we expect to observe in practice would be represented. Some parameters were
systematically varied, as mentioned above, to ensure a reasonably complete
coverage of the sample space.

Measurement. The following measurements were taken during the experi-
mental runs.

Ideal: the sum of the ideal weights 10 of all tasks (a baseline measurement);

9 Lock-free overhead was not considered.
10 A task’s ideal weight is based on the assumption that no retries are needed for
object accesses.
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this measurement reflects mapping overhead 11 alone.
No Supertasks: the total weight of all tasks when object accesses are con-
sidered and supertasks are not used; this measurement reflects mapping and
retry overhead.

Ideal QB (FF): the sum of the ideal weights of all supertasks created by
the FF assignment heuristic (a baseline measurement); this measurement
reflects mapping and retry overhead.

Ideal QB (NF): the sum of the ideal weights of all supertasks created by
the NF assignment heuristic (a baseline measurement); this measurement
reflects mapping and retry overhead.

QB-EPDF (FF): the sum of the assigned weights of all supertasks cre-
ated by the FF assignment heuristic under the QB-EPDF approach; this
measurement reflects mapping, retry, and reweighting overhead.

QB-EPDF (NF): the sum of the assigned weights of all supertasks cre-
ated by the NF assignment heuristic under the QB-EPDF approach; this
measurement reflects mapping, retry, and reweighting overhead.

QB-EDF (FF): the sum of the assigned weights of all supertasks created by
the FF assignment heuristic under the QB-EDF approach; this measurement
reflects mapping, retry, and reweighting overhead.

QB-EDF (NF): the sum of the assigned weights of all supertasks created
by the NF assignment heuristic under the QB-EDF approach; this measure-
ment reflects mapping, retry, and reweighting overhead.

When discussing the supertasking approaches, apparent trends in the reweight-
ing overhead will not be noted. These trends can be distinguished from the
lock-free trends by comparing the “Ideal QB” measurements with the QB-
EPDF and QB-EDF measurements.

Results. Figure 13 shows the weight inflation plotted against B. A 99%
confidence interval was computed for each sample mean; these intervals are
shown in Figure 14. As shown, overhead can be significantly reduced through
the use of supertasks. However, the degree of improvement varies depending
on the approach. For the remainder of the section, we will discuss some of the
specific relationships shown in Figure 13.

First, notice that the “Ideal QB (FF)” and “QB-EDF (FF)” lines (respec-
tively, the “Ideal QB (NF)” and “QB-EDF (NF)” lines) are virtually co-linear.
This suggests little to no reweighting overhead is suffered under the QB-EDF
approach on average. As shown, this is not the case under the QB-EPDF
approach.

Second, notice that the impact of B in the supertasking cases is negligible
when M = 2. On two processors, typically only one or two supertasks are

11 Mapping overhead results when assigning a weight based on a mapping rule.
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Fig. 13. Plots show how inflation varies as the bound on the per-quantum number of
object accesses is increased when using lock-free synchronization on two processors.
The figure shows the sample means for the (a) M = 2, (b) M = 4, (c) M = 8, and
(d) M = 16 cases.

needed. Assigning tasks in any reasonable fashion results in little to no sharing
between supertasks. As a result, retry overhead tends to be insignificant.

Third, the reweighting overhead experienced under QB-EPDF tends to out-
weigh the reduction in retry overhead when B < 3. As explained earlier,
QB-EPDF requires that all subtask deadlines be met. Hence, it experiences
more reweighting overhead than the QB-EDF approach. The benefit of using
supertasks is determined by the relative magnitudes of the retry overhead and
the reweighting overhead introduced by the supertasks. For small B, retry
overhead is fairly low. As a result, the reweighting overhead introduced by
QB-EPDF exceeds the retry overhead avoided by the use of supertasks.

Finally, the NF rule appears to produce more overhead on average than the
FF rule. Because the NF rule abandons a supertask on the first assignment
failure, it tends to create more supertasks than the FF rule. To understand
why this leads to more overhead, suppose that each component task set has a
total utilization of 0.92 (on average) under the FF rule, but a total utilization
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Fig. 14. Plots show how inflation varies as the bound on the per-quantum number of
object accesses is increased when using lock-free synchronization on two processors.
The figure shows the 99% confidence intervals for the (a) M = 2, (b) M = 4, (c)
M = 8, and (d) M = 16 cases.

of only 0.8 under the NF rule. When the total task set utilization is 16, the
FF rule can be expected to create around d16/0.92e = 18 supertasks. On the
other hand, the NF rule should produce around d16/0.8e = 20 supertasks.
Because, the NF rule tends to produce more supertasks on average, it also
tends to incur more reweighting overhead.

8 Conclusion

In this paper, we have addressed the problem of synchronizing access to simple
shared objects in Pfair-scheduled multiprocessor systems by considering the
use of lock-free techniques. We have presented analysis to support the use
of lock-free objects under Pfair scheduling. We have also shown that lock-
free overheads can be reduced by restricting parallelism through the use of
supertasks. In addition, we presented a simple heuristic for assigning tasks to
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supertasks and experimentally evaluated its effectiveness.

These contributions are significant in part because lock-free techniques are
generally considered impractical on real-time multiprocessors. This view is
based on our inability to bound the worst-case number of interferences that
occur across processors during an operation. However, as we have shown, the
structure provided by quantum-based scheduling enables the efficient use of
lock-free techniques under Pfair scheduling and other similar approaches.

Related topics, such as supertasking and locking synchronization, are discussed
in detail in [16].
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