
A Generic Local-Spin Fetch-and-φ-based Mutual

Exclusion Algorithm∗

James H. Anderson
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175
Email: anderson@cs.unc.edu

Yong-Jik Kim
Tmax Soft Research Center

272-6 Seohyeon-dong, Seongnam-si
Gyeonggi-do, Korea 463-824

Email: jick@tmax.co.kr

November 2005, Revised November 2006

Abstract

We present a generic fetch-and-φ-based local-spin mutual exclusion algorithm, with O(1) time complexity
under the remote-memory-references time measure. This algorithm is “generic” in the sense that it can be
implemented using any fetch-and-φ primitive of rank 2N , where N is the number of processes. The rank of
a fetch-and-φ primitive is a notion introduced herein; informally, it expresses the extent to which processes
may “order themselves” using that primitive. This algorithm breaks new ground because it shows that O(1)
time complexity is possible using a wide range of primitives. In addition, by applying our generic algorithm
within an arbitration tree, one can easily construct a Θ(max(1, logr N)) algorithm using any primitive of
rank r, where 2 ≤ r < N .

Keywords: Fetch-and-φ primitives, local spinning, shared-memory mutual exclusion, theory of concurrent
algorithms, time complexity.

∗Work supported by NSF grants CCR 9972211, CCR 9988327, ITR 0082866, and CCR 0208289. This work was presented in
preliminary form at the 23rd IEEE International Conference on Distributed Computing Systems [3].

1 Introduction

Recent work on shared-memory mutual exclusion has focused on the design of algorithms that minimize
interconnection-network contention through the use of local spinning . In local-spin algorithms, all busy waiting
is by means of read-only loops in which one or more “spin variables” are repeatedly tested. Such spin vari-
ables must be either locally cacheable or stored in a local memory module that can be accessed without an
interconnection network traversal. The former is possible on cache-coherent (CC) machines, while the latter is
possible on distributed shared-memory (DSM) machines. As explained later, it is generally more difficult to
design local-spin algorithms for DSM machines than for CC machines.

In this paper, several results concerning the time complexity of local-spin mutual exclusion algorithms are
presented. The notion of time complexity assumed is that given by the remote-memory-references (RMR)
measure [4]. Under this measure, an algorithm’s time complexity is defined as the total number of remote
memory references (i.e., references that require an interconnection network traversal) required in the worst case
by one process to enter and then exit its critical section once. An algorithm may have different RMR time
complexities on CC and DSM machines, because on CC machines, variable locality is dynamically determined,
while on DSM machines, it is statically determined.

The main focus of this paper is mutual exclusion algorithms implemented using fetch-and-φ primitives. A
fetch-and-φ primitive is characterized by a particular function φ (which we assume to be deterministic), accesses
a single variable atomically, and has the effect of the following pseudo-code, where var is the variable accessed.

fetch-and-φ(var , input)
old := var ;
var := φ(old , input);
return(old)

In this paper, we distinguish between fetch-and-φ primitives that are comparison primitives and those that
are not. A comparison primitive conditionally updates a shared variable after first testing that its value meets
some condition; examples include compare-and-swap and test-and-set .1 Non-comparison primitives update
variables unconditionally; examples include fetch-and-increment and fetch-and-store.

In recent work [2], we established a time-complexity lower bound of Ω(log N/ log log N) remote memory
references for any N -process mutual exclusion algorithm based on reads, writes, or comparison primitives. In
contrast, several constant-time algorithms are known that are based on noncomparison fetch-and-φ primitives
[5, 7, 12]. This suggests that noncomparison primitives may be the best choice to provide in hardware, if one is
interested in implementing efficient blocking synchronization mechanisms.

Constant-time local-spin mutual algorithms that use noncomparison primitives have been proposed by T. An-
derson [5], Graunke and Thakkar [7], Mellor-Crummey and Scott [12], Craig [6], and Landin and Hagersten [11].
In each of these algorithms, blocked processes wait within a “spin queue.” A process enqueues itself by using a
fetch-and-φ primitive to update a shared “tail” pointer; a process’s predecessor (if any) in the queue is indicated
by the primitive’s return value. A process in the spin queue waits (if necessary) until released by its predeces-
sor. Although these algorithms follow a common strategy, they vary in the primitives used and the progress
properties ensured. Some important attributes of each algorithm are listed below.

• T. Anderson’s algorithm uses fetch-and-increment and requires an underlying cache-coherence mechanism
for spins to be local. Thus, it has O(1) RMR time complexity only on CC machines.

• Graunke and Thakkar’s algorithm uses fetch-and-store. This algorithm also requires an underlying cache-
coherence mechanism and thus has O(1) RMR time complexity only on CC machines.

• Craig [6] and Landin and Hagersten [11] independently proposed the same algorithm, which is based on
fetch-and-store. While Landin and Hagersten considered only CC machines, Craig presented constant-time
variants of the algorithm for both CC and DSM machines.

1compare-and-swap and test-and-set are ordinarily defined to return a boolean condition indicating if the comparison succeeded.
In this paper, we instead assume that each returns the accessed variable’s original value, as in [8]. It is straightforward to modify
any algorithm that uses the boolean versions of these primitives to instead use the versions considered in this paper.

1

• Mellor-Crummey and Scott actually presented two variants of their algorithm, one that uses fetch-and-
store, and a second that uses both fetch-and-store and compare-and-swap. In both, spins are local on both
CC and DSM machines. However, the fetch-and-store variant is not starvation-free, and hence actually
has unbounded RMR time complexity. The variant that also uses compare-and-swap is starvation-free
and has O(1) RMR time complexity on both CC and DSM machines.

The existence of these algorithms gives rise to a number of intriguing questions regarding mutual exclusion
algorithms. Can O(1) mutual exclusion algorithms be devised for both CC and DSM machines using primitives
other than fetch-and-increment and fetch-and-store? Is it possible to automatically transform a local-spin
algorithm for CC machines so that it has the same RMR time complexity on DSM machines? Given that the
Ω(log N/ log log N) lower bound mentioned above applies to algorithms that use comparison primitives, we
know that there exist fetch-and-φ primitives that are not sufficient for constructing O(1) algorithms. For such
primitives, what is the most efficient algorithm that can be devised? Can we devise a ranking of synchronization
primitives that indicates the singular characteristic of a primitive that enables a certain RMR time complexity
(for mutual exclusion) to be achieved? Such a ranking would provide information relevant to the implementation
of blocking synchronization mechanisms that is similar to that provided by Herlihy’s wait-free hierarchy [8], which
is relevant to nonblocking mechanisms.2

Contributions of this paper. While we are not yet able to fully answer all of these questions, we do take some
initial steps towards their resolution in this paper. We begin by proposing a ranking of fetch-and-φ primitives.
Informally, a primitive of rank r has sufficient symmetry-breaking power to linearly order up to r invocations
of that primitive. Based on this notion of a rank, we then present a generic N -process fetch-and-φ-based local-
spin mutual exclusion algorithm that has O(1) RMR time complexity on both CC and DSM machines. This
algorithm is “generic” in the sense that it can be implemented using any fetch-and-φ primitive of rank 2N . Our
generic algorithm breaks new ground because it shows that O(1) RMR time complexity is possible using a wide
range of primitives, on both CC and DSM machines.

We present our generic algorithm by first giving a variant that is designed for CC machines. We then present
a transformation, which may be of more general interest, that can be used to replace spin loops that are local on
CC machines with ones that are local on DSM machines. This transformation is then applied to our algorithm.
This transformation makes use of an underlying two-process mutual exclusion algorithm and is correct as long
as the added two-process algorithms are invoked safely (i.e., by at most two processes at any time). We show
that our DSM algorithm is correct by showing that, within it, these invocations are safe.

Both the CC and DSM variants of our basic algorithm have Θ(N) space complexity (for N processes), which
is the same as the prior constant-time algorithms cited above. In the DSM case, Θ(N) is asymptotically optimal
because each process needs a dedicated spin variable, as explained later. The term space complexity refers to
the number of variables used. In addition, variable sizes are of importance. In our algorithms, some of the
variables that are employed have sizes that are dependent on the generic fetch-and-φ primitive that is used; all
other variables require O(log N) bits.

By applying our generic algorithm within an arbitration tree, one can easily construct a Θ(max(1, logr N))
algorithm using any primitive of rank r, where 2 ≤ r < N . For the case r = Θ(N), this algorithm is clearly
asymptotically time-optimal. However, as shown in the second author’s Ph.D. dissertation [9], there exists a
class of primitives with constant rank for which Θ(max(1, logr N)) is not optimal. This is shown by presenting a
Θ(log N/ log log N) algorithm that can be implemented using any primitive that meets an additional condition.
This algorithm is quite complicated, and therefore is not presented in this paper, due to space constraints.
This additional condition arises due to the need to reset a variable that is repeatedly updated by fetch-and-φ
primitive invocations. In the generic algorithm presented in this paper, variables are reset using simple writes.
In the Θ(log N/ log log N) algorithm presented in [9], the fetch-and-φ primitive used must be of rank at least
three and also be self-resettable, which means that the primitive itself can be used to reset a variable that has

2Herlihy’s hierarchy is concerned with computability: a primitive (or object) X is stronger than a primitive (or object) Y if X
can be used to implement Y (in a non-blocking manner) but not vice versa. The ranking suggested here is not concerned with
computability, but rather time complexity. Nonetheless, both rankings provide information concerning the usefulness of primitives.
Herlihy’s hierarchy indicates which primitives should be supported in hardware if one is interested in implementing nonblocking
algorithms; the proposed ranking indicates which primitives should be supported in hardware if one is interested in implementing
scalable spin locks.

2

been updated using that primitive, i.e., it is not necessary to perform resets using simple write operations. In
the Θ(log N/ log log N) algorithm, this self-resettable feature is used (in addition to sometimes resetting with
simple writes), with a resulting asymptotic improvement in time complexity for primitives of rank o(log N). As
explained in [9], it follows from the Ω(log N/ log log N) lower bound mentioned above that this algorithm is
time-optimal for certain self-resettable primitives of constant rank.

Organization. The rest of this paper is organized as follows. In Section 2, we present needed definitions.
Then, in Section 3, we present our generic algorithm. A formal proof of correctness for two versions of the
generic algorithm is presented in Appendices A and B. We end the paper with concluding remarks in Section 4.

2 Definitions

In the mutual exclusion problem, each process cycles through four code sections, termed “noncritical,” “entry,”
“critical,” and “exit” sections, respectively. A process may halt within its noncritical section but not within its
critical section. Furthermore, no variables (other than program counters) accessed within a process’s entry or
exit section may be accessed within its critical or noncritical section. The objective is to design the entry and
exit sections so that the following requirements hold.3

• Exclusion: At most one process executes its critical section at any time.

• Starvation-Freedom: If some process is in its entry (exit) section, then that process eventually executes
its critical (noncritical) section.

We hereafter let N denote the number of processes in the system, and assume that each process has a unique
process identifier in the range 0, . . . , N − 1.

We assume the existence of a generic fetch-and-φ primitive, as defined in Section 1. We will use “Vartype”
to denote the type of the accessed variable var . (The accessed variable’s type is part of the definition of such a
primitive.) For example, for a fetch-and-increment primitive, Vartype would be integer, and for a test-and-set
primitive, it would be boolean. In our algorithms, we use ⊥ to denote the initial value of a variable accessed
by a fetch-and-φ primitive (e.g., if Vartype is boolean, then ⊥ would denote either true or false). We now
define the notion of a “rank,” mentioned earlier.

Definition: The rank of a fetch-and-φ primitive is the largest integer r satisfying the following.

For each process p, there exists a constant array αp[0..∞] of input values, such that, for any integer
value ap, if p performs the sequence of fetch-and-φ invocations given by

for i := ap to ∞ do fetch-and-φ(v, αp[i]) od

on a variable v (of type Vartype) that is initially ⊥ (for some choice of ⊥), then in any interleaving
of these invocations by the N different processes, (i) any two invocations among the first r − 1 by
different processes write different values to v, (ii) any two successive invocations among the first
r − 1 by the same process write different values to v, and (iii) of the first r invocations, only the
first invocation returns ⊥.

A fetch-and-φ primitive has infinite rank if the condition above is satisfied for arbitrarily large values of r. �

As our generic algorithm shows, a fetch-and-φ primitive with rank r has enough power to linearly order r
invocations by possibly different processes unambiguously. Note that it is not necessary for the primitive to
fully order invocations by the same process, since each process can keep its own execution history.

3Progress properties other than starvation-freedom may be of interest as well.

3

P P

MM

Interconnect

P P

C C

Interconnect

M M

.

. . .

(a) (b)

Figure 1: (a) DSM model. (b) CC model. In both insets, ‘P’ denotes a processor, ‘C’ a cache, and ‘M’ a
memory module.

Examples. An r-bounded fetch-and-increment primitive on a variable v with range 0, . . . , r − 1 is defined
by φ(old , input) = min(r − 1, old + 1). (In this primitive, the input parameter is not used, and hence we may
simply assume αp[j] = ⊥ for all p and j.) If v is initially 0, then any r consecutive invocations on v return
distinct values, 0, 1, . . . , r− 1. Moreover, any further invocation (after the rth) returns r− 1, which is the same
as the return value of the rth invocation. Therefore, an r-bounded fetch-and-increment primitive has rank r,
and an unbounded fetch-and-increment primitive has infinite rank.

For fetch-and-increment primitives, the input parameter α is extraneous. However, this is not the case for
other primitives. Consider a fetch-and-store primitive on a variable with 2N +1 distinct values (2N pairs (p, 0)
and (p, 1), where p is a process, and an additional initial value ⊥). By defining αp[j] = (p, j mod 2), it is
easily shown that fetch-and-store has infinite rank. (Informally, each process may write the information “this is
an (even/odd)-indexed invocation by process p” each time.) It also follows that an unbounded fetch-and-store
primitive has infinite rank.

Finally, test-and-set has rank two: only the first test-and-set invocation on a variable initially false returns
its initial value. compare-and-swap also has rank two.

3 A Constant-Time Generic Algorithm

In this section, we present an O(1) mutual exclusion algorithm that uses a generic fetch-and-φ primitive, which
is assumed to have rank at least 2N . Two variants of the algorithm are presented, one for CC machines and one
for DSM machines. These two architectural paradigms have been considered extensively in work on local-spin
algorithms. Both are illustrated in Figure 1. In a DSM machine, each processor has its own memory module
that can be accessed without accessing the global interconnection network. On such a machine, a shared variable
can be made locally accessible by storing it in a local memory module. In a CC machine, each processor has a
private cache, and some hardware protocol is used to enforce cache consistency (i.e., to ensure that all copies of
the same variable in different local caches are consistent). On such a machine, a shared variable becomes locally
accessible by migrating to a local cache line. In this paper, we consider a DSM machine with caches that are
kept coherent to be a CC machine.4 We also assume that there is a unique process executing the algorithm on
each processor and that these processes do not migrate.

In local-spin algorithms for DSM machines, each process must have its own dedicated spin variables (which
must be stored in its local memory module). In contrast, in algorithms for CC machines, processes may share
spin variables, because each process can read a different cached copy. Because of this flexibility, algorithms

4Although virtually every modern multiprocessor is cache-coherent, non-cache-coherent DSM systems are still used in embedded
applications, where cheaper computing technology often must be used due to cost limitations. Thus, the DSM model is of relevance
for reasons other than historical interest.

4

for CC machines tend to be a bit simpler than those for DSM machines. This is why we present separate
algorithms. Our CC algorithm, denoted G-CC, is presented first, and then its DSM counterpart, denoted G-
DSM, is obtained by means of a fairly simple transformation. The two algorithms are shown in Figures 2 and
5. In both algorithms, “await B,” where B is a boolean expression, is used as a shorthand for the busy-waiting
loop “while ¬B do /∗ null ∗/ od.”

As noted earlier, we assess time complexity using the RMR (remote-memory-references) time complexity
measure. As its name suggests, only remote memory references that cause an interconnect traversal are counted
under this measure. We will assess the RMR time complexity of an algorithm by counting the total number of
remote memory references required by one process to enter and then exit its critical section once. An algorithm
may have different RMR time complexities under the CC and DSM models because the notion of a remote
memory reference differs under these two models. In the CC model, we assume that, once a spin variable has
been cached, it remains cached until it is either updated or invalidated as a result of being modified by another
process on a different processor. (Effectively, we are assuming an idealized cache of infinite size: a cached
variable may be updated or invalidated but it is never replaced by another variable because of associativity or
capacity limitations.)

3.1 Algorithm G-CC: A Generic Algorithm for CC Machines

In this section, we present our generic algorithm for CC machines. Our intent here is to explain the various
mechanisms used in the algorithm in an intuitive way. In so doing, we state and explain several formal properties
of the algorithm. However, these explanations cannot be taken as a formal proof of correctness. For that, we
refer the reader to Appendix A. At the end of this section, we illustrate some of the algorithm’s properties by
considering a fairly comprehensive example execution.

When trying to implement a mutual exclusion algorithm using a generic fetch-and-φ primitive — of which
only its rank r is known — the primary problem that arises is the following.

If the primitive is invoked more than r times to access a variable, then it may not be able to provide
enough information for processes to order themselves. Therefore, the algorithm must provide a means
of resetting such a variable before it is accessed r times.

Because we are using a primitive of rank 2N in Algorithm G-CC, we need to reset a variable accessed
by the primitive before it is accessed 2N times. We do this by using two “waiting queues,” indexed 0 and 1.
Associated with each queue j is a “tail pointer,” Tail [j]. In its entry section, a process enqueues itself onto one
of these two queues by using the fetch-and-φ primitive to update its tail pointer, and waits on its predecessor,
if necessary. At any time, one of the queues is designated as the “current” queue, which is indicated by the
shared variable CurrentQueue. The other queue is called the “old” queue. The algorithm switches between the
two queues over time in a way that ensures that each tail pointer is reset before being accessed 2N times. We
now describe the reset mechanism in detail.

When a process p begins its entry section, it determines which queue is the current queue by reading the
variable CurrentQueue (statement 3 of Figure 2), and then enqueues itself onto that queue using the fetch-and-φ
primitive (statement 5). If p is not at the head of its queue (p.prev �= ⊥),5 then it waits until its predecessor
in the queue updates the spin variable Signal [p.idx][p.prev] (statement 6), which p then resets (statement 7).
Note that the local variable p.prev (if not ⊥) indicates a spin variable written by p’s predecessor in the queue.
The spin variable that a potential successor to p may wait on is indicated, from p’s perspective, by the local
variable p.self .

As explained below, it is possible for a process q to read CurrentQueue before another process updates
CurrentQueue to switch to the other queue. Such a process q will then enqueue itself onto the old queue.
Thus, both queues may possibly hold waiting processes. To arbitrate between processes in the two queues, an
extra two-process mutual exclusion algorithm is used. A process competes in this two-process algorithm (after
reaching the head of its waiting queue) using the routines Entry2 and Exit2, with the index of its queue as
a “process identifier” (statements 8 and 12), as illustrated in Figure 3(a). Note that this extra two-process
algorithm can be implemented from reads and writes in O(1) time [13].

5We use s.p to denote the statement with label s of process p, and p.v to represent p’s private variable v.

5

shared variables
CurrentQueue: 0..1;
Tail : array[0..1] of Vartype initially ⊥;
Position: array[0..1] of 0..2N − 1 initially 0;
Signal : array[0..1][Vartype] of boolean initially false;
Active: array[0..N − 1] of boolean initially false;
QueueIdx : array[0..N − 1] of (⊥, 0..1)

private variables
idx : 0..1;
counter : integer;
prev , self , tail : Vartype;
pos: 0..2N − 1

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: QueueIdx [p] := ⊥;
2: Active[p] := true;
3: idx := CurrentQueue;
4: QueueIdx [p] := idx ;
5: prev := fetch-and-φ(Tail [idx], αp[counter]);

self := φ(prev , αp[counter]);
counter := counter + 1;
if prev �= ⊥ then

6: await Signal [idx][prev];
7: Signal [idx][prev] := false

fi;
8: Entry2(idx);

9: Critical Section;

10: pos := Position[idx];
11: Position[idx] := pos + 1;
12: Exit2(idx);

13: if (pos < N) ∧ (pos �= p) then
14: await ¬Active[pos] ∨
15: (QueueIdx [pos] = idx)

elseif pos = N then
16: tail := Tail [1 − idx];
17: Signal [1 − idx][tail] := false;
18: Tail [1 − idx] := ⊥;
19: Position[1 − idx] := 0;
20: CurrentQueue := 1 − idx

fi;

21: Signal [idx][self] := true;
22: Active[p] := false
od

Figure 2: Algorithm G-CC: Generic fetch-and-φ-based mutual exclusion algorithm for CC machines.

As explained above, some process must reset the current queue before it is accessed 2N times. To facilitate
this, each queue j has an associated shared variable Position[j]. This variable indicates the relative position of
the current head of the queue, starting from 0. For example, in Figure 3(a), the head of queue 0 is at position 2,
and hence Position[0] equals 2. A process in queue j updates Position[j] while still effectively in its critical
section (statements 10 and 11). Thus, Position[j] cannot be concurrently updated by different processes.

A process exchanges the role of the two queues in its exit section if it is at position N in the current queue
(statements 16–20). (These statements will be explained in detail shortly.) Figures 3(b) and 3(c) show the state
of the two queues before and after such an exchange. In order to exchange the queues, we must ensure the
following property.

Property 1 If a process executes its critical section after having acquired position N of the current queue,
then no process is in the old queue.

(A process is considered to be “in” the old queue if it read the index of that queue from CurrentQueue.
In particular, that process may not yet have updated the queue’s tail pointer.) Given Property 1, a process
at position N may safely reset the old queue and exchange the queues. (More formally, the fact that such an
exchange is safe follows from invariant (I13) in Appendix A.) Property 1 is a direct consequence of the following
property.

Property 2 If a process executes its critical section after having acquired position pos of the current queue,
and if pos > q, then, by the time process p reaches statement 21, process q is not in the old queue.

To maintain Property 2, each process p has two associated variables, Active[p] and QueueIdx [p], which
indicate (respectively) whether process p is active, and if so, which queue it is executing in (statements 1, 2,
4, and 22). If a process p executes at position q < N in the current queue, then in its exit section, p waits

6

Queue 0:
 the �current� queue
Queue 1:
 the �old� queue

. . .

Tail[0]

Tail[1]

New processes
may enter the
current queue.

2-process
ME algorithm

(a)

processes that have
finished execution

head waiting
processes

Queue 0:
 the �current� queue

Queue 1:
 the �old� queue

. . .

. . .

(no active processes)

0 1 N−1 N N+1

(b)

Queue 0:
 the �old� queue

Queue 1:
 the �current� queue

. . .

(empty: Tail[1] = ⊥)

0 1 N−1 N N+1

(c)

Queue 0:
 the �current� queue

Queue 1:
 the �old� queue

. . .

0 1 position q

(d)
process q

. . .

Wait for process q
to finish.

Figure 3: The structure of Algorithm G-CC. (a) The overall structure. This figure shows a possible state of
execution when the current queue is queue 0. (The “finished” processes may be duplicated, because a process
may execute its critical section multiple times.) (b) A state just before CurrentQueue is updated. (c) A state
just after CurrentQueue is updated. (d) A process (in its exit section) in the current queue waiting for another
in the old queue.

until either q finishes its exit-section execution (i.e., Active[p] = false; statement 14) or enters the current queue
(statement 15). p thus ensures that process q does not execute in the old queue, and then signals a possible
successor (i.e., a process at position q + 1 in the current queue) that it is now at the head of the current queue
(statement 21). This situation is depicted in Figure 3(d).

Although p waits for q, starvation-freedom is guaranteed, because q is in the old queue, and hence makes
progress independently of the current queue. Only the current queue is stalled until q finishes execution. (The
fact that p may have to wait for a significant duration in its exit section may be a cause for concern. However,
such waiting can be eliminated, if process p instructs process q to signal p’s successor after q finishes its critical
section. Thus, p may finish execution without waiting for q. For simplicity, this handshake has not been added
to Algorithm G-CC.)

We now explain statements 16–20, which are executed in order to exchange the role of the two queues.
Without loss of generality, suppose that a process p executes these statements with p.idx = 0. (See Figure 3(b)
and Figure 3(c).) Variables Tail [1] and Position[1] are initialized by statements 18 and 19, respectively. In
addition, we must ensure that each entry of the Signal [1][. . .] array is reset to false. Note that, if a process
q in queue 1 establishes Signal [1][x] = true (where x = q.self) by executing statement 21, then its successor r
(which spins on Signal [1][x] at statement 6) resets Signal [1][x] by executing statement 7. Thus, by the time p
executes statements 16–20, Property 1 ensures that every entry of Signal [1][. . .] is reset to false, except for the
one set by the last process in queue 1. (Clearly, the last process does not have a successor, so this entry is not

7

reset.)
Property 1 again ensures that this last entry of queue 1 is indicated by Tail [1]. Therefore, statements 16

and 17 properly reset this entry and thereby complete the reinitialization of Signal [1][. . .]. Finally, statement 20
exchanges the two queues.

We still must show that using a fetch-and-φ primitive of rank 2N is sufficient. Suppose that process p
acquires position N of queue 0 when it is the current queue. We claim that at most N − 1 processes may be
enqueued onto queue 0 after p and before the queues are exchanged again. For a process q to enqueue itself onto
queue 0 after p, it must have read the value of CurrentQueue before it was updated by p. For q to enqueue itself
a second time onto queue 0, it must read CurrentQueue = 0 again, after CurrentQueue = 1 was established by
p. This implies that the two queues have been exchanged again. (We remind the reader that, by the explanation
above, the queues will not be exchanged again until there are no processes in queue 0.) Thus, after p establishes
that queue 1 is current, and while queue 0 continues to be the old queue, at most N − 1 processes may be
enqueued (after p) onto queue 0. Thus, we have the following property.

Property 3 Each process’s position is between 0 and 2N − 1 (inclusive).

(Formally, this property follows from invariants (I15) and (I22) in Appendix A.) It follows that a rank of
2N is sufficient.

Example: To better illustrate the various mechanisms used in the algorithm, we will construct an example
execution, which is illustrated in Figure 4. In this example, each Tail variable is assumed to range over
0, . . . , 2N − 1, with its initial value defined to be 0. (That is, the type Vartype is taken to be 0..2N − 1, and
in the declaration of Tail and in statements 5 and 18, the symbol ⊥ is taken to be 0.) Furthermore, we assume
that the fetch-and-φ primitive being used is a 2N -bounded fetch-and-increment primitive.

The execution is constructed as follows. Starting from the initial state, processes 0 and 1 alternately enter
and exit their critical sections while CurrentQueue = 0 continues to hold until process 0 obtains 0.prev = N
(statement 5) and establishes 0.pos = N (statement 10). Assume at this point in the execution that process 0
is about to execute statement 13 and all other processes are in their noncritical sections.

Before continuing, note that, in the execution described so far, had one of processes 0 and 1 waited on the
other at statement 6, then when its waiting ceased, it would have immediately reset the correspond Signal
variable to false in statement 7. Thus, at this point in the execution, all Signal variables in queue 0 are false.
The situation so far is illustrated in Figure 4(a).

To continue, suppose that process 1 executes its entry section until it busy waits at statement 6, then
process 2 does the same, followed in the same way (in order) by processes 3 through N − 1. Then, prior to
waiting at statement 6, each process k, where 1 ≤ k < N , obtains k.prev = N + k. That is, the spin variable
that process k’s predecessor in queue 0 updates is at position N + k. (Note that, for our particular choice of
fetch-and-φ primitive, we have p.pos = p.prev for each process p, but in general these two values may have no
relation with each other.)

Now, suppose that process 0 executes statements 16–20 to switch the queues. This establishes the following:

• 0.tail = 0 (statement 16; recall that ⊥ = 0 is the initial value of Tail [1]);

• Signal [1][0] = false (statement 17; this actually has no impact because all Signal variables are initially
false);

• Tail [1] = 0 (statement 18; again, ⊥ is defined to be 0);

• Position[1] = 0 (statement 19); and

• CurrentQueue = 1 (statement 20).

Next, suppose that process 0 establishes Signal [0][N + 1] = true (statement 21; note that 0.prev = N and
0.self = N + 1) and Active[0] = false (statement 22) and returns to its noncritical section. Before continuing
with the execution, note that, at this point, because Signal [0][N +1] = true holds, process 1 is enabled to transit
from statement 6 to statement 7. When it later executes statement 7, it will re-establish Signal [0][N +1] = false.

8

(a)

F F F. . . F F . . .

0 1 N N+1 N+2 2N−1

Signal[0][...]

F F. . . F F . . .

CurrentQueue = 1

F

F

0@13
CurrentQueue = 0

(b)
F F F. . . T F . . .
0 1 N N+1 N+2 2N−1

F F. . . F F . . . F

1@6 2@6 . . . N−1@6

CurrentQueue = 1

(c)
F F F. . . F . . .
0 1 N N+1 N+2 2N−1

FF ... F F . . . F

2@6 . . . N−1@6

F

F

F

F

F

CurrentQueue = 1

(d)
F F F. . . F F . . .
0 1 N N+1 N+2 2N−1

F F. . .F F . . . FF

T
(No active processes in Queue 0)

(e)

FF F. . .F F . . .

0 1 N N+1 N+2 2N−1

F F. . .F F . . . F

F
CurrentQueue = 0

F

(No active processes in Queue 0)

0@21

F

Signal[1][...]

Signal[0][...]

Signal[1][...]

Signal[0][...]

Signal[1][...]

Signal[0][...]

Signal[1][...]

Signal[0][...]

Signal[1][...]

0@10

(No active processes in Queue 1)

(No active processes in Queue 1)

(No active processes in Queue 1)
F : pointed at by Tail

T

Figure 4: Example execution of of Algorithm G-CC. The notation p@s means that process p is enabled to
execute statement s. In each inset, the value of each active process p’s prev variable is indicated; this value
indicates a spin variable that p’s predecessor updates and that p may potentially block on. For example, in
inset (a), 0.prev = N .

In a similar way, when processes 2 through N − 1 later execute statement 7, each of Signal [0][N + 2] through
Signal [0][2N − 1] will be reset to false. However, process N − 1 later will establish Signal [0][2N − 1] = true
when it executes statement 21. (A 2N -bounded fetch-and-increment operation on a variable with the value
2N − 1 leaves the variable’s value unchanged, so (N − 1).prev = 2N − 1 and (N − 1).self = 2N − 1.) We must
make sure that, as the execution progresses, Signal [0][2N − 1] = false is re-established before queue 0 becomes
the current queue again. Note that, at this point in the execution, Tail [0] = 2N − 1 holds. (This fact will be
used later.) The situation so far is illustrated in Figure 4(b).

To continue the execution, note that, to the point described so far, process 0 is in its noncritical section, and

9

each other process is in queue 0, with process 1 stalled at statement 6 and processes 2 through N − 1 blocked
there. Now, assume that process 0 enters its entry section once again. Then, it will read CurrentQueue = 1
(statement 3) and obtain 0.prev = 0 (statement 5). Assuming that each of the remaining processes remains at
statement 6 (so none acquires the two-process lock), process 0 may progress to statement 10, where it establishes
0.pos = 0, and then to statement 13. Because 0.pos = 0 holds, process 0 next transits to statement 21. After
executing statements 21 and 22, suppose that process 0 returns to its noncritical section.

Now, suppose that process 0 repeats the above actions while the other processes remain at statement 6.
Then, the scenario is similar, but process 0 now obtains 0.prev = 1 (statement 5) and then establishes 0.pos = 1
(statement 10). Thus, when process 0 reaches statement 13, it will transit to statement 14, where it will be
blocked until process 1 is either no longer active or has accessed queue 1. Suppose that process 1 completes its
entry, critical, and exit sections, and returns to its noncritical section, after which, process 0 (because it is no
longer blocked) transits to statement 21, as illustrated in Figure 4(c). At this point in the execution, process 1
is no longer in queue 0 (see Property 2). Suppose now that process 0 completes its exit section and also returns
to its noncritical section.

Suppose that we repeat this same scenario until process 0 establishes 0.pos = N by executing statement 10.
Then, by this point in the execution, no processes can be in queue 0 (see Property 1). This is illustrated in
Figure 4(d). Thus, when process 0 switches the queues again by subsequently executing statements 16–20, it
is safe to switch the two queues. Further, note that, when process 0 performs statement 16, it will obtain
0.tail = Tail [0] = 2N − 1. (This is the most recent value assigned to Tail [0] in the execution.) Thus, when it
performs statement 17, it will establish Signal [0][2N − 1] = false, which as noted earlier, must be done before
queue 0 becomes the current queue again. The execution at this point is depicted in Figure 4(e). �

The busy-waiting loops at statements 6, 14, and 15 in Figure 2 are read-only loops in which variables are
read that may be updated by a unique process. On a CC machine, each such loop incurs O(1) RMR time
complexity. It follows that Algorithm G-CC has O(1) RMR time complexity on CC machines.

As noted earlier, a detailed correctness proof of Algorithm G-CC is given in Appendix A. From the
discussion so far, we have the following lemma.

Lemma 1 If the underlying fetch-and-φ primitive has rank at least 2N , then Algorithm G-CC is a correct,
starvation-free mutual exclusion algorithm with O(1) RMR time complexity in CC machines. �

3.2 Algorithm G-DSM: A Generic Algorithm for DSM Machines

We now explain how to convert Algorithm G-CC into Algorithm G-DSM, which is illustrated in Figure 5.
The key idea of this conversion is a simple transformation of each busy-waiting loop, which we examine here
in isolation. In Algorithm G-CC, all busy waiting is by means of statements of the form “await B,” where
B is some boolean condition. Moreover, if a process p is waiting for condition B to hold, then there is a
unique process that can establish B, and once B is established, it remains true, until p’s “await B” statement
terminates.

In Algorithm G-DSM, each statement of the form “await B” has been replaced by the code fragment on
the left below (see statements 10–17 and 25–33 in Figure 5), and each statement of the form “B := true” by
the code fragment on the right (see statements 4–8, 40–44, and 45–49).

a: Entry2(J , 0);
b: flag := B;
c: Waiter [J] := if flag then ⊥ else p;
d: Spin[p] := false;
e: Exit2(J , 0);
f: if ¬flag then
g: await Spin[p];
h: Waiter [J] := ⊥

fi

i: Entry2(J , 1);
j: B := true;
k: next := Waiter [J];
l: Exit2(J , 1);
m: if next �= ⊥ then Spin[next] := true fi

The variable Waiter [J] is assumed to be initially ⊥, and Spin[p] is a spin variable used exclusively by process

10

/∗ all variable declarations are as defined in Figure 2 except as noted here ∗/
shared variables

Waiter1: array[0..N − 1] of (⊥, 0..N − 1);
Waiter2: array[0..1][Vartype] of (⊥, 0..N − 1);
Spin: array[0..N − 1] of boolean initially false

private variables
next : (⊥, 0..N − 1);
flag : boolean;
q: 0..N − 1

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: QueueIdx [p] := ⊥;
2: Active[p] := true;
3: idx := CurrentQueue;
4: Entry2(p, 1);
5: QueueIdx [p] := idx ;
6: q := Waiter1[p];
7: Exit2(p, 1);
8: if q �= ⊥ then Spin[q] := true fi;

9: prev := fetch-and-φ(Tail [idx], αp[counter]);
self := φ(prev , αp[counter]);
counter := counter + 1;
if prev �= ⊥ then

10: Entry2((idx , prev), 0);
11: flag := Signal [idx][prev];
12: Waiter2[idx][prev] :=

if flag then ⊥ else p;
13: Spin[p] := false;
14: Exit2((idx , prev), 0);
15: if ¬flag then
16: await Spin[p];
17: Waiter2[idx][prev] := ⊥

fi;

18: Signal [idx][prev] := false
fi;

19: Entry2(idx)

20: Critical Section;

21: pos := Position[idx];
22: Position[idx] := pos + 1;
23: Exit2(idx);

24: if (pos < N) ∧ (pos �= p) then
q := pos;

25: Entry2(q, 0);
26: flag :=¬Active[q] ∨
27: (QueueIdx [q] = idx);
28: Waiter1[q] :=

if flag then ⊥ else p;
29: Spin[p] := false;
30: Exit2(q, 0);
31: if ¬flag then
32: await Spin[p];
33: Waiter1[q] := ⊥

fi

elseif pos = N then
34: temp := Tail [1 − idx];
35: Signal [1 − idx][temp] := false;
36: Tail [1 − idx] := ⊥;
37: Position[1 − idx] := 0;
38: CurrentQueue := 1 − idx

fi;

39: if pos < 2N − 1 then
40: Entry2((idx , self), 1);
41: Signal [idx][self] := true;
42: next := Waiter2[idx][self];
43: Exit2((idx , self), 1);
44: if next �= ⊥ then Spin[next] := true fi

fi;

45: Entry2(p, 1);
46: Active[p] := false;
47: next := Waiter1[p];
48: Exit2(p, 1);
49: if next �= ⊥ then Spin[next] := true fi
od

Figure 5: Algorithm G-DSM: Generic fetch-and-φ-based mutual exclusion algorithm for DSM machines.
Statements different from Figure 2 are shown with boldface line numbers.

11

p (and, hence, it can be stored in memory local to p). Entry2 and Exit2 represent an instance of a two-process
mutual exclusion algorithm, indexed by J , i.e., J is used to identify a particular instance of the two-process
mutual exclusion algorithm. To see that this transformation is correct, assume that a process p executes lines
a–h while another process q executes lines i–m. Since lines b–d and j–k execute within a critical section, lines
b–d precede lines j–k, or vice versa. If b–d precede j–k, and if B = false holds before the execution of b–d,
then p assigns Waiter [J] := p at line c, and initializes its spin variable at line d. Process q subsequently reads
Waiter [J] = p at line k, and establishes Spin[p] = true at line m, which ensures that p is not blocked. On the
other hand, if lines j–k precede lines b–d, then process q reads Waiter [J] = ⊥ (the initial value) at line k, and
does not update any spin variable at line m. Since process p executes line b after q executes line j, p preserves
Waiter [J] = ⊥, and does not execute lines g and h.

Note that for the above correctness argument to be valid, it is crucial that, at any time, at most one
process executes within lines a–h and within lines i–m. Otherwise, the correctness of the underlying two-
process mutual exclusion algorithm cannot be guaranteed. In order to satisfy this property, we have to apply a
minor modification to Algorithm G-CC before applying the transformation shown above. Namely, we change
statement 21 of Algorithm G-CC as follows. (See also statement 39 in Figure 5.)

21: if pos < 2N − 1 then
Signal [idx][self] := true

fi;

We hereafter denote this modified algorithm as Algorithm G-CC′. We now informally argue that this
modification does not affect the algorithm’s correctness. Consider a process p that executes statement 21 while
at position 2N − 1. Let i = p.idx and x = p.self . By Property 3, p cannot possibly have a successor. Moreover,
a process may read Signal [i][x] (at statement 6) only if its predecessor has written (or will eventually write)
Signal [i][x] := true by executing statement 21. Hence, in Algorithm G-CC, the value of Signal [i][x] written
by p at statement 21 is never read by any process until the queues are exchanged again, at which point the
process that performs the exchange overwrites Signal [i][x] by executing statement 17.

From the preceding discussion, it follows that Algorithm G-CC′ is a correct, starvation-free mutual
exclusion algorithm, to which we can then apply the transformation shown above and obtain Algorithm G-
DSM. Moreover, all the invariants stated in Appendix A also remain valid for Algorithm G-CC′, except
for those that directly refer to the Signal array. (We will explain shortly why we cannot apply the above
transformation to Algorithm G-CC directly; see the reasoning for statements 40–43 below.) A formal version
of the argument given here regarding Algorithm G-CC′ is given in Appendix B.

We now argue that the various two-process mutual exclusion algorithms added to Figure 5 are safe by
considering each pair of Entry/Exit calls in this figure in turn. By safe, we mean that, if some process is
executing within a code fragment that begins with Entry2(J , b) and ends with Exit2(J , b), where J identifies
this particular two-process mutual exclusion instance and b is 0 or 1, then no other process may be concurrently
executing within a code fragment that begins with Entry2(J , b) and ends with Exit2(J , b). (The arguments
below are also presented more formally in Appendix B.)

Statements 4–7 and statements 45–48 : The Entry/Exit calls here are clearly safe because of the usage of the
identifier ‘p’, which uniquely corresponds to process p.

Statements 10–14 : Because the fetch-and-φ primitive used in Algorithm G-CC′ has rank at least 2N , by
Property 3, each process that executes statements 5–7 of Algorithm G-CC′ within a particular queue must
have a distinct value of prev . This implies that the Entry/Exit pair at statements 10–15 in Figure 5 is safe.

Statements 25–30 : Since the queues are switched after a process at position N executes its critical section, if
a process executes statements 14 and 15 of Algorithm G-CC′, then at that time, no process with the same
value of pos may be executing within the other queue. Since the algorithm clearly ensures that each process
executing within the same queue has a distinct value of pos, this implies that the Entry/Exit pair at statements
25–30 in Figure 5 is safe.

12

Statements 40–43 : Because the fetch-and-φ primitive has rank at least 2N , each process at queue i (for some
i) whose position is between 0 and 2N − 2 (inclusive) writes a distinct value to Tail [i] at statement 6 of
Algorithm G-CC′, and hence, has a distinct value of self . This implies that the Entry/Exit pair at statements
40–43 in Figure 5 is safe.

Note that, if process p is at position 2N − 1 of queue i, then p is allowed to write any value to Tail [i], by
the definition of rank. (By Property 3, p cannot have a successor.) Hence, in Algorithm G-CC, p’s execution
of statement 21 may write the same element of Signal as some other process residing at an earlier position. In
particular, in Algorithm G-CC, if some other process q has acquired position h (< 2N − 1) of queue i, then
both statements 21.p and 21.q may write the same element of Signal .

This does not pose a problem for Algorithm G-CC, because the execution of statement 21 is atomic, and
hence p may execute statements 8–21 only after all of its predecessors have finished executing statement 21.
However, this would be a problem if we were to implement statement 21 with statements i–m as in Algo-
rithm G-DSM. This is why we introduce an additional “if” clause in Algorithm G-CC′.6

The above transformation can also be applied within other algorithms, as long as a safety proof like that above
can be established. For example, this transformation can be applied to convert the algorithm of Graunke and
Thakkar [7] to a variant that locally spins on DSM machines.7 Given the correctness of the above transformation,
we have the following.

Lemma 2 If the underlying fetch-and-φ primitive has rank at least 2N , then Algorithm G-DSM is a correct,
starvation-free mutual exclusion algorithm with O(1) RMR time complexity in DSM machines. �

If we have a fetch-and-φ primitive with rank r (4 ≤ r < 2N), then we can arrange instances of Algorithm G-
DSM in an arbitration tree, where each process is statically assigned a leaf node and each non-leaf node
consists of an �r/2�-process mutual exclusion algorithm, implemented using Algorithm G-DSM. Because this
arbitration tree is of Θ(logr N) height, we have the following theorem. (Note that for r = 2 or 3, a Θ(logr N)
algorithm is possible without even using the fetch-and-φ primitive [13].)

Theorem 1 Using any fetch-and-φ primitive of rank r ≥ 2, starvation-free mutual exclusion can be implemented
with Θ(max(1, logr N)) RMR time complexity on either CC or DSM machines. �

It is possible to combine the arbitration-tree algorithm just described with an adaptive mutual exclusion
algorithm presented previously by us [10]. The adaptive algorithm utilizes two trees, called renaming and
overflow trees, respectively, as illustrated in Figure 6. A “name” is associated with each node within the
renaming tree. A process begins execution by attempting to acquire one of these names. It does so by entering
the renaming tree at its root and descending. As a process descends this tree, it may either stop, move left, or
move right at a node. If a process stops at a node, then it begins moving upwards within the renaming tree
— in this phase of its execution, the renaming tree is just an arbitration tree. It is possible for a process to
fail to acquire a name within the renaming tree, in which case it enters the overflow tree at a designated leaf
node. A process can fail to acquire a name only if the point contention 8 it experiences exceeds (asymptotically)
the renaming tree’s height. The overflow tree is simply a second arbitration tree. An extra two-process mutual
exclusion algorithm is used to arbitrate between the “winning” processes coming from these two trees. As
shown in [10], if a process experiences point contention k, then it will acquire a name in the renaming tree in
O(k) time (provided the renaming tree is of sufficient height). In this case, its overall RMR time complexity
for entering and exiting its critical section is O(k). By defining the renaming tree’s height to be Θ(log N), the

6In the conference version of this paper [3], we presented a DSM algorithm as a direct transformation of Algorithm G-CC. We
later discovered that an additional “if” clause is necessary, as explained here.

7In [3], we stated that the above transformation could also be applied to the algorithm of T. Anderson [5]. However, Hyonho
Lee of the University of Toronto later found that this assertion is not correct because in that algorithm it is possible for more
than two processes to invoke one of the added two-process mutual exclusion algorithms at the same time. Nonetheless, a similar
transformation can be applied to that algorithm where the availability of the fetch-and-increment primitive is exploited to avoid
the Entry and Exit calls.

8The point contention experienced by a process p is the maximum number of processes that are simultaneously active (i.e.,
outside of their noncritical sections) over a computation that starts when p becomes active and ends when it once again becomes
inactive [1].

13

O(log N)
height

failed to
get name

Renaming Tree Overflow Tree

Mutual Exclusion Alg.
Two-process

process q

got name

process p

(b) (c)(a)

Figure 6: (a) Renaming tree and overflow tree. (b) Process p gets a name in the renaming tree. (c) Process q
fails to get a name and must compete within the overflow tree.

overall RMR time complexity becomes O(min(k, log N)). The renaming tree is implemented using only atomic
reads and writes. If we change its height to Θ(max(1, logr N)) and use the fetch-and-φ-based arbitration-tree
algorithm described above to implement the overflow tree, then the overall RMR time complexity becomes
O(min(k, max(1, logr N))). Thus, we have the following theorem.

Theorem 2 Using any fetch-and-φ primitive of rank r ≥ 2, starvation-free adaptive mutual exclusion can be
implemented with O(min(k, max(1, logr N))) RMR time complexity on either CC or DSM machines, where k
is point contention. �

In presenting our algorithms, we have assumed that process identifiers range over 0, . . . , N − 1. With one
exception, this assumption is simply a matter of convenience. That one exception is the code sequence in lines
13–15 of Algorithm G-CC in Figure 2, where a process p with p.pos = k, where 0 ≤ k < N , waits until
process k is either inactive or is accessing the same queue as p. This code sequence, which is part of the reset
mechanism, creates a linkage between the range of process identifiers and the range of queue positions. This
linkage can be eliminated by introducing a third queue, which each process uses only for its first critical-section
execution. Because each process uses this queue only once, it does not need to be reset. If a process p obtains
p.pos = k in this queue, then it uses the process identifier k in its subsequent critical-section executions, which
are implemented using the two queues considered earlier. Because three queues are being used now, a three-
process mutual exclusion algorithm must be used instead of a two-process algorithm in order to arbitrate among
the “winning” processes from these queues.

4 Concluding Remarks

We have presented a ranking of fetch-and-φ primitives based on the time complexity with which such primitives
can be used to implement mutual exclusion. We have also shown that any fetch-and-φ primitive of rank r
can be used to implement a Θ(max(1, logr N)) mutual exclusion algorithm, on either DSM or CC machines.
Θ(max(1, logr N)) is clearly optimal for r = Ω(N). However, as remarked earlier, it follows from work appearing
in the second author’s Ph.D. dissertation [9] that Θ(max(1, logr N)) is not optimal for certain “self-resettable”
primitives of rank at least three. Devising asymptotically optimally algorithms for primitives of arbitrary ranks
remains as future work. It is important to note that, in designing these algorithms, our main goal was to achieve
certain asymptotic time complexities. In particular, we have not concerned ourselves with designing algorithms
that can be practically applied. Indeed, it is difficult to design practical algorithms when assuming so little of
the fetch-and-φ primitives being used. It is likely that by exploiting the semantics of a particular primitive, our
algorithms could be optimized considerably.

We believe that the notion of rank defined in this paper may be a suitable way of characterizing the “power”
of primitives from the standpoint of blocking synchronization, much like the notion of a consensus number ,
which is used in Herlihy’s wait-free hierarchy [8], reflects the “power” of primitives from the standpoint of

14

nonblocking synchronization. Interestingly, primitives like compare-and-swap that are considered to be powerful
according to Herlihy’s hierarchy are weak from a blocking synchronization standpoint (since they are subject
to our Ω(log N/ log log N) lower bound [2]). Also, primitives like fetch-and-increment and fetch-and-store that
are considered to be powerful from a blocking synchronization standpoint are considered quite weak according
to Herlihy’s hierarchy. (They have consensus number two.) This difference arises because in nonblocking
algorithms, the need to reach consensus is fundamental (as shown by Herlihy), while in blocking algorithms, the
need to order competing processes is important.

References

[1] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renaming made adaptive. In
Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing, pages 91–103.
ACM, May 1999.

[2] J. Anderson and Y.-J. Kim. An improved lower bound for the time complexity of mutual exclusion.
Distributed Computing, 15(4):221–253, December 2003.

[3] J. Anderson and Y.-J. Kim. Local-spin mutual exclusion using fetch-and-φ primitives. In Proceedings of
the 23rd IEEE International Conference on Distributed Computing Systems, pages 538–547. IEEE, May
2003.

[4] J. Anderson and J.-H. Yang. Time/contention tradeoffs for multiprocessor synchronization. Information
and Computation, 124(1):68–84, January 1996.

[5] T. Anderson. The performance of spin lock alternatives for shared-memory multiprocessors. IEEE Trans-
actions on Parallel and Distributed Systems, 1(1):6–16, January 1990.

[6] T. Craig. Queuing spin lock algorithms to support timing predictability. In Proceedings of the 14th IEEE
Real-time Systems Symposium, pages 148–156. IEEE, December 1993.

[7] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multiprocessors. IEEE Com-
puter, 23:60–69, June 1990.

[8] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124–149, 1991.

[9] Y.-J. Kim. Time Complexity Bounds for Shared-memory Mutual Exclusion. Ph.D. thesis, University of
North Carolina, Chapel Hill, NC, 2003.

[10] Y.-J. Kim and J. Anderson. Adaptive mutual exclusion with local spinning. Distributed Computing, to
appear.

[11] P. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache coherent multiprocessors. In Proceedings
of the 8th International Symposium on Parallel Processing, pages 165–171. IEEE, April 1994.

[12] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-memory multiproces-
sors. ACM Transactions on Computer Systems, 9(1):21–65, February 1991.

[13] J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed Computing, 9(1):51–
60, August 1995.

15

Appendix A: Correctness Proof for Algorithm G-CC

In this appendix, we formally prove that Algorithm G-CC, presented in Section 3.1, satisfies the Exclusion
and Starvation-Freedom properties. We use invariants and leads-to and unless properties in our proof. To define
such notions, some additional definitions are required. We define a state of a program to be an assignment of
values to the variables of the program, including process program counters. An event is a particular execution
of a statement. A history of a program is a sequence t1, e1, t2, e2, . . . , where each tj is a state, each ej is
an event, t1 is an initial state, and state tj+1 can be reached from state tj via the execution of the statement
corresponding to ej . A history is fair if and only if each continuously enabled statement is eventually executed.
A non-await statement is enabled if the program counter of the process in which it appears equals the label of
that statement. (We further comment on statement labels below.) To ease the reasoning a bit, we assume that
each await statement induces a single state transition, even though it actually represents a busy-waiting loop.
That is, we assume that a statement of the form “await B” is enabled if the above condition for non-await
statements holds, and in addition, the boolean condition B is true; when executed, such a statement causes a
single transition to the next executable statement. An assertion is an invariant for a program if and only if it
is true at each state of every history of that program. Letting A and B denote assertions, A leads-to B is true
for a program if and only if the following holds for any fair history of the program: if A holds at some state in
the history, then B holds at either the same state or some later state. A unless B is true for a program if and
only if, for any history of the program, if A ∧ ¬B holds at some state in the history, then A ∨ B holds at the
next state. Informally, A is not falsified until B is established.

The following notational conventions are used in the remainder of this appendix.

Notational Conventions: We use s.p to denote the statement with label s of process p, and p.v to represent
p’s private variable v (see Footnote 5). Let S be a subset of the statement labels in process p. Then, p@S holds
if and only if the program counter for process p equals some value in S. (Note that if s is a statement label,
then p@{s} means that statement s of process p is enabled , i.e., p has not yet executed s.)

We assume that each labeled sequence of statement(s) is atomic. For example, consider statement 15 of
Figure 2. When executed by process p, this statement (atomically) updates p.prev , p.self , and p.counter , and
establishes p@{6} if the value assigned to p.prev differs from ⊥, and establishes p@{8}, otherwise. We number
statements in this manner to reduce the number of cases that must be considered in the correctness proof. It
can be seen that each labeled statement accesses at most one non-auxiliary (see below) shared variable, and
does so via a single read, write, or fetch-and-φ operation. �

Our proof also makes use of a number of auxiliary variables. In Figure 7, Algorithm G-CC is shown with
these added auxiliary variables, which are accessed only by statements 5 and 18. We begin with a description
of these variables.

Private auxiliary variable p.position keeps track of p’s position in the queue; as shown by invariant (I49)
below, when p is in its exit section, p.position equals the non-auxiliary variable p.pos.

For i = 0 or 1, HistLen[i], Hist[i][0..∞], and Param[i][0..∞] keep the history of queue i since the last time it
was initialized. (As explained in Section 3.1, each queue is accessed at most 2N times before it is re-initialized.
Thus, only finite prefixes of Hist[i][. . .] and Param[i][. . .] are actually used.)

Example. Assume that queue i is initially empty. Then, initially we have the following.

Tail [i] = ⊥;
HistLen[i] = 0;

Hist[i] =
(⊥, ⊥, ⊥, . . .

)
;

Param[i] =
(⊥, ⊥, ⊥, . . .

)
.

Now suppose that processes p, q, r, and p execute statement 5 (in that order), and that the private variables
p.counter , q.counter , and r.counter initially equal 0, 3, and 5, respectively.

If the underlying fetch-and-φ primitive is fetch-and-store with 2N +1 distinct values (as defined in Section 2),

16

shared variables
CurrentQueue: 0..1;
Tail : array[0..1] of Vartype initially ⊥;
Position: array[0..1] of 0..2N − 1 initially 0;
Signal : array[0..1][Vartype] of boolean initially false;
Active: array[0..N − 1] of boolean initially false;
QueueIdx : array[0..N − 1] of (⊥, 0..1)

type
ParamType = record

proc: 0..N − 1;
counter : integer

end

shared auxiliary variables
HistLen: array[0..1] of 0..∞ initially 0;
Hist: array[0..1][0..∞] of Vartype initially ⊥;
Param: array[0..1][0..∞] of ParamType initially ⊥

private variables
idx : 0..1;
counter : integer;
prev , self , tail : Vartype;
pos: 0..2N − 1

private auxiliary variable
position: 0..∞

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: QueueIdx [p] := ⊥;
2: Active[p] := true;
3: idx := CurrentQueue;
4: QueueIdx [p] := idx ;

5: /∗ atomically execute lines 5a–5h ∗/
5a: prev := Tail [idx];
5b: self := φ(prev , αp[counter]);
5c: Tail [idx] := self ;
5d: position := HistLen[idx];
5e: Param[idx][position] := (p, counter);
5f: Hist[idx][position + 1] := self ;
5g: HistLen[idx] := position + 1;
5h: counter := counter + 1;

if prev �= ⊥ then
6: await Signal [idx][prev];
7: Signal [idx][prev] := false

fi;
8: Entry2(idx);

9: Critical Section;

10: pos := Position[idx];
11: Position[idx] := pos + 1;
12: Exit2(idx);

13: if (pos < N) ∧ (pos �= p) then
14: await ¬Active[pos] ∨
15: (QueueIdx [pos] = idx)

elseif pos = N then
16: tail := Tail [1 − idx];
17: Signal [1 − idx][tail] := false;

18: /∗ atomically execute lines 18a–18d ∗/
18a: Tail [1 − idx] := ⊥;
18b: HistLen[1 − idx] := 0;
18c: forall j do Param[1 − idx][j] := ⊥ od;
18d: forall j do Hist[1 − idx][j] := ⊥ od;

19: Position[1 − idx] := 0;
20: CurrentQueue := 1 − idx

fi;

21: Signal [idx][self] := true;
22: Active[p] := false
od

Figure 7: Algorithm G-CC with auxiliary variables added.

17

then we have the following after these four fetch-and-φ invocations take place.

Tail [i] = (p, 1);
HistLen[i] = 4;

Hist[i] =
(⊥, (p, 0), (q, 1), (r, 1), (p, 1), ⊥, ⊥, . . .

)
;

Param[i] =
(
(p, 0), (q, 3), (r, 5), (p, 1), ⊥, ⊥, . . .

)
.

On the other hand, if the underlying fetch-and-φ primitive is fetch-and-increment (where we define ⊥ = 0),
then Tail [i] and Hist[i] have the following final value, while the other two variables hold the same values as
above.

Tail [i] = 4;
Hist[i] =

(⊥ (= 0), 1, 2, 3, 4, ⊥, ⊥, . . .
)
.

List of Invariants

We will establish the Exclusion property by proving that the conjunction of a number of assertions is an invariant.
This proves that each of these assertions individually is an invariant. These invariants are listed below. Unless
stated otherwise, we assume the following: i ranges over 0 and 1; h, j, k, and l range over 0..∞; x and y range
over Vartype; p, q, and r range over 0..N − 1.

invariant (Exclusion)
∣
∣{p :: p@{9..12}}∣

∣ ≤ 1 (I1)
invariant

∣
∣{p :: p@{7..21} ∧ p.idx = i

}∣
∣ ≤ 1 (I2)

invariant p@{6..22} ∧ p.idx = i ∧ p.position = h ⇒
HistLen[i] > h ∧ p.prev = Hist[i][h] ∧ p.self = Hist[i][h + 1] ∧ Param[i][h].proc = p (I3)

invariant 0 < HistLen[i] < 2N ⇒ Tail [i] �= ⊥ (I4)
invariant p@{8..21} ∧ p.idx = i ⇒ (∀x :: Signal [i][x] = false) (I5)
invariant Signal [i][x] = true ⇒ x = Hist[i][Position[i]] (I6)
invariant Signal [i][x] = Signal [i][y] = true ⇒ x = y (I7)
invariant p@{7} ∧ p.idx = i ⇒ Signal [i][p.prev] = true (I8)
invariant

∣
∣{p :: p@{6, 7} ∧ p.idx = i ∧ p.prev = x

}∣
∣ ≤ 1 (I9)

invariant Position[i] = q + 1 ⇒
q@{0..3} ∨ q.idx = i ∨ (∃p :: p@{12..20} ∧ p.idx = i) (I10)

invariant q + 1 < Position[i] ≤ N ⇒ q@{0..3} ∨ q.idx = i (I11)
invariant p@{11..13} ∧ p.idx = i ∧ p.pos = N ⇒

CurrentQueue = i ∧ (∀q :: q@{0..3} ∨ q.idx = i) (I12)
invariant p@{16..20} ∧ p.idx = i ⇒

CurrentQueue = i ∧ (∀q :: q@{0..3} ∨ q.idx = i) (I13)
invariant p@{11} ∧ p.idx = i ⇒ Position[i] = p.pos (I14)
invariant p@{12..21} ∧ p.idx = i ⇒ Position[i] = p.pos + 1 (I15)
invariant HistLen[i] > h ∧ Param[i][h] = (p, c) ⇒

Hist[i][h + 1] = φ(Hist[i][h], αp[c]) (I16)
invariant Tail [i] = Hist[i][HistLen[i]] (I17)
invariant Hist[i][0] = ⊥ (I18)
invariant 0 ≤ j < k < HistLen[i] ∧

Param[i][j] = (p, c1) ∧ Param[i][k] = (p, c2) ∧
(∀l : j < l < k :: Param[i][l].proc �= p) ⇒

18

c2 = c1 + 1 (I19)
invariant 0 ≤ j < HistLen[i] ∧

Param[i][j] = (p, c) ∧
(∀k : j < k < HistLen[i] :: Param[i][k].proc �= p) ⇒

(p.counter = c + 1 ∧ p@{4..22} ∧ p.idx = i) ∨
(p.counter = c + 1 ∧ p@{0..3}) ∨
(p@{0..3} ∧ CurrentQueue = 1 − i) ∨
(p@{4..22} ∧ p.idx = CurrentQueue = 1 − i) (I20)

invariant 0 ≤ HistLen[i] ≤ 2N (I21)
invariant 0 ≤ Position[i] ≤ 2N (I22)
invariant HistLen[i] = 0 ⇒ (∀x :: Signal [i][x] = false) (I23)
invariant p@{18} ∧ p.idx = i ⇒ (∀x :: Signal [1 − i][x] = false) (I24)
invariant p@{17} ∧ p.idx = i ⇒ p.tail = Tail [1 − i] (I25)
invariant p@{7..11} ∧ p.idx = i ⇒ Position[i] = p.position (I26)
invariant p@{12..21} ∧ p.idx = i ⇒ Position[i] = p.position + 1 (I27)
invariant

[
HistLen[i] − Position[i] =

∣
∣{p :: p@{6..11} ∧ p.idx = i

}∣
∣] ∨

(∃p :: p@{19} ∧ p.idx = 1 − i) (I28)
invariant

∣
∣{p :: p@{6..22} ∧ p.idx = i ∧ p.position = h

}∣
∣ ≤ 1 (I29)

invariant CurrentQueue = i ⇒∣
∣{p :: p@{4, 5} ∧ p.idx = 1 − i

}∣
∣ ≤ 2N − HistLen[1 − i] (I30)

invariant Position[i] = N + 1 ⇒
CurrentQueue = 1 − i ∨
(∃p :: p@{12..20} ∧ p.idx = i ∧ p.pos = N) (I31)

invariant Position[i] > N + 1 ⇒ CurrentQueue = 1 − i (I32)
invariant Active[p] = p@{3..22} (I33)
invariant p@{5..22} ∧ p.idx = i ⇒ QueueIdx [p] = i (I34)
invariant p@{2..4} ⇒ QueueIdx [p] = ⊥ (I35)
invariant Position[i] ≤ N ⇒

CurrentQueue = i ∨
(∃p :: p@{20} ∧ p.idx = 1 − i) ∨(
Position[i] = 0 ∧ (∀q :: q@{0..3} ∨ q.idx = 1 − i)

)
(I36)

invariant 1 ≤ Position[i] ≤ N ⇒ CurrentQueue = i (I37)
invariant p@{4, 5} ∧ p.idx = i ⇒ HistLen[i] < 2N (I38)
invariant p@{19, 20} ∧ p.idx = i ⇒ HistLen[1 − i] = 0 (I39)
invariant p@{20} ∧ p.idx = i ⇒ Position[1 − i] = 0 (I40)
invariant Position[i] ≤ h < HistLen[i] ⇒

(∃p :: p@{6..11} ∧ p.idx = i ∧ p.position = h) (I41)
invariant Position[i] = h > 0 ⇒

Signal [i][Hist[i][h]] = true ∨(∃p :: p@{12..21} ∧ p.idx = i ∧ p.position = h − 1
) ∨(∃q :: q@{8..11} ∧ q.idx = i ∧ q.position = h

)
(I42)

invariant 0 < j < k ≤ HistLen[i] ∧ k < 2N ∧
Param[i][j − 1].proc �= Param[i][k − 1].proc ⇒

Hist[i][j] �= Hist[i][k] (I43)
invariant 0 < j ≤ HistLen[i] ∧ j < 2N ⇒ Hist[i][j] �= ⊥ (I44)
invariant 0 < j < k ≤ HistLen[i] ∧ k < 2N ∧

Param[i][j − 1] = (p, c) ∧ Param[i][k − 1] = (p, c + 1) ⇒

19

Hist[i][j] �= Hist[i][k] (I45)
invariant Position[i] ≤ h < HistLen[i] ∧ Param[i][h].proc = p ⇒

p@{6..11} ∧ p.idx = i ∧ p.position = h (I46)
invariant p@{6} ∧ p.idx = i ⇒ Position[i] ≤ p.position (I47)
invariant Position[i] ≤ j < k < HistLen[i] ⇒ Hist[i][j] �= Hist[i][k] (I48)
invariant p@{11..22} ⇒ p.pos = p.position (I49)

Proof of the Exclusion Property

We now prove that each of (I1)–(I48) is an invariant. For each invariant I, we prove that for any pair of
consecutive states t and u, if all invariants hold at t, then I holds at u. (It is easy to see that each invariant is
initially true, so we leave this part of the proof to the reader.) If I is an implication (which is the case for most
of our invariants), then it suffices to check only those program statements that may establish the antecedent of
I, or that may falsify the consequent if executed while the antecedent holds.

invariant (Exclusion)
∣
∣{p :: p@{9..12}}∣

∣ ≤ 1 (I1)

Proof: Since the Entry2 and Exit2 routines (statements 8 and 12) are assumed to be correct, (I1) follows easily
from (I2). �

invariant
∣
∣{p :: p@{7..21} ∧ p.idx = i

}∣
∣ ≤ 1 (I2)

Proof: The only statements that may potentially falsify (I2) are 5.p and 6.p. Statement 5.p may falsify (I2) by
establishing p@{7..21} ∧ p.idx = i only if executed when

p.idx = i ∧ Tail [i] = ⊥ ∧ q@{7..21} ∧ q.idx = i

holds, where q is any arbitrary process, different from p. (In this case, process p transits from statement 5 to
statement 8.) By (I4) and (I38), p@{5} ∧ p.idx = i ∧ Tail [i] = ⊥ implies HistLen[i] = 0. However, by applying
(I3) with ‘p’ ← q, we have HistLen[i] > q.position ≥ 0, a contradiction. Thus, statement 5.p cannot falsify (I2).

Statement 6.p may falsify (I2) by establishing p@{7..21} ∧ p.idx = i only if executed when

p.idx = i ∧ Signal [i][p.prev] = true ∧ q@{7..21} ∧ q.idx = i,

holds, where q is any arbitrary process, different from p. By (I5), we have q@{7}. Thus, by (I8), we have
Signal [i][q.prev] = true, which in turn implies p.prev = q.prev by (I7). However, by (I9), this implies p = q, a
contradiction. Thus, statement 6.p cannot falsify (I2). �

invariant p@{6..22} ∧ p.idx = i ∧ p.position = h ⇒
HistLen[i] > h ∧ p.prev = Hist[i][h] ∧ p.self = Hist[i][h + 1] ∧ Param[i][h].proc = p (I3)

Proof: The only statement that may establish the antecedent is 5.p, which may do so only if executed when
p.idx = i ∧ HistLen[i] = h holds. In this case, 5.p establishes HistLen[i] = h + 1 ∧ p.self = Hist[i][h + 1] ∧
Param[i][h].proc = p. Moreover, by (I17), Tail [i] = Hist[i][h] holds before 5.p is executed, and hence, p.prev =
Hist[i][h] holds afterward.

The only statements that may falsify the consequent are 5.q and 18.q, where q is any arbitrary process. As
shown above, statement 5.p cannot falsify (I3). For q �= p, if statement 5.q is executed when HistLen[i] > h holds,
then it preserves HistLen[i] > h, and does not update Hist[i][h], Hist[i][h + 1], or Param[i][h]. Thus, statement
5.q preserves (I3).

Statement 18.q may falsify the consequent only if executed when q.idx = 1− i holds. However, by applying
(I13) with ‘p’ ← q and ‘i’ ← 1 − i, this implies p@{0..3} ∨ p.idx = 1 − i. Thus, in this case, the antecedent is
false before and after the execution of 18.q. �

20

invariant 0 < HistLen[i] < 2N ⇒ Tail [i] �= ⊥ (I4)

Proof: Invariant (I4) follows easily by applying (I44) with ‘j’ ← HistLen[i], and using (I17). �

invariant p@{8..21} ∧ p.idx = i ⇒ (∀x :: Signal [i][x] = false) (I5)

Proof: The only statements that may establish the antecedent are 5.p and 7.p. Statement 5.p may establish
the antecedent only if executed when p.idx = i ∧ Tail [i] = ⊥ holds. In this case, by (I4) and (I38), we have
HistLen[i] = 0. Hence, by (I23), the consequent is true before and after the execution of 5.p.

Statement 7.p may establish the antecedent only if executed when p@{7} ∧ p.idx = i holds. In this case, by
(I7) and (I8), Signal [i][p.prev] is the only entry among Signal [i][. . .] that is true. Thus, statement 7.p establishes
the consequent.

The only statement that may falsify the consequent is 21.q, where q is any arbitrary process. Statement 21.q
may potentially falsify (I5) only if executed when p@{8..21} ∧ p.idx = i ∧ q@{21} ∧ q.idx = i holds, which
implies p = q by (I2). Thus, 21.q falsifies the antecedent in this case. �

invariant Signal [i][x] = true ⇒ x = Hist[i][Position[i]] (I6)

Proof: The only statement that may establish the antecedent is 21.p, which may do so only if p.idx = i ∧
p.self = x holds. In this case, before 21.p is executed, Position[i] = p.position+1 and p.self = Hist[i][p.position+
1] hold, by (I27) and (I3), respectively. Thus, the consequent is true before and after the execution of 21.p.

The only statements that my falsify the consequent are 5.p and 18.p (which may update Hist[i][Position[i]])
and 11.p (which may update Position[i]), where p is any arbitrary process. Statement 5.p may update
Hist[i][Position[i]] only if executed when

p@{5} ∧ p.idx = i (1)

holds. In this case, 5.p updates only one entry of Hist[i][. . .], namely, Hist[i][h + 1], where h is the value of
HistLen[i] before its execution. Moreover, by (I28), either h ≥ Position[i] holds, or there exists a process q
satisfying q@{19} ∧ q.idx = 1 − i. In the former case, statement 5.p does not update Hist[i][Position[i]], and
hence preserves (I5). In the latter case, by (I13), we have p@{0..3} ∨ p.idx = 1 − i, which contradicts (1). It
follows that the latter case in fact cannot arise.

Statement 18.p may update Hist[i][Position[i]] only if executed when p.idx = 1 − i holds, in which case,
by (I24), the antecedent of (I6) is false before and after its execution. Similarly, statement 11.p may update
Position[i] only if executed when p.idx = i holds, in which case, by (I5), the antecedent is false before and after
its execution. �

invariant Signal [i][x] = Signal [i][y] = true ⇒ x = y (I7)

Proof: This invariant follows trivially from (I6). �

invariant p@{7} ∧ p.idx = i ⇒ Signal [i][p.prev] = true (I8)

Proof: The only statement that may establish the antecedent is 6.p, which may do so only if the consequent
holds.

The only statements that may falsify the consequent are 5.p (which assigns p.prev) and 7.q and 17.q, where
q is any arbitrary process. After the execution of 5.p, p@{7} is false. Statement 7.q may potentially falsify (I8)
only if executed when p@{7} ∧ p.idx = i ∧ q@{7} ∧ q.idx = i holds. In this case, by (I2), we have p = q, and
hence 7.q falsifies the antecedent. Statement 17.q may falsify the consequent only if executed when q.idx = 1− i
holds, which implies that p@{0..3} ∨ p.idx = 1 − i holds, by (I13). Thus, the antecedent is false before and
after the execution of 17.q. �

invariant
∣
∣{p :: p@{6, 7} ∧ p.idx = i ∧ p.prev = x

}∣
∣ ≤ 1 (I9)

21

Proof: Assume the following.

p@{6, 7} ∧ q@{6, 7} ∧ p.idx = q.idx = i ∧ p.prev = q.prev = x.

Our proof obligation is to show p = q. Define j = p.position and k = q.position. By (I3), we have (p.prev =
Hist[i][j] = x) ∧ (j < HistLen[i]). Similarly, we also have (q.prev = Hist[i][k] = x) ∧ (k < HistLen[i]). Moreover,
by (I26) and (I47), we have j ≥ Position[i] and k ≥ Position[i].

Combining these assertions, by (I48), we have j = k. By (I29), this implies p = q. �

invariant Position[i] = q + 1 ⇒
q@{0..3} ∨ q.idx = i ∨ (∃p :: p@{12..20} ∧ p.idx = i) (I10)

Proof: The only statements that may establish the antecedent are 11.r and 19.r, where r is any arbitrary
process. Statement 11.r may establish the antecedent only if executed when r.idx = i holds, in which case it
establishes the last disjunct of the consequent. If 19.r updates Position[i], then it establishes Position[i] = 0,
and hence cannot establish the antecedent. (Recall that q is assumed to range over 0..N − 1.)

The only statement that may falsify q@{0..3} ∨ q.idx = i is 3.q, which may do so only if executed when
CurrentQueue = 1−i holds, which in turn implies that Position[i] = 0 ∨ Position[i] > N holds, by (I37). Thus,
since 0 ≤ q < N , the antecedent is false before and after 3.q is executed.

The only statements that may falsify p@{12..20} ∧ p.idx = i are 13.p, 14.p, 15.p, and 20.p. Assume that
the antecedent holds before the execution of each of these statements. By (I15), we have p.pos = q < N , and
hence statement 13.p establishes p@{14}, and statement 20.p cannot be executed (since p.pos = N holds when
it is executed).

Statement 14.p may falsify p@{12..20} only if executed when Active[q] = false holds. By (I33), this implies
that q@{0..2} holds, and hence the consequent of (I10) holds after 14.p is executed. Statement 15.p may
falsify p@{12..20} ∧ p.idx = i only if executed when QueueIdx [q] = i holds. By (I34) and (I35), this implies
q@{0, 1} ∨ q.idx = i, and hence the consequent of (I10) holds after its execution. �

invariant q + 1 < Position[i] ≤ N ⇒ q@{0..3} ∨ q.idx = i (I11)

Proof: The only statements that may establish the antecedent are 11.r and 19.r, where r is any arbitrary
process. Statement 11.r updates Position[i] only if executed when r.idx = i holds, in which case, by (I14), it
increments Position[i] by one. Therefore, statement 11.r may establish the antecedent only if executed when
Position[i] = q+1 holds. In this case, by (I10), either the consequent holds, or there exists a process p satisfying
p@{12..20} ∧ p.idx = i, before the execution of 11.r. However, since we have r@{11} ∧ r.idx = i, the latter is
precluded by (I2). Therefore, the consequent is true before 11.r is executed, and hence it is also true afterward.

If statement 19.r updates Position[i], then it establishes Position[i] = 0, and hence cannot establish the
antecedent.

The only statement that may falsify the consequent is 3.q, which may do so only if CurrentQueue �= i holds.
In this case, by (I37), the antecedent is false before and after the execution of 3.q. �

invariant p@{11..13} ∧ p.idx = i ∧ p.pos = N ⇒
CurrentQueue = i ∧ (∀q :: q@{0..3} ∨ q.idx = i) (I12)

Proof: The only statement that may establish the antecedent is 10.p, which may do so only if executed when

p@{10} ∧ p.idx = i ∧ Position[i] = N (2)

holds. By (I37), this implies that CurrentQueue = i holds before and after 10.p is executed.
In order to prove that (∀q :: q@{0..3} ∨ q.idx = i) holds after the execution of 10.p, we consider two

cases, depending on the value of q. If 0 ≤ q < N − 1, then by (I11), q@{0..3} ∨ q.idx = i holds before and
after the execution of 10.p. On the other hand, if q = N − 1, then since Position[i] = N , by (I10), either

22

q@{0..3} ∨ q.idx = i holds, or there exists a process r (different from p) satisfying r@{12..20} ∧ r.idx = i.
However, the latter is precluded by (2) and (I2).

The only statement that may falsify CurrentQueue = i is 20.r (where r is any arbitrary process), which may
do so only if executed when r.idx = i holds. Taken together with the antecedent, this implies that r = p holds,
by (I2). Thus, statement 20.r falsifies the antecedent in this case.

The only statement that may falsify q@{0..3} ∨ q.idx = i is 3.q. However, if 3.q is executed when the
consequent is true, then 3.q establishes q.idx = i, and hence preserves the consequent. �

invariant p@{16..20} ∧ p.idx = i ⇒
CurrentQueue = i ∧ (∀q :: q@{0..3} ∨ q.idx = i) (I13)

Proof: The only statement that may establish the antecedent is 13.p, which may do so only if executed when
p.idx = i ∧ p.pos = N holds. In this case, by (I12), the consequent holds before and after the execution of
statement 13.p.

The only statements that may falsify the consequent are 3.q and 20.q (where q is any arbitrary process).
However, each preserves the consequent as shown in the proof of (I12). �

invariant p@{11} ∧ p.idx = i ⇒ Position[i] = p.pos (I14)
invariant p@{12..21} ∧ p.idx = i ⇒ Position[i] = p.pos + 1 (I15)

Proof: The only statement that may establish the antecedent of (I14) (respectively, (I15)) is 10.p (respectively,
11.p), which clearly establishes the corresponding consequent.

The only other statements that may falsify either consequent are 11.q and 19.q, where q is any arbitrary
process. Statement 11.q may falsify either consequent only if executed when q.idx = i holds. Taken together
with either antecedent, this implies that q = p holds, by (I2). Thus, statement 11.q falsifies the antecedent of
(I14), and establishes the antecedent and consequent of (I15).

Statement 19.q may falsify either consequent only if executed when q.idx = 1 − i ∧ q.pos = N holds. By
(I13), this implies that p@{0..3} ∨ p.idx = 1− i holds. Hence, the antecedents of (I14) and (I15) are false before
and after the execution of 19.q. �

invariant HistLen[i] > h ∧ Param[i][h] = (p, c) ⇒
Hist[i][h + 1] = φ(Hist[i][h], αp[c]) (I16)

Proof: The only statement that may establish the antecedent is 5.q, where q is any arbitrary process. (Note
that statement 18.q assigns HistLen[1 − q.idx] := 0, and hence cannot establish the antecedent.)

Statement 5.q may establish the antecedent only if executed when HistLen[i] = h ∧ q.idx = i holds. In this
case, by (I17), 5.q establishes

Hist[i][h + 1] = q.self = φ(Hist[i][h], αq[c′]) and Param[i][h] = (q, c′),

where c′ is the value of q.counter before the execution of 5.q. Thus, the antecedent is established only if q = p
and c = c′, in which case the consequent easily follows.

The only statements that may falsify the consequent are 5.q and 18.q, where q is any arbitrary process.
Statement 5.q may falsify the consequent only if executed when q.idx = i ∧ (HistLen[i] = h−1 ∨ HistLen[i] = h)
holds. If HistLen[i] = h − 1 holds before its execution, then HistLen[i] = h holds after its execution, and hence
the antecedent is false. On the other hand, if HistLen[i] = h holds before its execution, then statement 5.q
preserves (I16) as shown above.

Statement 18.q may falsify the consequent only if executed when q.idx = 1 − i holds, in which case it
establishes HistLen[i] = 0, and hence the antecedent is false after its execution. �

invariant Tail [i] = Hist[i][HistLen[i]] (I17)
invariant Hist[i][0] = ⊥ (I18)

23

Proof: These invariants follow trivially from inspecting the code. In particular, lines 5c, 5f and 5g, as well as
lines 18a and 18d, ensure that (I17) is maintained. Also, since HistLen[i] is always nonnegative (by (I21)), line 5f
cannot update Hist[i][0], and hence (I18) is maintained. �

invariant 0 ≤ j < k < HistLen[i] ∧
Param[i][j] = (p, c1) ∧ Param[i][k] = (p, c2) ∧
(∀l : j < l < k :: Param[i][l].proc �= p) ⇒

c2 = c1 + 1 (I19)

Proof: The only statement that may establish the antecedent is 5.q, where q is any arbitrary process. (Note
that statement 18.q assigns HistLen[1−1.idx] := 0 and does not update any entry of Param.) Since 5.q increments
HistLen[q.idx] by one, it may establish the antecedent only if executed when q.idx = i ∧ HistLen[i] = k holds.
Note that 5.q establishes Param[i][k] = (q, c) in this case, where c is the value of q.counter before the execution
of 5.q. Thus, 5.q may establish the antecedent only if executed when the following holds.

q = p ∧ c2 = q.counter ∧ q@{5} ∧ q.idx = i ∧
0 ≤ j < k = HistLen[i] ∧
Param[i][j] = (p, c1) ∧
(∀l : j < l < k :: Param[i][l].proc �= p).

Thus, by applying (I20) with ‘c’ ← c1, the first disjunct of the consequent of (I20) follows, and hence we
have c2 = q.counter = c1 + 1. �

invariant 0 ≤ j < HistLen[i] ∧
Param[i][j] = (p, c) ∧
(∀k : j < k < HistLen[i] :: Param[i][k].proc �= p) ⇒

(p.counter = c + 1 ∧ p@{4..22} ∧ p.idx = i) ∨ A
(p.counter = c + 1 ∧ p@{0..3}) ∨ B
(p@{0..3} ∧ CurrentQueue = 1 − i) ∨ C
(p@{4..22} ∧ p.idx = CurrentQueue = 1 − i) D

(I20)

Proof: The only statement that may establish the antecedent is 5.q, where q is any arbitrary process. (As
with (I19), 18.q need not be considered here.) Since 5.q increments HistLen[q.idx] by one, it may establish the
antecedent only if executed when q.idx = i ∧ HistLen[i] = j holds. Note that 5.q establishes Param[i][k] = (q, c′),
where c′ is the value of q.counter before the execution of 5.q. Thus, the antecedent may be established only if
q = p ∧ c′ = c holds. It follows that statement 5.q establishes disjunct A in this case.

Disjunct A may be falsified only by statements 5.p (which may update p.counter) and 22.p (which may falsify
p@{4..22}). If statement 5.p is executed while the antecedent holds, then it establishes Param[i][HistLen[i]−1] =
(p, c+1), and hence falsifies the last conjunct of the antecedent. Statement 22.p establishes disjunct B if executed
when disjunct A holds.

Disjunct B may be falsified only by statement 3.p, which establishes either disjunct A or disjunct D, de-
pending on the value of CurrentQueue.

Disjunct C may be falsified only by statements 3.p and 20.q, where q is any arbitrary process. Statement 3.p
establishes disjunct D if executed when disjunct C holds. Statement 20.q may falsify disjunct C only if executed
when q.idx = 1− i. In this case, by (I39), HistLen[i] = 0 holds before and after the execution of 20.q, and hence
the antecedent of (I20) is false before and after its execution.

Disjunct D may be falsified only by statements 22.p and 20.q, where q is any arbitrary process. Statement
22.p establishes disjunct C if executed when disjunct D holds. As shown above, the antecedent is false after the
execution of 20.q. �

invariant 0 ≤ HistLen[i] ≤ 2N (I21)

24

Proof: The only statement that may potentially falsify (I21) is 5.p, where p is any arbitrary process. Since 5.p
increments HistLen[p.idx] by one, it may falsify (I21) only if executed when p.idx = i ∧ HistLen[i] = 2N holds.
However, this is precluded by (I38). �

invariant 0 ≤ Position[i] ≤ 2N (I22)

Proof: The only statement that may potentially falsify (I22) is 11.p (where p is any arbitrary process),
which may do so only if executed when p.idx = i. In this case, by (I14) and (I26), statement 11.p estab-
lishes Position[i] = p.pos + 1 = p.position + 1. Moreover, by (I3) and (I21), p.position < HistLen[i] ≤ 2N holds
before 11.p is executed. Thus, statement 11.p preserves (I22). �

invariant HistLen[i] = 0 ⇒ (∀x :: Signal [i][x] = false) (I23)

Proof: The only statement that may establish the antecedent is 18.p, where p is any arbitrary process. State-
ment 18.p may establish the antecedent only if executed when p@{18} ∧ p.idx = 1 − i holds. In this case, by
(I24), the consequent holds before and after 18.p is executed.

The only statement that may falsify the consequent is 21.p, where p is any arbitrary process. Statement 21.p
may falsify the consequent only if executed when p.idx = i holds. In this case, by (I3), HistLen[i] > p.position
holds before and after 21.p is executed. Thus, the antecedent is false before and after the execution of 21.p. �

invariant p@{18} ∧ p.idx = i ⇒ (∀x :: Signal [1 − i][x] = false) (I24)

Proof: The only statement that may establish the antecedent is 17.p, which may do so only if p.idx = i holds.
Assume that Signal [1− i][x] = true holds for some x before the execution of 17.p. It suffices to show x = p.tail .

By (I6), we have
x = Hist[1 − i][Position[1 − i]]. (3)

Also, by (I13), we have
(∀q :: q@{0..3} ∨ q.idx = i). (4)

Moreover, by (I2), p@{17} ∧ p.idx = i implies

¬(∃r :: r@{19} ∧ r.idx = i). (5)

Combining (4) and (5), and applying (I28) with ‘i’ ← 1− i, we have HistLen[1− i] = Position[1− i]. Hence,
by (3) and (I17), we have

x = Hist[1 − i][HistLen[1 − i]] = Tail [1 − i].

Thus, by (I25), x = p.tail holds.
The only statement that may falsify the consequent is 21.q, where q is any arbitrary process. Statement

21.q may falsify the consequent only if executed when q.idx = 1− i holds. However, when the antecedent holds,
q@{21} ∧ q.idx = 1 − i is false, by (I13). �

invariant p@{17} ∧ p.idx = i ⇒ p.tail = Tail [1 − i] (I25)

Proof: The only statement that may establish the antecedent is 16.p, which may do so only if p.idx = i holds.
In this case, 16.p establishes the consequent.

The only statements that may falsify the consequent are 5.q and 18.q, where q is any arbitrary process.
Statement 5.q may falsify the consequent only if executed when q.idx = 1 − i holds, which implies that the
antecedent is false, by (I13). Similarly, statement 18.q may falsify the consequent only if executed when q.idx = i
holds, which implies that the antecedent is false, by (I2). �

invariant p@{7..11} ∧ p.idx = i ⇒ Position[i] = p.position (I26)

25

Proof: The only statements that may establish the antecedent are 5.p and 6.p. Statement 5.p may establish
the antecedent only if executed when

p@{5} ∧ Tail [i] = ⊥ ∧ p.idx = i (6)

holds. In this case, by (I4) and (I38), we have HistLen[i] = 0. Thus, statement 5.p establishes p.position = 0.
By (I28), HistLen[i] = 0 also implies that either Position[i] = 0 or (∃q :: q@{19} ∧ q.idx = 1 − i) holds. In the
former case, the consequent is established. In the latter case, by applying (I13) with ‘p’ ← q and ‘i’ ← 1− i, we
have p@{0..3} ∨ p.idx = 1 − i, which contradicts (6). It follows that the latter case in fact cannot arise.

Statement 6.p may establish the antecedent only if executed when

p@{6} ∧ p.idx = i ∧ Signal [i][p.prev] = true (7)

holds. By (I6), this implies p.prev = Hist[i][Position[i]]. Let k = p.position. By (I3) (with ‘h’ ← k) and (I47), we
have p.prev = Hist[i][k] and Position[i] ≤ k < HistLen[i]. If k > Position[i], then by applying (I48) with ‘j’ ←
Position[i], we have Hist[i][Position[i]] �= Hist[i][k], a contradiction. It follows that Position[i] = k = p.position
holds before the execution of 6.p. Thus, it also holds after its execution.

The only statements that may falsify the consequent are 11.q and 19.q, where q is any arbitrary process.
Statement 11.q may falsify the consequent (when the antecedent holds) only if executed when q.idx = i holds.
Taken together with the antecedent, this implies that q = p holds, by (I2). Thus, statement 11.q falsifies the
antecedent.

Statement 19.q may falsify the consequent only if executed when q.idx = 1− i holds. By applying (I13) with
‘p’ ← q and ‘i’ ← 1 − i, this implies p@{0..3} ∨ p.idx = 1 − i. Hence, the antecedent is false before and after
the execution of 19.q. �

invariant p@{12..21} ∧ p.idx = i ⇒ Position[i] = p.position + 1 (I27)

Proof: The only statement that may establish the antecedent is 11.p, which may do so only if p.idx = i holds.
In this case, by (I14) and (I26), 11.p establishes the consequent.

The only statements that may falsify the consequent (while the antecedent holds) are 11.q and 19.q, where q
is any arbitrary process. Statement 11.q may falsify the consequent only if executed when q@{11} ∧ q.idx = i
holds. In this case, if q = p, then statement 11.p preserves (I27) as shown above. If q �= p, then by (I2), the
antecedent is false before and after the execution of 11.q.

The proof that 19.q preserves (I27) is similar to that given in the proof of (I26). �

invariant
[

HistLen[i] − Position[i] =
∣
∣{p :: p@{6..11} ∧ p.idx = i

}∣
∣] ∨

(∃p :: p@{19} ∧ p.idx = 1 − i) (I28)

Proof: Define
X =

∣
∣{p :: p@{6..11} ∧ p.idx = i

}∣
∣ .

The only statements that may potentially falsify (I28) are 5.q (which may modify HistLen[i] and X), 11.q
(which may modify Position[i] and X), 18.q (which may modify HistLen[i]), and 19.q (which may modify
Position[i] and also falsify the second disjunct), where q is any arbitrary process.

Statements 5.q and 11.q may modify HistLen[i], Position[i], or X only if executed when q.idx = i holds. In
this case, 5.q increments both HistLen[i] and X by one, and hence preserves (I28). Similarly, by (I14), 11.q
increments Position[i] and decrements X by one, and hence preserves (I28).

Statement 18.q may update HistLen[i] only if executed when p.idx = 1 − i, in which case it establishes the
second disjunct. Statement 19.q may falsify the second disjunct only if executed when q.idx = 1 − i. In this
case, by (I13) and (I39) (with ‘p’ ← q and ‘i’ ← 1 − i), we have X = 0 and HistLen[i] = 0, respectively. Since
19.q establishes Position[i] = 0, it establishes the first disjunct of (I28). �

invariant
∣
∣{p :: p@{6..22} ∧ p.idx = i ∧ p.position = h

}∣
∣ ≤ 1 (I29)

26

Proof: Assume that there exists a process p satisfying p@{6..22} ∧ p.idx = i ∧ p.position = h. By (I3), this
implies HistLen[i] > h.

The only statement that may potentially falsify (I29) is 5.q, where q is any arbitrary process different from p.
Statement 5.q may falsify (I29) only if executed when q.idx = i holds. However, since HistLen[i] > h, statement
5.q establishes q.position > h, and hence cannot increase the left-hand side of (I29). �

invariant CurrentQueue = i ⇒∣
∣{p :: p@{4, 5} ∧ p.idx = 1 − i

}∣
∣ ≤ 2N − HistLen[1 − i] (I30)

Proof: The only statement that may establish the antecedent is 20.q, where q is any arbitrary process. Let X
denote the value of ∣

∣{p :: p@{6..11} ∧ p.idx = 1 − i
}∣
∣

prior to the execution of 20.q. Statement 20.q may establish the antecedent only if executed when

q@{20} ∧ q.idx = 1 − i (8)

holds, which also implies the following.
∣
∣{p :: p@{6..11, 20} ∧ p.idx = 1 − i

}∣
∣ ≥ X + 1

By (8), and by applying (I13) with ‘p’ ← q and ‘i’ ← 1 − i, ¬(∃r :: r@{19} ∧ r.idx = i) holds, and hence,
by (I28), we have

HistLen[1 − i] − Position[1 − i] = X.

Also, since 20.q may be executed only if q.pos = N holds, by applying (I15) with ‘p’ ← q and ‘i’ ← 1− i, we
have

Position[1 − i] = N + 1.

Combining these assertions, we have the following.
∣
∣{p :: p@{4, 5} ∧ p.idx = 1 − i

}∣
∣ ≤ N − X − 1

= N − (HistLen[1 − i] − Position[1 − i]) − 1
= N − (HistLen[1 − i] − N − 1) − 1
= 2N − HistLen[1 − i].

Thus, the consequent holds before the execution of 20.q, and hence it also holds after its execution.
The only statements that may falsify the consequent are 3.q (which may increment X) and 5.q (which may

increment HistLen[1 − i]), where q is any arbitrary process. If statement 3.q is executed while the antecedent
holds, then it establishes q.idx = i, and hence cannot increment X. Statement 5.q may increment HistLen[1− i]
(by one) only if executed when q.idx = 1 − i holds, in which case it also decrements X by one, and hence
preserves the consequent. �

invariant Position[i] = N + 1 ⇒
CurrentQueue = 1 − i ∨
(∃p :: p@{12..20} ∧ p.idx = i ∧ p.pos = N) (I31)

Proof: The only statement that may establish the antecedent is 11.q, where q is any arbitrary process. However,
if 11.q establishes the antecedent, then by (I14), it also establishes the second disjunct of the consequent.

The only statements that may falsify the consequent are 20.q (which may update CurrentQueue) and 13.p,
14.p, 15.p, and 20.p (which may falsify p@{12..20} ∧ p.idx = i ∧ p.pos = N), where q is any arbitrary process.
Statement 20.q may falsify the consequent only if executed when q.idx = 1 − i holds. In this case, by (I40),
Position[i] = 0 holds before and after the execution of 20.q. Thus, the antecedent is false before and after 20.q
is executed.

Since p.pos = N , statement 13.p establishes p@{16}, and statements 14.p and 15.p cannot be executed. If
statement 20.p is executed when p.idx = i holds, then it establishes CurrentQueue = 1− i, and hence preserves
the consequent. �

27

invariant Position[i] > N + 1 ⇒ CurrentQueue = 1 − i (I32)

Proof: The only statement that may establish the antecedent is 11.p, where p is any arbitrary process. By
(I14), 11.p may establish the antecedent only if executed when p@{11} ∧ p.idx = i ∧ Position[i] = N +1 holds.
In this case, by (I2) and (I31), we have the consequent.

The only statement that may falsify the consequent is 20.q, where q is any arbitrary process. As shown in
the proof of (I31), if 20.q falsifies the consequent, then the antecedent is false after its execution. �

invariant Active[p] = p@{3..22} (I33)
invariant p@{5..22} ∧ p.idx = i ⇒ QueueIdx [p] = i (I34)
invariant p@{2..4} ⇒ QueueIdx [p] = ⊥ (I35)

Proof: These invariants follow trivially from inspecting Algorithm G-CC. �

invariant Position[i] ≤ N ⇒
CurrentQueue = i ∨ A
(∃p :: p@{20} ∧ p.idx = 1 − i) ∨ B(
Position[i] = 0 ∧ (∀q :: q@{0..3} ∨ q.idx = 1 − i)

) C
(I36)

Proof: The only statements that may establish the antecedent are 11.r and 19.r, where r is any arbitrary
process. However, if statement 11.r updates Position[i], then by (I14), it increments Position[i] by one. It
follows that, although statement 11.r may preserve the antecedent, it cannot establish it. Statement 19.r may
establish the antecedent only if executed when r.idx = 1 − i holds, in which case it establishes disjunct B.

The only statement that may falsify disjunct A is 20.r, where r is any arbitrary process. Statement 20.r may
falsify disjunct A only if executed when r.idx = i ∧ r.pos = N holds, which implies that Position[i] = N + 1
holds, by (I15). Thus, in this case, the antecedent is false before and after the execution of 20.r.

The only statement that may falsify disjunct B is 20.p, which establishes disjunct A.
The only statements that may falsify disjunct C are 3.q and 11.q, where q is any arbitrary process. Statement

3.q may falsify disjunct C only if executed when CurrentQueue = i holds, in which case disjunct A holds before
and after its execution. Statement 11.q may falsify disjunct C only if executed when q@{11} ∧ q.idx = i holds,
which is precluded when disjunct C holds. �

invariant 1 ≤ Position[i] ≤ N ⇒ CurrentQueue = i (I37)

Proof: By (I36), the antecedent implies one of the following.

A : CurrentQueue = i,
B : (∃p :: p@{20} ∧ p.idx = 1 − i), or
C : Position[i] = 0 ∧ (∀q :: q@{0..3} ∨ q.idx = 1 − i).

By (I40), B implies Position[i] = 0. Also, C clearly implies Position[i] = 0. Thus, both are precluded by the
antecedent. It follows that A is true. �

invariant p@{4, 5} ∧ p.idx = i ⇒ HistLen[i] < 2N (I38)

Proof: For the sake of contradiction, assume

p@{4, 5} ∧ p.idx = i ∧ HistLen[i] ≥ 2N. (9)

By applying (I30) with ‘i’ ← 1 − i, we have CurrentQueue �= 1 − i, i.e.,

CurrentQueue = i. (10)

28

Thus, by (I32), we have
Position[i] ≤ N + 1. (11)

Also, (9) implies ∣
∣{q :: q@{6..11} ∧ q.idx = i

}∣
∣ ≤ N − 1.

Hence, by (I28), we have

HistLen[i] − Position[i] ≤ N − 1 ∨ (∃r :: r@{19} ∧ r.idx = 1 − i).

However, if there exists a process r satisfying r@{19} ∧ r.idx = 1− i, then by (I13) (with ‘p’ ← r and ‘i’ ←
1−i), we have p@{0..3} ∨ p.idx = 1−i, which contradicts (9). Therefore, we have HistLen[i]−Position[i] ≤ N−1.

Note that the only common solution to HistLen[i] ≥ 2N (given in (9)), (11), and HistLen[i] − Position[i] ≤
N − 1 is HistLen[i] = 2N and

Position[i] = N + 1.

By (10) and (I31), this implies that (∃r :: r@{12..20} ∧ r.idx = i) holds. From this and (9), we have
∣
∣{q :: q@{6..11} ∧ q.idx = i

}∣
∣ ≤ N − 2.

Hence, by (I28), we have

HistLen[i] − Position[i] ≤ N − 2 ∨ (∃r :: r@{19} ∧ r.idx = 1 − i).

The second disjunct is precluded by (I13) as shown above, and hence we have HistLen[i]−Position[i] ≤ N−2.
However, this cannot hold simultaneously with (9) and (11). Thus, we have reached a contradiction. �

invariant p@{19, 20} ∧ p.idx = i ⇒ HistLen[1 − i] = 0 (I39)

Proof: The antecedent may be established only by statement 18.p, which may do so only if p.idx = i holds. In
this case, 18.p also establishes the consequent.

The only statement that may falsify the consequent is 5.q, where q is any arbitrary process. Statement 5.q
may potentially falsify (I39) only if executed when

p@{19, 20} ∧ p.idx = i ∧ q@{5} ∧ q.idx = 1 − i

holds. However, this contradicts (I13). �

invariant p@{20} ∧ p.idx = i ⇒ Position[1 − i] = 0 (I40)

Proof: The antecedent may be established only by statement 19.p, which may do so only if p.idx = i holds. In
this case, 19.p also establishes the consequent.

The only statement that may falsify the consequent is 11.q, where q is any arbitrary process. Statement
11.q may potentially falsify (I40) only if executed when p@{20} ∧ p.idx = i ∧ q@{11} ∧ q.idx = 1 − i holds.
However, this contradicts (I13). �

invariant Position[i] ≤ h < HistLen[i] ⇒
(∃p :: p@{6..11} ∧ p.idx = i ∧ p.position = h) (I41)

Proof: The only statements that may establish the antecedent are 5.q and 18.q (which may modify HistLen[i])
and 11.q and 19.q (which may modify Position[i]), where q is any arbitrary process. Statement 5.q may establish
HistLen[i] > h only if executed when q.idx = i ∧ HistLen[i] = h holds, in which case it establishes the consequent.

If statement 18.q modifies HistLen[i], then it establishes HistLen[i] = 0, and hence falsifies the antecedent.
Statement 11.q may modify Position[i] only if executed when q.idx = i holds. In this case, by (I14), it

increments Position[i] by one. Hence, although 11.q may preserve the antecedent, it cannot establish it.

29

Statement 19.q may establish Position[i] ≤ h only if executed when q.idx = 1 − i holds, in which case, by
(I39), it establishes Position[i] = HistLen[i] = 0. Thus, the antecedent is false after its execution.

The only statement that may falsify the consequent is 11.p, which may do so only if executed when p.idx =
i ∧ p.position = h holds (which comes from the consequent itself, which is assumed to hold before being
falsified). In this case, by (I14) and (I26), statement 11.p establishes Position[i] = h + 1, and hence falsifies the
antecedent. �

invariant Position[i] = h > 0 ⇒
Signal [i][Hist[i][h]] = true ∨ A(∃p :: p@{12..21} ∧ p.idx = i ∧ p.position = h − 1

) ∨ B(∃q :: q@{8..11} ∧ q.idx = i ∧ q.position = h
) C

(I42)

Proof: The only statement that may establish the antecedent is 11.p, where p is any arbitrary process. By (I14)
and (I26), statement 11.p may establish the antecedent only if executed when p.idx = i ∧ p.position = h − 1
holds, in which case it establishes disjunct B.

The only statements that may falsify disjunct A are 5.p, 7.p, and 18.p, where p is any arbitrary process.
Statement 5.p may falsify disjunct A only if executed when

p@{5} ∧ p.idx = i ∧ HistLen[i] = h − 1 (12)

holds. Combining this with the antecedent, and using (I28), this implies (∃q :: q@{19} ∧ q.idx = 1− i). Hence,
by applying (I13) with ‘p’ ← q and ‘i’ ← 1 − i, we have p@{0..3} ∨ p.idx = 1 − i, which contradicts (12). It
follows that statement 5.p cannot falsify disjunct A while the antecedent holds.

Statement 7.p may falsify disjunct A only if executed when p.idx = i holds, in which case, by (I26), we have
p.position = Position[i] = h. Hence, statement 7.p establishes disjunct C in this case.

Statement 18.p may falsify disjunct A only if executed when p.idx = 1 − i holds. In this case, by (I24),
disjunct A is already false before 18.p is executed.

The only statement that may falsify disjunct B is 21.p (where p is any arbitrary process), which may do so
only if executed when p.idx = i ∧ p.position = h− 1 holds. In this case, by (I3), p.self = Hist[i][h] holds before
its execution. Thus, statement 21.p establishes disjunct A.

The only statement that may falsify disjunct C is 11.p (where p is any arbitrary process), which may do
so only if executed when p.idx = i ∧ p.position = h holds. In this case, by (I14) and (I26), 11.p establishes
Position[i] = h + 1, and hence falsifies the antecedent. �

invariant 0 < j < k ≤ HistLen[i] ∧ k < 2N ∧
Param[i][j − 1].proc �= Param[i][k − 1].proc ⇒

Hist[i][j] �= Hist[i][k] (I43)
invariant 0 < j ≤ HistLen[i] ∧ j < 2N ⇒ Hist[i][j] �= ⊥ (I44)
invariant 0 < j < k ≤ HistLen[i] ∧ k < 2N ∧

Param[i][j − 1] = (p, c) ∧ Param[i][k − 1] = (p, c + 1) ⇒
Hist[i][j] �= Hist[i][k] (I45)

Proof: Invariants (I43)–(I45) follow easily from invariants (I16), (I17), (I18), and (I19), together with the
assumption that the underlying fetch-and-φ primitive has rank at least 2N . In particular, (I43) states that any
two invocations (among the first 2N − 1) by different processes write different values to Tail [i]; (I44) states
that each of the first 2N − 1 invocations writes to Tail [i] a value different from ⊥; (I45) states that any two
successive invocations (among the first 2N − 1) by the same process write different values to Tail [i]. �

invariant Position[i] ≤ h < HistLen[i] ∧ Param[i][h].proc = p ⇒
p@{6..11} ∧ p.idx = i ∧ p.position = h (I46)

Proof: The only statements that may establish the antecedent are 5.q and 18.q (which may update HistLen[i]
and Param[i][h].proc) and 11.q and 19.q (which may update Position[i]), where q is any arbitrary process.

30

Statement 5.q may establish h < HistLen[i] ∧ Param[i][h].proc = p only if executed when HistLen[i] = h ∧ p =
q ∧ q.idx = i holds, in which case it establishes the antecedent.

Statement 18.q may update HistLen[i] or Param[i][h] only if q.idx = 1 − i, in which case it establishes
HistLen[i] = 0. Thus, the antecedent is false after its execution.

Statement 11.q may update Position[i] only if executed when q.idx = i holds. In this case, by (I14), it
increments Position[i] by one. Hence, although 11.q may preserve the antecedent, it cannot establish it.

Statement 19.q may establish Position[i] ≤ h only if executed when q.idx = 1 − i holds, in which case, by
(I39), it establishes Position[i] = HistLen[i] = 0. Thus, the antecedent is false after its execution.

The only statement that may falsify the consequent is 11.p, which may do so only if executed when p.idx =
i ∧ p.position = h holds. In this case, by (I14) and (I26), statement 11.p establishes Position[i] = h + 1, and
hence the antecedent is false after its execution. �

invariant p@{6} ∧ p.idx = i ⇒ Position[i] ≤ p.position (I47)

Proof: The only statement that may establish the antecedent is 5.p, which may do so only if p.idx = i.
Let h be the value of HistLen[i] before the execution of 5.p. By (I28), we have either Position[i] ≤ h or (∃q ::
q@{19} ∧ q.idx = 1−i). However, by applying (I13) with ‘i’ ← 1−i, the latter implies p@{0..3} ∨ p.idx = 1−i,
which implies that the antecedent is false. On the other hand, if Position[i] ≤ h holds before the execution of
5.p, then Position[i] ≤ h = p.position is established.

The only statement that may falsify the consequent (while the antecedent holds) is 11.q (where q is any
arbitrary process), which may do so only if q.idx = i. In this case, by (I14), 11.q increments Position[i] by one,
and hence it may falsify the consequent only if executed when Position[i] = p.position holds. By applying (I26)
with ‘p’ ← q, we also have Position[i] = q.position. Combining these assertions with the antecedent, and using
(I29), we have p = q. However, in this case, the antecedent is false after the execution of 11.q. �

invariant Position[i] ≤ j < k < HistLen[i] ⇒ Hist[i][j] �= Hist[i][k] (I48)

Proof: The only statements that may establish the antecedent are 5.p and 18.p (which may update HistLen[i],
Hist[i][j], or Hist[i][k]) and 11.p and 19.p (which may update Position[i]), where p is any arbitrary process.

Statement 5.p may establish the antecedent only if executed when p.idx = i ∧ Position[i] ≤ j < k =
HistLen[i] holds. In this case, by (I38),

Position[i] ≤ j < k = HistLen[i] < 2N (13)

holds before its execution. We consider two cases.

• If j = 0, then by (I18), we have Hist[i][j] = ⊥. Also, by applying (I44) with ‘j’ ← k, and using (13), we
have Hist[i][k] �= ⊥. Hence, the consequent of (I48) holds before and after the execution of 5.p.

• If j > 0, then let (q, c1) denote the value of Param[i][j − 1] and (r, c2) denote the value of Param[i][k − 1]
prior to the execution of 5.p. If q �= r, then by (13) and (I43), the consequent holds before and after the
execution of 5.p.

Therefore, assume that q = r. Let ql denote the value of Param[i][l − 1].proc prior to the execution of 5.p,
for each 0 < l ≤ k. Then, we have q = qj = qk.

For each l satisfying Position[i] < l ≤ k, by applying (I46) with ‘p’ ← ql and ‘h’ ← l−1, and using (13), we
have ql.position = l−1 prior to the execution of 5.p. In particular, we have q.position = qk.position = k−1,
and

(∀l : Position[i] < l < k :: ql �= q). (14)

Since qj = q, this implies that Position[i] < j < k is false. Thus, by (13), we have j = Position[i].
Combining this with (14), we also have

(∀l : j < l < k :: Param[i][l − 1].proc �= q)

31

prior to the execution of 5.p.
Therefore, by applying (I19) with ‘p’ ← q, ‘j’ ← j − 1, and ‘k’ ← k − 1, and using (13) and the assertions
above, we have c2 = c1 + 1. Combining this with (13), and using (I45), it follows that the consequent
holds both before and after the execution of 5.p.

If statement 18.p updates HistLen[i], then it establishes HistLen[i] = 0, and hence the antecedent is false after
its execution.

If statement 11.p updates Position[i], then by (I14), it increments Position[i] by one. Hence, although 11.p
may preserve the antecedent, it cannot establish it.

Statement 19.p may establish Position[i] ≤ j only if executed when q.idx = 1 − i holds, in which case, by
(I39), it establishes Position[i] = HistLen[i] = 0. Thus, the antecedent is false after its execution.

The only statement that may falsify the consequent is 5.p (which may update either Hist[i][j] or Hist[i][k]),
where p is any arbitrary process. Statement 5.p may update Hist[i][j] only if executed when p.idx = i ∧
HistLen[i] = j − 1 holds, in which case it establishes HistLen[i] = j. Thus, in this case, the antecedent is false
after 5.p is executed. Similar reasoning applies to Hist[i][k]. �

invariant p@{11..22} ⇒ p.pos = p.position (I49)

Proof: The only statement that may establish the antecedent is 10.p, which also establishes the consequent by
(I26). The consequent cannot be falsified while the antecedent holds. �

Proof of Starvation-Freedom

To establish the Starvation-Freedom property, we begin with proving the following unless and leads-to properties.
Informally, (U1) states that if a process p is waiting at statement 6, and if the busy-waiting condition is
established, then it holds continuously until p exits the busy-waiting loop. (L1) (respectively, (L2)) is used to
prove that, if p has entered the current queue (respectively, the old queue), and waits at statement 6, then
the busy-waiting condition is eventually established. Throughout this section, we assume that the Entry2 and
Exit2 routines are starvation-free.

p@{6} ∧ p.idx = i ∧ Signal [i][p.prev] = true unless p@{7} (U1)

Proof: The only statement that may falsify p@{6} ∧ p.idx = i is 6.p, which establishes p@{7}.
Signal [i][p.prev] = true may be falsified only if some process q (�= p) executes statement 7.q when q.idx =

i ∧ q.prev = p.prev holds. However, if the left-hand side of (U1) is true, then this is precluded by (I9). �

CurrentQueue = i ∧ p@{6} ∧ p.idx = i ∧ p.position = h ∧ Position[i] = k
leads-to (Signal [i][p.prev] = true ∨ Position[i] = k + 1) (L1)

CurrentQueue = 1 − i ∧ p@{6} ∧ p.idx = i ∧ p.position = h ∧ Position[i] = k
leads-to (Signal [i][p.prev] = true ∨ Position[i] = k + 1) (L2)

Proof: We prove (L1) and (L2) by induction on h. Since their proofs are nearly identical, we simply say the
“left-hand side” when the argument applies to both (L1) and (L2).

First, assume h = 0. The assertion p@{6} ∧ p.idx = i ∧ p.position = h may be established only if statement
5.p is executed when HistLen[i] = 0 holds. However, by (I17) and (I18), this implies that Tail [i] = Hist[i][0] = ⊥
holds. Thus, statement 5.p establishes p@{8}, and cannot establish the left-hand side. It follows that (L1) and
(L2) hold vacuously for h = 0.

Now assume that h > 0, and that (L1) and (L2) hold for smaller values of h. Consider a state t that satisfies
the left-hand side.

By (I13), the left-hand side implies ¬(∃q :: q@{19} ∧ q.idx = 1 − i). Thus, by (I28), and using p@{6} ∧
p.idx = i, we have k < HistLen[i]. By applying (I41) with ‘h’ ← k, this in turn implies that a process q exists
such that

q@{6..11} ∧ q.idx = i ∧ q.position = Position[i] = k. (15)

32

We consider two cases, depending on the value of k.

Case 1: k = 0. If k = 0, then by (I18), and by applying (I3) with ‘p’ ← q and ‘h’ ← k, we have q.prev =
Hist[i][0] = ⊥. Because q@{6, 7} ⇒ q.prev �= ⊥ is (trivially) an invariant, this implies that q@{8..11} holds.
Thus, q eventually executes statement 11 while q.idx = i ∧ q.position = k holds. In this case, by (I14) and
(I26), 11.q establishes Position[i] = k + 1, and hence the right-hand side of (L1)/(L2) is established.

Case 2: k > 0. Let x be the value of Hist[i][k] at state t. By (I42), (15) implies that one of the following holds
at state t, where r is some process.

A : Signal [i][x] = true,
B : r@{12..21} ∧ r.idx = i ∧ r.position = k − 1, or
C : r@{8..11} ∧ r.idx = i ∧ r.position = k.

Moreover, by (I3), q.prev = x also holds at state t. We now prove that, in each of the three cases given by
A–C, the right-hand side of (L1)/(L2) is eventually established. Toward this goal, we prove the following three
claims.

Claim 1: If A is true at state u, where u is either t or some later state, then the right-hand side of
(L1)/(L2) is true at either t or some later state.

Claim 2: If B is true at state t, then A is true at either t or some later state u.

Claim 3: If C is true at state t, then the right-hand side of (L1)/(L2) is true at either t or some
later state.

Proof of Claim 1: First, if (15) is false at state u, then since it holds at state t, the execution
of statement 11.q occurs between state t and state u. Note that q.idx and q.position do not change
while q@{6..11} holds. Hence, by (I14) and (I26), q.position = q.pos = Position[i] = k holds before
the execution of 11.q. Therefore, 11.q establishes the right-hand side of (L1)/(L2).

On the other hand, assume that (15) is true at state u. Then, by (I3), q.prev = x holds at state u.
Moreover, by (U1), if q@{6} ∧ q.prev = x holds at state u, then A continues to hold until q@{7} is
established. It follows that q eventually executes statement 11.q, which establishes the right-hand
side of (L1)/(L2) as shown above. �

Proof of Claim 2: Assume that B holds at state t. In this case, by (I3), r.self = Hist[i][k] = x
holds at state t. Hence, if r eventually executes statement 21, then 21.r establishes A.

Thus, it suffices to show that statement 21.r is eventually executed. Since r@{12..21} holds at
state t, it suffices to show the following.

If r@{14, 15} holds at state u, where u is either t or some later state, then r@{21} is
eventually established.

Clearly, r@{14, 15} implies 0 ≤ r.pos < N , which is true at state t (where B holds) as well as state u.
Thus, by (I15), 1 ≤ Position[i] = r.pos +1 ≤ N holds at state t. Hence, by (I37), CurrentQueue = i
holds at state t. Thus, if the left-hand side of (L2) is true at state t, then B is false at state t.

On the other hand, if the left-hand side of (L1) is true at state t, then by (L7), given later, r@{21} is
eventually established. (Note that the proof of (L2) does not depend on (L7). As explained shortly,
this is necessary in order to avoid circular reasoning.) �

Proof of Claim 3: Clearly, r eventually executes statement 11.r if C holds. Thus, by (I14) and (I26),
11.r establishes Position[i] = k + 1, and hence the right-hand side of (L1)/(L2) is established. �

Finally, from these three claims, (L1) and (L2) follow. �

33

The reader may wonder why we have two separate properties (L1) and (L2), when they can be proved in
essentially the same way. The reason is that the proof of (L7), given later, indirectly depends on (L2). Since
the proof of (L1) depends on (L7), (L1) and (L2) must be kept separate to avoid circular reasoning.

The following properties are consequences of (U1), (L1), and (L2).

CurrentQueue = i ∧ p@{6} ∧ p.idx = i leads-to p@{7} (L3)
CurrentQueue = 1 − i ∧ p@{6} ∧ p.idx = i leads-to p@{7} (L4)

Proof: Since Position[i] is bounded by (I22), by inductively applying (L1) and (L2), respectively, we have the
following.

CurrentQueue = i ∧ p@{6} ∧ p.idx = i leads-to
Signal [i][p.prev] = true; (16)

CurrentQueue = 1 − i ∧ p@{6} ∧ p.idx = i leads-to
Signal [i][p.prev] = true.

(17)

Assume that the left-hand side of (L3) holds at some state t. By (16), Signal [i][p.prev] = true is eventually
established at some later state u. If p@{7} is established before state u, then (L3) holds. Otherwise, p@{6}
continues to hold from state t to u. Thus, p.idx = i also continues to hold from state t to u. Therefore, the left-
hand side of (U1) holds at state u. By (U1), Signal [i][p.prev] = true is not falsified until p@{7} is established,
and hence p eventually establishes p@{7} by executing statement 6.

The reasoning for (L4) is similar, except that (17) is used instead of (16). �

Note that the proof of (L3) indirectly depends on (L7), while the proof of (L4) does not.
The following properties state that, if a process p is waiting for process q at statements 14 and 15, then

the busy-waiting condition is eventually established. (Note that q@{0} implies Active[q] = false by (I33), and
q@{6} ∧ q.idx = i implies QueueIdx [q] = i by (I34).)

p@{14, 15} ∧ p.idx = i ∧ p.pos = q
leads-to q@{0} ∨ (q@{6} ∧ q.idx = i) ∨ p@{21} (L5)

p@{14, 15} ∧ p.idx = i ∧ p.pos = q ∧ q@{1}
leads-to (q@{6} ∧ q.idx = i) ∨ p@{21} (L6)

Proof: Assume that the left-hand side of either (L5) or (L6) holds at state t. By (I2), one of the following
holds at t.

A : q@{3..22} ∧ q.idx = 1 − i;
B : q@{22} ∧ q.idx = i;
C : q@{0};
D : q@{1..3};
E : q@{4, 5} ∧ q.idx = i;
F : q@{6} ∧ q.idx = i.

Also, by (I15), Position[i] = q + 1 holds at state t, and hence, by (I37), CurrentQueue = i also holds at
state t.

If p@{21} is established at some future state, then (L5) and (L6) both hold. Thus, in the rest of the proof,
we assume that p@{14, 15} ∧ p.idx = i holds continuously at and after state t. We claim that CurrentQueue = i
also holds at all future states. Note that CurrentQueue = i may be falsified only by statement 20.r (where r
is any arbitrary process), which may do so only if executed when r.idx = i holds. However, by (I2), this is
precluded when p@{14, 15} ∧ p.idx = i holds. Thus, we have the following.

• p@{14, 15} ∧ p.idx = i ∧ CurrentQueue = i holds at t and all later states. (18)

Note that the left-hand side of (L6) implies D, and F implies the right-hand side of (L6). Hence, in order
to prove (L6), it suffices to prove the following.

34

• If D ∨ E holds at state u, where u is either t or some later state, then F is established at some state after
u. (19)

Also, since C ∨ F implies the right-hand side of (L5), in order to prove (L5), it suffices to prove the following
claim in addition to (19).

• If A ∨ B holds at state u, where u is either t or some later state, then C is established at some state after
u. (20)

We prove (19) and (20) by considering each of A, B, D, and E .

• Assume that A holds at state u. We claim that, in this case, B is eventually established.

It suffices to show that the busy-waiting loops at statement 6 and statements 14 and 15 eventually
terminate for q. By applying (L4) with ‘p’ ← q and ‘i’ ← 1 − i, and using CurrentQueue = i (given
in (18)), it follows that the former loop eventually terminates. If q@{14, 15}, then by (I15), we have
Position[1 − i] = q.pos + 1. Also, by (18) and (I37), we have Position[1 − i] = 0 ∨ Position[1 − i] > N .
Combining these two assertions, we have q.pos = Position[1 − i] − 1 ≥ N , and hence q@{14, 15} is false.
It follows that q in fact does not execute the busy-waiting loop at statements 14 and 15 while A holds.

• Assume that B holds at state u. Clearly, C is eventually established.

• Assume that D holds at state u. Then, by (18), E is eventually established.

• Assume that E holds at state u. In this case, q eventually executes statement 5. By (I38), HistLen[i] < 2N
holds before the execution of 5.q. Moreover, by (18) and (I3), HistLen[i] > p.position ≥ 0 also holds. (Note
that HistLen[i] is always nonnegative by (I21). Since p.position is updated only by line 5d, it follows that
p.position is always nonnegative.) Combining these two assertions with (I4), we have Tail [i] �= ⊥. It follows
that statement 5.q establishes F .

From the reasoning above, assertions (20) and (19) follow. Therefore, we have (L5) and (L6). �

Note that the proofs of (L5) and (L6) do not depend on (L7).
The following property states that the busy-waiting loop at statements 14 and 15 eventually terminates.

p@{14, 15} leads-to p@{21} (L7)

Proof: For the sake of contradiction, assume that p@{21} is never established. Let i = p.idx and q = p.pos.
By (L5), q@{0} ∨ (q@{6} ∧ q.idx = i) is eventually established.

First, assume that q@{0} is established. If q remains in its noncritical section forever, then by (I33),
Active[q] = false holds forever. Thus, p eventually establishes p@{21} by executing statement 14, a contradic-
tion.

On the other hand, if q enters its entry section again, then it establishes q@{1}. In this case, by (L6), q
eventually establishes q@{6} ∧ q.idx = i.

It follows that q@{6} ∧ q.idx = i is eventually established. By (I5), and using p@{14, 15}, it follows that
q@{6} remains true forever. But then, by (I34), p eventually establishes p@{21} by executing statement 15, a
contradiction. �

Finally, by (L3), (L4), and (L7), it follows that each await statement in Algorithm G-CC eventually
terminates. Thus, Algorithm G-CC is starvation-free.

35

Appendix B: Correctness Proof for Algorithm G-CC′ and Algo-

rithm G-DSM

In this appendix, we first prove that Algorithm G-CC′ is equivalent to Algorithm G-CC, and also prove
that the CC-to-DSM transformation introduced in Section 3.2 can be safely applied to Algorithm G-CC′.
The following lemma proves the former claim.

Lemma 3 In Algorithm G-CC, if some process p executes statement 21 while p.pos ≥ 2N − 1 ∧ p.idx =
i ∧ p.self = x holds, and if some process p′ later reads Signal [i][x] by executing statement 6, then between these
two events, some process p′′ writes Signal [i][x] := false.

Proof: Let s and t be the states right before the executions of statements 21.p and 6.p′, respectively. First,
consider state s. By (I15) and (I22), we have the following.

• Position[i] = 2N holds at s. (21)

If any process q satisfies q@{16..20} ∧ q.idx = 1 − i at state s, then by applying (I13) with ‘p’ ← q and
‘i’ ← 1− i, every process r must satisfy r@{0..3} ∨ r.idx = 1− i. However, this contradicts p@{21} ∧ p.idx = i.
Therefore, we have the following.

• ¬(∃q :: q@{16..20} ∧ q.idx = 1 − i
)

holds at s. (22)

Hence, by (I28), we have HistLen[i]−Position[i] =
∣
∣{r :: r@{6..11} ∧ r.idx = i

}∣
∣. Taken together with (I21)

and (21), we have
HistLen[i] = 2N ∧ ¬(∃r :: r@{6..11} ∧ r.idx = i

)
.

By (I38), this also implies ¬(∃r :: r@{4, 5} ∧ r.idx = i
)
. In particular, process p′ satisfies ¬(

p′@{4..6} ∧
p′.idx = i

)
at s. Since p′@{6} ∧ p′.idx = i holds at state t, p′ must execute statement 3 while CurrentQueue = i

holds between states s and t.
However, by (21) and (I32), CurrentQueue = 1 − i holds at state s. Hence, some process q must write

CurrentQueue := i, by executing statement 20 while q.idx = 1 − i holds, after state s buf before the execution
of 3.p′.

Clearly, q also executes 18.q (while q.idx = 1−i holds) at some earlier time. If 18.q is executed before state s,
then q@{19, 20} ∧ q.idx = 1 − i holds at s, which contradicts (22). Thus, we have the following sequence of
events: 21.p, 18.q, 20.q, 3.p′, and 6.p′. By applying (I24) with ‘p’ ← q and ‘i’ ← 1− i, it follows that Signal [i][x]
equals false before the execution of 18.q. Since Signal [i][x] = true holds right after the execution of 21.p, some
process p′′ must write Signal [i][x] := false, after the execution of 21.p but before the execution of 18.q (and
hence, before the execution of 6.p′).9 �

By Lemma 3, whenever Algorithm G-CC′ causes a process to skip a write at statement 21, this behavior
is guaranteed not to affect any process’s behavior in the future. Moreover, as a result, all the invariants stated
in Appendix A also remain valid for Algorithm G-CC′, except for those that explicitly refer to the Signal
array.

We now formally prove that the various two-process mutual exclusion algorithms added to Algorithm G-
DSM (shown in Figure 5) are safe, by considering each pair of Entry/Exit calls. Statements 4–7 and 45–48 are
clearly safe, as explained in Section 3.2.

Statements 10–14 : By (I9),
∣
∣{p :: p@{6, 7} ∧ p.idx = i ∧ p.prev = x

}∣
∣ ≤ 1

is an invariant of Algorithm G-CC′, for any i and x. This implies that the Entry/Exit pair at statements
10–14 in Figure 5 is safe. �

9In fact, it can be easily shown that p′′ must be q.

36

Statements 25–30 : In order to show that the Entry/Exit pair at statements 25–30 in Figure 5 is safe, it suffices
to show that ∣

∣{p :: p@{14, 15, 21} ∧ p.pos = h
}∣
∣ ≤ 1 (23)

is an invariant of Algorithm G-CC′, for any h.
Consider a process p that satisfies p@{14, 15, 21} ∧ p.pos = h. By (I15) and (I27), Position[p.idx] =

h+1 ∧ p.position = h holds as well. Since h < N holds by assumption (see statement 13 in Figure 7), by (I36),
we also have p.idx = CurrentQueue. Taken together with (I29), it follows that p is uniquely determined (i.e.,
(23) is true). �

Statements 40–43 : In order to show that the Entry/Exit pair at statements 40–43 in Figure 5 is safe, it suffices
to show that ∣

∣{p :: p@{21, 22} ∧ p.idx = i ∧ p.self = x ∧ p.pos < 2N − 1
}∣
∣ ≤ 1 (24)

is an invariant of Algorithm G-CC′, for any i and x.
For the sake of contradiction, assume that there exists two distinct processes p and q, satisfying

p@{21, 22} ∧ q@{21, 22} ∧
p.idx = q.idx = i ∧ p.self = q.self = x ∧
p.pos < 2N − 1 ∧ q.pos < 2N − 1.

Define j = p.pos and k = q.pos. By (I49), we also have j = p.position and k = q.position. Hence, by (I29),
j �= k holds. Without loss of generality, assume j < k.

By applying (I3) to p and q separately, we have

j < k < HistLen[i] ∧
x = p.self = Hist[i][j + 1] ∧ x = q.self = Hist[i][k + 1] ∧
Param[i][j].proc = p ∧ Param[i][k].proc = q.

Therefore, by using k +1 < 2N , and applying (I43) with ‘j’ ← j +1 and ‘k’ ← k +1, we have Hist[i][j +1] �=
Hist[i][k + 1], a contradiction. �

37

