
Full proofs of lemmas

Lemma 3 Suppose length-n vectors x and y differ at exactly k values, and
for these values yi = xi + δ, where δ is a positive constant. Denote w =
min{k,m+ − 1}.

Then, the following inequality holds:

L(x) ≤ L(y) ≤ L(x) + δ · w. (18)

Proof. We will define a candidate sum for x as any sum of m+ − 1 distinct
l(τi, xi, p) values as in (3). By (4), L(x) is the largest candidate sum for x.

First, we prove L(x) ≤ L(y). Consider the candidate sum S for y com-
puted by selecting the same i and p values as in L(x). Because for all
i, xi ≤ yi, L(x) ≤ L(y). Because L(y) must be the largest candidate sum
for y, S ≤ L(y). Therefore, L(x) ≤ L(y).

Next, we prove L(y) ≤ L(x) + δ · w by contradiction. Suppose L(y) >
L(x) + δ ·w. Consider the candidate sum T for x computed by selecting the
same i and p values as in L(y). Observe that at most w terms contribute
to the difference between L(y) and T . When two such terms differ, we have
xi = yi− δ (xi = yi otherwise). Thus, T ≥ L(y)− δ ·w, and hence, T > L(x),
which contradicts the fact that L(x) is a maximal candidate sum for x.

Lemma 4 If y is compliant and there is a j such that yj > (L(y) + S(τ) +
U(τ)Di − Ci)/m, then there exists a strictly smaller vector x that is also
compliant.

Proof. Define x such that xi = yi for i 6= j, and

xj =
L(y) + S(τ) + U(τ)Dj − Cj

m
. (19)

In this case, x and y are of the form of Lem. 3 with k = 1. Therefore,
L(x) ≤ L(y).

We now have for all i 6= j,

L(x) + S(τ) + U(τ)Di − Ci
m

≤ {Since L(x) ≤ L(y)}
L(y) + S(τ) + U(τ)Di − Ci

m
≤ {Since y is compliant, by (6)}
yi

13

= xi.

Also, by construction,

L(x) + S(τ) + U(τ)Dj − Cj
m

≤ {Since L(x) ≤ L(y)}
L(y) + S(τ) + U(τ)Dj − Cj

m
= {By (19)}
xj .

Therefore, x is compliant.

Lemma 21 L(s) is continuous over R

Proof. Let ε > 0 and δc
def
= ε

m+−1 . Consider s0 such that |s−s0| < δc. Without
loss of generality, assume s < s0 (otherwise we can swap them.) Then v(s)
and v(s0) are of the form of x and y, respectively, in Lem. 3, with k = n.
Thus,

L(v(s)) ≤ {By Lem. 3}
L(v(s0))

≤ {By Lem. 3}
L(v(s)) + δc · (m+ − 1)

= {By the definition of δc}
L(v(s)) + ε.

Therefore, |L(s)− L(s0)| ≤ ε, so L(s) is continuous over R.

Lemma 25 s1 6= s2 implies M(s1) 6= M(s2)

Proof. Without loss of generality, assume s2 > s1 (otherwise, swap them).
v(s1) and v(s2) are of the form of x and y, respectively, with δ = (s2 − s1)
and k = n, in Lem. 3. Therefore,

L(s2) ≤ L(s1) + (s2 − s1)(m+ − 1). (20)

Thus,

M(s2)−M(s1)

14

Table 1: 2 CPU task system example for Sec. 6

Ci Ti Di
τ1 6 10 10
τ2 12 10 10
τ3 4 20 20

= {By (16)}
L(s2)−ms2 − L(s1) +ms1

≤ {By (20)}
L(s1)+(s2−s1)(m+−1)−ms2−L(s1)+ms1

= {Simplifying}
(s2 − s1)(m+ − 1−m)

≤ {Since m+ ≤ m}
− 1(s2 − s1)

< 0.

Therefore, M(s1) 6= M(s2).

Computation Algorithm

We now show how to compute the minimum compliant vector for a task
system τ in time polynomial to the size of τ and the number of processors.
L(s) as defined in (15) is a piecewise linear function; our algorithm works by
tracing L(s) until we find a fixed point L(s) = ms.

In order to assist the reader’s understanding of this algorithm, we provide
an example task system in Table 1.2 Simple calculations reveal that, for this
system, S(τ) = 0 and U(τ) = 2. Furthermore, in a two-CPU system, by
Def. 1, we only need to consider p = 0. A graph of the relevant l(τi, vi(s), 0)
functions with respect to s is provided in Fig. 3.

We define the slope at point s of a piecewise linear function f(s) to be

limε→0+
f(s+ε)−f(s)

ε . This definition differs from the common notion of deriva-
tive in that its limit is taken from the right; it is thus defined for all real s.

2 In this system, the worst-case execution time of τ2 exceeds its deadline, so it appears
that it is impossible for τ2 to meet its deadline. However, because execution times given
are worst-case rather than exact, it is actually possible for this job to complete before its
deadline. Furthermore, here we are interested in response-time bounds rather than hard
deadlines.

15

Fig. 3: l functions for the system in Table 1

 0

 2

 4

 6

 8

 10

 12

 14

-25 -20 -15 -10 -5 0

l(
τ
i,

v
i(
s
),

 0
)

s

τ1
τ2
τ3

For example, l(τ1, v1(s), 0) in Fig. 3 has a slope of 1 at s = −22, but is not
differentiable at s = −22.

For each value of s we will define l(τi, vi(s), p) as being in one of three
states, depending on the value of vi(s) + Ci − pTi:

– If vi(s)+Ci−pTi < 0, then l(τi, vi(s), p) is in state 0, is equal to 0, and has
a slope of 0. l(τ1, v1(s), 0) in Fig. 3 is in state 0 in the interval (−∞,−22).

– If 0 ≤ vi(s) + Ci − pTi < Ci, then l(τi, vi(s), p) is in state 1, is equal to
vi(s) +Ci − pTi, and has a slope of 1. l(τ1, v1(s), 0) in Fig. 3 is in state 1
in the interval [−22,−18).

– If Ci ≤ vi(s) + Ci − pTi, then l(τi, vi(s), p) is in state 2, is equal to Ci,
and has a slope of 0. l(τ1, v1(s), 0) in Fig. 3 is in state 1 in the interval
[−18,∞).

In order to analyze the piecewise linear function L(s), we will need to
determine where the slope changes. To do so, we need to determine which
l(τi, vi(s), p) components contribute to L(s) for various intervals. For some
intervals, the choice is arbitrary. For example, the task system in Fig. 3 has
only one l(τi, vi(s), p) component contributing to L(s), becausem−1 = 2−1 =
1. However, for s < −22 all l(τi, vi(s), p) components equal zero. We provide
a sufficient solution by arbitrarily tracking some valid set of l(τi, vi(s), p)
components.

We will create a set Points of tuples, one for each possible change in
the slope of L(s). (Each will have an associated s value, but there could be
multiple possible changes at the same s value.) Each tuple will identify a point
where some l(τi0 , vi0(s), p0) in state h0 is replaced by some l(τi1 , vi1(s), p1) in

16

state h1. Such a tuple will be of the form {s, i0, p0, h0, i1, p1, h1}. In some cases,
more than one old component may be appropriate. To handle these cases
efficiently, any of i0, p0, or h0 may be set to ∗, which is defined as matching
any value of the relevant parameter. For example, the tuple {s, ∗, ∗, 0, i1, p1, 1}
indicates that any arbitrary l(τi0 , vi0(s), p0) in state 0 should be replaced by
l(τi1 , vi1(s), p1) in state 1.

The slope of L(s) may change in any of the following cases:

1. Some l(τi, vi(s), p) changes from state 0 to state 1. This occurs where
vi(s) + Ci − pTi = 0. The resulting tuple will be {s, ∗, ∗, 0, i, p, 1}, as
we can view l(τi, vi(s), pi) as replacing any l(τj , vj(s), pj) in state 0 in
the system—they all have value 0. This change occurs exactly once per
l(τi, vi(s), p) and therefore m − 1 times per task (once per value of p),
for a total of O(mn) times for the system. In Fig. 3, this state change
occurs for l(τ1, v1(s), 0) at s = −22, for l(τ2, v2(s), 0) at s = −13, and for
l(τ3, v3(s), 0) at s = −16.

2. Some l(τi, vi(s), p) changes from state 1 to state 2. This occurs where
vi(s) + Ci − pTi = Ci (so vi(s) = pTi). The resulting tuple will be
{s, i, p, 1, i, p, 2}. As above, this change occurs O(mn) times for the sys-
tem. In Fig. 3, this state change occurs for l(τ1, v1(s), 0) at s = −18, for
l(τ2, v2(s), 0) at s = −7, and for l(τ3, v3(s), 0) at s = −4.

3. Some l(τi, vi(s), pi) is in state 1 and crosses Cj , and thus potentially
crosses l(τj , vj(s), pj) (for some pj) where the latter is in state 2. This
occurs when Ci > Cj and vi(s) + Ci − piTi = Cj . The resulting tuple
will be {s, j, ∗, 2, i, p, 1}. This point may exist at most n − 1 times per
l(τi, vi(s), p) (in the worst case, l(τi, vi(s), p) crosses one l(τj , vj(s), pj) for
each other τj), so occurs at most O(mn2) times for the system. In Fig. 3,
this point does not occur for τ1 (as C1 is the smallest value in the system),
occurs for l(τ2, v2(s), 0) with τ1 at s = −9, and occurs for l(τ3, v3(s), 0)
with τ1 at s = −12 and with τ2 at s = −10. (Although l(τ3, v3(s), 0) does
not actually cross l(τ2, v2(s), 0) at s = −10, our algorithm nonetheless
records the point where l(τ3, v3(s), 0) crosses C2.)

In order to track L(s), we order the tuples in Points by s value, breaking
ties in favor of tuples indicating a change in state for a particular l(τi, vi(s), p)
component. We create a list Active containing tuples {i, p, h}, each repre-
senting the corresponding l(τi, vi(s), p) in state h that contributes its value
to L(s). For s smaller than the smallest in Points, we may arbitrarily make
m+ − 1 choices of l(τi, vi(s), p) components, each in state 0. Therefore, we
initialize Active to an arbitrary choice of m+ − 1 tuples of the form {i, p, 0}.

17

The appropriate s value is computed using Algorithm 1, which works by
tracing the piecewise linear function and checking for L(s) = ms (as per (12),
(14), and (15)) in each segment.

As an example, suppose Active is initialized to {{3, 0, 0}}, which repre-
sents l(τ3, v3(s), 0) in state 0. The first tuple in Points is {−22, ∗, 0, 0, 1, 0, 1},
representing the leftmost slope change in Fig. 3. This tuple will match the
single tuple in Active, so Active will become {1, 0, 1}. slope is used to track
the slope between s1 and the next s value in Points (which is called s2).
current is used to represent the correct value of L(s1). In this case, the cur-
rent interval of interest is −22 ≤ s < −18. The new state h2 is 1, so the
slope (which was initially 0) will be incremented by 1, resulting in a new
slope of 1. We now know the slope slope = 1 of L(s) over [−22,−18) and
its value L(s1) = current = 0 at s1 = −22. We therefore compute the point
where L(s) = ms would hold, assuming a linear function that is equal to the
correct piecewise linear function over the interval of interest. In this case, s
is assigned the value 0−(−22)

2−1 = 22, which is not in [−22,−18), so the desired
value of s for the algorithm is not in the current interval of interest. We do
not return, so we update the value current to match the value of L(s2) at
the end of the current interval of interest (and thus in the next iteration the
correct value of L(s1)). In this case, current will be assigned to 0 + 1 · 4 = 4.

Points is of size O(mn2) and Active of size O(m), so checking for matches
will require O(m2n2) operations over the execution of the algorithm. Each
match requires O(1) time to process, so the complexity of Algorithm 1 is
O(m2n2). Computing Points requires O(mn2) time, and sorting requires
O(mn2 log(mn)) time, so the complexity of computing s is O(mn2log(mn) +
m2n2). Once an s value has been computed using Algorithm 1, the correct
minimum compliant vector is simply v(s), which can be computed in O(n)
time.

18

Algorithm 1 Compute s value

tuple set Active, Points, described in text
integer slope, current initially 0
real s, s2
for all {s1, i1, p1, h1, i2, p2, h2} ∈ Points do

if {i1, p1, h1} matches some {i, p, h} in Active then
Replace {i, p, h} with {i2, p2, h2}
if h2 = 1 then
{Changing to state 1 means slope increases}
slope := slope+ 1

else
{Must be changing away from state 1 or {s1, i1, p1, h1, i2, p2, h2} wouldn’t be
in Points}
slope := slope− 1

end if
s2 := next s value from Points, or Cmax if there is no such value
s := current−slope·s1

m−slope
if s ∈ [s1, s2) then

return s
end if
current := current+ slope · (s2 − s1)

end if
end for

19

