Full proofs of lemmas

Lemma 3 Suppose length-n vectors \mathbf{x} and \mathbf{y} differ at exactly k values, and for these values $y_i = x_i + \delta$, where δ is a positive constant. Denote $w = \min\{k, m^+ - 1\}$.

Then, the following inequality holds:

$$L(x) \le L(y) \le L(x) + \delta \cdot w. \tag{18}$$

Proof. We will define a *candidate sum* for \boldsymbol{x} as any sum of $m^+ - 1$ distinct $l(\tau_i, x_i, p)$ values as in (3). By (4), $L(\boldsymbol{x})$ is the largest candidate sum for \boldsymbol{x} .

First, we prove $L(\mathbf{x}) \leq L(\mathbf{y})$. Consider the candidate sum S for \mathbf{y} computed by selecting the same i and p values as in $L(\mathbf{x})$. Because for all $i, x_i \leq y_i, L(\mathbf{x}) \leq L(\mathbf{y})$. Because $L(\mathbf{y})$ must be the largest candidate sum for $y, S \leq L(\mathbf{y})$. Therefore, $L(\mathbf{x}) \leq L(\mathbf{y})$.

Next, we prove $L(\mathbf{y}) \leq L(\mathbf{x}) + \delta \cdot w$ by contradiction. Suppose $L(\mathbf{y}) > L(\mathbf{x}) + \delta \cdot w$. Consider the candidate sum T for \mathbf{x} computed by selecting the same i and p values as in $L(\mathbf{y})$. Observe that at most w terms contribute to the difference between $L(\mathbf{y})$ and T. When two such terms differ, we have $x_i = y_i - \delta$ ($x_i = y_i$ otherwise). Thus, $T \geq L(\mathbf{y}) - \delta \cdot w$, and hence, $T > L(\mathbf{x})$, which contradicts the fact that $L(\mathbf{x})$ is a maximal candidate sum for \mathbf{x} .

Lemma 4 If \mathbf{y} is compliant and there is a j such that $y_j > (L(\mathbf{y}) + S(\tau) + U(\tau)D_i - C_i)/m$, then there exists a strictly smaller vector \mathbf{x} that is also compliant.

Proof. Define \boldsymbol{x} such that $x_i = y_i$ for $i \neq j$, and

$$x_j = \frac{L(\boldsymbol{y}) + S(\tau) + U(\tau)D_j - C_j}{m}.$$
(19)

In this case, \boldsymbol{x} and \boldsymbol{y} are of the form of Lem. 3 with k=1. Therefore, $L(\boldsymbol{x}) \leq L(\boldsymbol{y})$.

We now have for all $i \neq j$,

$$\frac{L(\boldsymbol{x}) + S(\tau) + U(\tau)D_i - C_i}{m}$$

$$\leq \{\text{Since } L(\boldsymbol{x}) \leq L(\boldsymbol{y})\}$$

$$\frac{L(\boldsymbol{y}) + S(\tau) + U(\tau)D_i - C_i}{m}$$

$$\leq \{\text{Since } \boldsymbol{y} \text{ is compliant, by (6)}\}$$

$$y_i$$

$$=x_i.$$

Also, by construction,

$$\frac{L(\boldsymbol{x}) + S(\tau) + U(\tau)D_j - C_j}{m}$$

$$\leq \{\text{Since } L(\boldsymbol{x}) \leq L(\boldsymbol{y})\}$$

$$\frac{L(\boldsymbol{y}) + S(\tau) + U(\tau)D_j - C_j}{m}$$

$$= \{\text{By (19)}\}$$

$$x_j.$$

Therefore, x is compliant.

Lemma 21 L(s) is continuous over \mathbb{R}

Proof. Let $\epsilon > 0$ and $\delta_c \stackrel{\text{def}}{=} \frac{\epsilon}{m^+ - 1}$. Consider s_0 such that $|s - s_0| < \delta_c$. Without loss of generality, assume $s < s_0$ (otherwise we can swap them.) Then $\boldsymbol{v}(s)$ and $\boldsymbol{v}(s_0)$ are of the form of \boldsymbol{x} and \boldsymbol{y} , respectively, in Lem. 3, with k = n. Thus,

$$L(\boldsymbol{v}(s)) \leq \{ \text{By Lem. 3} \}$$

$$L(\boldsymbol{v}(s_0))$$

$$\leq \{ \text{By Lem. 3} \}$$

$$L(\boldsymbol{v}(s)) + \delta_c \cdot (m^+ - 1)$$

$$= \{ \text{By the definition of } \delta_c \}$$

$$L(\boldsymbol{v}(s)) + \epsilon.$$

Therefore, $|L(s) - L(s_0)| \le \epsilon$, so L(s) is continuous over \mathbb{R} .

Lemma 25 $s_1 \neq s_2$ implies $M(s_1) \neq M(s_2)$

Proof. Without loss of generality, assume $s_2 > s_1$ (otherwise, swap them). $\mathbf{v}(s_1)$ and $\mathbf{v}(s_2)$ are of the form of \mathbf{x} and \mathbf{y} , respectively, with $\delta = (s_2 - s_1)$ and k = n, in Lem. 3. Therefore,

$$L(s_2) \le L(s_1) + (s_2 - s_1)(m^+ - 1).$$
 (20)

Thus,

$$M(s_2) - M(s_1)$$

Table 1: 2 CPU task system example for Sec. 6

	C_i	T_i	D_i
$ au_1$	6	10	10
τ_2	12	10	10
$ au_3$	4	20	20

$$= \{ \text{By } (16) \}$$

$$L(s_2) - ms_2 - L(s_1) + ms_1$$

$$\leq \{ \text{By } (20) \}$$

$$L(s_1) + (s_2 - s_1)(m^+ - 1) - ms_2 - L(s_1) + ms_1$$

$$= \{ \text{Simplifying} \}$$

$$(s_2 - s_1)(m^+ - 1 - m)$$

$$\leq \{ \text{Since } m^+ \leq m \}$$

$$-1(s_2 - s_1)$$

$$< 0.$$

Therefore, $M(s_1) \neq M(s_2)$.

Computation Algorithm

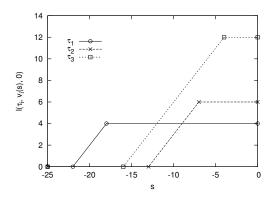
We now show how to compute the minimum compliant vector for a task system τ in time polynomial to the size of τ and the number of processors. L(s) as defined in (15) is a piecewise linear function; our algorithm works by tracing L(s) until we find a fixed point L(s) = ms.

In order to assist the reader's understanding of this algorithm, we provide an example task system in Table 1.² Simple calculations reveal that, for this system, $S(\tau) = 0$ and $U(\tau) = 2$. Furthermore, in a two-CPU system, by Def. 1, we only need to consider p = 0. A graph of the relevant $l(\tau_i, v_i(s), 0)$ functions with respect to s is provided in Fig. 3.

We define the *slope* at point s of a piecewise linear function f(s) to be $\lim_{\epsilon \to 0^+} \frac{f(s+\epsilon)-f(s)}{\epsilon}$. This definition differs from the common notion of derivative in that its limit is taken from the right; it is thus defined for all real s.

² In this system, the worst-case execution time of τ_2 exceeds its deadline, so it appears that it is impossible for τ_2 to meet its deadline. However, because execution times given are worst-case rather than exact, it is actually possible for this job to complete before its deadline. Furthermore, here we are interested in response-time bounds rather than hard deadlines.

Fig. 3: *l* functions for the system in Table 1



For example, $l(\tau_1, v_1(s), 0)$ in Fig. 3 has a slope of 1 at s = -22, but is not differentiable at s = -22.

For each value of s we will define $l(\tau_i, v_i(s), p)$ as being in one of three states, depending on the value of $v_i(s) + C_i - pT_i$:

- If $v_i(s) + C_i pT_i < 0$, then $l(\tau_i, v_i(s), p)$ is in state 0, is equal to 0, and has a slope of 0. $l(\tau_1, v_1(s), 0)$ in Fig. 3 is in state 0 in the interval $(-\infty, -22)$.
- If $0 \le v_i(s) + C_i pT_i < C_i$, then $l(\tau_i, v_i(s), p)$ is in state 1, is equal to $v_i(s) + C_i pT_i$, and has a slope of 1. $l(\tau_1, v_1(s), 0)$ in Fig. 3 is in state 1 in the interval [-22, -18).
- If $C_i \leq v_i(s) + C_i pT_i$, then $l(\tau_i, v_i(s), p)$ is in state 2, is equal to C_i , and has a slope of 0. $l(\tau_1, v_1(s), 0)$ in Fig. 3 is in state 1 in the interval $[-18, \infty)$.

In order to analyze the piecewise linear function L(s), we will need to determine where the slope changes. To do so, we need to determine which $l(\tau_i, v_i(s), p)$ components contribute to L(s) for various intervals. For some intervals, the choice is arbitrary. For example, the task system in Fig. 3 has only one $l(\tau_i, v_i(s), p)$ component contributing to L(s), because m-1=2-1=1. However, for s<-22 all $l(\tau_i, v_i(s), p)$ components equal zero. We provide a sufficient solution by arbitrarily tracking some valid set of $l(\tau_i, v_i(s), p)$ components.

We will create a set Points of tuples, one for each possible change in the slope of L(s). (Each will have an associated s value, but there could be multiple possible changes at the same s value.) Each tuple will identify a point where some $l(\tau_{i_0}, v_{i_0}(s), p_0)$ in state h_0 is replaced by some $l(\tau_{i_1}, v_{i_1}(s), p_1)$ in

state h_1 . Such a tuple will be of the form $\{s, i_0, p_0, h_0, i_1, p_1, h_1\}$. In some cases, more than one old component may be appropriate. To handle these cases efficiently, any of i_0, p_0 , or h_0 may be set to *, which is defined as matching any value of the relevant parameter. For example, the tuple $\{s, *, *, 0, i_1, p_1, 1\}$ indicates that any arbitrary $l(\tau_{i_0}, v_{i_0}(s), p_0)$ in state 0 should be replaced by $l(\tau_{i_1}, v_{i_1}(s), p_1)$ in state 1.

The slope of L(s) may change in any of the following cases:

- 1. Some $l(\tau_i, v_i(s), p)$ changes from state 0 to state 1. This occurs where $v_i(s) + C_i pT_i = 0$. The resulting tuple will be $\{s, *, *, 0, i, p, 1\}$, as we can view $l(\tau_i, v_i(s), p_i)$ as replacing any $l(\tau_j, v_j(s), p_j)$ in state 0 in the system—they all have value 0. This change occurs exactly once per $l(\tau_i, v_i(s), p)$ and therefore m 1 times per task (once per value of p), for a total of O(mn) times for the system. In Fig. 3, this state change occurs for $l(\tau_1, v_1(s), 0)$ at s = -22, for $l(\tau_2, v_2(s), 0)$ at s = -13, and for $l(\tau_3, v_3(s), 0)$ at s = -16.
- 2. Some $l(\tau_i, v_i(s), p)$ changes from state 1 to state 2. This occurs where $v_i(s) + C_i pT_i = C_i$ (so $v_i(s) = pT_i$). The resulting tuple will be $\{s, i, p, 1, i, p, 2\}$. As above, this change occurs O(mn) times for the system. In Fig. 3, this state change occurs for $l(\tau_1, v_1(s), 0)$ at s = -18, for $l(\tau_2, v_2(s), 0)$ at s = -7, and for $l(\tau_3, v_3(s), 0)$ at s = -4.
- 3. Some $l(\tau_i, v_i(s), p_i)$ is in state 1 and crosses C_j , and thus potentially crosses $l(\tau_j, v_j(s), p_j)$ (for some p_j) where the latter is in state 2. This occurs when $C_i > C_j$ and $v_i(s) + C_i p_i T_i = C_j$. The resulting tuple will be $\{s, j, *, 2, i, p, 1\}$. This point may exist at most n-1 times per $l(\tau_i, v_i(s), p)$ (in the worst case, $l(\tau_i, v_i(s), p)$ crosses one $l(\tau_j, v_j(s), p_j)$ for each other τ_j), so occurs at most $O(mn^2)$ times for the system. In Fig. 3, this point does not occur for τ_1 (as C_1 is the smallest value in the system), occurs for $l(\tau_2, v_2(s), 0)$ with τ_1 at s = -9, and occurs for $l(\tau_3, v_3(s), 0)$ with τ_1 at s = -12 and with τ_2 at s = -10. (Although $l(\tau_3, v_3(s), 0)$ does not actually cross $l(\tau_2, v_2(s), 0)$ at s = -10, our algorithm nonetheless records the point where $l(\tau_3, v_3(s), 0)$ crosses C_2 .)

In order to track L(s), we order the tuples in Points by s value, breaking ties in favor of tuples indicating a change in state for a particular $l(\tau_i, v_i(s), p)$ component. We create a list Active containing tuples $\{i, p, h\}$, each representing the corresponding $l(\tau_i, v_i(s), p)$ in state h that contributes its value to L(s). For s smaller than the smallest in Points, we may arbitrarily make $m^+ - 1$ choices of $l(\tau_i, v_i(s), p)$ components, each in state 0. Therefore, we initialize Active to an arbitrary choice of $m^+ - 1$ tuples of the form $\{i, p, 0\}$.

The appropriate s value is computed using Algorithm 1, which works by tracing the piecewise linear function and checking for L(s) = ms (as per (12), (14), and (15)) in each segment.

As an example, suppose Active is initialized to $\{\{3,0,0\}\}$, which represents $l(\tau_3, v_3(s), 0)$ in state 0. The first tuple in Points is $\{-22, *, 0, 0, 1, 0, 1\}$, representing the leftmost slope change in Fig. 3. This tuple will match the single tuple in Active, so Active will become $\{1,0,1\}$. slope is used to track the slope between s_1 and the next s value in *Points* (which is called s_2). current is used to represent the correct value of $L(s_1)$. In this case, the current interval of interest is $-22 \le s < -18$. The new state h_2 is 1, so the slope (which was initially 0) will be incremented by 1, resulting in a new slope of 1. We now know the slope slope = 1 of L(s) over [-22, -18) and its value $L(s_1) = current = 0$ at $s_1 = -22$. We therefore compute the point where L(s) = ms would hold, assuming a linear function that is equal to the correct piecewise linear function over the interval of interest. In this case, sis assigned the value $\frac{0-(-22)}{2-1}=22$, which is not in [-22,-18), so the desired value of s for the algorithm is not in the current interval of interest. We do not return, so we update the value current to match the value of $L(s_2)$ at the end of the current interval of interest (and thus in the next iteration the correct value of $L(s_1)$). In this case, current will be assigned to $0+1\cdot 4=4$.

Points is of size $O(mn^2)$ and Active of size O(m), so checking for matches will require $O(m^2n^2)$ operations over the execution of the algorithm. Each match requires O(1) time to process, so the complexity of Algorithm 1 is $O(m^2n^2)$. Computing Points requires $O(mn^2)$ time, and sorting requires $O(mn^2\log(mn))$ time, so the complexity of computing s is $O(mn^2\log(mn) + m^2n^2)$. Once an s value has been computed using Algorithm 1, the correct minimum compliant vector is simply $\mathbf{v}(s)$, which can be computed in O(n) time.

Algorithm 1 Compute s value

```
tuple set Active, Points, described in text
integer slope, current initially 0
real s, s_2
for all \{s_1,i_1,p_1,h_1,i_2,p_2,h_2\} \in Points do
   if \{i_1, p_1, h_1\} matches some \{i, p, h\} in Active then
      Replace \{i, p, h\} with \{i_2, p_2, h_2\}
      if h_2 = 1 then
          {Changing to state 1 means slope increases}
          slope := slope + 1 \\
          (Must be changing away from state 1 or \{s_1,\,i_1,\,p_1,\,h_1,\,i_2,\,p_2,\,h_2\} wouldn't be
          in Points
          slope := slope - 1
      end if
      s_2 := \text{next } s \text{ value from } Points, \text{ or } C_{\max} \text{ if there is no such value } s := \frac{current-slope \cdot s_1}{m-slope}
      if s \in [s_1, s_2) then
          \mathbf{return} \ \ s
      end if
      current := current + slope \cdot (s_2 - s_1)
   end if
end for
```