
Response Time Bounds for G-EDF Without
Intra-Task Precedence Constraints

Jeremy P. Erickson and James H. Anderson

University of North Carolina at Chapel Hill

Abstract. Prior work has provided bounds on the deadline tardiness that
a set of sporadic real-time tasks may incur when scheduled using the global
earliest-deadline-first (G-EDF) scheduling algorithm. Under the sporadic task
model, it is necessary that no individual task overutilize a single processor
and that the set of all tasks does not overutilize the set of all processors.
In this work we generalize the task model by allowing jobs within a single
task to run concurrently. In doing so we remove the requirement that no
task overutilize a single processor. We also provide tardiness bounds that are
better than those available with the standard sporadic task model.

1 Introduction

Multicore processors have been shown to be useful for supporting traditional
soft real-time (SRT) workloads when bounded deadline tardiness is acceptable
[1–4]. In this paper we extend these works to a broader class of workloads in
which jobs are independent of each other and can be executed in parallel, such
as servers handling independent requests. For both types of SRT workloads,
temporal correctness requires that tardiness bounds exist, i.e., for each task,
there exists an upper bound on the amount of time between the deadline of
any job of that task and its actual completion time. Prior work has shown
that the global earliest-deadline-first (G-EDF) algorithm is a good candidate
scheduler when bounded tardiness is desired, as its use allows all available
processing capacity to be utilized.

In most previous analysis of G-EDF, successive jobs (i.e. invocations) of
each task are required to execute in sequence. This constraint arises naturally
when jobs correspond to separate invocations of the same code segment.
However, in some settings, jobs are released as separate threads in response
to interrupts, in which case, successive jobs of the same task may execute
concurrently. In prior hard real-time analysis of G-EDF [5], the impact of
such concurrently-executing jobs has been considered, but to our knowledge,
no such analysis exists for SRT systems for which bounded deadline tardiness
is acceptable. Such analysis is the focus of this paper.

The task model considered in this paper is based on the widely-studied
sporadic model, but differs from the usual specification of that model in two

ways. First, as implied by the discussion above, successive jobs of the same
task are allowed to execute in parallel. Second, early release behavior [6] is
allowed: a job may have an actual release time (or, a-release time) that is
earlier than its scheduler release time (or, s-release time) A job’s deadline is
defined based on its s-release time, and constructive s-releases of each task
τi are constrained to be no closer than Ti time units apart, where Ti is the
minimum separation parameter of τi. However, a job may begin execution as
early as its a-release time. These changes to the traditional sporadic model
allow us to support general event models, as the following example illustrates.

Example In high-frequency trading systems, short response times are critical
to minimize risk [7]. Consider such a system that responds to data from the
market about two stocks. One stock is highly critical and should receive new
information every 2 ms (but due to network uncertainty may not be timed
precisely.) It may take up to 3 ms to process and should be processed as
quickly as possible, so its deadline is 3 ms. Observe that this stock overutilizes
a single processor and could not be supported using the traditional sporadic
task model. However, it can be supported using the methodology provided
in this paper. A second stock is less critical, should receive new information
every 4 ms, and can take up to 2 ms to process. One possible execution on two
processors is depicted in Fig. 1. Observe that the a-release times sometimes
do occur before the s-release times (because incoming packets can arrive early
or late) and that some jobs do miss deadlines.

The main contribution of this paper is to show that tardiness under G-
EDF is greatly lessened if jobs of the same task are not constrained to execute
in sequence. We show this by deriving per-job response-time bounds, from
which tardiness bounds can be deduced. After deriving such bounds, we com-
pare them experimentally to prior bounds, which were derived assuming no
intra-task parallelism. We begin in the next section by more fully describing
our system model.

2 System Model

We consider a system τ of n arbitrary-deadline sporadic tasks {τ1, τ2, . . . , τn}
running on m processors, with each task τi characterized by a worst-case
execution time Ci, a minimum separation time (between s-releases) Ti, and
a relative deadline Di. No job may run concurrently with itself, but distinct
jobs within the same task may run concurrently. In addition, we define a
task’s utilization Ui

def
= Ci

Ti
, the task system utilization U(τ)

def
=
∑

τi∈τ Ui, and

m+ def
= dU(τ)e.

2

Fig. 1: Example high-frequency trading system

Under the traditional task model with implicit precedence constraints,
providing bounded response time required that no τi had Ui > 1 and that
U(τ) ≤ m [3]. However, under the task model considered here, a job with
Ui > 1 can have bounded response time if subsequent invocations run on
separate processors, as depicted for τ1 in Fig. 1. U(τ) ≤ m remains necessary
so that the entire system is not overutilized. In this work we demonstrate
that U(τ) ≤ m is also a sufficient condition for bounded response times and
provide response-time bounds. Our bounds are relative to the s-release time
of each job.

3 Response Time Characterization

Over an interval of any given length t, the total amount of work from jobs
of τi (with both s-release times and deadlines inside the interval) is bounded.
This bound, called the demand bound function, was first defined in [8]:

dbf(τi, t)
def
= Ci ·max

{
0,

⌊
t−Di

Ti

⌋
+ 1

}
. (1)

(1) is defined by counting the number of possible jobs of τi having both s-
release times and deadlines in an interval of length t, and multiplying that
number by the worst-case execution time Ci. Because we still assume a spo-
radic s-release pattern for jobs, and deadlines are based solely on s-release
times, allowing multiple jobs within a task to execute at the same time does
not invalidate (1). An early release of a job can only reduce the demand as
compared to that predicted in (1).

Lem. 1 of [3] used (1) to demonstrate that for all τi and t ≥ 0,

dbf(τi, t) ≤ Uit+ Si, (2)

where Si
def
= Ci · max{0, 1 − Ci/Di}. Essentially, Si accounts for the extra

demand that can be created by a job with a short deadline.

3

For an n-task system τ , we wish to define a vector of non-negative real
numbers 〈x1, x2, . . . xn〉 such that the response time of each task τi, 1 ≤ i ≤
n, is at most xi + Ci when τ is scheduled using G-EDF on m unit-speed
processors. Each xi value depends upon the other xi values. Therefore, we
initially define the vectors using an implicit criterion, and as in [2,3] we define
the notion of a compliant vector as one that meets this criterion.

Definition 1. For each task τi, non-negative integer p < m+ − 1, and non-
negative real number xi, let

l(τi, xi, p) = min{Ci,max{0, xi + Ci − pTi}}. (3)

For any x = 〈x1, x2, . . . , xn〉, an ordered list of n non-negative real numbers,
let

L(x)
def
=

∑
m+−1 largest

l(τi, xi, p), (4)

S(τ)
def
=
∑
τi∈τ

Si. (5)

We define x as a compliant vector if and only if

L(x) + S(τ) + U(τ)Di − Ci
m

≤ xi (6)

is satisfied for all i, 1 ≤ i ≤ n.

Our definition differs from that of [3] both in the definition of L(x) and in
the additional U(τ)Di term.

We now derive a response-time bound by considering a compliant vector
x = 〈x1, x2, . . . , xn〉 and an arbitrary collection I ′ of jobs generated by τ .
We order jobs by deadline with ties broken arbitrarily (as per the standard
G-EDF algorithm). We analyze the response time of an arbitrary job Jk with
s-release time rk and deadline dk, assuming that each job of each τi ordered
prior to Jk completes within (Ci + xi) units of its s-release time. We denote
as I the set of all jobs ordered at or before Jk, which (by the definition of
G-EDF) contains all jobs that affect the scheduling of Jk. We also denote

Ic
def
= I \ {Jk} (i.e., the work competing with Jk).

Without loss of generality, we assume that the earliest s-release time for
any job in I is 0. We denote as Wi(t) the remaining execution for jobs in I

of task τi at time t, and let W (t)
def
=
∑

τi∈τ Wi(t).

Lemma 1. If x is a compliant vector and for all i, 1 ≤ i ≤ N , the response
time of each job of τi in Ic is at most xi + Ci, then

W (t) ≤ U(τ)(dk − t) + L(x) + S(τ). (7)

4

Proof. We will define an interval as busy if at least m+ processors are execut-
ing work throughout the interval, and nonbusy if fewer than m+ processors
are executing work. We will consider a set of time instants {t0, t1, . . . tk},
t0 = 0, tk = rk, such that each [ti, ti+1) is either all busy or all nonbusy. We
will prove the lemma by induction.

Base Case (t0 = 0) All jobs with both s-release times and deadlines within
[0, dk] contribute to W (0). By (2) Wi(0) ≤ Uidk+Si, and therefore, summing
over all Wi(0) values, W (0) ≤ U(τ)dk + S(τ) ≤ U(τ)dk + S(τ) + L(x).

Induction Step Suppose the lemma is true for ti. We will consider two
subcases, based on whether [ti, ti+1) is busy or nonbusy.

Case A Suppose [ti, ti+1) is busy. Then,

W (ti+1)

≤ {Since at least m+(ti+1 − ti) work is completed}
W (ti)−m+(ti+1 − ti)

≤ {By the inductive assumption}
U(τ)(dk − ti) + S(τ) + L(x)−m+(ti+1 − ti)

≤ {Since U(τ) ≤ m+}
U(τ)(dk − ti) + S(τ) + L(x)− U(τ)(ti+1 − ti)

= {Simplifying}
U(τ)(dk − ti+1) + S(τ) + L(x),

so the lemma is true for ti+1 as well.

Case B Suppose [ti, ti+1) is nonbusy. We will say that a job J is “executing
at time instant t−i+1” if there is an ε greater than 0 such that J is executing
over the entire interval [ti+1 − ε, ti+1). In [3], the presence of an idle CPU
implied that at most m+ − 1 tasks have work available for execution at time
instant t−i+1, whereas here the same condition implies that at most m+−1 jobs
are available for execution. In [3] it was necessary to account for released jobs
that were not running due to a precedence constraint, despite the presence
of an idle CPU. In order to do so, assuming that Ui ≤ 1 for each τi was
necessary. Here we do not need to account for such a case, but do need to
account for the fact that several jobs running in a non-busy interval could be
from the same task. The assumption that Ui ≤ 1 is no longer necessary.

We now consider two cases for jobs that may contribute to W (ti+1): jobs
that are executing at time instant t−i+1 (Case B.1) and jobs that have s-release
time at or after ti+1 (Case B.2).

5

B.1 In total, there may be at most m+−1 jobs executing at time instant t−i+1.
We ignore early-released jobs that have s-releases at or after t−i+1, as these
are accounted for in Case B.2. We consider the jobs of each task τj that has
jobs executing at time instant t−i+1. We will use p to index each executing job
relative to the job with the most recent s-release within τj : p = 0 indicates the
job with the most recent s-release, p = 1 the next most recent s-release, etc.
By the assumption of the lemma, if p > 0 for job J ∈ τj , then J must complete
by xj + Cj units after its s-release time, and must be have a s-release time
before ti+1−pTj . Therefore, J must complete by time ti+1+xj+Cj−pTj , and

its contribution to Wj(ti+1) is at most min{Cj ,max{0, xj + Cj − pTj}}
By (3)

=
l(τj , xj , p).

When p = 0 for J ∈ τj , xj +Cj − pTj ≥ Cj . Therefore l(τj , xj , p) = Cj by
(3), so J ’s contribution to Wj(ti+1) is also at most l(τj , xj , p).

B.2 We now consider jobs with s-release time at or after ti+1. By (2), each
task τj contributes at most Uj(dk − ti+1) + Sj units of work over [ti+1, dk).
Cumulatively, all tasks contribute at most U(τ)(dk − ti+1) + S(τ) units of
work over [ti+1, dk).

Total W (ti+1) contains at most m+ − 1 jobs from Case B.1, in addition to
all jobs from Case B.2, so W (ti+1) ≤ U(τ)(dk − ti+1) + S(τ) + L(x).

Thus the lemma is true for ti+1.

We now use the previous lemma to bound the response time of a job under
the same assumptions.

Lemma 2. If x is a compliant vector and for all i, 1 ≤ i ≤ N , the response
time of each job of τi in Ic is at most xi + Ci, then the response time of Jk
is at most xk + Ck.

Proof. Recall that rk is the s-release time of Jk, and dk is its deadline. By
Lem. 1,

W (rk) ≤ U(τ)(dk − rk) + S(τ) + L(x). (8)

After rk, Jk is continuously running until it is finished, except when all other
CPUs are occupied by jobs from Ic. Recall that, by definition, W (rk) is the
total remaining work after time rk for jobs in I. We define Wc(rk) as the
total amount of remaining work after time rk for jobs in Ic. Because the
upper bound in (8) assumes that all jobs (including Jk) run for their full
worst-case execution times, (8) implies

Wc(rk) ≤ U(τ)(dk − rk) + S(τ) + L(x)− Ck. (9)

6

The total amount of time after rk during which m CPUs are busy with work
from Ic can be at most

Wc(rk)

m
≤ {By (9)}

L(x) + S(τ) + U(τ)Dk − Ck
m

≤ {By (6)}
xk.

Thus, Jk is prevented from executing after its s-release time for at most xk
time units, so its response time is at most xk + Ck.

This lemma leads directly to the main result of this section:

Theorem 1. If x is a compliant vector then ∀i, 1 ≤ i ≤ N , each job of τi
completes within xi + Ci units of its s-release time.

Proof. By inducting over the jobs of I ′ using Lem. 2.

4 The Minimum Compliant Vector

Thm. 1 uses compliant vectors to express response-time bounds. Our objec-
tive is to compute response-time bounds that are as small as possible. We
show that for any arbitrary-deadline sporadic task system τ without implicit
precedence constraints there exists a unique minimum compliant vector. This
proof closely follows a similar one provided in [3], and some lemmas have
nearly identical proofs. For space reasons, proofs of such lemmas are ommit-
ted and included in an Appendix.1 The Appendix also provides an algorithm
for computing the minimum compliant vector in polynomial time.

We first characterize the behavior of L(x). We consider two vectors x
and y that differ by a constant for some of their values, and are the same
elsewhere. For example, x = 〈1, 2, 3〉 and y = 〈2, 2, 4〉 differ by exactly 1 in
two places (the first and third) and are the same in the second; Lem. 3 would
apply to x and y with k = 2. Lem. 3 is proved in the Appendix.

Lemma 3. Suppose length-n vectors x and y differ at exactly k values, and
for these values yi = xi + δ, where δ is a positive constant. Denote w =
min{k,m+ − 1}.

Then, the following inequality holds:

L(x) ≤ L(y) ≤ L(x) + δ · w. (10)

1 Available from http://cs.unc.edu/˜anderson/papers.html

7

We say that length-n x is strictly smaller than length-n y if for all i, xi ≤
yi and there exists a j such that xj < yj . Clearly y cannot be considered
“minimum” if there exists such an x. We next use Lem. 3 (proved in the
Appendix) to characterize the minimum compliant vector.

Lemma 4. If y is compliant and there is a j such that yj > (L(y) + S(τ) +
U(τ)Di − Ci)/m, then there exists a strictly smaller vector x that is also
compliant.

Lem. 4 demonstrates that each inequality in (6) should actually be an
equality, or the vector cannot be the minimum. A minimum compliant vector
must therefore be of the form

xi =
L(x) + S(τ) + U(τ)Di − Ci

m
∀i. (11)

Because L(x) does not depend on i, there must exist a real number

s =
L(x)

m
(12)

such that

xi = s+
S(τ) + U(τ)Di − Ci

m
∀i. (13)

We define some functions:

v(s)
def
= x such that (13) holds (14)

L(s)
def
= L(v(s)) (15)

M(s)
def
= L(s)−ms. (16)

By (13), any minimum compliant vector must be v(s) for some s. Further-
more, L(s) must equal ms, by (12). Therefore, M(s) = 0 if and only if v(s)
is a compliant vector in the form of (11), and thus the minimum compliant
vector. We are now ready to prove this section’s main result:

Theorem 2. For any given task set τ , there exists a unique minimum com-
pliant vector.

Proof. We wish to demonstrate that exactly one real s exists such that
M(s) = 0. We will use the Intermediate Value Theorem from calculus.

A necessary precondition for the Intermediate Value Theorem is that
M(s) is a continuous function. In the Appendix we provide the following
lemma, which leads to the desired result as a corollary.

8

Lemma 21 L(s) is continuous over R

Let Cmax denote the largest Ci value in τ . We now show that M(0) > 0
and M(Cmax) < 0, completing the preconditions for the Intermediate Value
Theorem.

Lemma 22 M(0) > 0

Proof. Let 1 ≤ i ≤ N be arbitrary. Then:

M(0)

= {By (16) with s = 0}
L(0)

= {By (15) and (4)}∑
m+−1 largest

l(τi, vi(0), p)

≥ {Since, by (3), l(τi, vi(0), p) can’t be negative}
l(τi, vi(0), 0)

= {By (3) and (14), with s = 0 and p = 0}

min

{
Ci,max

{
0,
S(τ) + U(τ)Di − Ci

m
+ Ci

}}
= {Simplifying}

= min

{
Ci,max

{
0,
S(τ) + U(τ)Di + (m− 1)Ci

m

}}
> 0.

Lemma 23 M(Cmax) < 0.

Proof. By (3), l(τi, xi, p) ≤ Ci for any i and p. Therefore, for any i and p,

l(τi, xi, p) ≤ Cmax. (17)

Therefore,

M(Cmax)

= {By (16) with s = Cmax}
L(Cmax)−mCmax

≤ {By (15), (4), and (17)}
(m+ − 1)Cmax −mCmax

9

≤ {Since m+ ≤ m}
− Cmax

< 0.

Lemma 24 There is an s in (0, Cmax) such that M(s) = 0.

Proof. By Lem. 21, Lem. 22, Lem. 23, and the Intermediate Value Theorem.

We now verify that the s value of Lem. 24 is unique, using the following
lemma, proved in the Appendix.

Lemma 25 s1 6= s2 implies M(s1) 6= M(s2)

Lem. 25 demonstrates that s1 6= s2 and M(s1) = 0 imply M(s2) 6= 0, so
the value of s characterized in Lem. 24 is unique.

Here we have a substantial improvement compared to [3], where the up-
per bound was given as the sum of the m+ − 1 largest values of Ci. This
improvement leads to Thm. 3, which provides a response-time bound that
can be quickly calculated.

Theorem 3. The response time of any job of any task τi cannot exceed
Cmax + S(τ)+U(τ)Di−Ci

m + Ci.

Proof. Follows from Lem. 24, (13), and Thm. 1.

5 Evaluation

This work allows smaller response-time bounds than are possible using prior
work. In particular, these results are especially competitive for implicit-deadline
sporadic task systems. By Thm. 3, combined with U(τ) ≤ m (a neces-
sary condition), and the fact that, for implicit-deadline systems, S(τ) = 0,
the response time of any job of any task τi must be upper-bounded by
Cmax + Di + m−1

m Ci. Therefore, the tardiness of any job of τi must be no
greater than Cmax + m−1

m Ci.

In order to evaluate the improvement to the bounds we obtain by elimi-
nating implicit precedence constraints, we compared our results to the best
available analysis for implicit-deadline sporadic tasks, found in [2]. For the
experiments in this paper, we compared the best results of our work to the
best bounds attainable using [2].

Our experimental methodology is inspired by the tests in [2]. All exper-
iments were done with processor counts of 4, 8, and 16. We used uniform

10

 25

 30

 35

 40

 45

 50

 55

 0 20 40 60 80 100 120 140 160

B
o

u
n

d
 I

m
p

ro
v
e

m
e

n
t

(%
)

Mean Execution Time

WCET Std. Dev. 5.8, Util Mean 0.5, Std. Dev. 0.29

m=4
m=8

m=16

(a) Varying C̄

 25

 30

 35

 40

 45

 50

 55

 0 10 20 30 40 50 60 70 80 90 100

B
o

u
n

d
 I

m
p

ro
v
e

m
e

n
t

(%
)

Execution Standard Deviation

WCET Mean 180, Util Mean 0.5, Std. Dev. 0.29

m=4
m=8

m=16

(b) Varying Cσ

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
o

u
n

d
 I

m
p

ro
v
e

m
e

n
t

(%
)

Mean Utilization

WCET Mean 10, Std. Dev. 2.9, Util Std. Dev. 0.029

m=4
m=8

m=16

(c) Varying Ū

 15

 20

 25

 30

 35

 40

 45

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

B
o

u
n

d
 I

m
p

ro
v
e

m
e

n
t

(%
)

Utilization Standard Deviation

WCET Mean 10, Std. Dev. 2.9, Util Mean 0.5

m=4
m=8

m=16

(d) Varying Uσ

Fig. 2: Results of experiments

distributions for the task worst-case execution times and utilizations, and we
determined the effects of varying each of four parameters: mean worst-case ex-
ecution time (C̄), standard deviation of worst-case execution time (Cσ), mean
utilization (Ū), and standard deviation of utilization (Uσ). For mean x and
standard deviation σ, values were chosen uniformly over (x−σ

√
3, x+σ

√
3).

In each experiment, the processor count m and three of the four param-
eters above were fixed, and the remaining parameter was varied. For each
value of the varied parameter, we generated 1000 task sets. For each individ-
ual task set, we generated tasks until a task was generated that would cause
U(τ) to exceed m. For each task set we computed the mean tardiness bound
with respect to [2], δ, and with respect to our work, δ′. For each set of 1000
task sets we computed δ̄ (the mean value of δ) and δ̄′ (the mean value of δ′).
The absolute improvement for each set of sets is defined as δ̄ − δ̄′, and the
relative improvement for each set of sets is defined as (δ̄ − δ̄′)/δ̄.

Results are in Fig. 2. We see that the improvement to tardiness is quite
substantial, particularly with large execution times, small variance in execu-
tion times, large utilizations, and large variance in utilizations. More signif-
icant improvement occurs with larger processor counts because the bounds

11

of [2] increase significantly with m, while our bounds are upper-bounded by
Cmax + m−1

m Ci. This improvement is possible even when per-task utilization
is restricted to be less than one to make our results comparable to prior work.
We do not have results comparing our work to previous results when per-task
utilization may exceed one, because prior work is not applicable in this case.

6 Conclusion

G-EDF scheduling has already proven useful for traditional SRT workloads
in which jobs of the same task have implicit precedence constraints. Here we
have demonstrated that G-EDF scheduling may be even more useful for SRT
workloads in which jobs may be released as separate threads that can safely
run concurrently. We have shown that doing so not only improves response
times compared to prior work, but enables new workloads where a single task
may overutilize a single processor.

For future work, allowing critical sections would be useful, so that tasks
that write shared data but do not have precedence constraints could be han-
dled. Supporting integrated workloads where some tasks have internal prece-
dence constraints and some do not would also be interesting to consider. Fur-
thermore, in past work on slack reclaiming, precedence constraints between
jobs have prevented slack produced by a job from being reclaimed after its
successor is released. Using the methods in this paper, we may be able to
overcome this limitation.

References

1. Devi, U.C., Anderson, J.H.: Tardiness bounds under global EDF scheduling on a mul-
tiprocessor. The Journal of Real-Time Systems 38(2) (2008) 133–189

2. Erickson, J.P., Devi, U.C., Baruah, S.K.: Improved tardiness bounds for global EDF.
In: ECRTS. (2010) 14–23

3. Erickson, J.P., Guan, N., Baruah, S.K.: Tardiness bounds for global EDF with deadlines
different from periods. In: OPODIS. (2010) 286–301

4. Leontyev, H., Anderson, J.H.: Generalized tardiness bounds for global multiprocessor
scheduling. The Journal of Real-Time Systems 44(1) (February 2010) 26–71

5. Baker, T., Baruah, S.K.: An analysis of global EDF schedulability for arbitrary-deadline
sporadic task systems. The Journal of Real-Time Systems 43(1) (2009) 3–24

6. Anderson, J.H., Srinivasan, A.: Early-release fair scheduling. In: ECRTS. (2000) 35–43
7. Durbin, M.: All About High-Frequency Trading. 1 edn. McGraw-Hill (2010)
8. Baruah, S.K., Mok, A.K., Rosier, L.E.: Preemptively scheduling hard-real-time sporadic

tasks on one processor. In: RTSS. (1990) 182–190

12

