
Feather-Trace: A Light-Weight Event Tracing Toolkit∗

Björn B. Brandenburg and James H. Anderson
The University of North Carolina at Chapel Hill

Abstract
We present a light-weight event tracing toolkit for real-
time operating systems on the Intel x86 platform. Our
approach is wait-free, multiprocessor-safe, and intro-
duces very low overhead. Only a single unconditional
jump instruction is required to distinguish between en-
abled and disabled events. As a case study, we traced
the locking behavior of the Linux kernel and several
soft real-time multimedia applications. Our results pro-
vide strong support for the wide-spread assumption that
short non-nested critical sections are the common case
in practice.

1 Introduction
When developing operating systems and embedded sys-
tems, event tracing facilities are an essential tool. Such
facilities allow developers to trace the behavior of the
system being developed by collecting performance and
state data while the system in question executes for later
offline analysis. The ability to better understand ob-
served behaviors and to obtain high-resolution timing
information greatly helps to both debug failures and im-
prove performance. Thus, it is not surprising that there
has been considerable recent interest in tracing frame-
works [5, 7, 11, 19, 20].

Prior work. For general-purpose operating systems,
powerful and flexible solutions have been developed and
integrated into commercially-available products. For ex-
ample, the DTrace facility of the Solaris 10 operating
system, developed by Sun Microsystems [5], offers flex-
ible dynamic instrumentation support. By embedding
a virtual machine inside the kernel, it allows event data
to be safely gathered and processed at arbitrary locations
inside the kernel by compiled trace scripts. Such flexibil-
ity comes at a price, however. The DTrace implementa-

∗Work supported by a grant from Intel Corp., by NSF grants
CNS 0408996, CCF 0541056, and CNS 0615197 and by ARO grant
W911NF-06-1-0425. The first author was also supported by a Ful-
bright fellowship.

tion is complex and requires many operating-system ser-
vices such as run-time symbol information, which may
not be present in (space-constrained) embedded systems.
Further, interrupts are disabled while executing trace
scripts, which makes it unfit for use in real-time sys-
tems. Other dynamic instrumentation approaches based
on binary re-writing such as kerninst [12] also require
substantial in-kernel infrastructure. The K42 kernel [8]
provides a lock-free, unified performance monitoring fa-
cility. While it provides a high-performance event trac-
ing facility, its implementation is closely tied to the
memory-management implementation of the K42 oper-
ating system, and thus cannot be easily ported to other
operating systems. Disabled events incur an overhead
of four instructions [19], some of which access main
memory and affect branch prediction. Also, the use
of potentially unbounded lock-free retry loops in K42’s
buffer implementation may restrict its applicability in
hard real-time environments. The Ferret framework has
been designed specifically for the Dresden Real-Time
Operating System Project (DROPS) [10] and is based on
a rather heavy-weight architecture. It is designed to al-
low tracing of real-time and best-effort tasks, system ser-
vices, and the microkernel. However, the reliance on an
event-structure description language and a custom tool
chain restricts the portability of the framework. While
tools that capture instruction-level execution traces such
as Nirvana [1] provide a wealth of information for of-
fline analysis, their use for obtaining real-world timing
information is limited due to high overheads.

Motivation and contributions. In this paper, we
present a light-weight, multiprocessor-safe tracing
toolkit called Feather-Trace. Our motivations in produc-
ing this toolkit were two-fold. First, our research group
has been engaged in an ongoing development effort in-
volving a system called LITMUSRT [3, 4, 17], which
extends the base Linux kernel so that different schedul-
ing and synchronization methods can be loaded as plug-
in components. The primary focus of our LITMUSRT-
related research has been scheduling and synchroniza-
tion support for multiprocessor real-time systems. Our

current development platform for LITMUSRT is a four-
processor machine. In order to debug scheduling and
synchronization code in LITMUSRT, we needed a trac-
ing mechanism that could be used on a multiproces-
sor with very low overhead, and that could be invoked
anywhere in the kernel. We found that existing tracing
mechanisms were ill-suited for our purposes. Second,
in devising and evaluating synchronization mechanisms
implemented in LITMUSRT [2, 3], we desired to have
a better understanding of locking patterns that are typi-
cal of “real-world” systems, so that we could optimize
these mechanisms for common-case scenarios. Linux it-
self is certainly a real-world system, so we desired to
trace its behavior to assess the frequency, duration, and
degree of nesting in lock accesses. To validate our trace
data, we also instrumented several soft real-time mul-
timedia applications. Again, we found existing tracing
facilities to be unsuitable for our purposes. Rather than
providing a complete tracing framework, we found that
our needs were best met by a highly-portable toolkit that
can be easily integrated into existing operating systems
with some “glue code.” In Feather-Trace, trace events
are checked via a single unconditional jump instruction,
and trace data is collected in wait-free buffers that can be
efficiently accessed on different processors. Although
we were motivated by the specific concerns just noted in
producing Feather-Trace, because it is very light-weight,
can be used anywhere in the kernel, and it is portable,
it should be of use to others engaged in kernel-related
research. To the best of our knowledge, Feather-Trace
is the first static tracing toolkit that achieves a single-
instruction overhead in the case of both enabled and dis-
abled tracing events.

The rest of this paper is organized as follows. In Sec-
tion 2, we present Feather-Trace. In Section 3, as a case
study, we present some measurements of the locking be-
havior of the Linux kernel and several soft real-time ap-
plications. Finally, in Section 4, we conclude.

2 Feather-Trace
To trace the execution of an operating system, a toolkit
must provide methods to embed “triggers” in the pro-
gram text and to collect data for offline analysis. The
purpose of a trigger is to redirect the flow of execution
to a user-provided callback function that can take ap-
propriate actions such as collecting performance data or
checking invariants for debugging purposes.

To be of practical use, several requirements must
be met. First, it should be possible to selectively en-
able and disable triggers, since it is likely that only
a specific aspect of an operating system is being in-

spected at any time. Second, no assumption concern-
ing the execution context and preemptivity should be
made so that triggers can be placed anywhere in the
kernel, including interrupt handlers. Third, the frame-
work should be multiprocessor-safe and it should not in-
troduce additional mutual-exclusion requirements—by
“multiprocessor-safe,” we mean that tracing actions on
one processor should not adversely affect other proces-
sors. Further, to increase portability and suitability for
embedded platforms, only very little support should be
required from the operating system. Of course, any over-
heads introduced by the tracing framework must be kept
at a minimum. This implies that the trigger code should
be short and affect neither cache performance nor the
processor’s branch prediction accuracy negatively. Ide-
ally, a disabled trigger should incur no costs.

2.1 Event Trigger
In Feather-Trace, event triggers are realized as C pre-
processor macros (ft eventX(), where X is the num-
ber of arguments) that insert trigger code realized with
inline assembly instructions. Thus, as is always the case
with static instrumentation, events can only be added at
compile time. While this may be an unacceptable limi-
tation in the case of general-purpose operating systems
such as Solaris, dynamic instrumentation has the dis-
advantage that enabled events incur the (considerable)
costs of a CPU exception [10]. Also, if a custom ex-
ception handler were to be required, then adding tracing
to an existing operating system would require intrusive
modifications of its exception-handling code, thereby
drastically increasing development effort.

The trigger code must accomplish three tasks. First,
it must determine whether the event is enabled. If it is
enabled, it must collect the necessary context informa-
tion and invoke the callback function associated with the
event. Finally, it must restore the processor context so
that the original code surrounding the trigger can pro-
ceed correctly.

To achieve the goal of negligible overhead, the de-
cision whether to invoke the callback function must
be made as quickly as possible. Therefore, we chose
the following approach (illustrated in Fig. 1): the
ft eventX() macro precedes the invocation of the
callback function with an unconditional jump instruc-
tion (jmp) that skips over the rest of the trigger code.
Thus, events are initially disabled. To enable an event,
the offset parameter of the jump instruction is set to zero,
which effectively disables the jump. As a result, the re-
quired context information is pushed on the stack and
control is transferred to the callback function.

Since the trigger code is less than 128 bytes long, in

push arguments

...
...

...

call callback

cleanup stack
...

...
...

JMP OFFSET

(a)

push arguments

...
...

...

call callback

cleanup stack

...
...

...

JMP 0

(b)

Figure 1: An illustration of the trigger assembly code.
(a) In the disabled state, the jump instruction will skip
the invocation of the callback. (b) In the enabled state,
the jump instruction’s offset is zero.

the Intel x86 instruction set, the unconditional jump in-
cluding the offset can be encoded in two bytes. The jump
instruction code in the first byte (0xeb) is followed by
a signed eight-bit integer, which is the offset of the de-
sired destination. To enable or disable an event, only the
offset must be changed. Since eight-bit write operations
to arbitrary byte-aligned addresses are guaranteed to be
atomic on the Intel x86 platform, enabling and disabling
events is multiprocessor-safe.

To summarize: events can be safely enabled and dis-
abled on multiprocessors. No operating-system support
is necessary and no locking/mutual-exclusion support is
required. If an event is disabled, then only one additional
instruction is executed compared to the case if there were
no trigger code present. On the other hand, if an event
is enabled, then only one additional instruction is exe-
cuted compared to a normal function call. Determining
whether a given event is enabled with only a single in-
struction that does not access memory (and which also
has no effects on either branch prediction or pipelining)

r

�������������
�������������
�������������

�����������
�����������
�����������

RMarker

Slot

B F F

w

10 2 3

Figure 2: An illustration of a wait-free bufer for n = 4

and f = 2. Slot 0 is ready, Slot 1 is busy and being
written, Slots 2 and 3 are free. The current read index
r points to the next ready slot (Slot 0), and the current
write index w points to the next free slot (Slot 2).

in both the enabled and the disabled case is arguably op-
timal. An additional small overhead can be incurred be-
cause the compiler may be forced to (re-)load some reg-
isters before and after the trigger code. This effect can
be reduced by placing triggers mainly at the start and
end of functions.

2.2 Data Collection
A tracing framework is of no utility if it does not offer
a method to collect data. To keep the overhead of en-
abled events low, any trace data should be temporarily
accumulated in an in-memory buffer and be transferred
to stable storage after a certain number of samples have
been obtained. To support multiprocessors, such a buffer
must allow for multiple concurrent writers and, for sim-
ilar reasons as is the case for triggers, should not rely on
mutual exclusion to achieve correctness. While read op-
erations should be possible in parallel with write opera-
tions, there is usually no great need for multiple readers,
since typically a single reader is tasked with flushing the
buffer to stable storage.

To attain the stated goals, Feather-Trace provides
a wait-free FIFO-buffer implementation to store event
data. The buffer is said to be wait-free since no locks are
required and each read and write operation completes
in a bounded number of steps (such is not the case when
lock-free retry loops are used). Our implementation sup-
ports arbitrarily many concurrent writers. To simplify
the data structure and to improve performance, we allow
only one concurrent reader.

As illustrated in Fig. 2, a buffer consists of n slots.
Slots may be of arbitrary but uniform size s. Each slot
is associated with a slot marker that indicates the cur-
rent state of the slot. A slot may be either free, busy,
or ready. For each buffer, the number of free slots f

(a signed 32-bit integer), the current write index w, and
the current read index r (both unsigned 32-bit integers)
are maintained. We require that n divides the maxi-
mum value that an unsigned 32-bit integer can store, i.e.,

unsigned i n t r = 0 , w = 0 , e = 0 ;
i n t f = n ;

s t a r t w r i t e (void ∗∗ p t r) {
unsigned i n t i d x ;
i f (f e t c h a n d d e c (f) <= 0) {

/∗ b u f f e r f u l l ∗ /
a t o m i c i n c (f) ;
a t o m i c i n c (e) ;
∗ p t r = NULL;
re turn 0 ;

} e l s e {
/∗ s l o t r e s e r v e d ∗ /
i d x = f e t c h a n d i n c (w) % n ;
marker [i d x] = SLOT BUSY ;
∗ p t r = & s l o t [i d x] ;
re turn 1 ;

}

f i n i s h w r i t e (void ∗ p t r) {
unsigned i n t i d x ;
i d x = (p t r − & s l o t [0]) / s ;
marker [i d x] = SLOT READY ;

}

r e a d (void ∗ d e s t) {
unsigned i n t i d x ;
i f (f = = n)

/∗ n o t h i n g a v a i l a b l e ∗ /
re turn 0 ;

i d x = r % n ;
i f (marker [i d x] = = SLOT READY) {

memcpy (d e s t , & s l o t [i d x] , s) ;
marker [i d x] = SLOT FREE ;
r ++;
a t o m i c i n c (f) ;
re turn 1 ;

} e l s e
re turn 0 ;

}

Figure 3: Pseudo-code for the methods used to access
the wait-free buffers provided by Feather-Trace.
2
32

mod n = 0. This allows us to ignore integer over-
flows, which is a minor performance improvement.
To detect missed samples, the number of failed writes
is stored in the error count e. (A write fails if the
buffer is full.) Pseudo-code for the buffer access meth-
ods is given in Fig. 3. The implementation relies
on the atomic XADD (“exchange and add”) instruction,
which is used to realize fetch and dec/inc() and
atomic inc(). Writers access the buffer by first in-
voking start write() to obtain a pointer to a free
slot. A slot is reserved in two steps. First, the number
of free slots f is read and decremented atomically to re-
serve a slot. If a reservation can be made (f > 0 holds),
then the next free slot is obtained by atomically read-
ing and incrementing w. Since n divides 2

32, a potential
overflow of w does not need to be handled. The slot
is marked as busy to prevent a concurrent reader from

observing incomplete data. If no slot is available, then
the reservation is canceled by atomically incrementing
f and the error count e. The single reader accesses the
buffer by first checking whether there exist non-free slots
by comparing f and n. If there exists such a slot, then
the reader checks the slot’s state, and if the slot is ready,
copies the slot’s contents to a reader-provided location
such as I/O buffers.

The multi-writer, single-reader, wait-free FIFO
buffer provided by Feather-Trace offers a low-overhead
method to store uniformly-sized data items. The limita-
tion of uniformly-sized items can be easily dealt with by
providing several buffers of different sizes. As both the
provided event triggers and FIFO buffers are designed to
minimize overheads, Feather-Trace can be used to trace
highly performance-critical code sections. For example,
as explained in more detail in the next section, we have
used the toolkit to measure critical section lengths in the
Linux kernel. This was made possible in part because
the code used to obtain and store time stamps, including
the event trigger, consists of only 61 instructions, which
is a negligible overhead in most cases.

Since the toolkit is minimally intrusive and makes no
assumptions on the availability of operating-system ser-
vices, it can be easily integrated into existing code bases.
For example, we have used Feather-Trace to obtain event
traces in both the Linux kernel and the FreeBSD ker-
nel by implementing a custom device driver that ex-
ports the accumulated event data to user space. Further,
by pre-loading Feather-Trace (packaged in a shared li-
brary) into dynamically linked user space applications,
we were able to record the locking behavior of various
soft real-time multimedia applications.

3 Case Study: Locking in Linux
One motivation for the development of Feather-Trace
was to allow us to obtain empirical results on the fre-
quency, degree of nesting, and duration of critical sec-
tions in “real-world” systems. In prior work, Devi et
al. [6] measured the length of critical sections accessing
common data structures in order to generate task sets
for schedulability-analysis purposes [6]. The method
employed by them, however, cannot give insight into
the nesting depth and the distribution of lock requests,
as it relies on measuring synthetic tasks. Other studies
have assessed the impact of lock-free synchronization
on large scientific applications [15, 16]. Unfortunately,
these benchmarks are mostly concerned with overall per-
formance and do not reveal the nature of individual criti-
cal sections. In this paper, we seek to provide additional
data points on “real-world” locking behavior by measur-

ing critical sections in both the Linux kernel under vari-
ous workloads and several soft real-time applications.

In the following subsections, we say that a lock re-
quest has a nesting depth of n if the processor already
was holding n locks at the time of the request. Further,
we define the critical section length of a lock to be the
length of the time interval that starts when the lock is
successfully acquired and ends just before it is released
again, i.e., the cost of acquiring the lock itself is not in-
cluded.

3.1 Kernel Modifications
We modified the Linux kernel, version 2.6.20,
to capture timing information on critical section
lengths. The Linux kernel employs two differ-
ent kinds of locks, spinlocks (contention is handled
by busy-waiting) and semaphores (processes are sus-
pended in case of contention). To trace spinlocks,
we changed the locking primitives spin lock(),
read lock(), write lock(), and the correspond-
ing unlock primitives (as well as special cases such as
spin lock irqsave()) to include event triggers af-
ter a lock has been acquired and before a lock is released.
To trace semaphores, we modified mutex lock(),
down(), and related primitives such as down read()
in a similar fashion. At each event, a time stamp was
obtained by reading the TSC register (which can be read
from both user and kernel space) and the sample con-
sisting of the time stamp, the CPU on which the event
occurred, the address of the lock involved, and the type
of the event (enter critical section, or exit critical sec-
tion) was stored in a Feather-Trace buffer. That buffer
was made available to user space by means of a custom
character device driver.

3.2 Setup of the Experiments
To obtain insight into the kernel’s locking behavior, we
executed various test workloads and captured locking
events during several intervals of 60 seconds each. Our
particular test platform is an SMP consisting of two 32-
bit Intel(R) Xeon(TM) processors running at 2.70 GHz,
with 8K instruction and data caches, and a unified 512K
L2 cache per processor, and 2 GB of main memory.

The results of three workloads are presented in this
paper. First, we obtained a trace from an otherwise idle
system. Second, we traced the locking behavior of the
Linux kernel while compiling a copy of the kernel itself.
Last, we used the stress utility [18] to generate a test
load of three processes that stressed the memory man-
agement and I/O subsystems of the kernel.

The captured event traces were analyzed offline as
follows. After filtering incomplete event sequences (i.e.,

lock accesses that were missing one of the two ex-
pected timestamps), the remaining lock requests were
annotated with their respective nesting depth. Incom-
plete sequences may occur at both the beginning and the
end of the trace interval and when there is insufficient
buffer space available. The clock speed of the processors
(2.70 GHz) was used to convert raw cycle-count times-
tamps to microseconds. Finally, histograms of the nest-
ing level and the critical section length (with a bin size
of 0.1µs), the cumulative distribution, and the average
critical section length were computed for both spinlocks
and semaphores.

3.3 Results
After filtering, the traces contained valid events for a
total of 2,366,122 (idle system), 25,002,249 (compile
test), and 70,807,495 (stress test) spinlock and 51,360
(idle system), 4,880,570 (compile test), and 18,998,386
(stress test) semaphore acquisitions.

The distribution of the spinlock nesting depth is
shown in Fig. 4. The maximum nesting depth in the
presented data is four under load and three on an idle
system. One can clearly see that the vast majority of
lock acquisitions are non-nested, e.g., under load, more
than 85 percent of all lock requests have a nesting depth
of zero. When comparing the nesting depth distribution
of an idle system to the distribution observed during the
stress test, one can see two trends. First, maximum nest-
ing depth increases from three to four (nesting depths as
deep as six have been observed in traces not presented
here, but occur so rarely that they are hard to repro-
duce), which reveals that there exist deeply nested lock
requests that are only required very seldomly. Second,
the percentage of non-nested lock requests increases un-
der load, which can be attributed to the fact that the num-
ber of shared objects that are mostly accessed in a non-
nested fashion increases under load. As can be seen in
Fig. 6, critical sections protected by semaphores are less
frequently subject to nesting as those protected by spin-
locks. Semaphore requests exceeding two levels of nest-
ing were not observed in any of the traces.

In Fig. 5, the distribution of spinlock critical section
lengths is depicted. While the distributions do have a
long tail, more than 96 percent of all observed critical
sections are shorter than 5µs. Inset (a) depicts the dis-
tribution of an idle system. Since system-call activity
is low, most lock requests are issued by interrupt han-
dlers. One can clearly see two distinctive spikes as a
result, because the critical sections encountered in pe-
riodic activities such as the timer-interrupt service rou-
tine contribute the majority of observed critical sections.
The average critical section length observed in an idle

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100
idle system

nesting depth

pe
rc

en
t o

f l
oc

k
re

qu
es

ts

79.298%

19.086%

1.606% 0.010%

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100
make −j8 bzImage

nesting depth

pe
rc

en
t o

f l
oc

k
re

qu
es

ts

86.573%

10.871%

2.534%
0.022% <0.001%

(b)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100
stress −i 1 −m 2

nesting depth

pe
rc

en
t o

f l
oc

k
re

qu
es

ts

89.054%

8.643%

2.288%
0.015% <0.001%

(c)

Figure 4: Distribution of nested spinlock accesses in the
Linux kernel under various work loads.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40
idle system

critical section length (in microseconds)

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40
make −j8 bzImage

critical section length (in microseconds)

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40
stress −i 1 −m 2

critical section length (in microseconds)

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

(c)

Figure 5: Distribution of spinlock critical section length
in the Linux kernel. More than 96 percent of all observed
critical sections were shorter than 5µs.

0 1 2
0

10

20

30

40

50

60

70

80

90

100
idle system

nesting depth

pe
rc

en
t o

f l
oc

k
re

qu
es

ts

53.9378%

46.0622%

(a)

0 1 2
0

10

20

30

40

50

60

70

80

90

100
make −j8 bzImage

nesting depth

pe
rc

en
t o

f l
oc

k
re

qu
es

ts

94.200%

5.775%
0.025%

(b)

0 1 2
0

10

20

30

40

50

60

70

80

90

100
stress −i 1 −m 2

nesting depth

pe
rc

en
t o

f l
oc

k
re

qu
es

ts

92.965%

7.035%

(c)

Figure 6: Distribution of nested semaphore accesses in
the Linux kernel under various work loads.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40
idle system

critical section length (in microseconds)

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

(a)

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40
make −j8 bzImage

critical section length (in microseconds)

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

(b)

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40
stress −i 1 −m 2

critical section length (in microseconds)

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

(c)

Figure 7: Distribution of semaphore critical section
length. Under load, more than 93 percent of all observed
critical sections were shorter than 13µs.

system was 0.67µs. The distribution of critical section
lengths observed in the compile benchmark is shown
in inset (b). The impact of the periodic activities de-
creases noticeably compared to an idle system. As a
result of the kernel actually doing “real” work on be-
half of user-space processes, the critical section lengths
are spread out over a wider range. The average critical
section length observed in this benchmark increased to
0.81µs. The trend continues in inset (c), which depicts
the distribution observed under the stress test. In this
case, the kernel has to service many “expensive” sys-
tem calls, so that the center of the distribution is shifted
noticeably to the right. The average observed critical
section length was 1.24µs. In Fig. 7, the distribution of
semaphore critical section lengths is shown. Critical sec-
tions protected by semaphores are typically significantly
longer than those protected by spinlocks. The average
observed critical section lengths were 6.3µs (stress test),
6.4µs (compile test), and 14.9 µs (idle system).

3.4 Soft Real-Time Applications
Since the Linux kernel may not be representative of real-
time applications, we conducted similar experiments
with several multimedia applications running on top of
Linux 2.6.23-rc3 to ensure the validity of our conclu-
sions. The results for three of the benchmarks are shown
in Figs. 8 and 9. (Because the distributions did not con-
tain characteristic spikes, we chose to present them as
cumulative distributions instead.) With each tested ap-
plication, we used Feather-Trace to instrument the ac-
quisition and release of user space binary semaphores
as provided by the POSIX thread (pthread) library.
As was the case with the kernel, cycle-count times-
tamps were used to determine the beginning and end
of a critical section. The data depicted in Insets (a)
and (b) was obtained by instrumenting two popular open
source video players (Video Lan Client (VLC) [13] and
Xine [14]) over a period of one hour. Inset (c) shows
the behavior of Tux Racer [9], an interactive 3D video
game, over a period of about one minute. Since these
applications need to ensure that both visual and audio
content is presented to the user in a timely manner they
can be considered to be soft real-time applications.

Fig. 8 clearly shows the nesting characteristics of the
three applications. While nesting almost never occurs
in Tux Racer, and only very rarely in Xine, it is used
more commonly in the VLC video player. However,
non-nested accesses, which make up more than 70 per-
cent of the critical sections, are still the common case.
A nesting level greater than three was never observed in
the tested multimedia applications.

Distributions of critical section lengths are depicted

in Fig. 9. As opposed to the nesting levels, the cu-
mulative critical section length distributions of the in-
strumented applications are somewhat similar. In all
cases, more than 95 (99) percent of the critical sections
are shorter than 5µs (10µs). This indicates that critical
sections in multimedia applications are typically even
shorter than those observed in the kernel. This observa-
tions is also supported by a significantly lower average
critical section length (compared to the average length
of in-kernel semaphore-protected critical sections).

Our results strongly support the wide-spread assump-
tion that the vast majority of critical sections in many
settings are short and non-nested. While deep nest-
ing does occur in practice, nesting depths of three or
more occur only rarely. Critical sections longer than 5µs
(13µs) are rare in the case of spinlocks (semaphores, un-
der load) in the kernel. In multimedia applications, they
tend to be even shorter. Thus, our data supports the claim
that the common case in practice is short, non-nested
lock requests.

4 Conclusion
This paper presented Feather-Trace, a new light-weight
static tracing toolkit that is both highly portable and can
be used for performance data collection as well as de-
bugging purposes. Because Feather-Trace uses neither
locks nor retry loops, it is suitable for hard real-time en-
vironments. Further, since disabled events incur only
the negligible overhead of one additional instruction per
event, there is no need to remove Feather-Trace in pro-
duction releases.

As a case study and to support our ongoing work
on multiprocessor real-time synchronization, we used
Feather-Trace to obtain the frequency, duration, and de-
gree of nesting in lock accesses in both the Linux kernel
under various workloads and soft real-time applications.
Our measurements strongly support the wide-spread as-
sumption that short, non-nested critical sections are by
far the common case in practice.

As mentioned in the introduction, we believe that
Feather-Trace may be of interest to a wider audience of
embedded and real-time systems developers. Our imple-
mentation is available under a permissive open source
license at the first author’s home page1.

References
[1] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards,

R. Murray, M. Drinić, D. Mihoĉka, and J. Chau. Frame-
work for instruction-level tracing and analysis of pro-

1http://www.cs.unc.edu/˜bbb/feathertrace/ .

0 1 2 3
0

10

20

30

40

50

60

70

80

90

100
VLC 0.8.6c: one hour TV replay

nesting depth

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

71.0500%

14.6649%
11.8054%

2.4797%

(a)

0 1 2 3
0

10

20

30

40

50

60

70

80

90

100
Xine−lib 1.1.7: one hour TV replay

nesting depth

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

98.2695%

1.3523% 0.3781% 0.0001%

(b)

0 1
0

10

20

30

40

50

60

70

80

90

100
Tuxracer 0.61

nesting depth

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

99.9522%

0.0478%

(c)

Figure 8: Distribution of nested mutex accesses in mul-
timedia applications.

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100
VLC 0.8.6c: one hour TV replay

observed length (in µs)
 P(X ≤ 1) = 87.55%, P(X ≤ 5) = 98.35%, P(X ≤ 10) = 99.43%

cu
m

ul
at

ive
 d

ist
rib

ut
io

n
of

 c
rit

ica
l s

ec
tio

n
le

ng
th

 (i
n

pe
rc

en
t)

 1
00

%
 =

 4
69

12
05

, a
vg

. l
en

gt
h

=
3.

99
93

63
 µ

s

(a)

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100
Xine−lib 1.1.7: one hour TV replay

observed length (in µs)
 P(X ≤ 1) = 57.15%, P(X ≤ 5) = 97.33%, P(X ≤ 10) = 99.17%

cu
m

ul
at

ive
 d

ist
rib

ut
io

n
of

 c
rit

ica
l s

ec
tio

n
le

ng
th

 (i
n

pe
rc

en
t)

 1
00

%
 =

 3
05

55
85

6,
 a

vg
. l

en
gt

h
=

1.
43

90
40

 µ
s

(b)

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100
Tuxracer 0.61

observed length (in µs)
 P(X ≤ 1) = 96.34%, P(X ≤ 5) = 99.31%, P(X ≤ 10) = 99.64%

cu
m

ul
at

ive
 d

ist
rib

ut
io

n
of

 c
rit

ica
l s

ec
tio

n
le

ng
th

 (i
n

pe
rc

en
t)

 1
00

%
 =

 4
18

2,
 a

vg
. l

en
gt

h
=

0.
55

35
76

 µ
s

(c)

Figure 9: Distribution of mutex critical section length in
multimedia applications. Note, that 99% of the critical
sections were shorter than 10µs.

gram executions. In VEE ’06: Proceedings of the sec-
ond international conference on Virtual execution envi-
ronments, 2006.

[2] A. Block, H. Leontyev, B. Brandenburg, and J. Ander-
son. A flexible real-time locking protocol for multipro-
cessors. In Proceedings of the 13th IEEE International
Conference on Embedded and Real-Time Computing Sys-
tems and Applications, August 2007. To appear.

[3] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev,
and J. Anderson. Synchronization on real-time multipro-
cessors: To block or not to block, to suspend or spin? In
submission, 2007.

[4] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson. LITMUSRT: A testbed for empirically compar-
ing real-time multiprocessor schedulers. In Proceedings
of the 27th IEEE Real-Time Systems Symposium, 2006.

[5] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dy-
namic instrumentation of production systems. In Pro-
ceedings of USENIX ’04, 2004.

[6] U. Devi, H. Leontyev, and J. Anderson. Efficient syn-
chronization under global EDF scheduling on multipro-
cessors. In Proceedings of the 18th Euromicro Confer-
ence on Real-Time Systems, 2006.

[7] IBM Linux Technology Center. Dynamic probes. Home-
page. http://dprobes.sourceforge.net/.

[8] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wis-
niewski, J. Xenidis, D. D. Silva, M. Ostrowski, J. Ap-
pavoo, M. Butrico, M. Mergen, A. Waterland, and V. Uh-
lig. K42: Building a complete operating system. In Pro-
ceedings of EuroSys 2006, 2006.

[9] J. Patry. Tux Racer.
Homepage. http://tuxracer.sourceforge.net/.

[10] M. Pohlack, B. Döbel, and A. Lackorzynski. Towards
runtime monitoring in real-time systems. In Proceedings
of the Eighth Real-Time Linux Workshop, 2006.

[11] Red Hat, IBM, Intel, and Hitachi. System tap. Home-
page. http://sourceware.org/systemtap/.

[12] A. Tamches and B. P. Miller. Fine-grained dynamic in-
strumentation of commodity operating system kernels. In
Proceedings of the Third Symposium on Operating Sys-
tems Design and Implementation, 1999.

[13] The VideoLan Project. VideoLan Client.
Homepage. http://www.videolan.org/.

[14] The Xine Project. Xine Libraries and UI.
Homepage. http://xinehq.de/.

[15] P. Tsigas and Y. Zhang. Evaluating the performance of
non-blocking synchronization on shared-memory multi-
processors. In Proceedings of the 2001 ACM SIGMET-
RICS Int’l Conf. on Measurement and Modeling of Com-
puter Systems, 2001.

[16] P. Tsigas and Y. Zhang. Integrating non-blocking syn-
chronisation in parallel applications: performance advan-
tages and methodologies. In Proceedings of the the Third
Int’l Workshop on Software and Performance, 2002.

[17] UNC Real-Time Group. LITMUSRTproject. Homepage.
http://www.cs.unc.edu/˜anderson/litmus-rt/.

[18] A. Waterland. stress. Homepage. http:// weather.ou.edu/
˜apw/projects/stress/.

[19] R. W. Wisniewski and B. Rosenburg. Efficient, unified,
and scalable performance monitoring for multiprocessor
operating systems. In Proceedings of SC 2003, 2003.

[20] K. Yaghmour. Linux trace toolkit. Homepage.
http://www.opersys.com/LTT/.

