
GPU Sharing for Image Processing in Embedded Real-Time Systems∗
Nathan Otterness1, Vance Miller1, Ming Yang1, James H. Anderson1, F. Donelson Smith1, and Shige Wang2

1Department of Computer Science, University of North Carolina at Chapel Hill
2General Motors Research

Abstract
To more efficiently utilize graphics processing units (GPUs)
when supporting real-time workloads, it may be beneficial
to allow multiple tasks to issue GPU computations without
blocking one another. For such an option to be viable, it
is necessary to know the extent to which concurrent GPU
computations interfere with each other when accessing hard-
ware resources. In this paper, measurement data is presented
regarding such interference for several image processing
routines motivated by automotive use cases. These measure-
ments were taken on NVIDIA Jetson TK1 and TX1 boards.
The presented data suggests that currently available real-
time GPU management frameworks should evolve to enable
the option of co-scheduling GPU computations.

1 Introduction
Vision-based sensing through cameras is being widely used
in automobiles today to support advanced driver assistance
systems (ADASs). Common capabilities of current ADASs
include forward collision detection with automatic braking,
lane departure warnings, and adaptive cruise control. Envi-
sioned capabilities include advanced obstacle-tracking fea-
tures, sign recognition, and 360-degree sensing.

Such capabilities give rise to workloads that can be chal-
lenging to support for three reasons. First, individual tasks
may be subject to real-time constraints. Second, such tasks
may be computationally intensive. Third, the overall work-
load must be supported on a hardware platform that oper-
ates within an acceptable size, weight, and power (SWaP)
envelope and also is not too expensive.1 In light of these
needs, multicore+GPU platforms have been suggested as a
promising way forward. Such a platform consists of several
general-purpose CPUs augmented with one or more graphics
processing units (GPUs) that can accelerate computations
typically required in automotive settings.

Prior foundational work: GPUSync. Unfortunately, effi-
ciently utilizing GPUs in contexts where real-time con-
straints exist requires sifting through many tradeoffs involv-

∗Work supported by NSF grants CPS 1239135, CNS 1409175, and CPS
1446631, AFOSR grant FA9550-14-1-0161, ARO grant W911NF-14-1-
0499, and funding from General Motors.

1In contrast to various “one-off” implementations of autonomous or
semi-autonomous features, as seen for example in the Google car [1] and
various DARPA challenge vehicles [45], affordability is a serious limitation
with respect to production automobiles.

ing how GPUs are allocated at runtime and how GPU com-
putations and related overheads are analyzed when check-
ing real-time schedulability. To enable such tradeoffs to be
systematically studied, our research group developed a real-
time GPU allocation framework called GPUSync [15]. In
GPUSync, the management of GPU-related hardware re-
sources is viewed as a synchronization problem and thus
real-time multiprocessor locking protocols are used to ac-
quire and release such resources. GPUSync is highly con-
figurable: options exist to control how tasks are scheduled
on CPUs, how data is copied to and from GPUs, how GPU-
related computations are queued and prioritized, etc.

Beyond GPUSync. In recent work, we have been attempt-
ing to evolve our work on GPUSync to more directly meet
the needs of automotive use cases. The consideration of such
use cases has caused the nature of our work to change in two
significant ways. First, GPUSync is implemented primarily
in LITMUSRT, and the code base is large, approximately
15,000 lines. Automotive manufacturers would likely be
highly resistant to allowing such extensive operating system
(OS) modifications. Due to this, we have shifted our atten-
tion to a simplified variant of GPUSync called GPUSyncLite
that implements only a few GPUSync configurations (one
currently) and requires only minimal OS modifications (none
currently). Second, our prior GPUSync-related experimental
work was conducted on an Intel platform that provides 12
CPU cores augmented with eight high-end GPUs. At present,
it is hard to imagine such an expensive, energy-hungry plat-
form being used in a production automobile. As a result,
we have shifted our attention to less-expensive ARM-based
platforms that provide a single less-costly, less-capable GPU.

Efficient GPU utilization through co-scheduling. This
shift in hardware platform has created a new dilemma:
when using a single, less-capable GPU, any waste of the
GPU’s capacity becomes untenable. Unfortunately, when
using most previously proposed real-time GPU management
frameworks [7, 8, 9, 12, 16, 25, 26, 49, 47, 48, 54, 55], in-
cluding GPUSync, such under-utilization may be common.
In particular, these frameworks disallow concurrent GPU
execution by different tasks, so a task that under-utilizes the
GPU’s hardware resources can waste much of its capacity.
Other prior work [10, 11] has considered co-scheduling GPU
workloads, but in this work, several simplifying assumptions
are made that preclude applicability on real-world GPUs. No-
tably, GPU instructions are assumed to always require only

1

a single clock cycle, and cache misses and memory latency
are not considered. Furthermore, this prior work includes no
evaluation using real hardware.

To combat GPU under-utilization, we are beginning
to investigate a new variant of GPUSyncLite that allows
GPU computations issued by different tasks to be concur-
rently co-scheduled. When considering multi-threaded work-
loads scheduled on conventional multicore platforms, Jain et
al. [22] observed that some co-scheduling choices are con-
structive and some are destructive. This is true in our context
as well. In particular, it is constructive to co-schedule GPU
computations issued by different tasks if the resulting GPU
execution times and blocking times (i.e., times spent waiting
to access a GPU) yield real-time schedulability improve-
ments. In contrast, such co-scheduling is clearly destructive
if it causes a large inflation in GPU execution times or block-
ing times. Any such inflation is a sign that the co-scheduled
GPU computations are adversely interfering with each other
with respect to the hardware resources they access.

Contributions of this paper. To get a sense of the nature
of such interference, we conducted experiments involving
several common image-processing routines motivated by
automotive use cases. For each of the considered routines,
we obtained execution-time data via a measurement process
under various co-scheduling scenarios. These measurements
were taken on NVIDIA Jetson TK1 and TX1 boards. The
obtained data suggests that certain co-scheduling choices are
indeed constructive, while others are clearly destructive. The
main contribution of this paper lies in presenting this data
and discussing its implications as far as the future evolution
of real-time GPU management frameworks is concerned.

Organization. In the rest of the paper, we provide needed
background on GPUs (Sec. 2), describe the image-processing
benchmarks under consideration (Sec. 3), present our experi-
mental data (Sec. 4), and conclude (Sec. 5).

2 Background on GPUs
In this section, we provide a brief introduction to GPU hard-
ware and programming fundamentals.

GPU hardware. GPUs may be either discrete or integrated.
Discrete GPUs are packaged on adapter cards that plug into
a host computer bus. Such a GPU has its own local DRAM
memory that is completely independent from the DRAM
memory used by the host processor. Discrete GPUs com-
monly draw between 150 and 250 watts, need active cooling,
and occupy substantial space. Integrated GPUs are com-
monly found in system-on-chip (SOC) designs. The SOC
typically combines a multicore machine with a GPU and
uses DRAM memory that is tightly shared between the GPU
and CPU cores. Integrated GPUs commonly draw between 5
and 15 watts, require minimal cooling, and add virtually no
space requirements. These attributes make integrated GPUs
the de facto choice in many embedded computing domains.

CPU 0
…

L1-I

32KB

L1-D

32KB

CPU 3

L1-I

32KB

L1-D

32KB

L2

2 MB

DRAM

Bank 0

64 MB

DRAM

Bank 1

64 MB

….. DRAM

Bank 31

64 MB

DRAM

Bank 2

64 MB

DRAM

Bank 30

64 MB

L2

128 KB

K1 GPU

Memory Controller

192 cores

Figure 1: Jetson TK1 architecture.

Several SOC implementations with integrated GPUs capa-
ble of running sophisticated image-processing programs are
on the market, including options from AMD [5], Intel [21],
NXP [41] and NVIDIA [38]. In this work, we are using
NVIDIA Jetson TK1 [39] and TX1 [40] boards, which retail
for $200 and $600, respectively. These are likely acceptable
price points in many automotive settings.

As illustrated in Fig. 1, the TK1 employs an SOC design
that incorporates a quad-core 2.32 GHz 32-bit ARM machine
and an integrated Kepler GK20a GPU. The CPUs share a
2-MB L2 cache. The GPU has 192 cores and a 128-KB L2
cache and provides up to 365 32-bit GFLOPS. The TK1 is a
“big-little” platform in which an additional low power, low
performance ARM CPU (not shown in Fig. 1) is provided
on chip. The ARM CPUs and the GPU share 2 GB of 930
MHz DRAM memory partitioned into 32 banks.

The TX1 is a higher-end platform with a similar design. It
consists of a quad-core 1.91 GHz 64-bit ARM machine, a
2-MB L2 cache shared by all CPUs, 4 GB of 1600 MHz
DRAM, and an integrated Maxwell GM20B GPU. The GPU
has 256 cores and a 256-KB L2 cache, and provides up to
512 32-bit GFLOPS. The TX1 is also a “big-little” platform.

As Fig. 1 suggests, GPU-using tasks may compete for
many hardware resources. These resources include caches,
DRAM memory banks, the memory bus and memory con-
troller, and GPU cores. In prior work on real-time multicore
computing, issues related to shared-hardware interference
have received considerable attention [2, 3, 4, 6, 13, 14, 17,
18, 19, 20, 23, 27, 29, 28, 30, 31, 33, 35, 42, 44, 46, 50, 51,
52, 53]. However, we are aware of no such work that consid-
ers hardware interference with respect to GPU computations.

Obviously, concurrent GPU computations by different
tasks may directly interfere with each other. Additionally,
such computations can also interfere with programs running
on CPU cores. For example, on both the TK1 and TX1, re-
quests to load new lines into the GPU’s L2 cache require
accesses to the DRAM banks and may interfere with accesses
by CPU cores. Further, so that GPU programs may be easily
ported between discrete and integrated GPUs, CUDA (see
below) explicitly treats memory as being either CPU-local
(host memory) or GPU-local (device memory) and provides
operations for copying data between the two. Such copy op-

2

erations run concurrently with programs running on both the
GPU cores and the CPU cores, potentially creating additional
DRAM interference.2 With integrated GPUs, explicit data
copying can be avoided by using the zero-copy functions of
CUDA (see below).

GPU programming in CUDA. The following is a high-
level description of GPU programming in CUDA [37]. A
GPU is fundamentally a co-processor that performs opera-
tions requested by CPU programs. CUDA programs use a set
of C or C++ library routines to request GPU operations that
are implemented by a combination of hardware and device-
driver software. The typical structure of a CUDA program is
as follows: (i) allocate GPU-local (device) memory for data;
(ii) use the GPU to copy data from host memory to GPU
device memory; (iii) launch a program—called a kernel—to
run on the GPU cores to compute some function on the data;
(iv) use the GPU to copy output data from the device mem-
ory back to the host memory; (v) free the device memory. On
integrated GPUs, CUDA provides a zero-copy option where
programs can simply pass a pointer to shared memory where
data used for a kernel is located—that is, explicit copying
from CPU-local memory to GPU-local memory is avoided.

By default, copy operations are synchronous with respect
to the CPU program: they do not return until the copy is
complete and will not start until any prior kernels have fin-
ished. However, kernel launches are always asynchronous,
and asynchronous copy operations are also available. These
operations require the CPU process to explicitly wait for
GPU operations to complete, using a configurable synchro-
nization mechanism. We configured our experiments to block
the CPU process while synchronizing.

CUDA operations pertaining to a given GPU are ordered
by associating them with a stream. By default, there is a
single stream for all programs that share a GPU, but multi-
ple streams can be optionally created. Operations in a given
stream are executed in FIFO order, but the order of execution
across different streams is determined by the GPU schedul-
ing in the device driver. They may execute concurrently (or
out of request order with respect to other streams).

Each GPU operation from a CUDA program is repre-
sented internally by a command string that is written to a
command buffer (queue) managed by the device driver. The
driver then schedules these commands for execution on the
GPU. Programmers can think of a GPU as being abstractly
composed of one or more copy engines (CEs) that implement
transfers of data between device memory and host memory,
and an execution engine (EE) that executes GPU kernels.
Both the TK1 and TX1 have one CE that moves data both
ways.

EEs and CEs operate concurrently. When there are multi-
ple streams, multiple kernels and one or two copy operations

2With discrete GPUs, only the GPU data-copy operations may cause
DRAM interference with respect to CPU usage and then typically in the
form of DMA operations over a bus.

can operate concurrently depending on the GPU hardware.
When a kernel is scheduled, it may not require all EE re-
sources, in which case the GPU scheduler may co-schedule
more than one kernel (from different streams only) to exe-
cute concurrently and increase GPU occupancy. Concurrent
kernel execution can create more interference in the GPU
L2 cache and for DRAM accesses. To the best of our knowl-
edge, complete details of kernel attributes and policies used
by NVIDIA to co-schedule kernels are not available.

3 Benchmark Programs
In the study presented herein, we considered both GPU pro-
grams and CPU-only benchmark programs.

GPU programs. We chose three CUDA programs as repre-
sentative of typical image-processing computations, and a
fourth to represent a general class of programs that create
stress on GPU resources:

• stereoDisparity (SD): Extracts 3D depth information
from 2D images taken with a stereo camera. The input
consists of left and right 640 × 533 color images; the
output is a 640× 533 grayscale image.

• fastHOG (HOG): Detects objects in an image using
histograms of oriented gradients. The input is a 640×
480 color image; the output is a matrix of bounding-box
coordinates and object-detection probabilities.

• Convbench (CONV): Executes convolutional neural-
network layers as used in image recognition. The input
is a 227 × 227 color image; the output is a matrix of
neural-network parameters.

• matrixMul (MMUL): Multiplies two square matrices
of 32-bit floats (16 MB each).

SD and MMUL were taken from CUDA samples distributed
by NVIDIA [36], HOG was downloaded from Oxford Uni-
versity [43], and CONV was constructed using code from
AlexNet [32], implemented in Caffe [24]. All programs were
adapted to run as iterative tasks, with a short random sleep
between iterations. Each iteration corresponds to processing
one image (SD, HOG, and CONV) or performing one matrix
multiplication (MMUL). The programs were instrumented to
log total execution time and the time required for performing
data copies and executing kernels in every iteration. Even
though our experiments were conducted using fixed images
as inputs, we still verified that none of the benchmarks ex-
hibited different runtime characteristics based on the content
of the input images.

Each CUDA program was executed in a stream of its
own, with all memory copies performed asynchronously
and placed in the stream along with kernel launches in the
intended FIFO order. After each kernel launch or group of
memory copies, the CPU execution of each program was
blocked while waiting to synchronize with the GPU. Each
program was structured to ensure that all memory allocation

3

and freeing operations were done outside the iteration loop
and all memory accesses within each iteration were to pinned
memory, as is common practice in real-time systems. Display
operations for the visualization of input or output images
were removed. Image input data was read from memory
buffers as would happen with camera-driven input. Two
versions of each program were constructed, one with zero-
copy memory and one without.

CPU-only benchmark. We used this program as a CPU-
only workload:

• vectorAdd (VADD): Adds two vectors of 32-bit floats
(16 MB each).

VADD was based on the CUDA samples [36] and instru-
mented in an identical fashion as the GPU programs, but
launches no GPU kernels.

4 Experiments
We are interested in supporting automotive image-processing
workloads on a multicore+GPU platform such as the TK1 or
the TX1. We assume that such workloads have soft real-time
constraints: missing a deadline (occasionally) does not have
catastrophic consequences, as long as an incomplete frame
can be dropped and the system as a whole can use redundant
or historical data processed by hard real-time components
as a fail-safe mechanism. Given this assumption, our tasks
can be provisioned by determining their execution times via
measurement. Such a provisioning could be based on a task’s
average-case execution time, its worst-case execution time,
or some intermediate value between the two. A measurement-
based approach is further justified by the lack of adequate
static timing analysis tools for multicore+GPU platforms.
Even if such tools did exist, they would probably produce
execution-time estimates that are so pessimistic that virtually
no interesting workload could be supported.

The issue being considered in this paper is whether allow-
ing GPU co-scheduling might have schedulability benefits.
To get a sense of any potential benefits, we conducted ex-
periments on both the TK1 and TX1 in which the various
benchmark programs described in Sec. 3 were used as sur-
rogates for real application code. These experiments were
designed to assess whether GPU co-scheduling can be con-
structive from a schedulability point of view. We assessed
this by running different combinations of the benchmark
programs and recording execution-time data. We call each
experiment involving such a combination of programs a sce-
nario. In each scenario, execution-time data was recorded for
a set amount of time (typically 10–15 minutes) under the de-
fault Linux scheduler with the considered programs pinned
to separate CPUs. We present our obtained execution-time
data by plotting cumulative distribution functions (CDFs), as
such functions provide a sense of the best-case, average-case,
and worst-case recorded times. We denote a given scenario
by simply listing the combination of programs that were run.

20 52 84 116 148 180
SD time (ms)

0

20

40

60

80

100

%
 <

=
x

SD
SD+{SD}
SD+{2SD}
SD+{3SD}

Figure 2: CDF of execution times of SD in scenarios only involving
multiple SD instances.

For example, in the scenario HOG+{2SD,HOG}, execution-
time data was obtained on one CPU for the HOG program in
the presence of two instances of SD and another instance of
HOG running on the other three CPUs.

In total, we tested 52 scenarios, each both with and with-
out the zero copy feature of CUDA and on both the TK1 and
TX1. Unless otherwise noted, the scenarios presented here
were measured on the TK1 and did not use the zero-copy
feature. Results for all considered scenarios can be found in
an online appendix3.

Typical observed trends. We begin by commenting on gen-
eral trends seen in our collected data.
Obs. 1. GPU co-scheduling was always constructive in sce-
narios consisting of multiple instances of a single benchmark.

Fig. 2 supports this observation for the case of the SD
benchmark. In this case, GPU co-scheduling is mildly con-
structive. While SD execution times do increase with more
competition, they do not increase to the point of eliminating
any benefit due to co-scheduling. In particular, the addition
of one competitor yields execution times that are somewhat
better than simply doubling the execution time of a single in-
stance, and this trend continues to apply as more competition
is introduced.
Obs. 2. GPU co-scheduling was so constructive in some
scenarios that any introduced interference was practically
negligible.

Fig. 3 supports this observation. Note that the execution
times for SD remain virtually unaffected when instances of
MMUL are introduced. This low impact is probably due to
MMUL having short kernel execution times (approx. 1ms),
which would rarely prevent SD from accessing the GPU.
Obs. 3. In some scenarios, particularly those involving
HOG, GPU co-scheduling proved to be rather destructive.

Fig. 4 supports this observation. Note that the most de-
structive interference occurs when two instances of HOG and
two instances of SD are run together, given by the curve for

3https://cs.unc.edu/˜anderson/papers/ospert16_
long.pdf

4

20 52 84 116 148 180
SD time (ms)

0

20

40

60

80

100

%
 <

=
x

SD
SD+{MMUL}
SD+{2MMUL}
SD+{3MMUL}

Figure 3: CDF of execution times of SD in scenarios involving
MMUL competitors.

661 1341 2022 2702 3382 4063
HOG time (ms)

0

20

40

60

80

100

%
 <

=
x

HOG
HOG+{HOG}
HOG+{3HOG}
HOG+{2SD,HOG}

Figure 4: CDF of execution times of HOG in scenarios involving
multiple instances of other benchmarks.

20 52 84 116 148 180
SD time (ms)

0

20

40

60

80

100

%
 <

=
x

SD
SD+{SD}
SD+{2HOG,SD}
SD+{3SD}

Figure 5: CDF of execution times of SD in scenarios involving
multiple instances of other benchmarks.

the scenario HOG+{2SD,HOG}. Fig. 5 presents execution-
time data for SD that allows us to examine this same scenario
from the perspective of SD. In particular, note the curve la-
beled SD+{2HOG,SD} in Fig. 5.

In our TK1 experiments, the worst-case execution time of
SD running in isolation was 71.1ms, and the worst-case
execution time of HOG running in isolation was 768.9
ms. However, the median execution time of HOG in the
HOG+{2SD,HOG} scenario was 3747.0ms. Had the sched-
uler simply treated the GPU as an exclusive resource when
running two instances of HOG and two instances of SD, we
could expect HOG’s worst-case execution time to be closer
to 1680.0ms, which is the sum of each instance’s worst-
case execution time in isolation. By examining the curve for
SD+{2HOG,SD} in Fig. 5, we see that SD in this scenario
has a median execution time only approximately 30ms worse
than its execution time in isolation. Since a single iteration of
HOG performs over 180 kernel invocations of varying sizes,
and an iteration of SD performs only one, the plots support
the hypothesis that a large portion of the effect on HOG is
due to HOG’s multiple kernels being interleaved with SD’s
single kernel at multiple points in each HOG iteration. While
one may argue that this scheduling in SD’s favor is beneficial
in some applications, the significantly increased execution
time for HOG may result in an overall net loss in terms of
schedulability.
Obs. 4. The TX1 platform exhibited similar trends to those
observed on the TK1.

The TX1, with greater resources, unsurprisingly exhib-
ited improved execution times. Most interference patterns,
however, applied to both platforms. This is shown in Fig. 7,
which shows similar patterns to Fig. 4, and Fig. 8, which is
analogous to Fig. 6 (discussed next).

An anomalous result. We conclude this section by dis-
cussing an anomalous result that suggests that further study
of sources of interference among GPU-using tasks is needed.
Obs. 5. In rare cases, a benchmark program exhibited better
performance when executing in the presence of a competing
workload rather than in isolation.

We were very surprised to find that in some cases, in-
creasing the concurrent workload unintuitively led to slight
improvements in observed benchmark execution times. We
observed such improvements in two sets of scenarios, shown
in Figs. 6 and 8, where instances of HOG exhibited execution-
time improvements with additional competition. This behav-
ior was noticed in HOG with one or two VADD competitors
on the TK1, and with up to 3 VADD competitors on the TX1.
The only other scenarios where we observed such behavior
involved the CONV benchmark competing against additional
CONV instances.

Our current hypothesis is that this behavior is due to
DRAM or CPU L2 cache activity. This hypothesis is based
on the observation that, in Fig. 6, the VADD benchmark runs

5

660.8 684.1 707.4 730.7 754.0 777.2
HOG time (ms)

0

20

40

60

80

100

%
 <

=
x

HOG+{2VADD}
HOG+{VADD}
HOG
HOG+{3VADD}

Figure 6: CDF of execution times of HOG in scenarios involving
VADD competitors (which are CPU-only).

349 803 1256 1710 2164 2618
HOG time (ms)

0

20

40

60

80

100

%
 <

=
x

HOG
HOG+{HOG}
HOG+{3HOG}
HOG+{2SD,HOG}

Figure 7: The same scenarios as Fig. 4 running on the TX1.

solely on the CPU. This fact eliminates GPU contention as
the source of the anomaly in Fig. 6, leaving only hardware
resources shared by the two benchmarks as potential causes:
the CPU, its L2 cache, and the DRAM banks. We still, how-
ever, do not have a concrete explanation of this anomalous
behavior, and plan to continue investigating it in hopes of
identifying specific causes.

5 Conclusion
In order to effectively use GPUs in automotive settings,
it is imperative to not waste GPU capacity. Such waste

347.69 355.10 362.52 369.94 377.36 384.77
HOG time (ms)

0

20

40

60

80

100

%
 <

=
x

HOG+{3VADD}
HOG+{2VADD}
HOG+{VADD}
HOG

Figure 8: The same scenarios as Fig. 6 running on the TX1.

can lead to the necessity of introducing additional hard-
ware, which can have a detrimental impact with respect
to SWaP and monetary cost. Unfortunately, most prior
GPU management frameworks proposed for real-time sys-
tems [7, 8, 9, 12, 16, 25, 26, 49, 47, 48, 54, 55] preclude
multiple tasks from executing GPU kernels concurrently. If
such a kernel requires only a relatively small fraction of a
GPU’s processing cores, then much of that GPU’s capacity
will be wasted. In this paper, we have explored the possibility
of allowing multiple kernels to be co-scheduled in the context
of image-processing applications. Our results suggest that, in
some cases, allowing multiple kernels to be co-scheduled can
have a positive impact on real-time schedulability. Allow-
ing such functionality will require new extensions to prior
real-time GPU management frameworks.

In future work, we plan to introduce such extensions
to the frameworks developed by our group, GPUSync and
GPUSyncLite. These extensions will require the use of real-
time locking protocols that sometimes allow multiple tasks
to hold locks simultaneously. Blocking analysis will be re-
quired for these protocols as well. We believe that the needed
protocols can be obtained by using ideas found in recently
proposed multiprocessor real-time locking protocols for man-
aging replicated resources [34]. Our idea here is to abstractly
view a single GPU as a replicated resource and require a task
to lock only the replicas it needs. In other future work, we
intend to conduct more in-depth experimental studies to try
to discern the root sources of interference that cause some
kernels to perform poorly when co-scheduled. Additionally,
we plan to consider other GPU-based hardware platforms
that might be viable in automotive use cases.

References
[1] Google self-driving car project. Online at https://www.google.

com/selfdrivingcar/, 2016.
[2] A. Alhammad and R. Pellizzoni. Trading cores for memory bandwidth

in real-time systems. In RTAS ’16.
[3] A Alhammad, S. Wasly, and R. Pellizzoni. Memory efficient global

scheduling of real-time tasks. In RTAS ’15.
[4] S. Altmeyer, R. Douma, W. Lunniss, and R.I. Davis. Evaluation of

cache partitioning for hard real-time systems. In ECRTS ’14.
[5] AMD. Amd embedded g-series system-on-chip product

brief. Online at https://www.amd.com/Documents/
AMDGSeriesSOCProductBrief.pdf.

[6] N. Audsley. Memory architecture for NoC-based real-time mixed
criticality systems. In WMC ’13.

[7] J. Aumiller, S. Brandt, S. Kato, and N. Rath. Supporting low-latency
CPS using GPUs and direct I/O schemes. In RTCSA ’12.

[8] C. Basaran and K. Kang. Supporting preemptive task executions and
memory copies in GPGPUs. In ECRTS ’12.

[9] K. Berezovskyi, , L. Santinelli, K. Bletsas, and E. Tovar. WCET
measurement-based and extreme value theory characterisation of
CUDA kernels. In RTNS ’14.

[10] K. Berezovskyi, K. Bletsas, and B. Andersson. Makespan computation
for GPU threads running on a single streaming multiprocessor. In
ECRTS ’12.

[11] K. Berezovskyi, K. Bletsas, and S. Petters. Faster makespan estimation

6

for GPU threads on a single streaming multiprocessor. In ETFA ’13.
[12] A. Betts and A. Donaldson. Estimating the WCET of GPU-accelerated

applications using hybrid analysis. In ECRTS ’13.
[13] M. Campoy, A. Ivars, and J. Mataix. Static use of locking caches

in multitask preemptive real-time systems. In IEEE/IEE Real-Time
Embedded Sys. Workshop ’01.

[14] M. Chisholm, B. Ward, N. Kim, and J. Anderson. Cache sharing and
isolation tradeoffs in multicore mixed-criticality systems. In RTSS

’15.
[15] G. Elliott. Real-Time Scheduling of GPUs, with Applications in Ad-

vanced Automotive Systems. PhD thesis, University of North Carolina
at Chapel Hill, 2015.

[16] G. Elliott, B. Ward, and J. Anderson. GPUSync: A framework for
real-time GPU management. In RTSS ’13.

[17] G. Giannopoulou, N. Stoimenov, P. Huang, and L.Thiele. Schedul-
ing of mixed-criticality applications on resource-sharing multicore
systems. In EMSOFT ’13.

[18] M. Hassan and H. Patel. Criticality- and requirement-aware bus
arbitration for multi-core mixed criticality systems. In RTAS ’16.

[19] M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling
DRAM memory accesses for multi-core mixed-time critical systems.
In RTAS ’15.

[20] J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA: A pre-
dictable cache-aware memory allocator. In ECRTS ’11.

[21] Intel. Intel atom processor series product brief. On-
line at http://www.intel.com/content/dam/
www/public/us/en/documents/product-briefs/
atom-x3-c3000-brief.pdf.

[22] R. Jain, C. Hughs, and S. Adve. Soft real-time scheduling on simulta-
neous multithreaded processors. In RTSS ’02.

[23] J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and P. Ca-
zorla. A dual-criticality memory controller (DCmc) proposal and
evaluation of a space case study. In RTSS ’14.

[24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. ACMMM ’14.

[25] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar. RGEM: A responsive GPGPU execution model for
runtime engines. In RTSS ’11.

[26] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. TimeGraph:
GPU scheduling for real-time multi-tasking environments. In USENIX
Annual Technical Conference ’11.

[27] H. Kim, D. Broman, E. Lee, M. Zimmer, A. Shrivastava, and J. Oh. A
predictable and command-level priority-based DRAM controller for
mixed-criticality systems. In RTAS ’15.

[28] H. Kim, D. de Niz, B. Anderson, M. Klein, O. Mutlu, and R. Rajku-
mar. Bounding memory interference delay in cots-based multi-core
systems. In RTAS ’14.

[29] H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for
practical OS-level cache management in multi-core real-time systems.
In ECRTS ’13.

[30] N. Kim, B. Ward, M. Chisholm, C.-Y. Fu, J. Anderson, and F.D.
Smith. Attacking the one-out-of-m multicore problem by combining
hardware management with mixed-criticality provisioning. In RTAS

’16.
[31] Y. Krishnapillai, Z. Wu, and R. Pellizzoni. ROC: A rank-switching,

open-row DRAM controller for time-predictable systems. In ECRTS
’14.

[32] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural infor-
mation processing systems.

[33] R. Mancuso, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni.
Real-time colored lockdown for cache-based multi-core architectures.

In RTAS ’13.
[34] C. Nemitz, K. Yang, M. Yang, P. Ekberg, and J. Anderson. Multipro-

cessor real-time locking protocols for replicated resources. In ECRTS
’16.

[35] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and
M. Schmidt. Multi-core interference-sensitive WCET analysis lever-
aging runtime resource capacity environment. In ECRTS ’14.

[36] NVIDIA. Cuda sample programs. Online at http://docs.
nvidia.com/cuda/cuda-samples.

[37] NVIDIA. Cuda zone. Online at http://www.nvidia.com/
object/cuda_home_new.html.

[38] NVIDIA. Jetson tx1 system-on-module data sheet. Online at https:
//developer.nvidia.com/embedded/downloads.

[39] NVIDIA. Whitepaper: NVIDIA Tegra K1. Online at
http://www.nvidia.com/content/pdf/tegra_
white_papers/tegra-k1-whitepaper.pdf.

[40] NVIDIA. Whitepaper: NVIDIA Tegra X1. Online at
http://international.download.nvidia.com/pdf/
tegra/Tegra-X1-whitepaper-v1.0.pdf.

[41] NXP. i.mx 6dual/6quad automotive and infotainment applications
processors data sheet. Online at http://cache.freescale.
com/files/32bit/doc/data_sheet/IMX6DQAEC.pdf.

[42] R. Pellizzoni, A. Schranzhofer, J. Chen, M. Caccamo, and L. Thiele.
Worst case delay analysis for memory interference in multicore sys-
tems. In DATE ’10.

[43] V. Prisacariu and I. Reid. fastHOG–a real-time GPU implementation
of HOG. Department of Engineering Science, 2310, 2009.

[44] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. Phatak, R. Pel-
lizzoni, and M. Caccamo. A real-time scratchpad-centric OS for
multi-core. In RTAS ’16.

[45] S. Thrun. Toward robotic cars. Communications of the ACM, 53:99–
106, 2010.

[46] P. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In RTAS ’16.

[47] U. Verner, A. Mendelson, and A. Schuster. Batch method for efficient
resource sharing in real-time multi-GPU systems. In ICDCN ’14.

[48] U. Verner, A. Mendelson, and A. Schuster. Scheduling periodic real-
time communication in multi-GPU systems. In ICCCN ’14.

[49] U. Verner, A. Mendelson, and A. Schuster. Scheduling processing
of real-time data streams on heterogeneous multi-GPU systems. In
SYSTOR ’12.

[50] B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared
caches more predictable on multicore platforms. In ECRTS ’13.

[51] M. Xu, S. Mohan, C. Chen, and L. Sha. Analysis and implementation
of global preemptive fixed-priority scheduling with dynamic cache
allocation. In RTAS ’16.

[52] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicoore
platforms. In RTAS ’14.

[53] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
access control in multiprocessor for real-time systems with mixed
criticality. In ECRTS ’12.

[54] J. Zhong and B. He. Kernelet: High-throughput GPU kernel execu-
tions with dynamic slicing and scheduling. TIEEE Transactions on
Parallel and Distributed Systems, 25:15221532, 2014.

[55] H. Zhou, G. Tong, and C. Liu. GPES: A preemptive execution system
for GPGPU computing. In RTAS ’15.

7

