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Abstract
Embedded systems augmented with graphics processing units
(GPUs) are seeing increased use in safety-critical real-time
systems such as autonomous vehicles. Due to monetary cost
requirements along with size, weight, and power (SWaP)
constraints, embedded GPUs are often computationally im-
poverished compared to those used in non-embedded systems.
In order to maximize performance on these impoverished
GPUs, we examine co-scheduling: allowing multiple appli-
cations concurrent access to a GPU. In this work, we use a
new benchmarking framework to examine internal schedul-
ing policies of the black-box hardware and software used to
co-schedule GPU tasks on the NVIDIA Jetson TX1.

1 Introduction
Fueled largely by the burgeoning autonomous vehicle in-
dustry, the demands being made of safety-critical embedded
computers are growing at unprecedented rates. The mone-
tary cost requirements and size, weight, and power (SWaP)
constraints placed on embedded systems have resulted in
traditional microprocessors being hard-pressed to provide
the computing capacity needed for computation- and data-
intensive tasks, such as analyzing multiple video feeds. To
overcome the limits of traditional microprocessors, develop-
ers of autonomous vehicles are increasingly turning to spe-
cialized hardware such as graphics processing units (GPUs).

GPU manufacturers such as NVIDIA are embracing this
new use case, as evidenced by offerings such as the Jetson
TX1: a GPU-augmented single-board computer expressly
designed for embedded development [7]. Such a platform
meets the financial, SWaP, and computational requirements
of modern embedded systems. Unfortunately, less attention
has been given to the safety-critical aspects of autonomous
systems, as mainstream GPU manufacturers have not pro-
vided key information needed for certification.

On one hand, this is not unexpected given typical GPU use
cases: gaming and, increasingly often, throughput-oriented
high-performance computing. On the other hand, informa-
tion such as cache replacement policies, DRAM organization,
and job scheduling are essential for the accurate calculation
and verification of safety-critical temporal properties. In this
paper, we present a new experimental framework and some
results illuminating one of these topics: a selection of the
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GPU’s scheduling rules. A framework like ours is necessary
for evaluating behavior of the GPU’s black-box components,
which includes hardware, closed-source drivers, and user-
level libraries.

Prior work and GPU co-scheduling. Due to the black-box
behavior of most GPUs, a significant body of prior work in
real-time GPU management has chosen to enforce exclusive
GPU access [2, 3, 4, 11, 12, 13]. These works, which only
allow a single task to execute at a time on a GPU, incur capac-
ity loss if a task does not require all GPU resources. This may
be acceptable on multi-GPU systems, but, on less-capable
embedded GPUs, all possible processing cycles should be
available to maximize performance. Other works have fo-
cused on subdividing GPU jobs into smaller, more man-
ageable chunks to improve schedulability [1, 3, 5, 15]. Of
particular note is a framework called Kernelet [14], which
subdivides GPU tasks into smaller sub-tasks that can be co-
scheduled. Kernelet, however, does not provide an in-depth
investigation into how co-scheduled tasks actually behave
aside from the observation that co-scheduling can lead to
performance benefits.

Prior work by our group investigated co-scheduling GPU
operations issued by separate CPU processes [8, 9]. In brief,
this work found that GPU operations requested from separate
CPU processes were co-scheduled via multiprogramming,
where the GPU would dedicate all resources to a portion
of a single operation and allow this portion to complete
before switching to a portion of a different operation. Given
this behavior, GPU operations from different processes are,
in a sense, never executed concurrently because operations
from different processes never have threads assigned to the
GPU at the same time. This limitation does not, however,
apply to GPU operations issued from multiple CPU threads
within a single address space. Because execution from a
single address is necessary to enable a GPU to truly execute
different operations concurrently, this context is our focus in
this paper.

Contributions. In this work, we present a new framework
designed to enable observing the way GPU jobs are sched-
uled. We use these observations to infer a selected subset of
(to our knowledge) undocumented GPU scheduling policies
for the NVIDIA Jetson TX1.

Organization. In Sec. 2 of this paper, we describe our test
platform and introduce terminology essential when describ-
ing GPU scheduling. We then describe our experimental
framework in Sec. 3, detail the scheduling policies we infer



Figure 1: Jetson TX1 architecture.

in Sec. 4, and report our results in Sec. 5. Finally, we discuss
the future direction of this research and conclude in Sec. 6.

2 Background
Our test platform. We carried out our experiments on the
NVIDIA Jetson TX1, a single-board computer with a quad-
core 64-bit ARM CPU, an integrated CUDA-capable GPU,
and 4 GB of DRAM shared between the GPU and CPU.
As mentioned in Sec. 1, this platform is relatively inexpen-
sive, accessible, and geared towards embedded development.
Fig. 1 provides a high-level overview of the TX1.

CUDA programming basics. GPUs can be viewed as co-
processors that carry out work requested by a CPU process.
Our experiments focus on CUDA, which is an API used to
interact with NVIDIA GPUs. Requests made to the GPU via
CUDA typically complete asynchronously, meaning that a
single CPU process can enqueue multiple requests and must
explicitly wait for requests to complete.

We supply the following brief list of CUDA terminology
along with Fig. 2 to provide a few necessary definitions:

• CUDA kernel: A section of code that runs on the GPU.

• Thread block (block): A collection of GPU threads that
all execute concurrently and run the same instructions,
but operate on different portions of data. The number of
threads in a block and the number of blocks associated
with a CUDA kernel are specified at runtime.

• Streaming Multiprocessor (SM): The individual cores in a
CUDA-capable GPU are partitioned into SMs. On the
TX1, up to 2,048 threads can be assigned to an SM.
Threads within a single block will never simultaneously
execute on different SMs.

• CUDA Stream (stream): A FIFO queue of CUDA kernels
and memory-transfer operations to be run by the GPU. A
single CPU process or thread can attempt to issue concur-
rent GPU operations by placing them in multiple streams.

Fig. 2 summarizes the hierarchy of how CUDA programs,
kernels, and thread blocks are related. A CUDA program
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Figure 2: Diagram illustrating the relation between CUDA pro-
grams, kernels, and thread blocks.

consists of CPU code that invokes GPU code, which in turn
is contained in CUDA kernels. The execution of a kernel
requires running a programmer-specified number of thread
blocks on the GPU. Not shown in Fig. 2 is the fact that
multiple thread blocks from the same kernel can execute
concurrently if sufficient GPU resources exist. We refer to
the time taken to execute a single thread block as block time,
the time taken from the invocation to completion of a CUDA
kernel as kernel time, and the time taken by an entire CUDA
program (including CPU portions) as total time.

A full understanding of CUDA is not necessary to un-
derstand this paper, and details about issues of relevance to
us will be given in Sec. 3. In addition, this work focuses
exclusively on scheduling GPU code issued by a single CPU
process, so several important issues are beyond the scope of
this paper (such as GPU memory management). We refer
readers to one of our prior works [9] where we consider
some of these questions in more detail.

3 Experimental Approach
In this section, we provide an overview of our experimental
approach. We begin by delving into some open questions
about scheduling on CUDA-capable GPUs. Afterwards, we
describe the experimental framework we created for submit-
ting short, handcrafted scenarios to the GPU and monitoring
the GPU scheduler’s behavior.

Documented and undocumented CUDA scheduling be-
havior. The official CUDA documentation contains almost
no information about how CUDA kernels are scheduled,
apart from the facts that kernels within a CUDA stream com-
plete sequentially and that kernels from different streams
may run concurrently.1 However, the exact conditions for
when kernels from different streams will run concurrently,
or the default ordering of kernels from different streams, is
not explicitly stated and is likely to be hardware-dependent.
One semi-official presentation from 2011 [10] gives slightly
more detail, and states that kernels from different streams are
placed into a single internal queue in issue order, and that the
head of the internal queue may be allowed to run concurrently
with other kernels if sufficient resources exist. However,
this talk covered an older GPU architecture; notably, newer
NVIDIA GPUs contain multiple internal queues [6]. Fur-

1For example, this is the description of streams given in Sec. 9.1.2 of
the Best Practices Guide for CUDA version 8.0.61.



thermore, our own prior work found that aspects of CUDA
programs as fundamental as memory access APIs were sub-
ject to undocumented changes between software updates [9].

In brief, the high-level documentation and evolving GPU
architecture have left us with the following two questions
about the Jetson TX1’s GPU scheduling: First, under what
conditions will two kernels from different streams be sched-
uled concurrently? Second, if multiple streams have pending
kernels that cannot be scheduled concurrently, how are the
kernels from different streams prioritized?

A new framework for examining GPU scheduling. To an-
swer these questions, we designed a new testing framework
that enables scenarios to be set up in which the issue order
and resource requirements of GPU kernels can be carefully
controlled.2 Additionally, we wanted the framework to gather
detailed scheduling information, have a modular interface
for supporting different GPU workloads, and have inputs
and outputs that facilitate scripting. The current framework
consists of approximately 2,700 lines of C and CUDA code
and is available online.3

Our framework is used by providing a configuration file
describing a particular scenario. In this paper, we use the
term task to refer to a CPU thread that issues GPU work.
All tasks in a scenario would share a single address space.
Configuration files specify how many tasks should run, how
many kernels each task submits to the GPU, how long each
kernel should run, the number of threads per block, and the
total number of thread blocks per kernel invocation. Release
order is configured by specifying an amount of time each
task must sleep before issuing GPU kernels.

After a scenario completes execution, the framework pro-
duces one output file per task, each of which contains a list
of the start and end times for every block in every kernel
submitted by that task. Additionally, the framework reports
the ID of the SM on which each block ran. By combining
this block-level information from all kernels and tasks in the
scenario, we can obtain a complete view of how the scenario
was scheduled.

In order to facilitate scripting, both configuration and out-
put files use the JSON file format, which is a commonly
supported plain-text format for serializing hierarchical in-
formation. All block timing and SM IDs are recorded on
the GPU itself, by reading the globaltimer and smid
registers available to CUDA kernel code. Our observations
only depend on the relative ordering of GPU times, which
eliminates the need to synchronize CPU and GPU time.
The globaltimer register, which maintains a count of
nanoseconds, was also used to implement our primary test

2Among other things, this requires our framework to be the only GPU-
using process. We experienced confusing and inconsistent results in some
early experiments, and later found that this was due to not disabling the X
window server. We did not have displays connected to the systems, so we
did not realize that X would start by default and consume GPU resources.

3https://github.com/yalue/cuda_scheduling_
examiner_mirror
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Figure 3: Structure of Streams and Primary Queue.

kernel, which spins in a busy loop until a user-specified num-
ber of nanoseconds has elapsed. The results we present in
Sec. 5 still hold for other CUDA kernels, but most of our
experiments involved the simple busy-waiting kernel so that
the we could easily control the kernels’ execution times with
minimal interference from co-scheduled work.

4 GPU Scheduling Rules
In this section, we present rules that, to our knowledge, gov-
ern how the TX1’s GPU scheduler assigns work from multi-
ple streams within a single CPU process to the GPU. For this
set of rules, the GPU scheduler consists of one FIFO primary
queue (per address space), and, as described in Sec. 2, one
FIFO queue per CUDA stream.4 This layout is depicted in
Fig. 3, which is explained in detail after presenting the rules
below.

According to our observations using CUDA version 8.0
and simple workloads being submitted from a single address
space, the following rules dictate the order in which kernels
execute on the GPU, and whether two or more kernels will
execute on the GPU concurrently:

A. A CUDA kernel is inserted into the primary queue when
it arrives at the head of its stream.

B. A CUDA kernel can begin execution on the GPU if
both of the following are true:

B1. The kernel is at the head of the primary queue.

B2. Sufficient GPU resources are available for at least
one block of the kernel.

4This structure becomes more complex if more hardware or CUDA
features (e.g. copies or stream priorities) are considered.



C. A CUDA kernel is dequeued from the head of the pri-
mary queue if all of its blocks have either completed
execution or are currently executing.

D. A CUDA kernel is dequeued from the head of its stream
if all of its blocks have completed execution.

Summary of GPU scheduling rules. Rules A and D restate
the rule mentioned in Sec. 2 that kernels submitted to a
single stream are always handled in FIFO order. Rules A
and B1 imply that kernels submitted from multiple streams
will run on the GPU in the same order that they arrived at
the heads of their streams. Rule C is the rule that allows
concurrent execution of multiple kernels on the GPU. In
particular, the clause stating that a kernel is removed from the
head of the primary queue if it has no remaining incomplete
or unassigned blocks means that a second kernel can reach
the head of the primary queue while the previous kernel is
still executing. Lastly, Rule B2 determines whether a kernel
at the head of the primary queue can begin execution. We
provided Fig. 3, which we next describe in detail, as a visual
example of these rules’ applications.

Example of GPU scheduling rules. In Fig. 3, two tasks
each use two separate streams to submit kernels to the GPU.
In total, these two tasks submit five kernels, labeled K1-K5.
Each kernel may have multiple blocks, so kernel K1’s ith

block is labeled “K1: i,” and K3’s single block is labeled
similarly. In this example, all blocks of K1 and K3 (with
shaded boxes) are currently assigned to the GPU. K1 and K3
have therefore been removed from the primary queue (Rule
C), but are still present at the heads of their streams. Kernels
K4 and K5 are at the heads of their streams, so they have
been added to the primary queue (Rule A). Even so, neither
is able to begin executing because K5 is not at the head of
the primary queue (Rule B1), and insufficient GPU resources
exist for a block of K4 (Rule B2). When K1 completes, it
will be dequeued from the head of its stream (Rule D), and
K2 will reach the head of its stream and be added to the
primary queue (Rule A).

GPU resource requirements. Rule B2 encompasses in it-
self a fairly complex set of constraints. In official documen-
tation, the factors that determine the GPU resource require-
ments of a CUDA kernel are all condensed into a single
metric known as occupancy.5 A kernel invocation’s occu-
pancy is based on which of three GPU resources will be most
constrained by that particular kernel. The GPU resources con-
sidered in the occupancy calculation are GPU threads, GPU
registers, and shared memory.6 CUDA GPUs have other lim-
its on execution in addition to occupancy, such as a global
maximum number of kernels per GPU, but these limits are
usually fairly high. In this work, we focused on determining

5The official occupancy calculator can be found at http:
//developer.download.nvidia.com/compute/cuda/
CUDA_Occupancy_calculator.xls

6On a CUDA GPU, shared memory refers to a small region of low-
latency memory through which GPU threads can communicate.

rules governing thread resource requirements, but our ex-
perimental approach could also be used to investigate other
occupancy-related restrictions.

When considering GPU resource requirements such as
threads, it is imperative to remember that a CUDA GPU is
organized into SMs. As described in Sec. 2, each SM is asso-
ciated with a cluster of CUDA cores, and groups of threads
from CUDA kernels are assigned to SMs. On the TX1, the
maximum number of threads that can be concurrently as-
signed to a single SM is 2,048.7 Thread blocks are always
fully assigned to a single SM, so if only 512 threads are
available on each of the TX1’s two SMs, an incoming block
of 1,024 threads cannot be scheduled. We show scenarios
where this behavior can lead to unnecessary blocking at the
end of the next section, after our experiments to validate the
set of scheduling rules.

5 Evaluation
In this section, we present a sample of experimental results
that illustrate each of the rules in Sec. 4. All of these exper-
iments were carried out using the experimental framework
described in Sec. 3.

Interpreting the plots. For each experiment, we present
one or more plots showing the time at which thread blocks
were assigned to one of the TX1’s two SMs. In these plots,
each thread block is represented by a rectangle, with the left
edge corresponding to the block’s start time on the horizontal
axis, the right edge corresponding to its end time, and the
height proportional to the number of threads in the block.
Blocks are individually labeled with their associated kernel
followed by their block number. The plots are subdivided
into upper and lower halves representing the two available
SMs, and blocks are located in the half corresponding to the
SM on which they executed. Apart from SM assignment,
the vertical ordering of blocks may be arbitrary. Finally, all
blocks issued to the same stream will have identical shades
and patterns within a single plot.

Simple experiments corroborating Rules B1, B2, and C.
Our first, basic tests were carried out to simply verify that
co-scheduling can occur when multiple kernels are submitted
from different streams in a single address space, and that
kernels become eligible to run as soon as sufficient resources
are available. These experiments only required submitting
one kernel per stream, so the per-stream processing indicated
by Rules A and D is trivial in these cases. Results of this first
set of experiments are represented in Figs. 4 and 5.

Of these first two experiments, Fig. 4 represents the sim-
plest, optimal co-scheduling situation in which we released
kernels K1 and K2 at time t = 0s and kernels K3 and K4
at time t = 0.25s. Each kernel was released in a separate
stream, configured to run for the same amount of time, and

7This number can be calculated from the Compute Capabilites table in
the CUDA Programming Guide.



Figure 4: Basic co-scheduling behavior.

Figure 5: Greedy behavior.

required two blocks of 1,024 threads. The kernels that were
released first, K1 and K2, were co-scheduled due to Rule B2
because each kernel only required half of the available thread
resources. This meant that whichever kernel came first was
fully assigned to SMs and dequeued from the primary queue.
K3 and K4 could not commence execution until one of the
first two kernels completed, freeing thread resources.

The second experiment, depicted in Fig. 5, illustrates the
greedy behavior required by Rule C. Kernel K1, requiring
few thread resources, was released at time t = 0s. Next,
kernel K2 was released at time t = 0.25s and began execu-
tion immediately. K2, however, required executing 16 blocks
of 512 threads, which exceeded the GPU’s capacity. Kernel
K3, requiring few thread resources, was released at time
t = 0.5s, but the scheduler did not allow it to execute until
K2 had no blocks left to assign to the GPU. In accordance
with Rule C, K3 was able to reach the head of the primary
queue and begin executing while the final block of K2 was
still completing.

Experiments corroborating Rules A and D. Our first set
of experiments supported our observations about the ordering
of kernels between multiple streams, but did not include
situations that can occur when multiple kernels are submitted
to a single stream. Our next set of tests illustrates the rules
pertaining to intra- and inter-stream ordering of kernels, and

Figure 6: FIFO ordering within a stream.

Figure 7: FIFO ordering within the primary queue.

therefore focuses on the additional constraints given in Rules
A and D. Situations arising due to these rules are illustrated
in Figs. 6 and 7.

Fig. 6 contains an example of how kernels within a single
stream are executed in FIFO order. In this figure, kernels K2
and K3 were issued to a single stream, and, in accordance
with Rules A and D, K3 did not begin execution until after
K2 completed. Furthermore, K2 required too many resources
to execute concurrently with K1, even though K1 was issued
in a different stream. This is in line with earlier observations,
but it still serves as an illustration where a kernel with very
low resource requirements is blocked not only by a predeces-
sor in its own stream, but also transitively by another kernel
from a different stream.

We provide Fig. 7 as a second illustration of Rules A and
D. Unlike in Fig. 6, the kernels in Fig. 7 were executed in a
different order from that in which they were issued. Kernels
K1 and K2 were issued back-to-back at time t = 0s into
the same stream, and kernel K3 was issued into a separate
stream at time t = 0.25s. Even though K2 was issued first,
K3 executed before K2 because Rule D prevented K2 from
reaching the head of its stream until K1 completed. Kernel
K3, on the other hand, reached the head of its stream and
entered the primary queue as soon as it was submitted.



Figure 8: An SM assignment preventing concurrent kernels.

Figure 9: An SM assignment allowing concurrent kernels.

The impact of SMs on resource constraints. So far, our
experiments focused on illustrating the behaviors caused
by the scheduling rules, but, as noted in Sec. 4, Rule B2
about resource constraints requires considering the GPU as
a set of SMs. This, along with the restriction that threads
from a single block cannot be split across multiple SMs,
prevents concurrency in some situations. We conducted one
final experiment both to illustrate one such situation, and to
demonstrate how concurrency can be improved with minor
changes to issue order.

The first of two related scenarios is presented in Fig. 8. In
this figure, kernel K1, requiring 6 blocks of 512 threads, was
released at time t = 0s. Since nothing else was currently
executing, the GPU scheduler evenly distributed K1’s six
blocks across the TX1’s two SMs, leaving only 512 unas-
signed threads remaining on each SM. This meant that when
K2, requiring a single block of 1,024 threads, was released
at time t = 0.25s, it had to wait because neither SM could
hold 1,024 threads.

Fig. 9 contains the same two kernels as Fig. 8, but with
the two kernels released in the opposite order. Here, K2’s
single larger block was assigned to SM 0, and the GPU
scheduler distributed K1’s six blocks to fill up all remaining
thread resources. While this may not be a surprising result,
it illustrates a situation in which reordering kernels could
improve GPU utilization and reduce overall execution time.

We hope to infer a set of rules describing exactly how blocks
are assigned to SMs in future work, but for now it remains
an open question.

6 Conclusion
In this work, we presented only part of an ongoing effort
to force some undocumented GPU hardware features into
the open. We eventually hope to expand the set of rules
presented here to a point where it is possible to draw broader
conclusions about schedulability for task systems that share
a single GPU. The evaluation in Sec. 5 already contains
examples of non-work-conserving scheduling that can be
predicted or even mitigated with slight foreknowledge about
a task system, coupled with what we now know about the
GPU scheduler.

We hope that GPU manufacturers come to realize that
transparency is a valuable feature in an embedded system,
but the reality is that developers of autonomous systems
are not willing to wait. Therefore, it is our duty to not only
demand greater openness, but also to work towards making
these systems safer for those who are already using them.
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