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ABSTRACT

We present an N -process local-spin mutual exclusion algorithm, based on nonatomic reads and writes, in which each process
performs Θ(log N) remote memory references to enter and exit its critical section. This algorithm is derived from Yang and
Anderson’s atomic tree-based local-spin algorithm in a way that preserves its time complexity. No atomic read/write algorithm
with better asymptotic worst-case time complexity (under the remote-memory-references measure) is currently known. This
suggests that atomic memory is not fundamentally required if one is interested in worst-case time complexity.

The same cannot be said if one is interested in fast-path algorithms (in which contention-free time complexity is required
to be O(1)) or adaptive algorithms (in which time complexity is required to be proportional to the number of contend-
ing processes). We show that such algorithms fundamentally require memory accesses to be atomic. In particular, we
show that for any N -process nonatomic algorithm, there exists a single-process execution in which the lone competing pro-
cess executes Ω(log N/ log log N) remote operations to enter its critical section. Moreover, these operations must access

Ω(
√
logN/ log logN) distinct variables, which implies that fast and adaptive algorithms are impossible even if caching tech-

niques are used to avoid accessing the processors-to-memory interconnection network.

∗Work supported by NSF grants CCR 9972211, CCR 9988327, and ITR 0082866.



1. INTRODUCTION
This paper is concerned with shared-memory mutual ex-

clusion algorithms based on read and write operations.1 In
work on such algorithms, nonatomic and local-spin algo-
rithms have received considerable attention. In nonatomic
algorithms, variable accesses are assumed to take place over
intervals of time, and hence may overlap one another. In
contrast, each variable access in an atomic algorithm is
viewed as taking place instantaneously. Requiring atomic
memory access is tantamount to assuming mutual exclusion
in hardware [18]. Thus, mutual exclusion algorithms requir-
ing this are in some sense circular.
In local-spin algorithms, all busy-waiting loops are read-

only loops in which only locally-accessible variables are read;
a variable is locally accessible if it is stored in a local cache
line (possible on a multiprocessor with coherent caches) or
stored in a local memory partition (possible on a distributed
shared-memory machine). By structuring busy-waiting loops
in this way, contention for the processors-to-memory inter-
connection network can be greatly reduced. Performance
studies presented in several papers [9, 13, 23, 30] have shown
that local-spin algorithms typically scale well as contention
increases, while non-local-spin algorithms do not.
In this paper, we present possibility and impossibility re-

sults pertaining to algorithms that are both nonatomic and
use local spinning. Before describing our main contribu-
tions, we first give a brief overview of relevant related re-
search on nonatomic and local-spin algorithms.

Nonatomic algorithms. Lamport was the first to point
out the circularity inherent in assuming atomic statement
execution [18]. He also presented the first nonatomic algo-
rithm, his famous bakery algorithm [18]. Lamport’s work
on the bakery algorithm was a catalyst for much subsequent
work by him on proof formalisms for nonatomic algorithms
(e.g., [22]).
The bakery algorithm is not a local-spin algorithm. In

addition, it requires unbounded memory. In later work,
Lamport presented four other nonatomic algorithms, each
with bounded memory [19]. These algorithms differ in the
progress and fault-tolerance properties they satisfy. None
are local-spin algorithms.

Local-spin algorithms. The earliest local-spin algo-
rithm based only on reads and writes is also the only non-
atomic local-spin algorithm known to us [4]. This algorithm,
due to Anderson, is composed of a collection of constant-
time two-process algorithms, which are used to allow each
process to compete individually against every other process.
The resulting algorithm has Θ(N) time complexity,2 where
N is the number of processes. The correctness of the non-
atomic version of the algorithm is mainly a consequence of
the fact that only single-writer, single-reader, single-bit vari-
ables are used. With any nonatomic algorithm, overlapping
operations that access a common variable are the main con-
cern. In Anderson’s algorithm, if two overlapping operations
access the same (single-bit) variable, then one is a read and
the other is a write. The assumption usually made (and

1All claims made hereafter are assumed to pertain to this
class of algorithms unless otherwise indicated.
2We consider the time complexity of an algorithm to be the
number of remote memory references (i.e., references that
require an access of the interconnection network) required
by one process to enter and exit its critical section.

made herein) regarding such overlapping operations is that
the read may return any value [18, 20]. Note that if such a
write changes the written variable’s value, then an overlap-
ping read can be linearized to occur either before or after
the write [18]. For example, if a write changes a variable’s
value from 1 to 0, then an overlapping read that returns 1
(0) can be linearized to occur immediately before (after) the
write.3 In Anderson’s algorithm, most writes write new val-
ues, and the structure of the algorithm ensures that those
writes that do not have no adverse impact.
In later work, Yang and Anderson showed that sub-linear

time complexity was possible, at the price of atomic mem-
ory. They established this by presenting a Θ(log N) algo-
rithm in which instances of an O(1) two-process algorithm
are embedded in a binary arbitration tree [30]. Their two-
process algorithm, unlike Anderson’s, does not require stat-
ically allocated single-writer, single-reader variables. Using
such variables in an arbitration tree is problematic because
the participating processes at each node may vary with time.
On the other hand, Yang and Anderson’s algorithm uses
multi-bit variables, which renders it incorrect if variable ac-
cesses are nonatomic.
In recent years, there has been much interest in algorithms

that are fast in the absence of contention [7, 21, 30] or that
are adaptive, i.e., with time complexity that is proportional
to the number of contending processes [5, 10, 12, 27]. In a
recent paper [7], we presented a “fast-path” mechanism that
improves the contention-free time complexity of Yang and
Anderson’s algorithm to O(1), without affecting its worst-
case time complexity. In another recent paper [5], we pre-
sented an extension of this mechanism that results in an
adaptive algorithm with O(min(k, logN)) time complexity,
where k is “point contention” [1].
Several prior research efforts on lower bounds are of rel-

evance to this paper. Of particular relevance are lower
bounds established by Anderson and Yang, which involve
trade-offs between time complexity and write-contention [8].
The write-contention of an algorithm is the number of pro-
cesses that may be simultaneously enabled to write the same
variable. Anderson and Yang showed that any algorithm
with write-contention w must have a single-process execu-
tion in which that process executes Ω(logw N) remote op-
erations for entry into its critical section. Further, among
these operations, Ω(

√
logw N) distinct remote variables are

accessed. Thus, a trade-off between write-contention and
time complexity exists even in systems with coherent caches.
Because a single-process execution is used to establish

these bounds, it follows that Ω(N)-writer variables are
needed for fast or adaptive algorithms. In other work [3],
Alur and Taubenfeld showed that fast (and hence adaptive)
algorithms also require variables with Ω(log N) bits (i.e.,
variables large enough to hold at least some fraction of a
process identifier).
In other related work [6], we established a lower bound

of Ω(log N/ log log N) remote operations for any mutual
exclusion algorithm based on reads and writes. This bound
has no bearing on fast or adaptive algorithms because it
results from an execution that may involve many processes.
(In a later related paper [17], adaptive atomic algorithms
were considered.)

3Such reasoning must be used with caution; for example, it
may be impossible to linearize a sequence of such overlapping
reads by the same process without reordering them.
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Contributions. Given the research reviewed above, two
questions immediately come to mind:

• Is it possible to devise a nonatomic local-spin al-
gorithm with Θ(log N) time complexity, i.e., that
matches the best atomic algorithm known?

• Is it possible to devise a nonatomic algorithm that is
fast or adaptive?

Both questions are answered in this paper. We answer the
first question in the affirmative by presenting a Θ(log N)
nonatomic algorithm, which is derived from Yang and An-
derson’s arbitration-tree algorithm by means of simple trans-
formations. On the other hand, the answer to the second
question is negative. We show this by proving that any
nonatomic algorithm must have a single-process execution
in which that process executes Ω(log N/ log log N) remote
operations to enter its critical section. Moreover, these oper-
ations must access Ω(

√
logN/ log logN) distinct variables,

which implies that fast and adaptive algorithms are impos-
sible even if caching techniques are used to avoid accessing
the interconnection network. Some of the techniques used
to establish these bounds are taken from earlier papers [6,
8], while others are new, being applicable when memory ac-
cesses are nonatomic. Given the prior results summarized
above, it follows that any fast or adaptive algorithm neces-
sarily must use Ω(logN)-bit, Ω(N)-writer variables that are
accessed atomically .

Organization. The rest of this paper is as follows. In
Sec. 2, our nonatomic algorithm is presented. Definitions
needed to establish the bounds mentioned above are then
given in Sec. 3. Proof sketches for both bounds are given
in Sec. 4; detailed proofs can be found in an appendix. We
conclude in Sec. 5.

2. NONATOMIC ALGORITHM
As mentioned earlier, our nonatomic algorithm is derived

from Yang and Anderson’s algorithm. We hereafter denote
these two algorithms as Algorithms NA and YA, respec-
tively; both are depicted in Fig. 1. In this figure, “await
B” is used as a shorhand for “while ¬B do od,” where B
is a boolean expression.

Algorithm YA.We begin with a brief, informal descrip-
tion of Algorithm YA. Associated with each node n at height
h in the arbitration tree is a two-process mutual exclusion al-
gorithm, whish uses the following variables: C[n][0], C[n][1],
T [n], and a subset of P [h][0], . . . , P [h][N − 1]. Variable
C[n][0] ranges over {0, . . . , N − 1,⊥} and is used by a pro-
cess from the left subtree rooted at n to inform a process
from the right subtree of its intent to enter its critical sec-
tion. Variable C[n][1] is similarly used by processes from
the right subtree. Variable T [n] ranges over {0, . . . , N − 1}
and is used as a tie-breaker in the event that two processes
attempt to “acquire” node n at the same time. Ties are
broken in favor of the first process to update T [n]. Variable
P [h][p] is the spin variable used by process p at node n (if
it is among the processes that, by the structure of the tree,
can access node n).
Loosely speaking, the two-process algorithm at node n

works as follows. A process l from the left subtree rooted at
n “announces” its arrival at node n by establishing C[n][0] =
l. It then assigns its identifier l to the tie-breaker variable

T [n], and initializes its spin variable P [h][l]. If no process
from the right-side has attempted to acquire node n, i.e.,
if C[n][1] = ⊥ holds when l executes line 8, then process
l proceeds directly to the next level of the arbitration tree
(or to its critical section if n is the root). Otherwise, if
C[n][1] = r, where r is some right-side process, then l reads
the tie-breaker variable T [n]. If T [n] �= l, then process r has
updated T [n] after process l, so l can enter its critical section
(recall that ties are broken in favor of the first process to up-
date T [n]). If T [n] = l holds, then either process r executed
line 6 before process l, or process r has executed line 5 but
not line 6. In the first case, l should wait until r “releases”
node n in its exit section, whereas, in the second case, l
should be able to proceed past node n. This ambiguity is
resolved by having process l execute lines 10–14. Lines 10–
11 are executed by process l to release process r in the event
that it is waiting for l to update the tie-breaker variable
(i.e., r is busy-waiting at node n at line 12). Lines 12–
14 are executed by l to determine which process updated
the tie-breaker variable first. Note that P [h][l] ≥ 1 implies
that r has already updated the tie-breaker, and P [h][l] = 2
implies that l has released node n. To handle these two
cases, process l first waits until P [h][l] ≥ 1 holds (i.e., un-
til r has updated the tie-breaker), re-examines T [n] to see
which process updated it last, and finally, if necessary, waits
until P [h][l] = 2 holds (i.e., until process r releases node n).
After executing its critical section, process l releases node

n by establishing C[n][0] = 0. If T [n] = r, in which case
process r is competing at node n, then process l updates
P [h][r] so that process r does not block at node n.
To see that Algorithm YA is a local-spin algorithm, note

that each process only waits on spin variables dedicated to it.
On a distributed shared-memory machine, a process’s spin
variables can be stored in a local memory partition. On a
cache-coherent machine, the first read of a spin variable by
a process p in a busy-waiting loop creates a cached copy. All
subsequent reads by p until the variable is written by another
process are handled in-cache. The algorithm ensures that
after such a write, p’s busy-waiting loop terminates.

Algorithm NA. In the rest of this section, we consider
the problem of converting Algorithm YA into a nonatomic
algorithm. The notion of a nonatomic variable that we as-
sume is that captured by Lamport’s definition of a safe reg-
ister [20]: a nonatomic read of a variable returns its current
value if it does not overlap any write of that variable, and
any arbitrary value from the value domain of the variable if
it does overlap such a write. These assumptions are suffi-
cient for our purposes, because our final algorithm precludes
overlapping writes of the same variable.
The most obvious way to convert Algorithm YA into a

nonatomic algorithm is to implement each atomic variable
using nonatomic ones by applying wait-free register con-
structions presented previously [14, 15, 20, 24, 25, 26]. This
is in fact the approach we take for the C and T variables.
However, if such constructions are applied to implement the
P variables, then a read of such a variable necessarily re-
quires that one or more of the underlying nonatomic vari-
ables be written (this was proved by Lamport [20]). As a
result, the spins in lines 12 and 14 would no longer be local.
As for the C and T variables, the tree structure en-

sures that C[n][s] can be viewed as a single-writer, single-
reader variable, and T [n] as a two-writer, two-reader vari-
able. Hence, C[n][s] can be implemented quite efficiently
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Algorithm YA (The original algorithm in [30])

process p :: /∗ 0 ≤ p < N ∗/
const /∗ for simplicity, we assume N = 2L ∗/

L = logN ; /∗ (tree depth) + 1 = O(logN) ∗/
Tsize = 2L − 1 = N − 1 /∗ tree size = O(N) ∗/

shared variables
T : array[1..Tsize] of 0..N − 1;
C : array[1..Tsize][0, 1] of (0..N − 1, ⊥) initially ⊥;
P : array[1..L][0..N − 1] of 0..2 initially 0

private variables
h: 1..L;
node: 1..Tsize;
side: 0..1; /∗ 0 = left, 1 = right ∗/
rival : 0..N − 1

while true do
1: Noncritical Section;

2: for h := 1 to L do
3: node :=

⌊
(N + p)/2h

⌋
;

4: side :=
⌊
(N + p)/2h−1

⌋
mod 2;

5: C[node][side] := p;
6: T [node] := p;
7: P [h][p] := 0;
8: rival := C[node][1− side];
9: if (rival �= ⊥ ∧ T [node] = p) then
10: if P [h][rival ] = 0 then
11: P [h][rival ] := 1 fi;
12: await P [h][p] ≥ 1;
13: if T [node] = p then
14: await P [h][p] = 2 fi

fi
od;

15: Critical Section;

16: for h := L downto 1 do
17: node :=

⌊
(N + p)/2h

⌋
;

18: side :=
⌊
(N + p)/2h−1

⌋
mod 2;

19: C[node][side] := ⊥;
20: rival := T [node];
21: if rival �= p then
22: P [h][rival ] := 2 fi

od
od

(a)

Algorithm NA (New nonatomic algorithm)

process p :: /∗ 0 ≤ p < N ∗/

/∗ all variable declarations are as ∗/
/∗ in Algorithm YA, except that ∗/
/∗ P is replaced by the following ∗/

shared variables
Q1, Q2, R1, R2: array[1..L][0..N − 1] of boolean

private variables
qtoggle, rtoggle, temp: 0..1

while true do
1: Noncritical Section;

2: for h := 1 to L do
3: node :=

⌊
(N + p)/2h

⌋
;

4: side :=
⌊
(N + p)/2h−1

⌋
mod 2;

5: C[node][side] := p;
6: T [node] := p;
7: qtoggle := ¬Q1[h][p];
8: Q2[h][p] := qtoggle;
9: rtoggle := ¬R1[h][p];
10: R2[h][p] := rtoggle;
11: rival := C[node][1− side];
12: if (rival �= ⊥ ∧ T [node] = p) then
13: temp := Q2[h][rival ];
14: Q1[h][rival ] := temp;
15: await (Q1[h][p] = qtoggle) ∨
16: (R1[h][p] = rtoggle);
17: if T [node] = p then
18: await R1[h][p] = rtoggle fi

fi
od;

19: Critical Section;

20: for h := L downto 1 do
21: node :=

⌊
(N + p)/2h

⌋
;

22: side :=
⌊
(N + p)/2h−1

⌋
mod 2;

23: C[node][side] := ⊥;
24: rival := T [node];
25: if rival �= p then
26: temp := R2[h][rival ];
27: R1[h][rival ] := temp fi

od
od

(b)

Figure 1: (a) Algorithm YA and (b) its nonatomic variant. In (b), reads and writes of the C and T variables
are assumed to be implemented using register constructions.

using the single-writer, single-reader register construction
of Haldar and Subramanian [14]. In this construction, eight
nonatomic variables are used, each atomic read requires at
most four accesses of nonatomic variables, and each atomic
write at most seven. T [n] is more problematic, as it is
a multi-reader, multi-writer atomic variable. Nonetheless,
register constructions are known that can be used to imple-
ment such variables from nonatomic variables with time and
space complexity that is polynomial in the number of read-

ers and writers [15, 20, 24, 25, 26]. For variable T [n], the
number of readers and writers is constant. Thus, it can be
implemented using nonatomic variables with constant space
and time complexity.

The need for register constructions to implement the T
variables can be obviated by slightly modifying the algo-
rithm, using a technique first proposed by Kessels [16]. (For
ease of exposition, this is not done in Algorithm NA in
Fig. 1(b).) The idea is to replace each T [n] variable by two
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single-bit variables T1[n] and T2[n]; T1[n] (T2[n]) is writ-
ten by left-side (right-side) processes and read by right-side
(left-side) processes at node n. Left-side processes seek to
establish T1[n] = T2[n] and right-side processes seek to es-
tablish T1[n] �= T2[n]. Ties are broken accordingly. Because
T1[n] and T2[n] are both single-writer, single-reader, single-
bit variables, it is relatively straightforward to show that this
mechanism still works if variable accesses are nonatomic. In
fact, this very mechanism is used in the nonatomic algorithm
of Anderson [4].
The P variables can be dealt with similarly. In Algo-

rithm YA, the condition P [h][p] ≥ 1 indicates that process p
may proceed past its first await, and the condition P [h][p] =
2 indicates that p may proceed past its second await. Be-
cause multi-bit variables are problematic if memory accesses
are nonatomic, we implement these conditions using sepa-
rate variables. In Algorithm NA (see Fig. 1(b)), variables
Q1[h][p] and Q2[h][p] are used to implement the first condi-
tion, and variables R1[h][p] and R2[h][p] are used to imple-
ment the second. The technique used in updating both pairs
of variables is similar to that used in Kessels’ tie-breaking
scheme described above. In particular, process p attempts
to establish Q1[h][p] �= Q2[h][p] ∧ R1[h][p] �= R2[h][p] in
lines 7–10 and waits while this condition continues to hold
at lines 15–16 (note that qtoggle = Q2[h][p] ∧ rtoggle =
R2[h][p] holds while p continues to wait). A rival process
at node n seeks to establish Q1[h][p] = Q2[h][p] at lines 13–
14; the effect is similar to lines 10–11 in Algorithm YA.
Lines 18 and 26–27 work in a similar way. As with Kessels’
tie-breaking scheme, because the new variables being used
here are all single-writer, single-reader, single-bit variables,
it is relatively straightforward to show that the algorithm is
correct even if variable accesses are nonatomic. A complete
proof of this will be given in the full paper. This gives us
the following theorem.

Theorem 1. The mutual exclusion problem can be solved
in Θ(logN) time using only nonatomic reads and writes. ✷

3. DEFINITIONS
In this section, we present our model of a nonatomic

shared-memory system, which is used in our lower-bound
proofs. Our system model is similar to that used in [6, 8].

Shared-memory systems. A shared-memory system
S = (C, P, V ) consists of a set of computations C, a set
of processes P , and a set of variables V . A computation is
a finite sequence of events.
The class of nonatomic systems we consider is captured by

our notion of an event, which is defined below. As we shall
see, it is sufficient for our purposes to consider all reads
to be atomic, and to allow writes to be either atomic or
nonatomic. In our proof, writes to the same variable never
overlap each other, so we have no need to define the effects
of concurrent writes. According to the definitions below, a
read of a variable that overlaps a nonatomic write of that
variable may return any value, as assumed earlier in Sec. 2.
An event e is denoted [Op, R, W, p], where p ∈ P . We call

Op the operation of event e, denoted op(e). Op can be one of
the following: ⊥, read(v), write(v), invoke(v), or respond(v),
where v is a variable in V . (Informally, e can be a local
event, an atomic remote read, an atomic remote write, an
invocation of a nonatomic remote write, or a corresponding

response of a nonatomic remote write. These terms are made
precise below.)
The sets R and W consist of pairs (v, α), where v ∈ V .

This notation represents an event of process p that reads the
value α from variable v for each pair (v, α) in R, and writes
the value α to variable v for each pair (v, α) in W . Each
variable in R (or W ) is assumed to be distinct. We define
Rvar(e) (Wvar(e)) to be the set of variables read (written)
by e, i.e., Rvar(e) = {v: (v, α) ∈ R} and Wvar(e) = {v:
(v, α) ∈ W}. We define var(e), the set of all variables ac-
cessed by e, to be Rvar(e) ∪ Wvar(e). We say that event
e accesses each variable in var(e). We say that process p
is the owner of e, denoted owner(e) = p. For brevity, we
sometimes use ep to denote an event owned by process p.
Each variable is local to at most one process and is re-

mote to all other processes. (Note that a variable may be
remote to all processes.) An initial value is associated with
each variable. An event is local if it does not access any
remote variables, and remote otherwise. The following as-
sumption formalizes requirements stated previously regard-
ing the atomicity of events.

Atomicity Assumption: Each event ep = [Op, R, W, p]
must satisfy one of the conditions below.

• If Op = ⊥, then ep does not access any remote vari-
ables. (That is, all variables in var(e) are local to p.)
In this case, we call ep a local event.

• If Op = read(v), then ep reads exactly one remote vari-
able, which must be v. In this case, ep does not write
any remote variable and is called a remote read event.

• If Op = write(v), then ep writes exactly one remote
variable, which must be v. In this case, ep does not
read any remote variable and is called a remote write
event.

• If Op = invoke(v), then R = {} and W = {(v, �)},
where � is a special value that means subsequent reads
of v may read any value. In this case, ep is called an
invocation event.

• If Op = respond(v), then ep writes exactly one re-
mote variable, which must be v. In this case, ep does
not read any remote variable and is called a response
event. ✷

Note that an event ep may write to v if op(ep) ∈ {write(v),
invoke(v), respond(v)}, or if v is local to p.
An atomic write is merely a notational convenience to

represent a write that is executed “fast enough” to be con-
sidered atomic. Therefore, we require that a process has an
enabled atomic remote write iff it has an identical enabled
nonatomic remote write (P6 below). A nonatomic remote
write is represented by two successive events, for its begin-
ning (invocation) and its end (response). If a process has
performed an invocation event, then its only enabled event
is the matching response (P7 below). As stated before, our
proof strategy ensures that between a matching invocation
and response, no write to the same variable ever occurs.
Thus, as far as overlapping operations are concerned, the
only interesting case for us is that of a read of a variable
overlapping a write of that same variable. In this case, the
read may return any value (P2 and P4 below). For example,
in Fig. 2, events a–d may read any value from v.
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A nonatomic remote write on v

Invocation event Response event

Atomic reads on v

a

b

c

d

Figure 2: Example of overlapping reads and writes of the same variable.

Note that the Atomicity Assumption allows remote read,
remote write, and response events to atomically access any
number of local variables, including shared local variables.
On the other hand, an invocation event is restricted to access
no local variables.
The value of variable v at the end of computation H,

denoted value(v, H), is the last value written to v in H (or
the initial value of v if v is not written in H). The last
event to write to v in H is denoted writer event(v, H),4 and
its owner is denoted writer(v, H). If v is not written by
any event in H, then we let writer(v, H) = ⊥ and writer
event(v, H) = ⊥.
We use 〈e, . . .〉 to denote a computation that begins with

the event e, 〈〉 to denote the empty computation, and H ◦G
to denote the computation obtained by concatenating com-
putations H and G. For a computation H and a set of
processes Y , H | Y denotes the subcomputation of H that
contains all events in H of processes in Y . If G is a subcom-
putation of H, then H −G is the computation obtained by
removing all events in G from H. Computations H and G
are equivalent with respect to Y iff H | Y = G | Y . A compu-
tation H is a Y -computation iff H = H | Y . For simplicity,
we abbreviate the preceding definitions when applied to a
singleton set of processes (e.g., H | p instead of H | {p}).
The following properties apply to any shared-memory sys-

tem.

P1: If H ∈ C and G is a prefix of H, then G ∈ C. — In-
formally, every prefix of a computation is also a com-
putation.

P2: If H ◦ 〈ep〉 ∈ C, G ∈ C, G | p = H | p, and if, for all
v ∈ Rvar(ep), value(v, G) is either value(v, H) or �,
then G ◦ 〈ep〉 ∈ C. — Informally, if two computations
H and G are not distinguishable to process p, if p can
execute event e after H, and if all variables in Rvar(e)
have the same values (or value �) after H and G, then
p can execute e after G.

P3: If H ◦〈ep〉 ∈ C, G ∈ C, G | p = H | p, then G◦〈e′p〉 ∈ C
for some event e′p such that op(ep) = op(e′p). — In-
formally, if two computations H and G are not dis-
tinguishable to process p, and if p can execute event e
after H, then p can execute the same kind of operation
after G. (Note that the values read or written might
be different.)

P4: For any H ∈ C, H ◦ 〈ep〉 ∈ C implies that either
value(v, H) = α or �, for all (v, α) ∈ Rvar(ep). —
Informally, only the last value written to a variable
may be read, unless the last write was an invocation
event on that variable.

4Although our definition of an event allows multiple in-
stances of the same event, we assume that such instances
are distinguishable from each other.

P5: For any H ∈ C and p ∈ P , if H ◦ 〈ep〉 ∈ C holds for
some invocation event ep on a variable v, then H ◦
〈fp〉 ∈ C holds for some (atomic) remote write event
fp on v. — Informally, if p can start writing to v
nonatomically (via execution of ep), then p can also
write to v atomically.

P6: Consider H ∈ C, ep = [write(v), R, W, p], fp =
[invoke(v), {}, {(v, �)}, p], and gp = [respond(v), R, W,
p]. Then, H ◦ 〈ep〉 ∈ C holds iff H ◦ 〈fp, gp〉 ∈ C holds.
— Informally, p may execute an atomic remote write
of v iff it may execute an identical nonatomic write of
v.

P7: For any H ∈ C and p ∈ P , if ep and fp are two con-
secutive events in H | p, and if op(ep) = invoke(v) for
some v, then op(fp) = respond(v). — Informally, an
invocation event must be followed by the correspond-
ing response event.

Mutual exclusion systems. We now define a special
kind of shared-memory system, namely mutual exclusion
systems, which are our main interest.
A mutual exclusion system S = (C, P, V ) is a shared-

memory system that satisfies the following properties. Each
process p ∈ P has an auxiliary variable statp that ranges
over {ncs, entry , exit}.5 The variable statp is initially ncs
and is accessed only by the following events:

Enterp = [write(statp), {}, {(statp, entry)}, p],
CSp = [write(statp), {}, {(statp, exit)}, p], and
Exitp = [write(statp), {}, {(statp, ncs)}, p].

The allowable transitions of statp are as follows: for all
H ∈ C,

H ◦ 〈Enterp〉 ∈ C iff value(statp, H) = ncs;
H ◦ 〈CSp〉 ∈ C only if value(statp, H) = entry ;
H ◦ 〈Exitp〉 ∈ C only if value(statp, H) = exit .

We define statp to be remote to all processes, because this
simplifies bookkeeping in our proofs.
We henceforth assume each computation contains at most

one Enterp event for each process p, because this is sufficient
for our proof. The remaining requirements of a mutual ex-
clusion system are as follows.

Exclusion: For all H ∈ C, if both H ◦ 〈CSp〉 ∈ C and
H ◦ 〈CS q〉 ∈ C hold, then p = q.

Progress (livelock freedom): Given H ∈ C, let X =
{q ∈ P : value(statq, H) �= ncs}. If X is nonempty,
then there exists an X-computation G such that H ◦

5Each critical-section execution of p is captured by the single
event CSp, so statp changes directly from entry to exit .
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Act(H): Active processes

Cvr(H): Covering processes: Covers variables in VC(H)
Cvr1(H) =

⋃
v∈V 1

C
(H) Cvr(H, v)

Selected at the first induction step; covers variables in V 1
C(H)

Cvr2(H) =
⋃

v∈V 2
C

(H) Cvr(H, 2)

Selected at the second induction step; covers variables in V 2
C(H)

...

Cvrm(H) =
⋃

v∈V m
C

(H) Cvr(H, v)

Selected at the mth induction step; covers variables in V m
C (H)

• For each variable v in Cvrj(H),
Cvr(H, v) = {cpj(H, v), cpj+1(H, v), . . . , cpm(H, v)} ∪ Res(H, v),

where Res(H, v) is the set of reserve processes for v

Erased processes: Perform no events in H

Figure 3: Process groups for a regular computation H. In this figure, m is the induction number of H.

G ◦ 〈ep〉 ∈ C, where p ∈ X and ep is either CSp (if
value(statp, H) = entry) or Exitp (if value(statp, H) =
exit).

4. LOWER BOUNDS
The proof of our Ω(logN/ log logN) lower bound focuses

on a special class of computations called “regular” compu-
tations. A regular computation consists of events of two
groups of processes, “active processes” and “covering pro-
cesses.” Informally, an active process is a process in its entry
section, competing with other active processes; a covering
process is a process that has executed some part of its entry
section, and executes (or is ready to execute) a nonatomic
write (i.e., an invocation event followed by a corresponding
response event) on some variable v in order to “cover” v,
so that other processes may concurrently access v without
gathering knowledge of each other.

In our proof, longer and longer regular computations are
inductively constructed until the lower bound is attained.
Information flow among processes is prevented either by
covering variables, as described above, or by erasing pro-
cesses — when a process is erased, its events are completely
removed from the computation currently being considered.
These basic techniques, covering and erasing, have been pre-
viously used to prove other lower bounds pertaining to con-
current systems [2, 6, 11, 17, 28]. However, the particular
covering strategy being used here is different from those ap-
plied in earlier papers, as it strongly exploits the fact that
nonatomic writes may occur for arbitrary durations.

Covering is a useful technique because erasing alone some-
times does not leave enough active processes for the next
induction step. This happens only if some variables are
written by “sufficiently many” of the remote events being
appended to the current computation. In this case, for each
such variable v, some active processes are changed to cover-
ing processes. These covering processes execute their next
remote (write) event nonatomically, in order to prevent in-
formation flow via future accesses to v. We guarantee that
any subsequent read from v happens concurrently with a

nonatomic write to v (by some covering process). By our
system model, any process that subsequently reads v may
read any value. Thus, information flow can be prevented by
assuming that each such process p reads the initial value of
v (if p has not written to v before) or the value p last wrote
to v (otherwise).
Having outlined some of the basic ideas of our proof, we

now define some relevant notation and terminology. The last
of these definitions is the notion of a regular computation,
mentioned above. After formally defining the class of regular
computations, we give a detailed proof sketch. As mentioned
earlier, a detailed proof is given in an appendix.
A regular computation H has an associated induction

number m, which is the number of induction steps taken
to construct H. Such a computation H can be written
H = H1 ◦H2 ◦ · · · ◦Hm, where Hj is called the jth segment
of H. Hj includes the events appended at the jth induction
step. We now explain the process groups involved in con-
structing H in detail. These processes groups are depicted
in Fig. 3.
The processes participating in H are partitioned into two

sets: Act(H), the active processes, and Cvr(H), the covering
processes. The set of variables covered by Cvr(H) is denoted
VC(H). The covering processes may be grouped in two ways:
Cvr(H) =

⋃m
j=1 Cvr

j(H), where Cvrj(H) is the set of cov-

ering processes added to Cvr(H) at the jth induction step;
or Cvr(H) =

⋃
v∈VC(H) Cvr(H, v), where Cvr(H, v) is the

set of processes that cover variable v.
If a variable v is chosen to be covered at the jth induction

step, then we define Cvr(H, v) to be large enough so that v
can be covered throughout the rest of the induction. There-
fore, each v is selected to be covered at most once, and hence
we can partition VC(H) into a disjoint union

⋃m
j=1 V j

C(H),

where V j
C(H) is the set of variables selected to be covered

at the jth induction step. Each set Cvrj(H) can be also
written as a disjoint union

⋃
v∈V

j
C

(H)
Cvr(H, v).

We now explain more closely the structure of Cvr(H, v),
for a given variable v. Assume that v ∈ V j

C(H), i.e., v and

Cvr(H, v) are selected at the jth induction step. Then, the
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processes in Cvr(H, v) execute together with active pro-
cesses prior to the jth induction step. At the jth step,
Cvr(H, v) is constructed. At most one process in Cvr(H, v)
is actually needed in step j to cover v, so at most one such
process is selected to cover v at the jth step. We denote this
process as cpj(H, v). (If no process is selected, then we de-
fine cpj(H, v) = ⊥.) All events that access v in segment Hj

are executed after the invocation event on v by cpj(H, v) (if
not ⊥), and before the corresponding response event.
At each successive induction step, at most one process

among Cvr(H, v) is selected to cover v. This is done to
ensure that each nonatomic write eventually terminates, and
that writes of the same variable do not overlap. Thus, the set
Cvr(H, v) includes each cpk(H, v), where k = j, j+1, . . . , m
and cpk(H, v) �= ⊥, plus perhaps some additional processes.
We define Res(H, v), the set of reserve processes for v in H,
to be the set of these additional processes, i.e., Res(H, v) =
{p: p ∈ Cvr(H, v) and p �= cpk(H, v) for all k ≤ m}. (For
notational convenience, we define cpk(H, v) = ⊥ for k < j.)
The processes in Res(H, v) serve two purposes: they are
used to cover v in further induction steps (i.e., beyond the
mth), and in case some process cpk(H, v) has to be erased in
future induction steps, a reserve process is selected to take
its place (i.e., to become the new cpk(Hnew, v), where Hnew

is the future computation being considered).
Hj , which is appended to H1 ◦ H2 ◦ · · · ◦ Hj−1 at the

jth induction step, consists of four subsequences of events.
The first is the local segment Lj , which consists of local
events of processes that are active in Hj−1. These events
cannot create any information flow. (Lj consists of events
of processes in Act(H) as well as Cvrk(H), for k ≥ j. Re-
call that a process in Cvrk(H) does not become a covering
process until the kth induction step.) After adding the lo-
cal segment, we select the variables V j

C(H) to be covered
and the processes Cvrj(H) that will be used to cover those
variables. (The selection method is explained in detail be-
low.) After that, we consider each v, where v ∈ V k

C (H) for
some k ≤ j, i.e., v is a variable that is selected for covering
by the jth step. For each such v, we choose a process in
Cvr(H, v) as cpj(H, v), i.e., as the process that covers v in
the jth induction step. The invocation segment Ij is either
empty (if no covering is required for this induction step), or
consists of one invocation event for each chosen cpj(H, v).
Next, we construct the remote segment M j , in which non-
covering processes execute remote events. (As in the case
of the local segment, M j consists of events of processes in
Act(H) as well as Cvrk(H), for k > j. Note that Cvrj(H)
is now excluded.) Finally, the response segment Rj consists
of matching response events for each invocation event in Ij .
The structure of a regular computation, explained so far, is
depicted in Fig. 4.
We now formally define the notion of a regular computa-

tion.

Definition: Let S = (C, P, V ) be a mutual exclusion sys-
tem. A computation H in C is regular iff it satisfies the
following.
The computationH can be writtenH = H1◦H2◦· · ·◦Hm,

where Hj is called the jth segment of H. We call m the
induction number of H. Hj includes the events appended
at the jth induction step, and can be subdivided as Hj =
Lj ◦ Ij ◦M j ◦Rj , as explained below.

• The local segment Lj consists of local events by processes

in Act(H) and
⋃m

k=j Cvr
k(H).

• The invocation segment Ij is either 〈〉, or consists of
one invocation event on v by cpj(H, v), for each v ∈⋃j

k=1 V k
C (H).

• The remote segment M j consists of local, remote read,
and/or remote write (but not invocation or response)
events by processes in Act(H) and

⋃m
k=j+1 Cvr

k(H).

• The response segment Rj consists of response events that
correspond to events in Ij .

Moreover, H satisfies the following regularity conditions.

RC1: Assume thatH can be written as E◦〈ep〉◦F ◦〈fq〉◦G.
If p �= q and there exists a variable v ∈ Wvar(ep) ∩
Rvar(fq) such that F does not contain a write to v
(i.e., writer event(v, F ) = ⊥), then p ∈ Cvr(H, v) and
ep is an invocation event on v. — Informally, if p
is the last process to write variable v, and if another
process q subsequently reads v, then p covers v, and
hence q can read any value.

RC2: For any event ep in H and any variable v in var(ep),
if v is local to another process q (�= p), then H | q = 〈〉.
— Informally, if no process accesses a local variable
of other participating processes.

RC3: If there exists two distinct processes p and q that
both write to v in H, then v ∈ VC(H). — Informally,
any variable that is written by multiple processes are
covered.

RC4: For any process p such that H | p �= 〈〉, value(statp,
H) = entry holds. — Informally, every participating
process is in its entry section.

RC5: For any process p such that H | p �= 〈〉, H | p ∈ C
holds. Moreover, if p ∈ Res(H, v) for some v, then
(H | p) ◦ 〈ep, fp〉 ∈ C holds, where ep (fp) is some in-
vocation (response) event on v. — Informally, every
process executes the same computation as its solo com-
putation. Moreover, if p is a reserve process for v, then
it is ready to write to v as its “next” event. ✷

Detailed proof overview. Initially, we start with H1,
in which Act(H1) = P , Cvr(H1) = {}, and each process has
one remote event. At the jth induction step, we consider a
computation Hj = H1◦H2◦· · ·◦Hj such that Act(Hj) con-
sists of n processes, each of which executes j remote events.
We show that if j > log n,6 then the lower bound has al-
ready been attained. Thus, in the inductive step, we as-
sume j ≤ log n. Moreover, we also assume that for each
covered variable v, its set of covering processes Cvr(H, v)
has exactly c elements, where c = Θ(log n). We construct
a regular computation Hj+1 = Hj ◦ Hj+1 with induction
number j + 1 such that Act(Hj+1) consists of Ω(n/ log

2 n)
processes, each of which executes j + 1 remote events. The
construction method, formally described in Lemma 4 in the
appendix, is explained below.
We show in Lemma 3 that, among the n processes in

Act(Hj), at least n− 1 processes can execute an additional
remote event before entering its critical section. We call

6We use log n to denote log2 n (base-2 logarithm), and use
log2 n to denote (log2 n)2.
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Segment

H j
Segment

H j+1

Segments

H 1 H j-1

Local
segment

L j

Remote segment
M j

One remote event

per process

Invocation segment
I j

One invocation event per 

covered variable

Cvr(H, v1)

Cvr(H, v2)

Act(H)

Cvr j+1(H)

Cvr j+2(H)

Cvr j(H)

Res(H, v1)

Res(H, v2)

Response segment
R j

Corresponding response 

events

L j+1

I j+1 R j+1

M j+1

: Nonatomic 

remote writes

Figure 4: The structure of a regular computation. The computation is depicted as a collection of bold
horizontal lines, with each line representing the events of a single process. In addition, filled circles are used
to denote the invocation and response events of nonatomic writes by covering processes. Only one segment
Hj is shown in detail. In this figure, v1, v2, . . . are variables in V j

C(H). For simplicity, processes in Cvr1(H),
Cvr2(H), . . . , Cvrj−1(H) are not shown, and those in Cvrj+1(H), Cvrj+2(H), . . . are not shown in detail. These
sets include covering processes for variables selected for covering at induction steps before and after step
j. The manner in which they execute is similar to that depicted for Cvrj(H). As shown in the figure, some
processes in Cvrj(H) are selected to cover their respective variables at both induction steps j and j + 1 (and
possibly future steps as well). In general, covering may or may not be needed at a given induction step.

these events “next” remote events, and denote the corre-
sponding set of processes by Y . First, we eliminate con-
flicts between Y and Cvr(H), as described next. (A process
conflicts with another if information flow is possible, or a
regularity condition is violated.)

Each next event by processes in Y may conflict with a cov-
ering process. In particular, consider a process p ∈ Y that
accesses a remote variable v, and a process q ∈ Cvr(H). If
v is local to q, then RC2 is violated. (Note that, if RC2
is violated, then a local event of q may generate informa-
tion flow, which is clearly undesirable.) Otherwise, if q has
(atomically) written to v in H, and if v is not yet covered,
then a conflict arises, and hence either p or q must be erased.

(Formally, if p reads v, then RC1 is violated; if p overwrites
v, then RC3 is violated.)

By RC3, it can be shown that each process in Y may
conflict with at most one process in Cvr(H). Since each
variable is covered by c = Θ(log n) processes, we can par-
tition Cvr(H) into c subsets X1, X2, . . . , Xc such that
each subset contains exactly one covering process for each
v, as depicted in Fig. 5(a). Then, we can similarly partition
Y into Y1, Y2, . . . , Yc, such that a process in Yk conflicts
only with a process in Xk.

We choose the largest subset Yk, and erase the rest of Y .
It is clear that |Yk| ≥ Y/c = Θ(n/ log n). By also erasing
Xk, we guarantee that there is no conflict between Yk and
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Cvr(H, v1)

Cvr(H, v2)

Cvr(H, v3)

Cvr(H, vk)

X1 X2 X3 Xc

Y
Conflicts

Y1

Y2

Y4

Y3

X1

X2

X3

X4

(a) (b)

Figure 5: (a) Partition of Cvr(H). In this figure, we define VC(H) as {v1, v2, . . . , vk}. Each dot represents a
process in Cvr(H). Note that, by assumption, |Cvr(H, vj)| = c holds for each vj ∈ VC(H). (b) Elimination of
conflicts when c = 4 and VC(H) contains 5 variables. Note that in Y , only the largest subset, Y1, survives.

the covering processes. This is illustrated in Fig. 5(b). (By
RC1, the reserve processes in Xk may be erased without
any difficulty. If a process q in Xk is not a reserve process,
then we can exchange q with a reserve process for the same
covering variable, and then erase q.)

The set of processes Yk can be divided into two subsets
(one of which may be empty): the set of readers, which have
a next remote event that is a remote read, and the set of
writers, which have a next remote event that is a remote
write. We define Y to be the larger of the two, and erase
the smaller subset. If the writers are saved, then no covering
is necessary for this induction step, since in this case no next
remote event reads a remote variable. Therefore, Ij+1 and
Rj+1 are nonempty iff the readers are saved.

The processes in Y collectively execute Θ(n/ log n) next
remote events. Among the variables that are accessed by
these events and are not covered yet, we identify VHC, the
set of “high contention” variables that are remotely accessed
by at least d log n next remote events, where d is a con-
stant to be specified. Then, we have |VHC| ≤ |Y |/(d log n) =
Θ(n/ log2 n). Next, we partition the processes in Y , depend-
ing on whether their next remote events access a variable in
VHC, as follows: PHC = {y ∈ Y : y’s next remote event ac-
cesses some variable in VHC}, and PLC = Y − PHC.

Because Hj is regular and Y ⊆ Act(Hj), we can erase any
process in Y . Hence, we can erase the smaller of PHC and
PLC and still have Θ(n/ log n) remaining active processes.
We consider these cases separately.

Erasing strategy. Assume that we erased PHC and
saved PLC. This situation is depicted in Fig. 6. Define VLC

as the set of variables remotely accessed by the next remote
events of PLC. Then clearly, every non-covered variable in
VLC is a “low contention” variable, and hence is accessed
by at most d log n different next remote events (and hence,
different processes). Therefore, a next remote event by a
process in PLC can conflict with at most d log n processes.
By generating a “conflict graph” and applying Turán’s theo-
rem (Theorem 4), we can find a set of processes Z such that
|Z| = Ω(n/ log2 n) and their remote events do not conflict
with each other. By retaining Z and erasing all other active
processes, we can eliminate all conflicts and thereby con-
structHj+1. (Note that no new covering variables/processes
are introduced in this strategy.)

Covering strategy. Assume that we erased PLC and
saved PHC. Every next remote event by a process in PHC

accesses a variable in VHC. If all next remote events are
remote reads (i.e., we saved the readers above), then we can
eliminate all conflicts by erasing at most one process per
each variable. (This is because, by RC3, each non-covered
variable is written by at most one process.) Thus, assume
that the next remote events consist entirely of remote writes
(i.e., we saved the writers above). For each variable v ∈ VHC,
there exists at least d log n processes in PHC that remotely
write to v. Thus, we can choose Θ(log n) processes for each
v ∈ VHC to be the new covering processes, and still have
Θ(|PHC|) = Θ(n/ log n) remaining active processes. The set
VHC becomes V

j+1
C (Hj+1) for the next induction step, and

for each v ∈ VHC, Θ(log n) processes become Cvr(Hj+1, v).
Thus, we can construct Hj+1.

A detailed version of the proof sketched above is given in
the appendix. From this proof, we have the following.

Theorem 2. For any mutual exclusion system S =
(C, P, V ), there exist a p-computation F such that F does
not contain CSp, and p executes Ω(logN/ log logN) remote
events in F , where N = |P |.

This theorem can be adapted to apply to systems in which
caches are used to avoid accessing the interconnection net-
work, by using a technique of Anderson and Yang [8] to
count the number of distinct remote variables accessed by
each process. In this technique, certain remote events are
classified as “critical.” An event is critical if it is an ex-
panding read, an expanding write, or a nonexpanding crit-
ical event. An expanding read (resp. expanding write) of a
remote variable v by a process p is the first event by p that
reads (resp. writes) v. A nonexpanding critical event is an
event of p that accesses a variable v for the first time after
some expanding read or write of p.
Suppose that we have a regular computation Hj , and a

“next” remote event ep of a process p ∈ Act(Hj). If ep is
not a critical event, then we can rearrange the events of p,
including ep, with respect to events of other processes, such
that ep does not generate any conflicts. In that way, the
only events that may possibly generate conflicts are criti-
cal events; noncritical events can be appended without any
erasing or covering, just like local events.
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Figure 6: Erasing strategy. For simplicity, covering processes are not shown in this figure.

Unfortunately, since events are reordered in the middle
of the induction, concurrent writes of the same variable in-
evitably result. Therefore, this proof strategy only works if
we change Properties P2 and P4 as follows:

P2′: Assume that H ◦ 〈ep〉 ∈ C, G ∈ C, and G | p =
H | p. Also assume that, for all v ∈ Rvar(ep), either
value(v, G) = value(v, H) holds, or there exists a pro-
cess q such that the last event of G | q has operation
invoke(v). Then, G ◦ 〈ep〉 ∈ C. — Informally, if two
computations H and G are not distinguishable to pro-
cess p, if p can execute event e after H, and if for each
variable v in Rvar(e), either v has the same value after
H and G or some process q is concurrently executing a
nonatomic write of v, then p can execute e after G.

P4′: For any H ∈ C, H ◦ 〈ep〉 ∈ C implies that, for all
(v, α) ∈ Rvar(ep), either value(v, H) = α holds or
there exists a process q such that the last event of H
in q is an invocation event on v. — Informally, only
the last value written to a variable may be read, un-
less there exists a concurrent nonatomic write of that
variable.

Thus, we can show that there exists a solo p-computation
such that p executes Ω(log N/ log log N) critical events in
H. Moreover, we can also show that, if p accesses D distinct
remote variables, then at most O(D) nonexpanding critical
events may occur between two successive expanding reads
and/or writes. Note that, since each expanding read (resp.
write) accesses a different remote variable, the number of
expanding reads (resp. writes) is at most D. Since we have
O(D) nonexpanding critical events between each consecutive
pair of expanding critical events, the total number of criti-
cal events is O(D2). In other words, we have D = Ω(

√
m),

where m is the number of critical events, that is, the induc-

tion number of the final computation. Thus, we have the
following theorem.

Theorem 3. For any mutual exclusion system S =
(C, P, V ) that satisfies Properties P2 ′ and P4 ′ instead of P2
and P4, there exist a p-computation F such that F does not
contain CSp, and p accesses Ω(

√
logN/ log logN) distinct

remote variables in F , where N = |P |.

5. CONCLUDING REMARKS
We have presented a nonatomic local-spin mutual exclu-

sion algorithm with Θ(log N) worst-case time complexity,
which matches that of the best atomic algorithm proposed to
date. We have also shown that for any N -process nonatomic
algorithm, there exists a single-process execution in which
the lone competing process performs Ω(logN/ log logN) re-

mote memory references that access Ω(
√
logN/ log logN)

distinct variables in order to enter its critical section. These
bounds show that fast and adaptive algorithms are impossi-
ble if variable accesses are nonatomic, even if caching tech-
niques are used to avoid accessing the processors-to-memory
interconnection network.
Our work suggests several avenues for further research.

The most obvious is to close the gap between our
Θ(log N) algorithm and our Ω(log N/ log log N) and

Ω(
√
logN/ log logN) lower bounds. We conjecture that

Ω(log N) is a tight lower bound on the number of distinct
variables remotely accessed, even when restricting attention
to single-process executions. Another interesting question
arises from our lower-bound proofs. These proofs hinge on
the ability to “stall” nonatomic writes for arbitrarily long
intervals. This gives rise to the following question: Is it pos-
sible to devise a nonatomic algorithm that is fast or adaptive
if each write is guaranteed to complete within some bound
∆? We hope to resolve this question in future work.
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Appendix: Detailed Proofs of Theorems 2 and 3
In this appendix, we present detailed proofs of Theorems 2
and 3. Throughout this appendix, we assume the existence
of a fixed mutual exclusion system S = (C, P, V ). We begin
by defining two “operators” on regular computations.

Definition: Consider a regular computation H in C and
a process p. If p ∈ Act(H), or if p ∈ Res(H, v) for some
variable v, then erasep(H) is defined to be H − (H | p). ✷

Definition: Consider a regular computation H in C and
two processes p and q. Assume that p ∈ Cvr(H, v)−Res(H, v)
and q ∈ Res(H, v) for some variable v. We define the ex-
change operator exchangepq as follows.
By the definition of Cvr(H, v) and Res(H, v), we have p =

cpj(H, v), for some j. Thus, Ij , the jth invocation segment
of H, contains an invocation event ep on v. Similarly, Rj ,
the jth response segment of H, contains the corresponding
response event fp. It follows that Hj can be written as
Hj = E ◦ 〈ep〉 ◦ F ◦ 〈fp〉 ◦ G. Also, since q ∈ Res(H, v), by
RC5, there exist an invocation event eq and a response event
fq on v such that (H | q) ◦ 〈eq, fq〉 ∈ C.
We define exchangepq(H) to be the computation obtained

by replacing ep and fp by eq and fq, i.e.,

exchangepq(H) = H1 ◦H2 ◦ · · · ◦Hj−1 ◦
E ◦ 〈eq〉 ◦ F ◦ 〈fq〉 ◦G ◦
Hj+1 ◦Hj+1 ◦ · · · ◦Hm,

where m is the induction number of H. ✷

Informally, exchangepq is an operator that exchanges the
role of a non-reserve process p and a reserve process q, if both
cover the same variable v. We claim that these two operators
preserve regularity and the structure of H (e.g., Act(H),
Cvr(H), etc.). This claim is formalized in the following two
lemmas.

Lemma 1 Consider a regular computation H in C with
induction number m, and a process p. Assume that either
p ∈ Act(H) or {p} � Res(H, v) holds for some v, and define
H ′ = erasep(H). Then H ′ is a regular computation in C
with induction number m, satisfying the following, for each
u ∈ VC(H) and each j (1 ≤ j ≤ m):

Act(H ′) = AP (H)− {p};
Cvr(H ′) = Cvr(H)− {p};
VC(H

′) = VC(H);

Cvr(H ′, u) =

{
Cvr(H, v)− {p}, if u = v
Cvr(H, u), otherwise;

cpj(H ′, u) = cpj(H, u). ✷

Lemma 2 Consider a regular computation H in C with in-
duction number m, and two process p and q. Assume that
p ∈ Cvr(H, v)−Res(H, v) and q ∈ Res(H, v) for some v, and
define H ′ = exchangepq(H). Then H ′ is a regular computa-
tion in C with induction number m, satisfying the following,
for each u ∈ VC(H) and each j (1 ≤ j ≤ m):

Act(H ′) = AP (H);

Cvr(H ′) = Cvr(H);

VC(H
′) = VC(H);

Cvr(H ′, u) = Cvr(H, u);

cpj(H ′, u) =

{
q, if cpj(H, u) = p
cpj(H, u), otherwise. ✷

The next lemma states that if n active processes are com-
peting for entry into their critical sections, then at least n−1
of them must execute at least one more remote event before
entering their critical sections.

Lemma 3 Let H be a regular computation in C. Define n =
|Act(H)|. Then, there exists a subset Y of Act(H), where
n− 1 ≤ |Y | ≤ n, satisfying the following: for each process p
in Y , there exist a local p-computation Lp, a remote event
ep of p, and a variable vp such that (H | p) ◦ Lp ◦ 〈ep〉 ∈ C,
ep �= CSp, and op(ep) is either write(vp) or read(vp). ✷

The following theorem is due to Turán [29].

Theorem 4 (Turán). Let G = (V, E) be an undirected
graph with vertex set V and edge set E. If the average de-
gree of G is d, then an independent set7 exists with at least
�|V |/(d+ 1)� vertices.

The following lemma provides the induction step that
leads to the lower bound in Theorem 2.

Lemma 4 Let H be a regular computation in C with induc-
tion number m. Define n = |Act(H)|. Assume that n ≥ 8
and

• m ≤ log n− 2; (1)
• each process in Act(H) executes exactly one remote event
in each remote segment M j, for j = 1, . . . , m; (2)

• |Cvr(H, v)| = c holds for each v ∈ VC(H), where c ≥
2 log n. (3)

Then, there exists a regular computation G in C with in-
duction number m+ 1, such that

• Act(G) ⊆ Act(H);
• n′ ≥ min

{
(n− 1)(2 log n− 5)
24(2 log n+ 1)2

,
n− 1

4(8 log n+ 3)2

}
,

where n′ = |Act(G)|; (4)
• each process in Act(G) executes exactly one remote event
in each remote segment M j, for j = 1, . . . , m+ 1; (5)

• |Cvr(H, v)| = c′ holds for each v ∈ VC(H
′), where c′ ≥

2 log n′. (6)

Proof: By the definition of VC(H), for each variable v ∈
VC(H),

|{q : q �= ⊥ and q = cpj(H, v) for some j = 1, 2, . . . ,m}| ≤ m.

Thus, by (3),

|Res(H, v)| ≥ c−m, for each v ∈ VC(H). (7)

If c > �2 log n�, then by (1), we have c > m. Therefore,
for each v ∈ VC(H), Res(H, v) is nonempty. In this case,
we can choose one reserve process qv from each Res(H, v),
and by inductively applying eraseqv , and using Lemma 1,
obtain another computation H that satisfies assumptions
(1)–(3) with ‘c’← c− 1.
7An independent set of a graph G = (V, E) is a subset V ′ ⊆
V such that no edge in E is incident to two vertices in V ′.
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We can repeat this procedure until c = �2 log n� is estab-
lished. Therefore, in order to prove the lemma, it suffices to
consider the case when

c = �2 log n�. (8)

We assume this throughout the remainder of the proof. There-
fore, by (1), we have c−m ≥ 2. Thus, by (7),
• |Res(H, v)| ≥ 2, for each v ∈ VC(H). (9)

Because H is regular, by Lemma 3, there exists a subset
Y of Act(H) such that

n− 1 ≤ |Y | ≤ n, (10)

and for each process p ∈ Y , there exist a local p-computation
Lp, a “next” remote event ep of p, and a variable vp such
that,

• (H | p) ◦ Lp ◦ 〈ep〉 ∈ C, (11)
• ep �= CSp, and
• op(ep) is either read(vp) or write(vp). (12)

We now eliminate any conflicts between Y and Cvr(H).
By (3), we can partition Cvr(H) into disjoint sets X1, X2,
. . . , Xc of equal size, such that each Xj contains exactly
one process in each Cvr(H, v). We now partition Y into Y1,
Y2, . . . , Yc, such that each process in Yj only conflicts with
processes in Xj , as follows.
For each p ∈ Y , we apply the following rules: (R1) if vp

is local to a process q ∈ Xj , then put p into Yj ; (R2) if
vp /∈ VC(H) and there exists a process r ∈ Xj that writes to
vp in H, then put p into Yj ; (R3) otherwise, we can put p
into any Yj , say, Y1.
Note that, if Rules R1 and R2 are both applicable, then by

RC2, we have q = r. Also, by RC3, Rule R2 is applicable
to at most one process r. Thus, Rules R1–R3 generate a
well-defined partition of Y into c distinct subsets. Choose
jmax such that Yjmax is the largest subset among Y1, . . . ,
Yc. Then, by (10),

|Yjmax | ≥ (n− 1)/c. (13)

By (12), for each p ∈ Yjmax , ep is either a remote read or a
remote write event. Hence, we can find a subset Y ′ of Yjmax

such that

• |Y ′| = �(n− 1)/2c�, and (14)
• either all events ep (for p ∈ Y ′) are remote reads, or all
are remote writes. (15)

We now construct a computation H ′ by erasing all pro-
cesses in Act(H)−Y ′ and in Xjmax . The construction algo-
rithm is depicted in Fig. 7, and explained below.
By inductively applying erasep for each p ∈ Act(H)−Y ′,

and using Lemma 1, we can erase all processes in Act(H)−
Y ′. Also, we can erase all processes in Xjmax as follows. If a
process q ∈ Xjmax is a reserve process, then apply eraseq and
Lemma 1. Otherwise, we have q ∈ Cvr(H, v) − Res(H, v)
for some v, and hence q = cpk(H, v) for some v and k. By
(9), there exists a process r ∈ Res(H, v). Since q and r
cover the same variable v, from the construction of X1, . . . ,
Xc, we have r /∈ Xjmax . Hence, we can apply exchangeqr

and Lemma 2 in order to “exchange” q and r, and then
apply eraseq to erase q. Thus, we can construct a regular
computation H ′ with induction number m, such that

• Act(H ′) = Y ′; (16)

Temp := H;
for each p ∈ Act(H)− Y ′ do

Temp := erasep(Temp) od;
for each q ∈ Xjmax do

if q = Res(H, v) for some v then
Temp := eraseq(Temp)

else
— By (9), Res(H, v) is nonempty;

choose a process r ∈ Res(H, v).
Temp := eraseq(exchangeqr(Temp))

fi od;
H ′ := Temp

Figure 7: Algorithm for constructing H ′ by erasing
Act(H)− Y ′ and Xjmax .

• Cvr(H ′) = Cvr(H)−Xjmax ;
• VC(H

′) = VC(H);
• Cvr(H ′, v) ⊆ Cvr(H, v) and |Cvr(H ′, v)| = c−1, for each

v ∈ VC(H); (17)
• for each p ∈ Y ′, vp is not local to any process in Cvr(H

′);
• for each p ∈ Y ′, either vp ∈ VC(H

′) or no process in
Cvr(H ′) writes to vp in H ′.

Also, by (9) and (17),

• Res(H ′, v) is nonempty, for each v ∈ VC(H). (18)

We now group processes in Y ′ depending on the variables
accessed by their next remote events. For each v ∈ V , define
Yv as {p ∈ Y ′: op(ep) = write(v) or read(v)}. Define VHC,
the set of variables that experience “high contention” (i.e.,
those that are accessed by “sufficiently many” next remote
events), as VHC = {v ∈ V : |Yv| ≥ 4 log n}. Then, we have

|VHC| ≤ |Y ′|
4 log n

. (19)

Define PHC, the set of processes whose next remote event
accesses a variable in VHC, as

⋃
v∈VHC

Yv. We now consider

two cases, depending on |PHC|.
Case 1: |PHC| < 1

2
|Y ′| (erasing strategy)

Let PLC = Y ′ − PHC. Then, by (14), we have

|PLC| ≥ |Y ′|/2 ≥ (n− 1)/4c. (20)

We construct an undirected graph G = (PLC, EG). For
each process p in PLC, we introduce edge (p, q) (for some
q ∈ PLC) if any of the following conditions holds: (C1) vp is
local to q; (C2) vp /∈ VC(H) and q writes to v in H ′; (C3)
vp /∈ VC(H) and eq writes to v.
Because each variable is local to at most one process, Con-

dition C1 can introduce at most one edge per process. By
RC3, Condition C2 can introduce at most one edge per pro-
cess.8 Since p /∈ PHC, we have vp /∈ VHC, and hence, Condi-
tion C3 can introduce at most 4 log n− 1 edge per process.
Thus, at most 4 log n+1 edges are introduced per process,

and hence the average degree of G is at most 8 log n + 2.
Hence, by Theorem 4, there exists an independent set Z ⊆
PLC such that

|Z| ≥ |PLC|
8 log n+ 3

,

8In fact, By RC2, Condition C1 and C2 can collectively in-
troduce at most one edge per process.
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which, by (8) and (20), and using 8 log n+ 3 > 2 log n+ 1,
implies

|Z| ≥ n− 1
4(8 log n+ 3)2

.

(Note that, since n ≥ 8 > 0, we have |Z| > 0, and hence
Z is nonempty.)
Since a subset of an independent set is also an independent

set, we can choose an independent set Z ⊆ Z such that

n− 1
4(8 log n+ 3)2

≤ |Z| ≤ n/4. (21)

Next, we construct a computationG, satisfying the lemma,
such that Act(G) = Z.
Let H ′′ = H ′ | (Z ∪ Cvr(H ′)). By (16), it follows that

H ′′ is obtained from H ′ by erasing processes in Y ′ − Z, a
subset of Act(H ′). Thus, by inductively applying erasep for
each p ∈ Y ′ − Z, and using Lemma 1, it follows that H ′′

is a regular computation in C with induction number m,
and

• Res(H ′′, v) = Res(H ′, v), for each v ∈ VC(H). (22)

We now construct Gm+1, the m+ 1st segment of G, such
that G is a regular computation in C, where G = H ′′◦Gm+1.
Recall that Gm+1 consists of four segments: Lm+1 ◦ Im+1 ◦
Mm+1 ◦Rm+1.
Define V m+1

C (G) = {}, because no variables are newly cov-
ered. Thus, we have

• V m+1
C (G) = {}, and V j

C(G) = V j
C(H

′′) = V j
C(H), for each

j = 1, 2, . . . , m. (23)

Let d = |Z| and arbitrarily index the processes in Z as
Z = {z1, z2, . . . , zd}. Define Lm+1 = Lz1 ◦Lz2 ◦ · · · ◦Lzd .
Since H ′′ is regular and Lm+1 is local, by RC2, it follows
that for each variable v that is local to some process z in
Lm+1, we have value(v, H ′′) = value(v, (H | z)). Thus, by
(11), and repeatedly applying P2, we have H ′′ ◦ Lm+1 ∈ C.
Since Lm+1 is a local Z-computation, it is clearly a valid
local segment.
We defineMm+1 by concatenating the next remote events

ez, for z ∈ Z. By RC2, for each z and each local variable u
of z, no process other than z itself writes to u in H ′′. Thus,
we have value(u, H ′′) = value(u, H | z).
By (15), either all next remote events of processes in Z are

remote writes, or all are remote reads. In the former case,
as shown above, each next event of Z cannot distinguish
H ′′ ◦ Lm+1 from (H | z) ◦ Lz. Thus we have H ′′ ◦ Lm+1 ◦
Mm+1 ∈ C. In this case, we define Im+1 = Rm+1 = 〈〉.
Otherwise, all next remote events of processes in Z are re-

mote reads. By (18) and (22), for each variable v ∈ VC(H),
Res(H ′′, v) is nonempty. Hence, we can choose a process
qv in Res(H

′′, v) to cover v in Gm+1. By RC5, we have
(H ′′ | qv) ◦ 〈eqv , fqv 〉 ∈ C, where eqv (resp. fqv ) is an invo-
cation (resp. response) event on v. We define Im+1 (resp.
Rm+1) by concatenating the events eqv (resp. fqv ) where v
ranges over VC(H). Since each variable is properly covered,
it can be shown that G = H ′′◦Lm+1◦Im+1◦Mm+1◦Rm+1 ∈
C.
In either case, conditions RC1–RC5 can be individually

checked to hold in G (with ‘Act(G)’ ← Z), which implies
that G is a regular computation with induction number m+
1. By (21), we have (4). By (21), we have log Act(G) ≤
log n − 2. Also, by (21), we have log|Z| ≤ log n − 2, and

combining with (17), we have (6). It follows that G is a
computation that satisfies the lemma.

Case 2: |PHC| ≥ 1
2
|Y ′| (covering strategy)

For each v ∈ VHC, define xv, the process in PHC that con-
flicts with Yv, as follows:

• (K1) If v is local to a process q ∈ PHC, then let xv = q.
• (K2) Otherwise, if v ∈ VC(H

′), then let xv = ⊥.
• (K3) Otherwise, if there exists a write to v in H ′, then
only one process q writes to v in H ′. (Note that, since
H ′ is regular, by RC3, if multiple processes write to v in
H ′, then v ∈ VC(H

′), i.e., (K2) holds.) If q ∈ PHC, then
let xv = q; otherwise, let xv = ⊥.

• (K4) If none of the above holds, then let xv = ⊥.
Define K, the erased (or “killed”) processes, as K = {xv:

v ∈ VHC and xv �= ⊥}. Since |K| ≤ |VHC|, by (19), we have
|K| ≤ |Y ′|/(4 log n). (24)

Recall that PHC =
⋃

v∈VHC
Yv, i.e., PHC consists of dis-

joint subsets Yv for each v ∈ VHC, and each such Yv contains
at least 4 log n processes (by the definition of VHC).
The processes in K are precisely those that conflicts with

other processes in PHC and hence must be eliminated. How-
ever, after erasing K, some set Yvk (for some vk ∈ VHC) may
have only o(log n) processes left, in which case we do not
have enough processes to cover vk. We solve this problem
by simply erasing any such Yvk , as follows.
Define VK , the variables that do not have enough covering

processes (and hence must be “killed”), as VK = {v ∈ VHC:
|Yv − K| ≤ 3 log n}. Define K′, the secondary set of killed
processes, as K′ =

⋃
v∈VK

Yv. Define S, the “survivors,” as

S = PHC −K −K′. By the definition of PHC and K′,

S = (PHC −K′)−K =
( ⋃

v∈VHC−VK
Yv

) −K. (25)

Consider each vk ∈ VK . Define n(vk) = |Yvk |. By the
definition of VK , we have n(vk) − |Yvk ∩ K| = |Yvk − K| ≤
3 log n. By the definition of VHC, we also have n(vk) ≥
4 log n. By dividing the former inequality by the latter, we
have 1− |Yvk ∩K|/n(vk) ≤ 3/4, and hence,

n(vk) ≤ 4 · |Yvk ∩K|. (26)

Note that, since K ⊆ PHC, we have K =
⋃

v∈VHC
(Yv ∩

K), and hence |K| = ∑
v∈VHC

|Yv ∩ K|. Therefore, by the
definition of K′,

|K| ≥ ∑
v∈VK

|Yv ∩K|, and
|K′| =

∑
v∈VK

n(vk).

Combining these equations with (26), we have

|K′| ≤ 4|K|. (27)

By (8), (14), (24), (27), and |PHC| ≥ 1
2
|Y ′| (which is as-

sumed in Case 2), we have

|S| ≥ |PHC| − |K′| − |K|
≥ |PHC| − 5|K|
≥ |Y ′| · (1/2− 5/(4 log n))
≥ (n− 1)(2 log n− 5)

8c log n

≥ (n− 1)(2 log n− 5)
8 log n(2 log n+ 1)

,
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and hence, since log n < 2 log n+ 1,

|S| > (n− 1)(2 log n− 5)
8(2 log n+ 1)2

. (28)

Define H ′′ = H | (S∪Cvr(H ′)). By (16) and PHC ⊆ Y ′, it
follows that H ′′ is obtained from H ′ by erasing processes in
Y ′ − S, a subset of Act(H ′). Thus, by inductively applying
erasep for each such p, and using Lemma 1, it follows that
H ′′ is a regular computation in C with induction number
m, and Res(H ′′, v) = Res(H ′, v), for each v ∈ VC(H).
Define VS , the surviving variables, as VS = {v ∈ VHC: S ∩

Yv �= {}}. By the definitions of PHC and K′, we have

• |Yv ∩ S| > 3 log n for each variable v ∈ VS . (29)

We now construct Gm+1, the m+ 1th segment of G, such
that G is a regular computation in C, where G = H ′′◦Gm+1.
Recall that Gm+1 consists of four segments: Lm+1 ◦ Im+1 ◦
Mm+1 ◦Rm+1.
If the next remote events of S consist solely of remote

reads, then we can construct Gm+1 in the same way as in
Case 1. Otherwise, the remote events of S consist solely of
remote writes. Let V m+1

C (G) = VS , i.e., all variables that
are remotely accessed by next remote events are now cov-
ered. For each such variable v ∈ VS , choose �2 log n� pro-
cesses in Yv, and define Cvr(G, v) to be those �2 log n� pro-
cesses. By (29), it follows that we can choose Cvr(G, v) for
each v and still have at least |S|/3 processes not selected as
covering processes; these processes constitute Act(G). Thus,
by (28), we have

|Act(G)| ≥ (n− 1)(2 log n− 5)
24 log n(2 log n+ 1)

,

which satisfies (4). The construction of Gm+1 is similar
to Case 1, except that we use ‘Z’ ← S and ‘Cvr(H)’ ←
Cvr(H) ∪ ( ⋃

v∈VS
Cvr(G, v)

)
. ✷

Theorem 2. For any mutual exclusion system S = (C,
P, V ), there exist a p-computation F such that F does not
contain CSp, and p executes Ω(log N/ log log N) remote
events in F , where N = |P |.

Proof: Let H1 = 〈Enter1, Enter2, . . . , EnterN 〉, where
P = {1, 2, . . . , N}. By the definition of a mutual exclusion
system, H1 ∈ C. It is obvious that H1 is a regular compu-
tation with induction number 1, such that Act(H1) = P ,
Cvr(H1) = {}, and VC(H1) = {}. We repeatedly apply
Lemma 4 and construct a sequence of computations H1,
H2, . . . , Hk, such that each computation Hj has induction
number j. Define nj = |Act(Hj)|. Then, by (4),

nj+1 ≥ min
(
(nj − 1)(2 log nj − 5)
24(2 log nj + 1)2

,
nj − 1

4(8 log nj + 3)2

)
,

which implies

nj+1 ≥ anj

log2 nj

≥ anj

log2 N
,

where a is some fixed constant. This in turn implies

log nj+1 ≥ log nj − 2 log logN + log a.

Therefore, by iterating over 1 ≤ j < k, and using n1 = N ,
we have

log nk ≥ logN − 2(k − 1) log logN + (k − 1) log a. (30)

We stop the induction at step k when Assumption (1) in
Lemma 4 is not satisfied, in which case we have established
k > log|Act(Hk)| − 2. Combining this inequality with (30),
we have

k >
logN + 2 log logN − log a− 2

2 log logN − log a+ 1 = Θ

(
logN

log logN

)
.

By RC5, Hk | p is a valid computation in C. Since each
process p in Act(Hk) executes exactly k remote events in
Hk, Hk | p is a computation that satisfies the theorem. ✷

We now prove Theorem 3. We henceforth consider a sys-
tem in which Properties P2 and P4 are replaced by P2′ and
P4′, respectively (see Sec. 4).
We will only explain the part of the proof that is different

from the proof of Theorem 2. Since we now allow concur-
rent writes of the same variable, for the sake of simplicity,
we assume that no covering writes terminate, i.e., any invo-
cation event in a regular computation H is the last event by
that process in H. (This assumption is not really needed,
but is being made here to make the reasoning a bit easier.)
Therefore, we change the definition of a regular computation
such that response segments are now defined to be empty.
We also replace both RC1 and RC3 by the following single
condition RC1′:

RC1′: Assume that H can be written as 〈. . . , ep, . . . , fq,
. . .〉. If p �= q and there exists a variable v ∈ Wvar(ep)∩
var(fq) such that ep is the first write to v in H, then
v ∈ VC(H) and ep is a (non-terminating) invocation
event on v. — Informally, if p is the first process to
write variable v, and if another process q later accesses
v, then p covers v throughout the rest of H, and hence
any read from v after ep can read any value.

The next lemma is a variation of Lemma 3 that deals with
critical remote events. It is adapted from Lemma 8 of [8].

Lemma 5 Let H be a regular computation in C with induc-
tion number m. Define n = |Act(H)|. Then, there exists an-
other regular computation H ′ in C with induction number m
and a subset Y of Act(H), satisfying the following:

• H ′ contains all events in H;
• n− 1 ≤ |Y | ≤ n;
• for each process p in Y , there exist a critical event ep of

p, such that H ′ ◦ 〈ep〉 ∈ C and ep �= CSp.

Proof: We can show that Lemma 3 still holds with the
modified definitions. Therefore, Lemma 3 implies that there
exists a subset Y of Act(H) such that n− 1 ≤ |Y | ≤ n and
each process in Y has a remote event after H, i.e., for each
p ∈ Y , there exist a local p-computation Lp and a remote
write or remote read event ep, such that (H | p)◦Lp◦〈ep〉 ∈ C
and ep �= CSp.

If all remote events ep (for p ∈ Y ) are critical afterH, then
define Mm

(H′), the mth remote segment of H ′, as Mm
(H′) =

Mm ◦ Lp1 ◦ Lp2 ◦ · · · ◦ Lpd , where Mm is the mth remote
segment of H and Y = {p1, p2, . . . , pd}. (Note that a
remote segment is allowed to contain local events.) Define
all other segments of H ′ to be the same as in H, i.e., H ′ =
H ◦ Lp1 ◦ · · · ◦ Lpd . It can be shown that H ′ is a regular
computation that satisfies Lemma 5.
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Otherwise, assume that some event ep is noncritical after
H, and that ep accesses a remote variable v. Then, we have

H ◦ Lp ◦ 〈ep〉 = E ◦ 〈fp〉 ◦ F ◦ Lp ◦ 〈ep〉, (31)

where fp is the last event by p that accesses v, and

• F | p contains no expanding reads or writes. (32)

Let G = E ◦〈fp〉◦(F | p)◦Lp ◦〈ep〉◦(F −F | p). In the fol-
lowing paragraphs, we show that G is a regular computation
in C. Observe that G contains all events contained in H and
more remote events than H. By the Progress requirement,
this implies that we can apply this argument only a finite
number of times, i.e., if we repeatedly apply Lemma 3 and
construct a new computation in the manner in which G is
constructed, then we eventually obtain a computation H ′

such that applying Lemma 3 yields at least n− 1 processes
in Act(H), each of which has a critical remote event after
H ′. By our construction, H ′ is a regular computation in C
that contains all events contained in H.
To begin the construction of G, note that, because H ∈ C,

(31) implies H = E ◦ 〈fp〉 ◦F ∈ C. We claim that E ◦ 〈fp〉 ◦
(F | p) ∈ C holds. Note that, by RC1′, if an event gp in
F | p reads a remote variable u, then one of the following
holds: (i) u is not written by any other process before gp,
(ii) u ∈ VC(H) and E does not contain a write to u, or (iii)
u ∈ VC(H) and there exists a write to u in E.
If either (i) or (ii) holds, then it is clear that gp cannot

distinguish between F and F | p. On the other hand, if (iii)
holds, then by RC1′, the first write to u (in E) covers u, so
gp cannot distinguish between F and F | p. Thus, no events
in F | p may distinguish between F and F | p after E ◦ 〈fp〉.
Thus we have E ◦ 〈fp〉 ◦ (F | p) ∈ C.
Since Lp is a local computation, by applying P2, we can

easily show E ◦ 〈fp〉 ◦ (F | p) ◦ Lp ∈ C. (Note that, by RC2,
no process other than p may write p’s local variables in E.)
Similarly, since ep is not an expanding event, by applying
P2, we can show E ◦ 〈fp〉 ◦ (F | p) ◦ Lp ◦ 〈ep〉 ∈ C. (If ep

writes to v, then ep reads only local variables. On the other
hand, if ep reads v, then since ep is not an expanding read,
by (32), E contains a read from v by p. Thus, either no
other process writes to v in E, or v is covered at the end of
E.)
We now claim G ∈ C. It suffices to show the following:

• Claim 1: If gp is an event of F | p, hq is an event of
F − F | p, and u is a variable in Wvar(gp) ∩ Rvar(hq),
then some event in E covers u. (In other words, no event
in F − F | p can distinguish between H and G.)

Proof of Claim: Consider each variable u in Wvar(gp)
or Rvar(hq). By RC2, u cannot be local to either p or q.
On the other hand, if u is remote to both p and q, then
since gp is not an expanding write, by (32), E contains an
event ḡp by p that writes to u. Since hq is an event of F ,
H can be written as 〈. . . , ḡp, . . . , hq, . . .〉. Therefore,
by applying RC1′, it follows that the first event to write
to u in H (which must precede ḡp) covers u. ✷

Thus, it follows thatG is a computation in C that contains
all events in H. The conditions RC1′, RC2, RC4, and RC5
can be individually checked to hold in G. Therefore, by
inductively applying the construction of G, we can construct
H ′, as explained above. ✷

Finally, a variation of Lemma 4 can be proved using
Lemma 5 instead of Lemma 3. Apart from the fact that
P2 ′, P4 ′, and RC1 ′ are now being used, the only changes
to Lemma 4 that are needed are the following.

• Assertion (2) in the statement of the lemma changes to:
each process in Act(H) executes at least one remote event
in each remote segment M j , for j = 1, . . . , m.

• Assertion (5) in the statement of the lemma changes to:
each process in Act(G) executes at least one remote event
in each remote segment M j , for j = 1, . . . , m+ 1;

Given this new lemma, Theorem 3 can be proved in a way
that is identical to Theorem 2. Thus, we have the following.

Theorem 3. For any mutual exclusion system S =
(C, P, V ) that satisfies Properties P2 ′ and P4 ′ instead of P2
and P4, there exist a p-computation F such that F does not
contain CSp, and p accesses Ω(

√
logN/ log logN) distinct

remote variables in F , where N = |P |. ✷

16


