
Universal Constructions for Multi-Object Operations�

(Extended Abstract)

James H. Anderson and Mark Moir
Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175

Abstract

We present wait-free and lock-free universal construc-

tions that allow operations to access multiple objects

atomically. Such constructions provide functionality

similar to nested critical sections in conventional, lock-

based systems. In such a system, two critical sections

might be nested, for example, to swap the contents of

two shared bu�ers. Using our constructions, such a

transfer can be done in a wait-free or a lock-free manner.

Our universal constructions are based upon multi-

word synchronization primitives. In the �rst part of

the paper, we present wait-free implementations of such

primitives from one-word primitives. These imple-

mentations allow processes that access disjoint words

to execute in parallel. Previous implementations of

multi-word primitives either overly restrict parallelism,

or provide only lock-free execution. We also present

several implementations involving one-word universal

primitives that allow our constructions to be applied

with greater
exibility. In particular, we present time-

optimal, wait-free implementations of Load-Linked and

Store-Conditional from Read and Compare-And-Swap,

and vice versa, and implementations that eliminate the

need to deal with spurious Store-Conditional failures.

1 Introduction

This paper extends recent research on universal wait-

free and lock-free constructions of shared objects [4, 5].

Such constructions are based upon strong primitives

such as Compare-And-Swap (CAS) or Load-Linked (LL)

and Store-Conditional (SC), and can be used to imple-

ment any object in a wait-free or a lock-free manner.

In this paper, we give universal wait-free and lock-free

constructions that extend the functionality of previous

�Work supported, in part, by NSF Contract CCR 9216421.

constructions by allowingmulti-object operations. Such

operations are allowed to execute in parallel, whenever

possible, when applied to disjoint sets of objects. Multi-

object operations can be used in much the same manner

as nested critical sections in conventional lock-based sys-

tems. For example, two critical sections might be nested

in such a system in order to transfer the contents of one

shared bu�er to another. Using our constructions, such

a transfer can be done in a wait-free or a lock-free man-

ner.

The multi-object constructions we present are based

upon multi-word universal primitives. In the �rst part

of the paper, we give e�cient, wait-free implementations

of such primitives from one-word primitives. These

implementations allow operations on disjoint words to

execute in parallel. In contrast, previous implemen-

tations of multi-word primitives either overly restrict

parallelism, or provide only lock-free execution. We

also present time-optimal implementations of one-word

primitives that show that CAS is equivalent to LL and

SC from a performance standpoint | this stands in

contrast to the commonly-held belief that LL and SC

necessarily result in more e�cient object implementa-

tions.

Time complexity bounds for the implementations we

present are summarized in Table 1. In this table, VL

denotes a Validate operation,MWCAS denotes a multi-

word CAS , MWSC denotes a multi-word SC , and FSC

denotes a SC that may fail spuriously.1 Other abbre-

viations are as de�ned above. Time bounds for each

implementation are given in terms of N , the number of

processes in the implementation, and M , the number of

implemented words or objects.

In the following paragraphs, we present an overview

of the three major sections of this paper. The �rst two

of these sections contain results involving one-word and

multi-word primitives. In the third of these sections,

our multi-object constructions are presented.

Our results involving one-word primitives are pre-

sented in Section 2. Three key results are presented

in this section: a wait-free implementation of LL, SC ,

1SC is usually implemented on top of a write-invalidate cache
protocol. A SC may incorrectly fail in such an implementation if
a cached word is selected for replacement by the cache protocol.

Primitives

Used

Primitives

Implemented

Worst-Case Time

Complexity

Read , CAS LL, SC, VL O(1), O(1), O(1)

LL, SC Read , CAS O(1), O(1)

LL, FSC LL, SC, VL O(1), O(1),2 O(1)

LL, SC, VL Read, MWCAS O(1), O(N3
M)

LL, SC, VL LL, MWSC, VL O(1), O(N3
M), O(1)

LL, VL,

MWSC

Any multi-object

operation

O(NM2), O(1)

Table 1: Summary of results.

and VL from Read and CAS ; a wait-free implementa-

tion of Read and CAS from LL and SC ; and an e�cient

implementation of LL, SC , and VL from LL and FSC .

These results allow us to apply our multi-object imple-

mentations given either Read and CAS or LL and SC ,

and to ignore the possibility of spurious SC failures.

Although existing universal constructions can be used

to convert between CAS and LL, SC , and VL, such con-

structions entail high overhead. Our implementations

of these primitives are time-optimal, requiring constant

time per operation. The best previous wait-free im-

plementation of LL, SC , and VL, recently presented

by Israeli and Rappoport in [7], requires O(N) time

per operation. It also requires N -bit shared variables,

which severely limits its usefulness in practice. (Israeli

and Rappoport did not present similar constructions for

CAS .)

Our implementations of multi-word universal primi-

tives are given in Section 3. Again, such primitives may

be implemented using existing universal constructions,

but at considerable expense. The use of such construc-

tions would also limit parallelism: processes performing

operations involving disjoint sets of words could not ex-

ecute in parallel. The importance of parallelism in this

context was �rst noted by Israeli and Rappoport [7].

The main result of Section 3 is a wait-free implemen-

tation ofMWCAS from LL, SC , and VL. By a straight-

forward generalization of the one-word case, MWCAS

can in turn be used to implement LL, VL, and MWSC

(see Table 1). The problem of implementing such

multi-word primitives has been considered previously by

Barnes [2], by Israeli and Rappoport [7], and by Shavit

and Touitou [8]. However, the implementations pre-

sented in these papers are only lock-free. A process in

our implementation attempts to \lock", in a wait-free

manner, each of the words that it accesses. A similar

(albeit only lock-free) approach is used in [7] and [8].

The main problem encountered in obtaining a wait-

free implementation of MWCAS is that of e�ciently

\helping" con
icting operations | such helping is cen-

2The SC operation terminates in O(1) time after the most
recent spurious FSC. See Section 2 for details.

tral to most wait-free universal constructions. Good

parallelism would seem to preclude one process from

helping another that accesses a disjoint set of words.

However, such helping is sometimes necessary because of

transitivity. For example, if processes p, q, and r access

words A and B, B and C, and C and D, respectively,

then p may have to help r in order to make progress

(because p must help q, which in turn con
icts with r).

Our implementation of MWCAS deals with this prob-

lem by dynamically determining transitive con
icts. In

addition, we have incorporated a number of optimiza-

tions that allow a MWCAS to terminate quickly if it

can be linearized to a point where it fails. The perfor-

mance bene�ts of allowing CAS operations to fail early

were �rst recognized by Bershad in his work on operat-

ing system-based implementations of CAS [3].

In the last major section of the paper, Section 4,

we use the primitives developed previously to obtain

both lock-free and wait-free universal constructions of

multi-object operations. Both constructions are based

upon LL, VL, and MWSC, and are obtained by adapt-

ing the universal constructions based upon LL and SC

presented by Herlihy in [5]. As in the implementation

of MWCAS , the major problem that arises in our wait-

free construction is that of ensuring good parallelism

in the face of transitive con
icts. In this construction,

a process handles such con
icts in two steps: it �rst

applies all operations that transitively con
ict with its

operation to local copies of the a�ected objects; it then

uses a MWSC primitive to attempt to \swing" shared

pointers for these objects to point to the local copies

just updated. Because of complications arising from

transitive con
icts, there are substantial di�erences be-

tween the implementation of this help mechanism and

that employed in Herlihy's original construction.

The remainder of this paper consists of the three sec-

tions outlined above, followed by concluding remarks in

Section 5.

2 One-Word Primitives

In this section, we present e�cient implementations

of one-word synchronization primitives that allow our

results (and others) to be applied with greater
exibility.

We begin with a constant-time implementation of LL,

SC , and VL using Read and CAS .3 We then present a

simple, constant-time implementation of Read and CAS

from LL and SC . The latter construction assumes that

SC does not fail spuriously. We conclude this section by

using LL and FSC to implementLL and SC . This result

allows us to use our constructions in systems where SC

3More accurately, we use shared registers that support atomic
Read and Write operations, as well as shared registers that sup-
port Read and CAS operations. We similarly assume the avail-
ability of read/write registers in subsequent constructions.

type llsctype = record value: valtype; tag: 0::2N ; pid: 1::N end

shared variable X: llsctype; A: array[1::N] of llsctype
private variable old, chk: llsctype; j: 1::N + 1; newtag: 0::2N

procedure LL()
old := X;
A[p] := old;

chk := X;
return old :value

procedure SC(val: valtype) procedureVL()
if chk 6= old then return false �; return chk = old ^ X = old

read A[j]:tag ;

if j = N then j := 1 else j := j + 1 �;
select newtag : newtag =2 flast N tags readg[flast N tags selectedg[flast tag successfully CAS 'dg;
return CAS(X;old ; (val ;newtag; p))

Figure 1: Constant-time LL, SC, and VL using Read and CAS. Private variables are static between invocations.

shared variable X: valtype

procedure CAS(old, new: valtype)
if LL(X) 6= old then return false �;
if old = new then return true �;
return SC(X;new)

Figure 2: Constant-time CAS using LL and SC. LL trivially implements Read.

might fail spuriously.

Figure 1 depicts an N -process implementation of LL,

SC , and VL that is based upon Read and CAS . Vari-

able X contains the implemented variable, along with

a tag and process identi�er. To see how the latter two

�elds are used, consider the SC procedure. A process p

performing a SC chooses a tag value, and then attempts

to perform the SC by executing a CAS . As explained

below, tags are selected in such a way that this CAS

succeeds i� no successful CAS has occurred since the

second read of X in p's LL procedure | i.e., i� no

other process has performed a successful SC since p's

previous LL.

A LL operation is linearized to occur at its �rst read

of X if the values read from X di�er, and at its second

read of X otherwise. A SC is linearized to occur at its

CAS , and a VL is linearized to occur when it reads X.

A key property in proving this implementation correct

is that a process p does not prematurely \reuse" a tag,

thereby causing a CAS by some process q to succeed

when it should fail. To see that this cannot happen,

note that if q executes CAS with old = (x; v; p) for

some x and v, then A[q] = (x; v; p) holds between q's

second read of X and q's CAS . Suppose p reuses tag v

in this interval. Because p does not use any of the N

most recently selected tags, it follows that p performs

at least N successful SC operations before reusing v.

Thus, p must have read A[q] in the last N operations,

and therefore does not reuse tag v. In [1], we show how

the new tag can be selected in constant time. Thus, we

have the following theorem.

Theorem 1: LL, SC, and VL can be implemented with

constant time complexity using Read and CAS. 2

We now turn our attention to the implementation of

Read and CAS using LL and SC, shown in Figure 2.

Read is trivially implemented by LL. Process p performs

a CAS by reading variable X using LL, and possibly

performing a subsequent SC of X. If X 6= old or if

X = old = new, then p's CAS can be linearized to the

point at which the LL occurs. Otherwise, if the SC is

successful, then the CAS can be linearized to occur when

the SC is executed. If the SC fails, then a successful

SC by another process has occurred since p's previous

LL. Because each successful SC changes the value of X,

there is a point during p's CAS at which X di�ers from

old; p's (failed) CAS can be linearized at that point.

This construction yields the following theorem.

Theorem 2: Read and CAS can be implemented with

constant time complexity using LL and SC. 2

We should point out that ordinary Read and Write

operations are straightforward to incorporate into the

constructions of Figures 1 and 2. In particular,

Write(new) can be implemented in the construction of

Figure 1 like SC ; the main di�erence is that X is up-

dated by a Write rather than a CAS . Write(new) can

be implemented in the construction of Figure 2 by the

following code, which is similar to that given for CAS.

if LL(X) = new then return �;

SC(X;new)

In Figure 3, we present an implementation of LL, SC ,

and VL from LL and FSC . In this implementation, tags

are maintained that allow a process to identify a spu-

rious FSC failure and to retry the FSC . Thus, if FSC

does not fail in�nitely often during one invocation of

the implemented SC , then the implemented SC even-

tually terminates. Tags are maintained using a mecha-

nism that is similar to that employed in Figure 1. This

implementation yields the following theorem.

Theorem 3: LL and FSC can be used to implement

wait-free LL and VL operations, and a SC operation

that terminates provided only �nitely many spurious

FSC failures occur per SC invocation. 2

shared variable X: record value: valtype; tag: 0::2N ; pid: 1::N end

private variable old, chk: valtype; newtag: 0::2N

procedure LL()
old := X;

A[p] := old;
chk := LL(X);
return old :value

procedure VL()
chk := LL(X);
return old = chk

procedure SC(new: valtype)
if chk 6= old then return false �;
read A[j]:tag;
if j = N then j := 1 else j := j + 1 �;
select newtag : newtag =2 flast N tags readg [flast N tags selectedg[flast tag successfully FSC 'dg;
while true do

if FSC(X;(new ;newtag)) then return true

elseif LL(X) 6= old then return false

od
�

Figure 3: Implementation of LL, SC, and VL using LL and FSC.

3 Multi-Word Primitives

In this section, we describe our implementation of

Read and MWCAS for processes 1::N on words 1::M

using LL, SC , and VL. A straightforward generalization

of the construction in Figure 1 implements LL,MWSC ,

and VL using Read and MWCAS . Details are deferred

to the full paper.

Herlihy's universal construction [5] can be used to im-

plement any shared object using LL and SC . In par-

ticular, MWCAS can be implemented using Herlihy's

construction by treating all M words as one object.

However, this approach su�ers from two drawbacks.

First, concurrent MWCAS operations cannot execute

in parallel, even if they access completely disjoint sets of

words. Thus, this approach severely limits parallelism.

Second, allM words must be copied for each operation,

even if the operation accesses only one word. If M is

large, this can be a signi�cant disadvantage. Our imple-

mentation, shown in Figures 4 and 5, circumvents both

of these problems. Before giving a detailed description

of our implementation, a brief overview is in order.

The Read procedure takes an argument a, 1 � a �
M , and returns the value of word a. The MWCAS

procedure takes four arguments: nw , words, old , and

new . The nw argument is the number of words accessed

by the MWCAS operation. The remaining arguments

are lists, each containing nw values: words speci�es the

words (in ascending order) to be accessed by the MW-

CAS operation; old contains the old value for each word

accessed; and new contains the new value for each word

accessed. If each word accessed contains the correspond-

ing old value, then each word is modi�ed to contain the

corresponding new value, and the MWCAS operation

succeeds, returning true. Otherwise, the words are un-

changed and the operation fails, returning false.

In order for a MWCAS operation to fail, it is suf-

�cient to detect that just one word does not contain

the corresponding old value. However, such an opera-

tion should succeed only if all old values are detected

to match the words' current values at the same time.

Unfortunately, a word might change values after it has

been observed to \match", but before another word has

been checked. To address this problem, our algorithm

\locks" each word in sequence, each time checking that

the corresponding old value matches the current value

of the word. A word cannot be modi�ed while locked,

so if all words accessed by an operation are locked, then

it is safe for that operation to succeed.

A process that wishes to modify a word may not do so

while that word is \locked" by another process. In order

to make the implementation wait-free, one process must

therefore be able to \help" another process to complete

its operation. This is achieved by having each process

\announce" the parameters and state of its operation,

so that another process can continue to execute a par-

tially completed operation. LL, VL, and SC operations

are used to ensure that each stage of each operation is

executed exactly once. Techniques similar to this one

have been used previously [2, 7, 8]. However, these im-

plementations are only lock-free, not wait-free, so op-

erations are not guaranteed to complete. We employ a

technique that allows a process to detect concurrent op-

erations with which it potentially interferes, and to help

complete such operations. If a process is interfered with

su�ciently often, it is eventually helped to complete its

operation, so no starvation is possible. In the remainder

of this section, we describe our implementation in more

detail. A complete proof is deferred to the full paper.

We �rst describe the shared data structures and how

they are used. The parameters of each operation by

process p are copied into PARAM [p] (lines 7 to 10).

This allows other processes to help process p's operation

to complete. Process p writes an access matrix entry

AM [p][w] to indicate that p's operation accesses word

w (line 9) or that process p is helping an operation that

accesses word w (line 31). For each word w, MEM [w]

contains the current or soon-to-be-current value of word

w, and LOCK [w] is used to lock word w. Each process

p has a status variable STAT [p], which represents the

state of p's current operation, if any.

MWCAS operations proceed in \phases". As shown

in Figure 6, each operation has an init phase, a lock

phase, and an unlock phase, executed in that order. An

type param type = record nw: 1::M ; words: array[1::M] of 1::M ; old, new: array[1::M] of val type end;
stat type = record stat: finit ; lock ;modify ; unlockg;
ag: fsucc; fail; di� ; helpg; proc: 1::N end;
lock type = record owner: 0::N ; index: 1::M end;

access type = record help: 0::N ; old: indirect [val type ; index: 1::M end

shared variable MEM: array[1::M] of val type init initial values for implemented words; =� Implemented words �=
LOCK: array[1::M] of lock type init (0;1); =� One lock for each word �=
PARAM: array[1::N] of param type init (1; (1; :::;1); (0; :::;0)); =� Parameters to each operation �=

STAT: array[1::N] of stat type init (init; succ; 1); =� Status of each operation �=
AM: array[1::N] of array[1::M] of access type =� Access matrix �=

procedure Read(a: 1::M) returns valtype

1: v := MEM [a]; =� Read most recent value (possibly not yet current) �=
2: x := LL(&LOCK [a]); =� v is current unless word is locked by a process r, ... �=
3: if x:owner = 0 _ LL(&STAT [x:owner]):stat 6= modify then return v �; =� ... which is in the modify phase �=
4: old := PARAM [x:owner]:old[x:index]; =� Get previous value, which may still be current �=
5: if :VL(&LOCK [a]) then return v �;
6: if VL(&STAT [x:owner]) then return old else return v � =� Only return old value if v still not current �=

procedure MWCAS(nw: 1::M ; addr: array of 1::M ; old, new: array of val type) returns boolean

7: PARAM [p]:nw := 1; list := fg; =� Don't violate invariants while changing PARAM; No AM entries yet �=

for j := 1 to nw do =� Announce parameters to operation �=
8: PARAM [p]:words[j];PARAM [p]:old[j];PARAM [p]:new[j] := addr [j];old [j];new[j];
9: AM [p][addr[j]] := (p;old [j]; j); insert(list,addr[j]) =� Initalize access matrix �=

od;
10: PARAM [p]:nw := nw ;

11: STAT [p] := (lock ; fail ; p); Help(p; p;0;0); =� Start operation; Begin by helping self �=
12: for each j 2 list do AM [p][j] := (0;0; 1) od; =� Stop other processes from helping this process �=

13: st := STAT [p];
if st:
ag 6= di� _ nw > 1 then =� If words were potentially locked ... �=

for j := 1 to nw do =� ... then unlock them �=

14: v := LL(&LOCK [addr [j]]); =� Invalidate late locks �=
15: if v:owner = p _ (v:owner = 0 _ STAT [v:owner] =2 flock ;modifyg) then

16: if :SC(&LOCK [addr [j]]; (0; 1)) then =� Undo late lock if it happened before invalidated �=
17: if LL(&LOCK [addr [j]]):owner = p then

18: SC (&LOCK [addr [j]]; (0;1))

�;
�

�

for k := 1 to N do =� Help processes whose operations touch this word ... �=

19: pr := AM [k][addr]:help ;
if pr 6= 0 then =� ... or are waiting indirectly for this word �=

20: if (LL(STAT [pr])):stat = lock then

list := fg; Do Locking (pr ; pr; 0);
21: for each j 2 list do AM [p][j] := (0;0;1) od =� Stop other processes from helping this process �=

od;
od

�
�

22: if st:
ag = help ^ LL(&STAT [st:proc]) = modify then Do Modifying(st:proc) �
�; =� If killer's modify phase is not yet complete, help it �nish �=

23: STAT [p] := (init; fail ; p); =� Initialize STAT [p] for next time �=

24: return st:
ag = succ

procedure Help(pr: 1::N ; i: 1::N ; last locked: 0::M ; index: 0::M)

25: if (LL(STAT [i])):stat = lock then

26: if index > 0 ^ :VL(&LOCK [last locked]) then return �; =� Previously locked word was unlocked �=
Do Locking (pr; i; index) =� Help process i continue (or start) its locking phase �=

�;
27: if (LL(STAT [i])):stat = modify then Do Modifying(i) �; return =� Help i's modify phase, if necessary �=

Figure 4: Read, MWCAS, and Help procedures.

procedure Do Locking(pr: 1::N ; i: 1::N ; index: 0::M)

28: nw := PARAM [i]:nw; =� Determine how many words i's operation touches �=

for j := index + 1 to nw do =� Help to lock each word of process i's operation �=
29: done ; addr := false;PARAM [i]:words[j];
30: if AM [p][addr]:help = 0 then
31: AM [p][addr] := (pr ; indirect ; 1); insert(list; addr) =� Announce indirect waiting �=

�;
while :done do =� Keep trying until successful (or VL fails - see below) �=

32: v := LL(&LOCK [addr]); =� Read lock �=

33: if :VL(&STAT [i]) then return =� Don't help anymore if phase is complete �=
elseif v:owner = i then done := true =� Check if already locked �=

34: elseif :VL(ST[pr]) then return =� Original process has completed locking phase �=
35: elseif v:owner 6= 0 ^ STAT [v:owner] 2 flock ;modifyg then =� If locked by a process that needs help... �=

Help(pr; v:owner ; addr ; v:index) =� ... then help that process �=
else

36: old := PARAM [i]:old [j]; =� Fail without further locking if old value di�ers from current �=
37: val := MEM [addr];
38: if VL(&LOCK [addr]) then
39: if val 6= old then SC(&STAT [i]; (unlock ;di� ; i)); return =� Operation fails �=
40: elseif :VL(&STAT [i]) then return =� Quit if phase already completed �=
41: elseif SC (&LOCK [addr]; (i; j)) then =� Otherwise, try to lock the word �=

done ;PV [addr] := true;PARAM [i]:old [j] =� Note that PV is auxilliary �=

od;
od

�
�

�

42: SC(&STAT [i]; (modify ; fail; i)); return =� Start modify phase �=

procedure Do Modifying(i: 1::N) =� Write new values for successful MWCAS operation �=

43: nw := PARAM [i]:nw; =� Determine how many words i's operation touches �=
for j := 1 to nw do =� For each word of operation ... �=

44: addr := PARAM [i]:words[j]; =� ... get parameters for this word �=
45: old := PARAM [i]:old [j];
46: new := PARAM [i]:new[j];
47: if old 6= new ^ LL(&MEM [addr]) = old then =� If this word is changing, prepare to write new value �=

for h := 1 to N skip i do =� For each other process ... �=
48: val := AM [h][addr]; =� ... if overlapping operation is in progress, prepare to make it fail �=

49: if val :help = h ^ val :old 6= indirect ^ (LL(&STAT [h])):stat = lock then

50: if :VL(STAT [i]) then return �; =� Return if phase is already complete �=
51: if AM [h][addr] = val then =� Ensure it's still ok to fail h's operation �=

52: if val :old = old then SC (&STAT [h]; (unlock ;help ; i)) =� h fails after i succeeds �=
53: else SC(&STAT [h]; (unlock ; fail ; i)) =� h fails before i succeeds �=

od;
�

�
�

54: if :VL(STAT [i]) then return �; =� Return if phase is already complete �=
55: SC (&MEM [addr];new) =� ... update the word �=

od;
�

56: SC(&STAT [i]; (unlock ; succ ; i)); return =� Operation is complete; unlock words �=

Figure 5: Do locking and Do Modifying procedures.

modify

init lock unlock

Figure 6: Phases of a MWCAS operation.

operation that successfully modi�es one or more words

also has a modify phase between its lock and unlock

phases. The init phase and the unlock phase for an

operation by process p are executed by p in the MW-

CAS procedure. Steps in the lock and modify phases

may be executed \on behalf of" p by any process in the

Do Locking and Do Modifying procedures, respectively.

Process p performs a MWCAS operation by announc-

ing its parameters and �lling in the appropriate access

matrix entries (lines 7 to 10) and then setting its status

to lock and calling the Help procedure. The Help proce-

dure executes, as necessary, p's lock phase and then p's

modify phase. Below, we describe each phase in detail.

The lock phase attempts to lock each word accessed

by p's operation in turn (lines 28 to 42). To ensure

that p is eventually helped if it repeatedly fails to lock a

word w, p �rst sets AM [p][w] (lines 30 and 31). Process

p also maintains a local list4 of AM entries that have

been set so that they may be cleared after p's operation

is complete (line 12 or 21). If a word is locked by an-

other process r that has not completed its lock or modify

phase, then Help is called (line 35) on behalf of process

r in order to release r's lock on that word. Otherwise,

before locking a word, two checks are done. The �rst

is to ensure that the current value of the accessed word

matches the old value for the operation being executed.

If not, the operation can fail immediately, without at-

tempting to do further locking (line 39). The second

check (line 40) is to ensure that a process does not be-

latedly attempt to lock a word on behalf of a process

that has already completed its lock phase. If all the

words of an operation are successfully locked, then the

status of the operation is changed to modify (line 42).

At this point, the operation is guaranteed not to fail.

In the modify phase, each memory word accessed by

the successful operation is modi�ed, if necessary, to its

new value (line 55), and then the status of the opera-

tion is changed to unlock (line 56). The operation is lin-

earized to the point at which line 56 is executed. Thus,

MEM [w] contains the current value of word w except

for the interval between MEM [w] being modi�ed (line

55) and the end of the operation's modify phase (line

56). This observation is important for implementing an

e�cient Read operation, which is described later.

Suppose process pmodi�es wordMEM [w] in themod-

ify phase of an operation of process p. Then a concur-

rentMWCAS operation that accesses word w can safely

fail because either its old value does not match before

the change, or it does not match afterwards. Before

modifying word w (line 55), process p �rst checks each

other process q to see if it has aMWCAS operation that

is attempting to lock word w (lines 48 and 49). If so, the

status of q's operation is changed to unlock , causing it

4The operations used to access this local list are easily imple-
mented in optimal time, and are therefore not presented here.

to fail. If q's old value for word w di�ers from p's, then

q's operation can be linearized to fail immediately (line

53). However, if q has the same old value for word w

as p does, then q's operation cannot fail until p's oper-

ation is linearized. In this case, q's status is changed to

(unlock ; help; p) (line 52). When process q executes line

22, q calls Do Modifying to ensure that p's operation

has been linearized before q returns. In this case, q's

operation is linearized immediately after p's operation

| i.e., when p's status is changed to unlock .

Despite these optimizations, there is a risk that some

process p repeatedly fails to lock LOCK [w] because

some other process q repeatedly locks LOCK [w], but

does not help to complete the operation that p is exe-

cuting. This can arise either if q repeatedly performs

operations whose old and new values for word w are

equal, or if q's operation repeatedly fails after locking

LOCK [w]. In either case, it is necessary to ensure that

p's operation is helped to complete.

In our implementation, each operation terminates be-

cause, after completing an operation, each process q

helps to complete the lock phase of any operation with

which q's operation might have interfered (lines 19 to

21). From a performance standpoint, it is desirable for

a process q to help an operation only if q actually in-

terfered with that operation. However, because this in-

terference can be caused by other processes acting \on

behalf of" q, there is an overhead associated with de-

tecting exactly which operations were interfered with

by q's operation. We have chosen to assume that q's

operation interferes with every operation that concur-

rently accesses a word accessed by q's operation, with

one common exception: if a one-word operation fails be-

cause its old value did not match the value of the word

accessed (line 39), then it can be shown that the lock

associated with that word is not modi�ed on behalf of

that operation, so no helping is necessary. We believe

that one-word operations are likely to be invoked much

more frequently than multi-word operations. Therefore,

this optimization is a useful compromise between con-

servatively assuming that each operation interferes with

every word it accesses, and incurring the overhead of de-

termining which operations were interfered with.

In the unlock phase (lines 14 to 18), a process q en-

sures that for each word w in q's operation, LOCK [w] is

not locked (and will not later become locked) on behalf

of process q. Because of the possibility that some pro-

cess p is about to execute line 41 on behalf of process q,

process q must SC (LOCK [w]) in order to ensure that

p's SC will fail, even if LOCK [w] is not currently locked

by process q. If q's SC fails, then it is possibly as a re-

sult of p executing line 41, thereby locking LOCK [w] on

behalf of q. Thus, at lines 17 and 18, process q checks

again to ensure that LOCK [w] is not locked by process

q. This completes the discussion of the MWCAS oper-

ation. We now describe the Read operation.

The Read (a) procedure (lines 1 to 6) assigns v :=

MEM [a]. As mentioned above, v is the current value

of word a unless some process p has modi�ed MEM [a]

and has not yet completed its modify phase when v is

read. The Read operation detects this case (line 3), and

determines the previous value ofMEM [a] (which is still

the current value of word a) by reading the parameters

to p's operation (line 4). The VL operation is used to

ensure that the old value read is still correct (lines 5

and 6). If it is not, then it can be shown that process

p's operation has completed, so it is safe to return v.

In the full paper, we show that process p can attempt

to lock each word at most O(N) times before p's opera-

tion is completed. Using this property, we obtain Theo-

rem 4. A straightforward generalization of the one-word

implementation of LL, SC , and VL presented in Section

2 yields Theorem 5.

Theorem 4: Read and MWCAS can be implemented

with worst-case time complexityO(1) and O(N3M), re-

spectively, from LL, SC , and VL. 2

Theorem 5: LL, MWSC , and VL can be implemented

with worst-case time complexity O(1), O(N3M), and

O(1) respectively, from LL, SC , and VL. 2

4 Multi-Object Constructions

In this section, we �rst describe a relatively simple

lock-free construction for implementingmulti-object op-

erations. We then present a wait-free construction for

multi-object operations in more detail. Both construc-

tions use LL, VL, and MWSC .

The lock-free construction is a generalization of Her-

lihy's single-object, lock-free construction [5]. A pointer

to each object a�ected by a multi-object operation is

loaded using LL. A local copy of each object is made,

and the multi-object operation is applied to the copies.

Finally, a MWSC operation is used to attempt to \in-

stall" the new versions of the a�ected objects. This is

repeated until the MWSC is successful. This lock-free

construction is presented in detail in the full paper.

We now turn our attention to the wait-free, univer-

sal construction shown in Figure 7.5 We �rst describe

the major data structures used in our construction, and

then describe how a process performs a multi-object op-

eration. We conclude this section with a brief descrip-

tion of the time complexity analysis for this construc-

tion. Complete proofs appear in the full paper.

The major data structures are OBJ , an array of

pointers to the current versions of the implemented ob-

jects; ANC , which is used to \announce" operations so

5In this �gure, line numbers are included for reference only:
they are not intended to denote atomic statements.

that they may be helped; and AM , an access matrix

that is similar to the one used in Section 3. ANC [p]

contains a function that performs p's operation, the pa-

rameters to the operation, a bit that is used to detect

completion of the operation, and the index of the �rst

object accessed by the operation (or 0 if p does not

have a current operation). AM [p][n] contains op if p's

current operation accesses object n, help if p is helping

operations that access object n, and none otherwise.

A process p performs a multi-object operation by in-

voking Do Op. In lines 9 and 10,6 p's row of the access

matrix AM is initialized to show which objects p's oper-

ation accesses. At line 11, p computes a bit that di�ers

from p's bit in the �rst object accessed by p's operation.

This bit is later used (lines 13 and 25) to determine

whether p's operation has been completed. At line 12,

p's ANC entry is �lled with the function and parame-

ters for p's operation, the bit computed at line 11, and

the index of the �rst object accessed by p's operation.

The loop at lines 13 to 30 is repeated until the test

at line 13 fails, indicating that p's operation has been

successfully completed. This test is performed twice to

avoid a race condition similar to the one described by

Herlihy in [5]. Inside this outer loop, p detects opera-

tions that con
ict with its own and attempts to perform

these operations along with its own by making local

copies of the a�ected objects, applying the operations

to the local copies, and �nally usingMWSC to \install"

the new versions of the objects.

The con
icting operations are detected by calling TC

(line 16) to compute the \transitive closure" of con
icts.

The transitive closure is computed after the pointers to

the a�ected objects have been loaded using LL. This

ensures that if process p's MWSC fails twice because

of intermediate MWSC operations on some object w,

then the process q that causes the second failure must

perform its LL of OBJ [w] | and therefore compute

its transitive closure | after p's ANC entry has been

written. Thus, q's transitive closure contains all words

accessed by p's operation, so q applies p's operation.

Computing the transitive closure after loading the

pointers presents a di�culty: the pointers to be loaded

are those in the transitive closure. To get around

this apparent contradiction, we LL the object pointers

known to be in the transitive closure (line 14) and then

recompute the closure (line 16). This is repeated until

the closure does not include any more objects than were

previously loaded (checked at line 17). Because objects

are not removed from p's transitive closure (recorded in

p's row of AM at line 17) until p's operation is com-

6The loop at line 9 has been simpli�ed for ease of presentation;

this loop, and others like it at lines 5, 14, and 26, can actually
be implemented so that its time complexity is proportional to the
number of times the following if condition is satis�ed, and not

necessarily to M . Also, the set operations, such as those in lines
4, 15, and 19 can be implemented without O(M) or O(N) loops.

type objtype = record contents: contype; retval: array[1::N] of rettype; bit: array[1::N] of boolean end;
anctype = record func: functype; par: partype; bit: boolean; �rst: 0::M end

shared variable OBJ: array[1::M] of �objtype; ANC: array[1::N] of anctype; AM: array[1::N][1::M] of fop;help;noneg;

COPY: array[0::N] of array[1::M] of objtype

initially (8p; n : 1 � p � N ^ 1 � n �M :: ANC [p]:�rst = 0 ^ AM [p][n] = none ^

new[p][n] = © [p][n] ^ OBJ [n] = © [0][n] ^ COPY [0][n]:contents = initial value of nth object)

private variable i; h; k; �rst: 1::M ; j: 1::N ; bit: boolean; old, new: array[1::M] of �objtype ; proc: set of 1::N ;
tclist: set of 1::M ; retval: array[1::M] of rettype; objl: array[1::M] of 1::M

procedure TC(objno: 1::M)
private variable m: 1::M ; n: 1::N

1: for n := 1 to N do =� Check each process to see if... �=
2: if LL(&ANC [n]:�rst) 6= 0 then =� ... it has an active operation ... �=
3: if AM [n][objno] 6= none ^ n =2 proc then =� ... that con
icts with this word, and has not been added ... �=
4: proc := proc [fng; =� If so, then include this process's words... �=
5: for m := 1 to M do

6: if AM [n][m] 6= none then

7: if :VL(&ANC [n]:�rst) then end for �;

8: if m =2 tclist then tclist := tclist [fmg; TC(m) � =� ... and transitive con
icts �=

od;
�

�
od

�

return

procedure Do Op(numobjs: 1::M ; obj: array[1::M] of 1::M ; func: functype; par: partype) returns array[1::M] of rettype

9: for i := 1 to M do if AM [p][i] 6= none then AM [p][i] := none � od; =� Initialize AM row to re
ect operation �=
10: for i := 1 to numobjs do AM [p][obj [i]] := op od;
11: bit := :OBJ [obj [1]]�>bit[p]; =� Compute termination bit �=
12: ANC [p]:func; ANC [p]:par; ANC [p]:bit; ANC [p]:�rst := func; par ; bit ; obj [1]; =� Announce operation �=

13: while (OBJ [obj [1]]�>bit[p] = bit) _ (OBJ [obj [1]]�>bit[p] = bit) do =� Operation is not done yet �=
repeat

14: for i := 1 to M do if AM [p][i] 6= none then old [i] := LL(&OBJ [i]) � od; =� Load pointers in closure �=
15: proc; tclist; same; k; fail := fg; fg; true; 1; false;

16: TC(obj [1]); =� Recompute transitive closure �=
17: for each i 2 tclist do if AM [p][i] = none then AM [p][i] := help ; same := false � od

18: until same; =� Repeatedly compute transitive closure until no more is added �=
19: for each i 2 tclist do =� Make local copies of local a�ected objects �=
20: memcpy(new [i];old [i]; sizeof (objtype)); word[k]; k := i; k + 1; if :VL(&OBJ [i]) then fail := true; exit for �

od;
21: if :fail then

22: for j := 1 to N do =� Perform operations covered by transitive closure on local copies �=
23: if LL(&ANC [j]:�rst) 6= 0 then

24: cover ; h; �rst; func; par := true; 1; ANC [j]:�rst; ANC [j]:func; ANC [j]:par ;
25: if ANC [j]:bit 6= new [�rst]�>bit [j] then
26: for i := 1 to M do if AM [j][i] = op then

27: if i 2 tclist then h; objl [h] := h + 1; i else cover := false �

� od;
28: if cover ^ VL(&ANC [j]:�rst) then func(new ; objl ;par); new [�rst]�>bit [j]] := :new [�rst]�>bit [j] �

od;
�

�

=� Try to make local copies current �=
29: if MWSC((&OBJ [word [1]]; :::;&OBJ [word [k � 1]]); (new[word[1]]; :::;new [word[k � 1]])) then
30: for i := 1 to k � 1 do new[word [i]] := old [word[i]] od; exit while =� Reclaim old copies �=

od;
�

�

31: ANC [p]:�rst := 0;

32: for k := 1 to numobjs do retval [k] := OBJ [obj [i]]�>retval [p] od; =� Retrieve return values from each object �=
return retval

Figure 7: Wait-free, multi-object, universal construction.

pleted, it can be shown that the test at line 18 can fail

at mostM�1 times over the execution of p's operation.

After the con
icts have been detected, and the object

pointers loaded, p makes a local copy of each of the af-

fected objects. After copying each object, the pointer

to that object is validated. If the VL fails, then the loop

at lines 13 to 30 is restarted. Because the MWSC at

line 29 would fail if executed in this case, unnecessary

computation is avoided by restarting the loop immedi-

ately. This also avoids applying an operation to an out-

of-date copy of the object. Having made local copies of

the a�ected objects, p checks each process j (line 22) to

see if it has a current operation (line 23) that has not

been completed (line 25) and that only accesses objects

within p's closure (lines 26 and 27). In performing this

last check, p also compiles a list objl of the objects ac-

cessed by j's operation. If all of these checks succeed,

then p calls the function pointed to by ANC [j]:func,

which applies j's operation to p's local copies and also

modi�es the retval [j] �eld of some or all of the objects

accessed, if return values are required. Process p then

toggles j's bit in the �rst object accessed by j's oper-

ation to record that j's operation has been applied to

p's local object copies. Finally, at line 29, p attempts to

install its local object copies as the new current objects.

We conclude this section by brie
y describing the

time complexity analysis, which appears in the full pa-

per. The key lemma is that during an operation by

process p, p's MWSC can fail at most twice on account

of any object, and therefore at most M + 1 times in

total. We also show that TC is called at most O(M)

times during p's operation and that the time complex-

ity of calling TC (line 16), including all recursive calls,

is O(MN). All other terms in the time complexity are

dominated by these terms. Thus, the construction in

Figure 7 yields the following result. This gives the same

asymptotic time complexity as Herlihy's construction

[5] for the single-object case (that is, when M = 1).

In fact, it can be shown that even when M > 1, if no

multi-object operations con
ict with a single-object op-

eration, then that operation is completed in O(N) time.

Theorem 6: Using LL, VL, and MWSC, wait-free,

multi-object operations can be implemented with time

complexity O(NM2). 2

5 Concluding Remarks

Previous wait-free and lock-free object implementations

allow operations to access only one object, which may

preclude their use in some settings. Our implementa-

tions overcome this limitation by allowing operations to

access multiple objects simultaneously in a wait-free or

a lock-free manner. Our implementations are designed

to permit operations on distinct sets of objects to exe-

cute in parallel, wherever possible.

The optimizations employed in our implementations

yield very low time complexity in all but pathological

circumstances that should rarely occur in practice. For

example, the time complexity of a MWCAS by process

p approaches the worst case only if p helps many concur-

rent operations through their modify phases. However,

when contention is high, MWCAS operations are more

likely to fail, and failing operations do not execute mod-

ify phases. Also, the best-case time complexity is sig-

ni�cantly lower than the worst case | O(1) for failing

MWCAS operations and O(N) for successful ones.

References

[1] J. Anderson and M. Moir, \Universal Construc-

tions for Large Objects", submitted to Ninth In-

ternational Workshop on Distributed Algorithms,

September 1995.

[2] G. Barnes, \A Method for Implementing Lock-Free

Shared Data Structures", Proceedings of the Fifth

Annual ACM Symposium on Parallel Algorithms

and Architectures, 1993, pp. 261-270.

[3] B. Bershad, \Practical Considerations for Non-

Blocking Concurrent Objects", Proceedings of the

13th international Conference on Distributed Com-

puting Systems, May 1993, pp. pages 264-274.

[4] M. Herlihy, \Wait-Free Synchronization", ACM

Transactions on Programming Languages and Sys-

tems, Vol. 13, No. 1, 1991, pp. 124-149.

[5] M. Herlihy, \A Methodology for Implementing

Highly Concurrent Data Objects", ACM Trans-

actions on Programming Languages and Systems,

Vol. 15, No. 5, 1993, pp. 745-770.

[6] M. Herlihy and J. Wing, \Linearizability: A Cor-

rectness Condition for Concurrent Objects", ACM

Transactions on Programming Languages and Sys-

tems, Vol. 12, No. 3, 1990, pp. 463-492.

[7] A. Israeli and L. Rappoport, \Disjoint-Access-

Parallel Implementations of Strong Shared Memory

Primitives", Proceedings of the 13th Annual ACM

Symposium on Principles of Distributed Comput-

ing , August 1994, pp. 151-160.

[8] N. Shavit and D. Touitou, \Software Transactional

Memory", these proceedings.

