
Implementing Wait-Free Objects on Priority-Based Systems�

James H. Anderson, Srikanth Ramamurthy, and Rohit Jain

Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

Wait-free objects are often implemented through the use
of a \helping scheme", whereby one process \helps" one or
more other processes to complete an operation. This paper
presents several new helping schemes that can be generally
applied to e�ciently implement a variety of di�erent objects
on priority-based uniprocessor and multiprocessor systems.
Examples of such systems include lock-free multiprocessor
kernels and real-time systems. Our helping schemes reduce
overhead by exploiting the way in which processes are sched-
uled in priority-based systems. We illustrate the use of these
schemes by presenting wait-free implementations of linked
lists and a multi-word compare-and-swap primitive.

1 Introduction

We consider the implementation of wait-free shared objects
on multiprogrammed systems in which processes are sched-
uled for execution based on priority. We assume that pro-
cesses are scheduled on a per-processor basis and do not mi-
grate between processors during object accesses. Our work
extends research reported in a recent paper by Ramamurthy,
Moir, and Anderson [12] pertaining to the implementation
of wait-free objects in priority-based real-time systems. Al-
though Ramamurthy et al. targeted real-time systems as the
main application area for their work, their results actually
are applicable to any priority-based system, as long as the
following conditions are satis�ed: (i) on a given processor, a
process p may preempt another process q only if p has higher
priority than q; and (ii) a process's priority can change over
time, but not during any object access. A good example
of a non-real-time system that satis�es these requirements
is a multiprocessor kernel. As long as interrupts in such
a system are handled in a priority-based manner, and ob-
jects are pinned in memory, conditions (i) and (ii) apply
(viewing the code to handle a given interrupt as a distinct
\process"). Wait-free and lock-free kernel data structures
facilitate the design of re-entrant kernels, because their use
eliminates the possibility of deadlock resulting from a pre-
empted object access. Examples of lock-free kernels include
the Synthesis Kernel of Massalin and Pu [10] and the Cache
Kernel of Greenwald and Cheriton [7].

One of the main lessons to be learned from [12] is that

�Work supported, in part, by NSF grants CCR 9216421 and CCR
9510156, and by a Young Investigator Award from the U.S. Army
Research O�ce, grant number DAAH04-95-1-0323. The �rst author
was also supported by an Alfred P. Sloan Research Fellowship.

many problems that are either di�cult or impossible to solve
in a wait-free manner in asynchronous systems can be solved
e�ciently in a wait-free manner in priority-based systems.
The reason for this is that, in a priority-based system, opera-
tions of high-priority processes automatically appear atomic
to low-priority processes running on the same processor.
(This is illustrated quite well by Figure 2, which we con-
sider below.) This fact can be exploited to greatly simplify
object implementations.

In [12], several wait-free algorithms are presented for im-
plementing consensus and compare-and-swap (CAS) objects
in priority-based systems. In this paper, we consider objects
that are more sophisticated than these, and present several
new algorithmic techniques that can be generally applied
in priority-based systems to construct wait-free implemen-
tations of objects. We illustrate the use of these techniques
by presenting wait-free implementations of linked lists and
a multi-word compare-and-swap (MWCAS) primitive. Our re-
sults are summarized in Figure 1.

In the �rst part of the paper, we focus our attention
on results pertaining to priority-based uniprocessor systems.
We begin by presenting a wait-free implementation of MWCAS.
In this implementation, a W -word MWCAS operation is exe-
cuted in �(W) time, which is asymptotically optimal. The
MWCAS implementation presented here is based on one pre-
sented previously by Anderson and Ramamurthy [4]. Ander-
son and Ramamurthy's implementation is not strictly faith-
ful to the semantics of MWCAS. In particular, it allows a MWCAS
operation to fail if it is overlapped by another MWCAS oper-
ation that accesses a common word. For the case in which
the overlapping operation itself fails, it may be impossible
to correctly linearize the operations in accordance with the
semantics of MWCAS (see [4] for details).1 In the implemen-
tation presented here, this problem is corrected.

After considering MWCAS, we present an implementation
of linked lists for priority-based uniprocessor systems. Our
list implementation is based on a novel technique, which we
call incremental helping. This technique is of general util-
ity when implementing wait-free objects on priority-based
systems, and is also used in our multiprocessor implementa-
tions. The general idea of incremental helping is illustrated
in Figure 2. Before beginning an operation, a process must
�rst \announce" its intentions by writing information about
its operation into a shared \announce variable". Before a
process is allowed to do this, however, it must �rst help any
previously-announced operation (on its processor) to com-
plete execution. This scheme requires only one announce
variable per processor. In contrast, previous constructions
for asynchronous systems require one announce variable per
process [2, 3, 8]. In addition, with incremental helping, each
process helps at most one other process, while in helping

1For the application considered by Anderson and Ramamurthy,
this is not a problem. Their MWCAS algorithm is intended to be used
along with a real-time scheduling scheme that ensures that su�cient
processor time exists to retry failed operations.

Uniprocessor Implementations Multiprocessor Implementations
Primitives Used Worst-Case Time Primitives Used Worst-Case Time

MWCAS CAS �(W) CAS, CCAS �(2PW)
linked lists CAS �(2T) CAS, CCAS �(2PT)

Figure 1: Summary of results. P denotes the number of processors in a system. W denotes the number of words accessed by a MWCAS.

T is the worst-case time for a list operation. The constant 2 is used in the � notation to more accurately reect the cost of helping.

Announce

Announce

Announce

Perform own op

p

q
Help p

Help p

Quit helping

Return

r

Perform own op.

.
.

Figure 2: Process p detects no previously-announced process, so it announces its operation. Before p can complete its operation, it is

preempted by process q. Process q begins to help p to complete its operation, but before it �nishes, it is preempted by process r. Process

r detects that p's operation has been announced but is not �nished, so it too helps p. It then announces its own operation, executes it,

and relinquishes the processor to process q. Process q detects that p's operation is complete, so it announces its own operation, executes

it, and relinquishes the processor to p. Process p detects that its operation has been completed, so it returns.

schemes for asynchronous systems, each process helps all
other processes in the worst case.

In the second part of the paper, we consider the imple-
mentation of wait-free objects on priority-based multipro-
cessors. Again, we present implementations of both a MWCAS
primitive and linked lists. As mentioned above, we make
use of incremental helping in our multiprocessor implemen-
tations. In addition, we use two other new techniques, which
we call cyclic helping and priority helping, respectively. The
notion of cyclic helping is adapted from previous work of
Anderson and Moir [3]. In this scheme, the processors are
thought of as if they were part of a logical ring. Processes
are helped through the use of a \help counter", which cycles
around the ring. To advance the help counter from proces-
sor R to the next processor on the ring, a process must �rst
help the currently-announced process on processor R. In or-
der to perform an operation, a process does the following: it
�rst repeatedly advances the help counter until any pending
announced (lower-priority) operation on its own processor
has been completed; it then announces its own operation; it
then repeatedly advances the help counter until is own op-
eration has been completed. Priority helping is a variation
on cyclic helping in which the help counter, instead of being
advanced around a logical ring, is always advanced to the
processor with highest-priority pending operation.

Our multiprocessor implementations make use of a spe-
cial instruction, which we call conditional compare-and-swap
(CCAS). CCAS is a restriction of the more well-known two-
word compare-and-swap (CAS2) instruction in which one
word is a compare-only version number. This version num-
ber is incremented after each wait-free operation and is as-
sumed to not cycle during any single operation.2 Unfor-
tunately, CAS2 is directly provided on only a few existing
processors (e.g., Motorola 68030 and 68040). Algorithms for
implementing CAS2 are known [2, 5, 9], but none are e�cient
enough to be practically applied. An e�cient hardware-
based implementation of CAS2 was recently proposed by

2This is reasonable for the kinds of applications targeted by our
work. For example, in real-time systems, each task must complete
execution by a speci�ed deadline. Unless deadlines are unrealistically
large, it would be impossible for a 32- or 64-bit counter to cycle during
the execution of one task.

Greenwald and Cheriton [7], but no current machines sup-
port this implementation. An operating-system-based ap-
proach to implementing CAS2 has been proposed by Bershad
[6], but this approach can be problematic to actually imple-
ment (see [7] for details). Fortunately, CCAS appears to be
much easier to implement than CAS2. If CAS is available,
then CCAS can be implemented in just a few instructions.

When using cyclic helping to implement an object that
is shared across P processors, the time to perform an opera-
tion is proportional to 2 �P �T , where T is the time required
for the longest operation. With previous universal construc-
tions, the time to perform an operation in the worst case is
2 � N � T , where N is the number of processes sharing an
object.3 If P were very large, then our algorithms would
not be much better than previous ones. However, our main
interest is in real-time systems, and it is much more likely
that such systems would be implemented on a workstation-
class machine, as opposed to a very large multiprocessor.
On multiprocessor workstations, the number of processors
is typically small to moderate (probably 16 or fewer proces-
sors). Even on a large machine, the likelihood of having an
object that is shared across more than a moderate number
of processors is probably small. In the latter part of the
paper, we present performance results that show that our
multiprocessor linked-list implementation is more e�cient
than alternative implementations on priority-based multi-
processor workstations.

In work on multi-word synchronization primitives like
MWCAS, Israeli and Rappoport introduced the important no-
tion of disjoint access parallelism [9]. For a wait-free imple-
mentation to be disjoint access parallel, a process should
only help other processes with which it has a transitive
conict.4 Our multiprocessor MWCAS implementation does
not have this property. However, while ensuring parallelism
in this context is of theoretical importance, practical algo-
rithms that are disjoint access parallel have remained elu-

3For example, in Herlihy's construction [8], two rounds of helping
may be required, with N processes being helped per round.

4For instance, if processes p, q, and r concurrently perform MW-
CAS operations on words w and x, x and y, and y and z, respectively,
then p has a direct conict with q and transitive conicts with both
q and r.

type =� Assume N processes, each MWCAS accesses at most B words �=
wordtype = record val : valtype; cnt : 0::B � 1; valid : boolean; pid : 0::N � 1 end; =� All of these �elds are

stored in one word; the val �eld is application dependent; the valid �eld should be initially true �=

addrlisttype = array[0::B � 1] of pointer to wordtype; =� Addresses to perform MWCAS on �=
vallisttype = array[0::B � 1] of valtype =� List of old and new values for MWCAS �=

shared variable

Status: array[0::N � 1] of integer initially 0; =� Status of process's latest MWCAS: 0 if pending, 1 if invalid, 2 if valid �=
Save: array[0::N � 1; 0::B � 1] of valtype =� Used to temporarily save value from a word during a MWCAS on that word �=

private variable =� For process p, where 0 � p < N �=
init , assn : array[0::B � 1] of wordtype; =� Values initially read and assigned to words by MWCAS �=
i,j: 0::B + 1; retval : boolean; word : wordtype; val : valtype

procedure MWCAS(numwds: 0::B; addr : addrlisttype;
old , new : vallisttype) returns boolean

1: Status[p] := 0;
2: i := 0;
3: while i < numwds ^ Status[p] = 0 do
4: init[i] := �addr[i];
5: if init[i]:valid _ Status[init [i]:pid] = 2 then
6: val := init[i]:val

else

7: val := Save[init [i]:pid; init[i]:cnt]
�;

8: Save[p; i] := val;
9: if old[i] 6= val then

10: Status[p] := 1
else

11: assn[i] := (new [i]; i; false; p);
12: if :CAS(addr[i]; init[i]; assn[i]) then
13: Status[p] := 1

�;
14: i := i+ 1

�

od;

=� MWCAS continued �=
15: retval := CAS(&Status[p]; 0; 2);
16: for j := 0 to i � 1 do

17: if old[j] 6= new [j] ^ retval then

18: CAS(addr[j]; assn [j]; (new [j]; 0; true; p));
19: if :init[j]:valid then CAS(&Status[init [j]:pid]; 0;1) �
20: else if :CAS(addr[j]; assn[j]; init[j]) then
21: if :init[j]:valid then CAS(&Status[init [j]:pid]; 0;1) �

�

od;
22: return(retval)

procedure Read(addr : pointer to wordtype) returns valtype
23: word := �addr;
24: if word:valid _ Status[word:pid] = 2 then

25: return(word:val)
else

26: return(Save[word:pid;word:cnt])
�

Figure 3: Wait-free implementation of MWCAS for priority-based uniprocessors.

sive. Indeed, if existing algorithms are any indication [2,
5, 9], disjoint access parallelism, while improving best-case
complexity, results in enormous worst-case complexity. In
our multiprocessor MWCAS implementation, a W -word MWCAS

operation on P processors requires O(PW) time. When
considering multiprocessor workstations, it is reasonable to
consider P to be a constant. Under this assumption, our
implementation is asymptotically optimal.

While our techniques are not universal in the sense that
one could simply \plug in" sequential object code to obtain
a concurrent wait-free implementation, they do seem gen-
eral enough to be easily applied to implement a variety of
objects. It is worth pointing out that most universal object
constructions impose a speci�c structure on an object, e.g.,
having a single object pointer that must be modi�ed to per-
form an update. Our multiprocessor constructions impose
no speci�c structure: an object can consist of any number
of words linked by pointers. Because of this, we are able
to design helping mechanisms that allow a process to begin
helping a partially-completed operation at an intermediate
point in its execution.

The rest of this paper is organized as follows. In Section
2, we present our uniprocessor implementations. Then, in
Section 3, we present our multiprocessor implementations
and discuss some preliminary performance results. We end
with concluding remarks in Section 4. Due to space limita-
tions, we have deferred formal proofs to the full paper. Our
informal descriptions of the implementations do cover most
of the formal properties needed for full proofs.

2 Uniprocessor Algorithms

In this section, we present wait-free implementations of MWCAS
and linked lists for priority-based uniprocessors.

2.1 Multi-Word Compare-and-Swap

Figure 3 depicts our uniprocessor implementation of MWCAS
and an associated Read primitive. The implementation re-
quires a CAS instruction. A MWCAS operation takes as input
an integer parameter indicating the number of words to be
accessed, an array containing the addresses of the words to
be accessed, and arrays containing old and new values for
these words. We assume that process identi�ers range over
f0; : : : ;N � 1g and that each MWCAS operation accesses at
most B words. A process reads a word by invoking the
Read procedure. The words that may be accessed by MWCAS

and Read are assumed to be of type wordtype. A word of
this type consists of an application-dependent val �eld, and
three �elds of control information, cnt (dlogBe bits), valid
(one bit), and pid (dlogNe bits).

We explain the MWCAS procedure by focusing on a MWCAS

operation by process r. Such an operation is executed in
three phases. In the �rst phase (lines 1 through 14), the

k
th word that is accessed by r | call it w | is updated so
that its val �eld contains the desired new value, the cnt �eld
contains the value k, the valid �eld is false, and the pid �eld
contains the value r (see lines 11 and 12). In addition, the
old value of w is saved in the shared variable Save[r; k] (line
8). The pid and cnt �elds of w are used by other processes
to retrieve the old value from the Save array. The pid �eld
is also used as an index into the Status array, the role of
which is described below.

To understand the \e�ect" the �rst phase has on the
words that are accessed, it is necessary to understand how
each word's \current value" is de�ned. Let w denote a vari-
able of type wordtype that is accessible by a MWCAS or Read
operation. Then, the current value of w, denoted Val(w), is
de�ned as follows.

val cnt valid pid

x: 12 2 true 2 Val(x) = 12

y: 3 1 false 3 Val(y) = 22

z: 8 3 true 4 Val(z) = 8

Save[3; 1]: 22 Status[3]: 0

(a)

val cnt valid pid

x: 5 0 false 4 Val(x) = 12

y: 10 1 false 4 Val(y) = 22

z: 17 2 false 4 Val(z) = 8

Status[3]: 0 Save[3;1]: 22 Status[4]: 0

Save[4; 0]: 12 Save[4;1]: 22 Save[4;2]: 8

(b)

val cnt valid pid

x: 5 0 true 4 Val(x) = 5

y: 10 0 true 4 Val(y) = 10

z: 17 0 true 4 Val(z) = 17

Status[3]: 1 Save[3; 1]: 22 Status[4]: 2

(c)

val cnt valid pid

x: 12 2 true 2 Val(x) = 12

y: 3 1 false 3 Val(y) = 22

z: 56 4 true 9 Val(z) = 56

Status[3]: 0 Save[3; 1]: 22 Status[4]: 1

(d)

3Proc.

4Proc.

3Proc.

4Proc.

9Proc.

(e) (f)

Figure 4: Process 4 performs a MWCAS operation on words x, y,

and z, with old/new values 12/5, 22/10, and 8/17, respectively.

The contents of relevant shared variables are shown (a) at the

beginning of the operation; (b) after the loop in lines 3..14; (c)

at the end of the operation, assuming success; and (d) at the end

of the operation, assuming failure on word z. The interleavings

that result in (c) and (d) are shown in (e) and (f), respectively.

Val(w) =

n
w:val if w:valid _ Status[w:pid] = 2
Save [w:pid ; w:cnt] otherwise

Observe that Val(w) depends on the value of Status[r]
if w:pid = r. Status[r] is initialized to 0 when a MWCAS

operation of r begins (line 1). If the operation is interfered
with by other MWCAS operations, or if the current value of
some word accessed by the operation di�ers from the old
value speci�ed for that word, then Status[r] is assigned the

value 1 (lines 10, 13, 19, and 21). If Status[r] = 2, then
process r's latest MWCAS operation has succeeded.

With the de�nition of Val(w) in mind, the \e�ect" of
the �rst phase of a MWCAS operation can now be understood.
This phase does not change the current value of any word
that is accessed. However, if this phase is \successful" |
i.e., Status[r] is not assigned the value 1 by any process |
then at the end of the �rst phase, the proposed new value for
each word is contained within the val �eld of that word. The
second phase of a MWCAS operation consists of only one state-
ment: the CAS at line 15. This CAS attempts to both validate
and commit the operation by resetting the value of Status[r]
from 0 to 2. This CAS, if successful, atomically changes the
current value of each accessed word to the desired new value.
The third and �nal phase consists of lines 16 through 22. In
this phase, each word w that is accessed by the MWCAS op-
eration of r is \cleaned up" so that w:pid 6= r _ w:valid

holds. This implies that the current value of word w does
not depend on Status[r]. Hence, when process r performs
a subsequent MWCAS operation, reinitializing Status[r] does
not change the current value of any word.

Lines 19 and 21 are executed to invalidate any pend-
ing lower-priority MWCAS operation that has been interfered
with. Note that such a pending operation exists for word
w if process r detects that w:valid is false. Line 19 is exe-
cuted by process r only if its own operation has succeeded
in changing the value of some word. Line 21 is executed
by process r only if its attempt to \clean up" a word fails.
This failure signi�es that that word has been modi�ed by
a higher-priority process during r's execution, so it is ap-
propriate to invalidate any pending lower-priority operation
that accesses that word.

Example. Figure 4 depicts the e�ects of a MWCAS operation
m by process 4 on three words x, y, and z, with old/new
values 12/5, 22/10, and 8/17, respectively. Inset (a) shows
the contents of various variables just before m begins. Note
that the current value of each word matches the desired old
value. Inset (b) shows relevant variables after the �rst phase
of m has completed, assuming no interferences by higher-
priority processes. The current value of each word is un-
changed. Note that changing the value of Status[4] from 0
to 2 in inset (b) would have the e�ect of atomically chang-
ing the current value of each of x, y, and z to the desired
new value. Inset (c) shows relevant variables at the termi-
nation of m, assuming no interferences by higher-priority
processes. The current value of each word is now the de-
sired new value, and all valid �elds are true (so the value
of Status[4] is no longer relevant). Before returning, pro-
cess 4 updates Status[3] (line 19 of Figure 3) to indicate
that process 3 (which must be of lower priority) has been
interfered with. Inset (d) shows relevant variables at the
termination of m, assuming an interference on word z by
process 9 (which must be of higher-priority) with new value
56. Status[4] is now 1, indicating the failure of process 4's
operation. Status[3] is left unchanged in this case. Observe
that process 4 has successfully restored the original values
of words x and y. Insets (e) and (f) show the operation in-
terleavings corresponding to insets (c) and (d), respectively.

2

Our uniprocessor MWCAS implementation is disjoint ac-
cess parallel [9] and is much simpler and more e�cient than
previous disjoint access parallel algorithms for asynchronous
systems [2, 5, 9]. One disadvantage of our implementation is
that certain bits within each accessed word must be reserved
for control information (the cnt , valid , and pid �elds). The

type nodeptr = record ptr : pointer to nodetype; bit : 0..1 end;
nodetype = record key: keytype; val : valtype; next : nodeptr end;
anntype = record ptr : pointer to nodetype; pid : 0::N end

partype = record node: pointer to nodetype; key: keytype; op: (ins, del, sch) end

shared variable

First , Last : nodetype; =� List's sentinel nodes �=
Par : array [0::N � 1] of partype; =� Par[p] stores parameters to process p's operation �=
Ann : anntype =� Variable in which current operation is announced; Ann :pid = N when no operation is pending �=
Rv : array [0::N] of 0..2 =� Return values: 0 means pending; 1 means false; 2 means true �=

initially First = (�1; 0; (&Last; 0)) ^ Last = (1; 0; (NIL;0))

private variable =� For process p, where 0 � p < N �=
pid : 0::N ; curr : pointer to nodetype; nextp, nextnextp: nodeptr ; key, nextkey: keytype

procedure Insert(key: keytype; val : valtype)
1: Par[p]:node := nodealloc();
2: �Par[p]:node := (key; val; (NIL; 0));
3: Par[p]:key := key;
4: Par[p]:op := ins;
5: Do op()

procedure Delete(key: keytype)
6: Par [p]:key := key;
7: Par [p]:op := del;
8: Par [p]:node := NIL;
9: Do op();
10: nodefree(Par [p]:node)

procedure Search(key: keytype)
11: Par[p]:key := key;
12: Par[p]:op := sch;
13: Do op();
14: return(Rv [p] = 2)

procedure Do op()
15: pid := Ann :pid;
16: if pid < N ^ Rv [pid] = 0 then

17: Help(pid)
�;

18: Rv[p] := 0;
19: Ann:ptr := &First ;
20: Ann :pid := p;
21: Help(p);
22: Ann :ptr := &First ;
23: Ann :pid := N

procedure Findpos(key: keytype; pid : 0::N) returns pointer to nodetype

24: while Rv [pid] = 0 do
25: curr := Ann :ptr;
26: nextp := curr�>next;
27: nextkey := nextp:ptr�>key;
28: if Rv [pid] 6= 0 _ nextkey � key _ nextp:ptr = &Last then
29: return(curr)

�;
30: Ann :ptr := nextp:ptr

od;
31: return(&First)

procedure Help(pid : 0::N � 1)
32: key := Par[pid]:key;
33: curr := Findpos(key;pid);
34: nextp := curr�>next;
35: nextkey := nextp:ptr�>key;
36: nextnextp := nextp:ptr�>next;
37: if Rv [pid] = 0 then
38: case Par [pid]:op of

39: ins: new := Par[pid]:node;
40: if nextkey 6= key then

41: CAS(&(new�>next); (NIL; 0); (nextp:ptr; 0));
42: CAS(&(curr�>next);nextp; (nextp:ptr;1));
43: nextp:bit := 1;
44: if Rv [pid] = 0 then

45: CAS(&(curr�>next); nextp; (new;0))
46: else CAS(&(curr�>next); nextp; (nextp:ptr; 0))

� �

47: del : if nextkey = key then

48: CAS(&(curr�>next);nextp; (nextnextp:ptr; 0));
49: Par[pid]:node := nextp:ptr

�

50: sch : if nextkey 6= key then Rv [pid] := 1; return �

esac;
51: Rv [pid] := 2

�

Figure 5: Wait-free implementation of linked-lists for priority-based uniprocessors.

multiprocessor implementation of Section 3.1 does not re-
quire such control information and could be applied within
a uniprocessor system. However, this implementation re-
quires CCAS and is not disjoint access parallel.

2.2 Linked Lists

We now turn our attention to the linked-list implementa-
tion for priority-based uniprocessors shown in Figure 5. We
begin our description of this implementation by explaining
the shared variables that are used. First and Last are sen-
tinel nodes at the beginning and end of the list, respectively.
Par [p] is used to record the parameters of a list operation
by process p. Par [p]:node stores the address of a node that
is to be (has been) inserted (deleted). Par [p]:key is used
to store the key of a node to be deleted or searched for.
Par [p]:op records the type of operation in progress. The
implementation is based on the idea of incremental helping,
as discussed in the introduction and depicted in Figure 2.
The shared variable Ann:pid is used to record the process
currently being helped. Ann:pid equals N when there is no
process to help. In our list implementation, care is taken to
ensure that work is not repeated by multiple processes when
helping. All list operations require a scan of the list, and the
shared variable Ann:ptr records the last node successfully
scanned. By using Ann:ptr, we can avoid restarting a scan

at the beginning of the list when helping a partially com-
pleted operation. Rv[p] records the return value of process
p's latest list operation.

The implementation consists of six procedures, Insert ,
Delete, Search, Do op, Help, and Findpos. The �rst three
of these procedures are invoked to perform a list opera-
tion. Each performs some operation-speci�c initiatization
and then calls Do op. In Do op, a check is made to see
if there exists a (lower-priority) process with an announced
operation that is un�nished (line 16). If such an operation
exists, it is helped by calling Help. Then, the process calling
Do op announces its own operation (lines 18-20) and calls
Help to execute it. Before returning, Ann is updated to
indicate that no process needs help (lines 22 and 23).

As mentioned above, each list operation requires a scan
of the list. This scan is performed by Findpos. A process
p invokes Findpos(k; r) to help perform the scan associated
with an operation of process r. The scan attempts to locate
the predecessor of the �rst node in the list whose key is at
least k. During an iteration of the loop at lines 24-30, the
last node successfully scanned during the current operation
is read (line 25). A pointer to this node is returned if the key
of its successor is at least k, or if the scan reaches the end of
the list (line 28-29). Otherwise, the successor is recorded as
the last node successfully scanned (line 30). IfRv [r] becomes
nonzero at any point during the scan, then r's operation

must have been completed by some higher-priority process.
In this case, Findpos returns a pointer to First , ensuring
that the pointers can be safely dereferenced in lines 34-36.

Most of the work that is required to execute an operation
is performed by the Help procedure. Consider a process p
that invokes Help to help some process r (p and r could be
the same process). Suppose that p reads key k in line 32
and that its subsequent call to Findpos returns a pointer
to node m, whose successor n is the �rst node with key at
least k. These steps and some additional initialization are
performed in lines 32-36. After all initialization has been
performed, a check is made to determine if r's operation has
been completed by some higher-priority process (line 37).
If the operation has not been completed, then p attempts
to complete it by executing one of the three cases in lines
38-50. The case of search is simple: Rv [r] is simply updated
to indicate whether node n's key is k (line 50). We now
consider insert and delete.

In the case of an insert operation, the new node to be
inserted is �rst read (line 39). If the key is not already
in the list, then the next �eld of the new node is made to
point to n (line 41). Then, the bit �eld of m's next �eld
is changed from 0 to 1 without modifying the pointer (line
42). If r's operation is not completed by a higher-priority
process before line 44, then p attempts to complete r's insert
by swapping in the new node and resetting m's bit �eld (line
45). Note that if a high-priority process preempts p and
helps r after line 42 but before line 45 or 46, it will reset m's
bit �eld before relinquishing the processor, ensuring that p's
CAS at either line 45 or 46 fails. To complete the explanation,
we must show that if p is preempted by a process that helps
r between lines 37 and 42, then the CAS operations at lines
41 and 42 do not corrupt the list. If p is preempted prior
to line 41, then by the time it resumes execution, the node
it is attempting to insert is either in the linked list or the
free list (it may have been deleted by some higher-priority
process). In either case, this node's next pointer is not NIL
(assuming the free list is implemented with sentinels), so the
CAS at line 41 has no e�ect. If p is preempted prior to line
42, then when it resumes execution, the CAS at line 42 will
attempt to set the bit �eld of the node p is trying to insert.
However, p will subsequently fail the test at line 44 and clear
this bit �eld at line 46 (if it has not been cleared already by
a higher-priority process).

In the case of a delete operation, if the key of node n
is k, then the next �eld of node m is assigned the value of
the next �eld of n (line 48). In addition, the address of the
deleted node is stored in Par [r]:node (line 49) so that pro-
cess r may subsequently deallocate this node (line 10). To
complete the explanation of delete, we must show that if p
is preempted between lines 37 and 48, then the CAS at line
48 does not corrupt the list. Note that this CAS can succeed
only if n is m's successor. Now, suppose that process p is
preempted before executing its CAS at line 48, and suppose
that while it is preempted, node n is deleted and subse-
quently reinserted as m's successor. It would seem that p
could potentially delete n when it resumes execution, cor-
rupting the list. Fortunately, this cannot happen, because a
node cannot be reinserted until it has been deallocated by
the process that deletes it (line 10) and subsequently real-
located by the process wanting to insert it (line 1). In the
case under consideration, node n will not be deallocated un-
til process r executes line 10, which is after p returns from
the Help procedure.

Like our uniprocessor MWCAS implementation, our unipro-
cessor list implementation requires control information to be

packed within a word (in this case, the bit �eld of nodeptr).
Our multiprocessor list implementation does not require such
control information and could be applied within a unipro-
cessor system (at the expense of having to use CCAS).

3 Multiprocessor Algorithms

In this section, we present wait-free implementations of
MWCAS and linked lists for priority-based multiprocessors. As
mentioned previously, our multiprocessor implementations
use CCAS. In Section 3.3, we show that if CAS is available,
then CCAS can be easily implemented in just a few instruc-
tions. Figure 8(a) in Section 3.3 de�nes the semantics of
CCAS.

3.1 Multi-Word Compare-and-Swap

Our MWCAS implementation for multiprocessors is shown in
Figure 6. We begin our description of this implementation
by considering the shared variables that are used. Ann[R]
is the announce variable for processor R. Incremental help-
ing is used on each processor, so only one announce variable
per processor is required. Ann[R] equals N when there is
no process to help on processor R. Par [p] is used to store
parameters associated with MWCAS operations of process p.
These parameters include the number of words that are ac-
cessed, addresses of these words, and lists of old and new
values. Rv [p] is set to 0 when a MWCAS operation of pro-
cess p begins, is set to 1 when the compare phase of such
an operation is completed, and is set to 2 or 3 when such
an operation completes. A value of 2 (3) signi�es a return
value of true (false). The shared variable V is a compare-
only version number that is passed to CCAS. It consists of a
counter �eld cnt and a boolean �eld needhelp. V:cnt is as-
sumed to not cycle during any wait-free operation. The im-
plementation is based on the idea of cyclic helping described
in the introduction. With this helping scheme, processors
are considered in turn, as if they formed a logical ring. A
\help counter" is used to indicate the current processor un-
der consideration. The value of the help counter is given
by V:cnt mod P . P here is de�ned to be the total number
of processors in the system. When the help counter is ad-
vanced to point to processor R, V:needhelp is set to true i�
there is a process on processor R that needs to be helped. A
process is allowed to help a process on processor R only if it
detects that (V:cnt mod P = R) ^ V:needhelp holds. Thus,
the decision whether or not to help a process on processor
R is �xed when the help counter is advanced to point to R.
Since this decision is made atomically when the help counter
is advanced, there can be no disagreement among processes
as to whether a process on processor R should be helped.

Process p performs a MWCAS operation by calling the MWCAS
procedure. After some initialization (lines 1-2), two rounds
of cyclic helping are performed (lines 4-14). During the
�rst round, p repeatedly advances the help counter until any
pending announced (lower-priority) operation on its proces-
sor has been completed. It then announces its own operation
(line 14) and performs a second round of cyclic helping in
order to complete its own operation. The loop at lines 6-
13 performs one round of cyclic helping. The test at line 8
causes the loop to terminate once the currently-announced
operation on p's processor has been completed and the help
counter has been advanced. If the help counter points to a
processor that has a process that needs help, then the Help
procedure is invoked at line 9. Lines 10-13 advance the help
counter to the next processor on the logical ring. Line 15

type wdlist = array[0::B � 1] of wdtype; =� List of old and new values for MWCAS �=
addrlist = array[0::B � 1] of pointer to wdtype; =� Addresses to perform MWCAS on �=
partype = record numwds: 1::B; addr : addrlist ; old : wdlist ; new : wdlist end;
vertype = record cnt : 0::C � 1; needhelp: boolean end =� These �elds are stored in one word �=

shared variable

Ann : array [0::P � 1] of 0::N ; =� Ann [R] is announce variable for processor R; equals N if no currently announced operation on R �=
Par : array [0::N � 1] of partype; =� Par [p] stores parameters to operations of process p �=
Rv : array [0::N] of 0::3; =� Rv [p] stores process p's status and return value: 0 means compare phase not completed; : : : �=

=� : : : 1 means compare phase completed but swap phase not completed; 2 means MWCAS returns true; : : : �=
=� : : : 3 means MWCAS returns false; Rv [N] always equals 2 �=

V : vertype =� V:cnt is the version number; V:cnt mod P is the help counter; : : : �=
=� : : : V:needhelp indicates if help is needed on processor currently pointed to �=

initially (8i : 0 � i < P :: Ann [i] = N) ^ Rv [N] = 2

private variable =� For process p, where 0 � p < N running on processor mypr �=
pid , cpid , nxthelp: 0::N ; =� pid is a process on the same processor; cpid is current process to help; nxthelp is next process to help �=
ver : vertype; par : pointer to partype; i : 0::1

procedureMWCAS(numwds: 1::B; addr : addrlist ; old , new : wdlist)
1: Par[p] := (numwds; addr; old;new);
2: Rv[p] := 0;
3: for i := 0 to 1 do
4: pid := Ann [mypr];
5: if pid < N then

6: while true do

7: ver := V ;
8: if Rv [pid] � 2 ^ (ver:cnt mod P 6= mypr _

:ver:needhelp) then break �;
9: if ver .needhelp then Help(ver) �;
10: nxthelp := Ann [ver:cnt + 1 mod P];
11: if nxthelp = N _ Rv [nxthelp] � 2 then

12: CAS(&V ; ver; ((ver:cnt + 1) mod C; false));
13: else CAS(&V ; ver; ((ver:cnt + 1) mod C; true));

�

od

�;
14: Ann [mypr] := p

od;
15: Ann [mypr] := N

procedure Help(ver : vertype)
16: cpid := Ann [ver:cnt mod P];
17: if Rv [cpid] � 2 then return �;
18: par := &Par [cpid];
19: for i := 0 to par�>numwds � 1 do

20: if �par�>addr[i] 6= par�>old[i] then
21: if :CCAS(&V; ver;&Rv [cpid]; 0;3) then break � ;
22: return

�

od;
23: CCAS(&V; ver;&Rv [cpid]; 0;1);
24: for i := 0 to par�>numwds � 1 do

25: if V 6= ver then return �;
26: if Rv [cpid] � 2 then return �;
27: if par�>old[i] 6= par�>new [i] then
28: CCAS(&V; ver; par�>addr[i]; par�>old[i]; par�>new [i])

�

od;
29: CCAS(&V; ver;&Rv [cpid]; 1;2);
30: return

Figure 6: Wait-free implementation of MWCAS for priority-based multiprocessors.

sets the announce variable on p's processor to indicate that
no process currently requires helping.

The Help procedure is called to help a MWCAS operation
m of some process q that is executing on the processor that
is pointed to by the help counter. It can be shown that
the Help procedure is invoked at most P times during each
round of cyclic helping (2P times in total). Lines 19-22 are
executed to check to see if the current value of each word
that is accessed by m matches the desired old value. If a
mismatch is detected, then Rv [q] is set to 3 (line 21); oth-
erwise, Rv [q] is set to 1 (line 23). Lines 24-29 are executed
only if no mismatch was detected. For each word this is
accessed by m, line 28 is executed to assign the desired new
value to that word. As an optimization, line 28 is executed
only if the speci�ed old and new values di�er. The CCAS

operation of line 29 is executed if m successfully completes.
It should be obvious from the description above that each

MWCAS operation takes time proportional to 2 �P �T , where T
is the time required for the longest operation. This bound
applies to all operations, irrespective of priority. In some
applications, it may be advantageous to treat operations of
higher-priority processes with greater urgency. For such ap-
plications a variation of cyclic helping called priority help-

ing can be used. With priority helping, the help counter is
always advanced to the processor with the highest-priority
pending operation. Implementing this scheme requires a few
straightforward changes to lines 10-13. In addition, Ann[R]
needs to be modi�ed to hold both the identity of the cur-
rent process to help on processor R and the priority of the
currently-running process on processor R. (Note these may
be di�erent processes. If a process p on processor R helps
a lower-priority process q on R, then p must �rst record
its own priority in Ann[R]. Otherwise, if there are other an-

nounced operations on other processors with priority greater
than q's but less than p's, p may be delayed unnecessarily.
This is very similar to priority inheritance in real-time sys-
tems [11].) Advancing the help counter in this scheme re-
quires an O(P) scan of the announce array. It can be easily
shown that, with priority helping, if an operation is of high-
est priority, then at most two other concurrent operations
can be completed before it (one on its own processor and
one on another processor).

MWCAS primitives are usually used in conjunction with
read operations, and we have yet to mention how such oper-
ations could be implemented. Using our implementation, if
a MWCAS operation is performed on a set of words, then those
words are updated in sequence. Suppose a process p reads
two variables X and Y in sequence, and these reads overlap
the execution of some MWCAS operation m of another process
q that updates both X and Y . It might be possible for the
read of X to obtain the new value written by m, while the
read of Y obtains Y 's old value. In this case, m does not
\appear" atomic to process p.

There are three solutions to this problem. The �rst is to
do nothing. MWCAS is usually used in the following way: �rst,
a collection of words is read; then, some local computation
is performed; �nally, the words that were read are updated
using MWCAS. If an old value is read (incorrectly) from some
word, then the subsequent MWCAS operation simply fails. No
real harm is done, although performance could be impacted
(in most lock-free and wait-free algorithms these steps would
be repeated until the MWCAS succeeds). The second solution
to the scenario above is to try to force the read ofX to return
X's old value. This requires making old values available
while a MWCAS operation is in progress, which complicates the
implementation. In addition, given the way MWCAS is usually

type nodetype = record key: keytype; val : valtype; next : pointer to nodetype end;
anntype = record ptr : pointer to nodetype; pid : 0::N end;
partype = record node: pointer to nodetype; key: keytype; op: (ins, del, sch) end;
vertype = record cnt : 0::C � 1; needhelp: boolean end =� These �elds are stored in one word �=

shared variable

First;Last : nodetype; =� List's Sentinel Nodes �=
Par : array[0::N � 1] of partype; =� Par[p] stores parameters to process p's operation �=
Rv : array[0::N] of 0..2; =� Return values; Rv [N] always equals 2 �=
Ann : array[0::P � 1] of anntype; =� Ann [R] is announce variable for processor R; = N if no currently announced operation on R �=
V : vertype =� V:cnt is the version number; V:cnt mod P is the help counter; : : : �=

=� : : : V:needhelp indicates if help is needed on processor currently pointed to �=

initially First = (�1; 0;&Last) ^ Last = (1; 0;NIL) ^ (8i : 0 � i < P :: Ann [i] = (&First; N)) ^ Rv [N] = 2

private variable =� For process p, where 0 � p < N running on processor mypr �=
pid , nexthelp: 0::N ; ver : vertype; new , curr , nextp, nextnextp: pointer to nodetype; key, nextkey: keytype; i : 0::1

procedure Do op()
15: Rv[p] := 0;
16: for i := 0 to 1 do
17: pid := Ann [mypr]:pid;
18: if pid < N then

19: while true do

20: ver := V ;
21: if Rv [pid] 6= 0 ^ (ver :cnt mod P 6= mypr _

:ver:needhelp) then break �;
22: if ver.needhelp then Help(ver) �;
23: nexthelp := Ann [(ver:cnt + 1) mod P];
24: if nexthelp = N _ Rv [nexthelp] 6= 0 then
25: CAS(&V; ver; ((ver :cnt + 1) mod C; false))
26: else CAS(&V; ver; ((ver:cnt + 1) mod C; true))

�

od

�;
27: Ann [mypr]:ptr := &First;
28: Ann [mypr]:pid := p

od;
29: Ann [mypr]:pid := N

procedure Findpos(key: keytype; ver : vertype; help: 0::N)
returns pointer to nodetype

30: while Rv [help] = 0 do
31: curr := Ann [ver:cnt mod P]:ptr ;
32: nextp := curr�>next;
33: if V 6= ver then break �;
34: nextkey := nextp�>key;
35: if Rv [help] 6= 0 _ nextkey � key _

nextp = &Last then return curr �;
36: CCAS(&V; ver;&Ann [ver:cnt mod P]:ptr; curr; nextp)

od;
37: return &First

procedure Help(ver : vertype)
38: pid := Ann [ver:cnt mod P]:pid;
39: key := Par[pid]:key;
40: curr := Findpos(key; ver; pid);
41: if V 6= ver then return �;
42: nextp := curr�>next;
43: if V 6= ver then return �;
44: nextnextp := nextp�>next;
45: nextkey := nextp�>key;
46: if Rv [pid] = 0 then

47: case Par [pid]:op of

48: ins: if nextkey 6= key then

49: new := Par[pid]:node;
50: CCAS(&V; ver;&(new�>next);NIL; nextp);
51: CCAS(&V; ver;&(curr�>next);nextp;new)

�

52: del : if nextkey = key then

53: CCAS(&V; ver;&Par [pid]:node;NIL;nextp);
54: CCAS(&V; ver;&(curr�>next);nextp;nextnextp)

�

55: sch : if nextkey 6= key then

56: CCAS(&V; ver;&Rv [pid]; 0;1);
57: return

�

esac;
58: CCAS(&V; ver;&Rv [pid]; 0;2)

�

Figure 7: Wait-free implementation of linked-lists for priority-based multiprocessors. Insert, Delete, and Search are as given in Figure
5, with \(NIL;0)" replaced by \NIL" in line 2 of Insert.

used, forcing a read by a process to return an old value is
rather pointless, because it simply forces a subsequent MWCAS
by that process to fail. The third solution is to include reads
in the helping scheme. Before a read can be performed, it
is only necessary that the help counter be advanced by one.
This ensures that any partially-completed MWCAS is �nished
by the time the next read is performed. With this scheme,
each read requires time proportional to 2 � T .

The implementation described in this subsection is ob-
viously not disjoint access parallel [9], but is much simpler
and more e�cient than implementations that are [2, 5, 9].
Some limited degree of disjoint access parallelism could be
achieved with our implementation by using a separate ver-
sion counter for each set of MWCAS operations that may po-
tentially transitively conict.

3.2 Linked Lists

Our linked-list implementation for multiprocessors is shown
in Figure 7. It uses many of the same mechanisms used
in our previous implementations. The Insert , Delete, and
Search are the same as de�ned previously in Figure 5, and

the Do op procedure is almost identical to the Do op pro-
cedure of Figure 6.

The Findpos procedure of Figure 7 di�ers from the one
in Figure 5 in only three ways. First, curr is updated using
the announce entry of the processor currently being helped
(line 31), whereas previously there was only one announce
entry for all the processes. Second, a check of V has been
inserted at line 33. This check is needed to ensure that
nextp can be safely dereferenced at line 34. A process can
assign nextp := NIL at line 32 only if the scanned node
has been deallocated and subsequently set to NIL in line 2
of the Insert procedure by another process. However, the
scanned node can be deallocated only after V has been incre-
mented. Third, the appropriate announce entry is updated
using CCAS (line 36) rather than by means of a simple write.
This ensures that a \late" update by a process that was
preempted and then resumed has no e�ect.

The changes to the Help procedure in Figure 5 are sim-
ilar to those described for Findpos: checks of V have been
inserted (lines 41 and 43 of Figure 7) and updates are now
performed using CCAS. Since CCAS is now being used, there
is no need for the bit �eld that is updated in lines 41-46 of

procedure CCAS(� � �)
h if �V 6= ver then return false �;
if �X 6= old then return false �;
�X := new;
return true i

(a)

procedure CCAS(� � �)
1: x := �X;
2: if x 6= old then return false �;
3: hh if �V 6= ver then return false �;
4: return(CAS(X; x; (new :val; x :cnt + 1))ii

(b)

procedure CCAS(� � �)
1: if �X 6= old then return false �;
2: hh if �V 6= ver then return false �;
3: return(CAS(X; old; new))ii

(c)

Figure 8: Parameters to CCAS are CCAS(V : pointer to integer; ver : integer; X : pointer to valtype; old;new : valtype), where
valtype is some single-word type. (a) De�nition of CCAS. (b) Implementation using small counter �eld. (c) Implementation using delays.

Figure 5. As a result, the code for the insert case actually
becomes a bit simpler.

3.3 Implementing Conditional Compare-and-Swap

In this subsection, we show how to implement the CCAS in-
struction. This instruction is de�ned in Figure 8(a). The
angle brackets in this �gure indicate that CCAS is atomic. As
the �gure shows, CCAS is a restriction of the more well-known
two-word compare-and-swap (CAS2) instruction in which one
word is a compare-only version number (given by V in the
�gure). This version number is incremented after each wait-
free operation and is assumed to not cycle during any single
operation, i.e., it can be viewed as an unbounded integer.5

Unfortunately, as mentioned in the introduction, CAS2 is not
widely available in hardware and is di�cult to implement in
software. However, CCAS appears to be much easier to im-
plement than CAS2. Figures 8(b) and 8(c) give two possible
implementations.

In Figure 8(b), the �X parameter is tagged with a small
counter �eld. X is assumed here to point to a shared variable
that is updated within the cyclic or priority helping schemes
by means of CCAS operations | it is only updated by such
operations. The double angle brackets around lines 3 and 4
indicate that these lines are executed without preemption.
This could be ensured in practice by either disabling inter-
rupts or by having the operating system roll back a process
to line 3 if it is preempted at line 4. The counter X�>cnt

is assumed to be large enough so that it does not cycle dur-
ing a single round of helping (i.e., helping one operation) or
between the execution of lines 3 and 4 by any process. Note
that, because lines 3 and 4 are executed without preemption,
only a small number of bits for X�>cnt are required (e.g.,
on an 8-processor machine, three or four bits would proba-
bly su�ce). This is obviously important, since the counter
is being packed within a word.

It is clearly in accordance with the semantics of CCAS to
return from either line 2 or line 3 or to return false from
line 4, so consider the case in which the CAS at line 4 returns
true. Note that line 4 is reached only after passing the test
at line 3. In our object implementations, passing this test
signi�es that other processes have not yet advanced the help
counter to another processor. Because X�>cnt cannot cycle
during a single round of helping or between lines 3 and 4, it
follows that the CAS at line 4 succeeds only when it should.

All of our object implementations have the property that
a variable �X that is modi�ed by means of CCAS operations is
assigned a sequence of distinct values during a single round
of helping. Thus, it is really not necessary to de�ne X�>cnt

to be large enough so that it does not cycle in one round.
For applications with this property, it is possible to go a
step further and completely eliminate the cnt �eld. This is
accomplished by inserting a delay(�) statement after any

5In our implementations, the version number and a control bit
(needhelp) are packed together in one word. However, for ease of
explanation, we simply consider �V to be an integer here.

code that attempts to increment �V , where � in the worst-
case execution time of lines 3 and 4 in Figure 8(b). With this
change, if �V = ver holds when line 3 is executed, then �X

cannot be modi�ed between lines 3 and 4 by any process
engaged in a round of helping where �V > ver . (In our
object implementations, the delay(�) statement is not even
necessary: enough code is executed between any increment
of �V and subsequent CCAS that modi�es �X to ensure that
at least � time units have passed.) The result is the CCAS

implementation of Figure 8(c). A very desirable property of
this implementation is that it does not require certain bits
of �X to be reserved for control information.

3.4 Performance Results

We have conducted preliminary performance experiments
that compare our multiprocessor wait-free linked-list imple-
mentation to a lock-free list implementation presented re-
cently by Greenwald and Cheriton [7]. We chose their im-
plementation to test against because it is among the most
e�cient linked-list algorithms currently known. The exper-
iments we conducted were performed on a four-processor
SGI-R10000 machine. The priority-based preemption model
was simulated at the user level by inserting prede�ned pre-
emption points into each process. At a preemption point,
a process randomly decides whether to relinquish its pro-
cessor. The code was designed to ensure that preemptions
occur in a priority-based manner. It is important to note
that simulating priority-based preemptions in this way only
approximates the behavior of a true priority-based system.

Our algorithm uses CCAS and Greenwald and Cheriton's
uses CAS2, while the SGI-R10000 provides only CAS. How-
ever, we were able to e�ciently implement CCAS and CAS2

using the approach given in Figure 8(c). (In the lock-free
list implementation, CAS2 is used in manner that is similar
to how CCAS is used.) In the version of our algorithm that
was tested, the Findpos procedure was optimized to perform
a CCAS instruction once for every 100 nodes scanned.

In our experiments, the total time for the processes to
perform a total of 50,000 insertion/deletion operations on a
sorted list was measured. Runs were obtained for various
list sizes ranging from 200 to 2,000 elements. (For smaller
lists, we were not able to get accurate timing �gures because
computation times were too short compared to the granu-
larity of the timing routines.) The total time required for
our algorithm was typically 1.5 to 2 times higher than that
required for the lock-free algorithm (with 1.5 being more
typical). Another lock-free list implementation, which uses
only CAS, was recently proposed by Valois [13]. Although
we did not test against Valois' algorithm, Greenwald and
Cheriton report that their algorithm is faster than his al-
gorithm by a factor of about ten under high contention [7].
Based on this, we believe that our algorithm would perform
better than Valois' algorithm on a priority-based system.

The fact that our algorithm loses to Greenwald and Cheri-
ton's algorithm does not come as a surprise, because in their
algorithm, each operation executes as a very simple lock-free

retry loop, which can be expected to require little overhead
in the average case. It is important to keep in mind, how-
ever, that our algorithm is wait-free, whereas Greenwald
and Cheriton's algorithm is only lock-free. This has impor-
tant implications for real-time systems (one of the primary
targets of our work). In such systems, tasks must be guar-
anteed to meet their deadlines, and such guarantees require
that tight worst-case execution times for object accesses be
known. With lock-free algorithms, determining such bounds
is not easy, because accurately bounding the cost of retry-
loop interferences that can occur across processors is di�-
cult.

To get some sense of worst-case performance, we modi-
�ed the lock-free algorithm to keep track of the worst-case
number of retries of any retry loop in a run. Worst-case val-
ues of 10 to 30 retries were common. Worst-case values of 30
to 50 retries were less common but still somewhat frequent.
In contrast, with our algorithm implemented on four proces-
sors, the time for each operation is at most eight times that
of an interference-free operation. Given the synthetic na-
ture of our experiments and the way in which we simulated
preemptive scheduling, the retry �gures given here should
be viewed with healthy skepticism. Nonetheless, we believe
that it is reasonable to conclude the following from our re-
sults: (i) the worst-case performance of our algorithm is very
good; (ii) the average-case performance of our algorithm is
reasonable (although not as good as the fastest-known algo-
rithm).

Recent results from a related paper [1] indicate that in
real-time systems, our algorithms may exhibit performance
that is better than is possible when applying them in a non-
real-time system as done here. In particular, it is shown
in [1] that if our cyclic helping scheme is used in conjunc-
tion with a real-time scheduler, then each operation requires
only one traversal of the helping ring, instead of two. In ad-
dition, simulations reported in [1] indicate that in real-time
multiprocessor systems, priority helping is very e�ective and
results in much better performance than cyclic helping. In
contrast, in non-real-time systems, priority helping could
result in the starvation of low-priority processes if high-
priority processes perform operations very frequently.

4 Concluding Remarks

The fact that our helping schemes could be applied to im-
plement di�erent objects with virtually the same code is an
indication that they can be generally applied in priority-
based systems. Other \linear" data structures, like queues,
stacks, and hash tables, are just as straightforward to im-
plement as linked lists. More complex data structures like
balanced trees require a more complicated Help procedure,
but many of the same techniques still apply.

A major goal of our work has been to develop implemen-
tations that could be practically applied, so we have avoided
algorithmic techniques that can be restrictive or ine�cient
when actually implemented. Our avoidance of costly tech-
niques for ensuring disjoint access parallelism is a good ex-
ample of this. As another example, we have tried to avoid
packing control information into the words of a data struc-
ture wherever possible. Many published wait-free algorithms
are di�cult to implement because required control �elds do
not �t into a single memory word. We have also sought
to simplify our implementations by exploiting certain char-
acteristics of priority-based systems. Our assumption that
version numbers do not cycle is a good example of this. This
is reasonable for the applications targeted by our work, and

having to cope with a counter that has cycled would have
unnecessarily complicated our code. Another example can
be found in the CCAS implementations given Section 3.3,
where we exploit the fact that in many priority-based sys-
tems, mechanisms exist for disabling process preemptions.

Acknowledgement: We thank Michael Greenwald for his com-
ments on an earlier draft of this paper.

References

[1] J. Anderson, R. Jain, and S. Ramamurthy, \Wait-free
Object-Sharing Schemes for Real-Time Uniprocessors and
Multiprocessors", manuscript, May 1997.

[2] J. Anderson and M. Moir, \Universal Constructions for
Multi-Object Operations", Proc. of the 14th ACM Sym-

posium on Principles of Distributed Computing, 1995, pp.
184-193.

[3] J. Anderson and M. Moir, \Universal Constructions for
Large Objects", Proc. of the Ninth Int'l Workshop on Dis-

tributed Algorithms, Lecture Notes in Computer Science
972, Springer-Verlag, 1995, pp. 168-182.

[4] J. Anderson and S. Ramamurthy, \A Framework for Im-
plementing Objects and Scheduling Tasks in Lock-Free
Real-Time Systems", Proc. of the 17th IEEE Real-Time

Systems Symposium, 1996, pp. 94-105.

[5] H. Attiya and E. Dagan, \Universal Operations: Unary
versus Binary", Proc. of the 15th ACM Symposium on

Principles of Distributed Computing, 1996, pp. 223-232.

[6] B. Bershad, \Practical Considerations for Non-Blocking
Concurrent Objects", Proc. of the 13th Int'l Conference

on Distributed Computing Systems, 1993, pp. 124-149.

[7] M. Greenwald and D. Cheriton, \The Synergy Be-
tween Non-blocking Synchronization and Operating Sys-
tem Structure", Proc. of the USENIX Association Second

Symposium on Operating Systems Design and Implemen-

tation, 1996, pp. 123-136

[8] M. Herlihy, \A Methodology for Implementing Highly
Concurrent Data Objects", ACM Trans. on Programming

Languages and Systems, 15(5), 1993, pp. 745-770.

[9] A. Israeli and L. Rappoport, \Disjoint-Access-Parallel
Implementations of Strong Shared Memory Primitives",
Proc. of the 13th ACM Symposium on Principles of Dis-

tributed Computing, 1994, pp. 151-160

[10] H. Massalin and C. Pu, \A Lock-Free Multiprocessor
OS Kernel", Technical Report CUCS-005-01, Computer
Science Department, Columbia University, October 1991.

[11] R. Rajkumar, Synchronization In Real-Time Systems

- A Priority Inheritance Approach, Kluwer Academic
Pubs., 1991.

[12] S. Ramamurthy, M. Moir, and J. Anderson, \Real-Time
Object Sharing with Minimal System Support", Proc. of
the 15th ACM Symposium on Principles of Distributed

Computing, 1996, pp. 233-242.

[13] J. Valois, \Lock-Free Linked Lists using Compare-and-
Swap", Proc. of the 14th ACM Symposium on Principles

of Distributed Computing, 1995, pp. 214-222.

