
Wait-Free Synchronization in Multiprogrammed

Systems: Integrating Priority-Based and

Quantum-Based Scheduling

(Extended Abstract)

James H. Anderson�

Department of Computer Science

University of North Carolina at Chapel Hill

Mark Moiry

Department of Computer Science

University of Pittsburgh

Abstract

We consider wait-free synchronization in multipro-

grammed uniprocessor and multiprocessor systems in

which \hybrid" schedulers are employed that use both

priority information and a scheduling quantum in mak-

ing scheduling decisions. The main contribution of this

paper is to show that, in any hybrid-scheduled system,

any object with consensus number C � P in Herlihy's

wait-free hierarchy is universal for any number of pro-

cesses executing on P processors, provided the schedul-

ing quantum is of a certain size. We also show that if

a C-consensus object must be \hard-wired" to the pro-

cessors that access it, then our characterization of the

required quantum is asymptotically tight. If C = P or

if C � 2P , then this characterization is asymptotically

tight regardless of whether objects must be \hard-wired".

1 Introduction

This paper is concerned with wait-free synchronization

in multiprogrammed systems. A multiprogrammed sys-

tem consists of a set a processes and a set of processors.

Each process is assigned to a distinct processor. Associ-

ated with each processor is a scheduler , which determines

when each process on that processor is allowed to exe-

cute. In related previous work, Ramamurthy, Moir, and

Anderson considered wait-free synchronization in mul-

tiprogrammed systems in which processes on the same

�Work supported by NSF grants CCR 9510156 and CCR
9732916, and an Alfred P. Sloan Research Fellowship.

yWork supported in part by an NSF CAREER Award, grant

number CCR 9702767.

processor are scheduled by priority [5]. In a priority-

scheduled system, each scheduler always selects for ex-

ecution the highest-priority process that is available for

execution on its processor. Ramamurthy et al. showed

that, for priority-based systems, any object with consen-

sus number C � P in Herlihy's wait-free hierarchy [4]

is universal for any number of processes executing on P

processors, i.e., universality is a function of the number

of processors in the system, not the number of processes.

In subsequent work, Anderson, Jain, and Ott consid-

ered multiprogrammed systems in which quantum-based

scheduling is used [1]. Under quantum-based schedul-

ing, each processor is allocated to its assigned processes

in discrete time units called quanta. When a processor

is allocated to some process, that process is guaranteed

to execute without preemption for Q time units, where

Q is the length of the quantum, or until it terminates,

whichever comes �rst. Anderson et al. showed that, for

quantum-scheduled systems, any object with consensus

number C � P in Herlihy's wait-free hierarchy is univer-

sal for any number of processes executing on P proces-

sors, provided the quantum is of a certain size.

In this paper, we present results that extend and unify

the earlier work cited above. Speci�cally, we consider

multiprogrammed systems in which \hybrid" schedulers

are employed that use both priority information and a

scheduling quantum in making scheduling decisions. In a

hybrid-scheduled system, the scheduler on each proces-

sor always chooses for execution a process of maximal

priority on its processor. However, there may be several

processes of the same priority on the same processor.

Processor time is allocated among such processes using

a scheduling quantum. Hybrid-scheduled systems are

not merely of theoretical interest. Indeed, a number of

commercially-available operating systems schedule pro-

cesses in this way. Examples include the QNX real-time

operating system, SGI's IRIX REACT/Pro, and Wind

River's VxWorks (all real-time operating systems; see

http://www.qnx.com/, http://www.sgi.com/real-time/,

and http://www.wrs.com, respectively). In addition, al-

C universal if:

P Q � c(P + 1)T

P + 1 Q � cPT

� � � � � �

n Q � c(2P + 1� n)T

� � � � � �

2P � 2 Q � c3T

2P � 1 Q � c2T

2P Q � c2T

� � � � � �

m Q � c2T

� � � � � �

1 Q � 0

Table 1: Conditions for which an object with consensus num-

ber C is universal in a P -processor hybrid-scheduled system.

gorithms for hybrid-scheduled systems have the interest-

ing property of being correct in systems that are either

purely priority-based or purely quantum-based.

We show in this paper that results established pre-

viously for quantum-based systems can be extended to

also apply to hybrid-scheduled systems. In particular,

we show that, in any hybrid-scheduled system, any ob-

ject with consensus number C � P in Herlihy's wait-free

hierarchy is universal for any number of processes execut-

ing on P processors, provided the scheduling quantum is

of a certain size. We also show that if a C-consensus ob-

ject must be \hard-wired" to the processors that access

it, then our characterization of the required quantum is

asymptotically tight. A hard-wired object can be ac-

cessed only via \ports" that are statically allocated to

processors. If C = P or if C � 2P , then our character-

ization of the required quantum is asymptotically tight

regardless of whether objects must be hard-wired.

All of the algorithms we present to establish these re-

sults are of polynomial space and time complexity. In

contrast, the main multiprocessor algorithm given pre-

viously by Ramamurthy et al. for priority-based systems

(a subclass of the hybrid systems we consider) requires

exponential space and time. Our results are summa-

rized in Table 1. This table gives conditions under

which an object with consensus number C is univer-

sal in a P -processor hybrid-scheduled system. In this

table, T is a constant denoting the maximum time re-

quired to perform any atomic operation, Q is the length

of the scheduling quantum, and c is a constant that

follows from the algorithms we present. Obviously, if

C < P , then universal algorithms are impossible [4]. If

P � C � 2P , then an object with consensus number C

is universal if Q is a value proportional to (2P +1�C)T .

If C =1, then Q (obviously) can be any value [4].

To see the di�erence between a priority-based and a

quantum-based system, consider Fig. 1. In this �gure,

process interleavings are shown that might arise on a

processor in a quantum-based system (inset (a)) and in

(a)
invocation
 begins

process p

process q

process r

(b)

process p

process q

process r

invocation
 ends

Figure 1: Accesses to a common object by three processes

running on the same processor (a) in a quantum-based system

and (b) in a priority-based system. Object invocations are

shown between the brackets [and], with time running from

left to right. In (b), process r (p) has highest (lowest) priority.

a priority-based system (inset (b)). The interleavings

are depicted in a manner that abstracts away from the

activities of the processes outside of object invocations

| a less abstract look at the quantum-based interleav-

ing in inset (a) is shown in Fig. 2. In a priority-based

system, if a process p is preempted during an object

invocation by another process q that invokes the same

object, then p \knows" that q's invocation must be com-

pleted by the time p resumes execution. This is because q

has higher priority and will not relinquish the processor

until it completes. Thus, operations of higher-priority

processes \automatically" appear to be atomic to lower

priority processes executing on the same processor. This

is the fundamental insight behind the results of Rama-

murthy et al. [5]. In contrast, in a quantum-based sys-

tem, if a process is ever preempted while accessing some

object, then there are no guarantees that the process pre-

empting it will complete any pending object invocation

before relinquishing the processor. However, if a process

can ever detect that it has \crossed" a quantum bound-

ary, then it can be sure that the next few instructions it

executes will be performed without preemption. Many

of the quantum-based algorithms presented by Anderson

et al. in [1] employ such a detection mechanism. In the

algorithms presented in this paper, mechanisms are in-

corporated to allow processes to deal with both priority-

based and quantum-based preemptions.

The remainder of this paper is organized as follows.

In Sec. 2, we present de�nitions and notation used in

the remainder of the paper. Then, in Sec. 3, we present

a wait-free, constant-time uniprocessor implementation

of a consensus object that uses only reads and writes.

This implementation is correct as long as the quantum

is larger than a speci�ed constant. This result shows

that reads and writes are universal in a hybrid-scheduled

Q invocation
 begins

invocation
 ends

process p

process q

process r

Figure 2: A closer look at the interleaving in Fig. 1(a).

uniprocessor. In Sec. 4, we present our results for hybrid-

scheduled multiprocessor systems. We begin by present-

ing a wait-free implementation of a consensus object for

any number of processes running on P processors. This

implementation employs objects with consensus number

C, where C � P . As C varies, the quantum required

for this consensus implementation to work correctly is

as given in Table 1. In the last part of Sec. 4, we show

that if C-consensus objects must be hard-wired, then our

characterization of the required quantum is asymptoti-

cally tight. We also show that for C = P , our character-

ization of the required quantum is asymptotically tight

regardless of whether objects must be hard-wired. Note

that asymptotic tightness trivially follows for C � 2P ,

because in this case, the required quantum is a constant.

We end the paper with concluding remarks in Sec. 5.

Due to space limitations, only proof sketches are pro-

vided for some of our results. Complete proofs can be

found in the full paper [2].

2 Preliminaries

In this section, we describe the schedulers considered in

this paper, and then formally de�ne our execution model.

We consider pure priority- and quantum-based sched-

ulers, and also hybrid schedulers. Hybrid schedulers gen-

eralize both priority- and quantum-based schedulers, so

we present formal de�nitions for hybrid systems only.

In a priority-scheduled system, each process on a

processor is assumed to have a distinct priority, and

each scheduler always selects for execution the highest-

priority process that is available for execution on its pro-

cessor. For simplicity, we will assume throughout most

of this paper that all process priorities are statically de-

�ned. However, most of the algorithms we present can

be easily modi�ed to work correctly in systems that allow

priorities to changed dynamically, as long as a process's

priority cannot change during an object invocation. We

consider the issue of supporting dynamic priorities in

more detail in Sec. 5.

Associated with any quantum-scheduled system is a

scheduling quantum (or quantum for short), which is a

nonnegative integer value. In an actual quantum-based

system, the quantum would be given in time units. In

this paper, we �nd it convenient to more abstractly view

a quantum as specifying a statement count. This allows

us to avoid having to incorporate time explicitly into

our model. In a pure quantum-scheduled system, when

a processor is allocated to some process, that process is

guaranteed to execute without preemption for at least Q

atomic statements, where Q is the value of the quantum,

or until its current object invocation terminates.

In a hybrid-scheduled system, there may be several

processes of the same priority on the same processor. A

hybrid scheduler will always choose a process of maximal

priority on its processor for execution. If there are several

such processes, then processor time is allocated among

them using a scheduling quantum. In de�ning the behav-

ior of a hybrid scheduler, there a variety of di�erent ways

in which one can specify the manner in which higher-

priority processes may preempt lower-priority ones. In

this paper, we mostly limit our attention to hybrid sched-

ulers satisfying the following two axioms.

Axiom 1: (Priority-Based Scheduling) If a higher-

priority process p becomes ready for execution while a

lower-priority process q is executing on the same pro-

cessor, then p immediately preempts q, i.e., q may be

preempted before �nishing a full quantum. 2

Axiom 2: (Quantum-Based Scheduling) Preemptions

by higher-priority processes do not a�ect the quantum-

based scheduling at each priority level. Speci�cally, each

process p is guaranteed to execute at least Q statements

between preemptions by processes of equal priority, even

if p is preempted by higher-priority processes. 2

One might be tempted to modify Axiom 1 so that

higher-priority processes may preempt lower-priority

ones only at quantum boundaries. However, as we shall

see, the lower bounds on quantum size that we establish

do not depend on Axiom 1. Furthermore, any algorithm

that works correctly assuming Axiom 1 is also correct if

preemptions occur only at quantum boundaries.

One might also be tempted to eliminate Axiom 2. In-

deed, one of the overriding goals of this paper is to con-

sider how various nuances of hybrid schedulers can be

exploited to achieve wait-free synchronization, and a hy-

brid scheduler that violates Axiom 2 is perfectly reason-

able. It turns out, however, that hybrid schedulers satis-

fying Axiom 1 but violating Axiom 2 can be quickly dis-

pensed with, because in this case it can be easily shown

that Herlihy's hierarchy remains intact.1 To see this in-

formally, consider a collection of processes on one proces-

sor, with two priority levels. Suppose the lower-priority

processes all access a common consensus object, and the

higher-priority processes are engaged in some unrelated

computation that does not involve that object. A sched-

uler violating Axiom 2 can allow higher-priority pro-

cesses to preempt lower-priority ones at arbitrary points,

creating a run that is essentially asynchronous from the

standpoint of the lower-priority processes. This implies

that consensus numbers in such a system have the same

interpretation as in an asynchronous system.

From the explanation in the previous paragraph, it

may seem that we enforce Axiom 2 only because systems

that satisfy this axiom are more \interesting". However,

we shall see that, with Axiom 2 in place, it is possi-

ble to achieve wait-free synchronization using primitives

that are weaker than those given by Herlihy's hierarchy.

Thus, if one is interested in supporting wait-free syn-

chronization in a system, then our results suggest that

designing that system in accordance with Axiom 2 might

be a good idea. As a �nal defense of these axioms, we

note that any algorithm designed in accordance with Ax-

ioms 1 and 2 will work correctly in either a pure priority-

scheduled system or a pure quantum-scheduled systems.

In some sense, such algorithms are resilient to the speci�c

type of scheduler used in a multiprogrammed system.

Throughout most of this paper, we do not constrain

the manner in which the scheduler on each processor al-

locates quanta to processes of the same priority. Indeed,

a scheduler on some processor may choose to never al-

locate a quantum to some ready process. Such behavior

corresponds to a \halting failure" in an asynchronous

system. In Sec. 5, we brie
y consider schedulers that are

constrained to allocate quanta \fairly".

Given the above discussion, we can now more care-

fully de�ne our model of program execution for hybrid-

scheduled systems. Our programming notation should

be self explanatory; as an example of this notation, see

Fig. 3. In this and subsequent �gures, each numbered

statement is assumed to be atomic. When considering a

given object implementation, we consider only statement

executions that arise when processes perform operations

on the given object, i.e., we abstract away from the other

activities of these processes outside of object accesses.

For objects that are \long lived", i.e., may be invoked

repeatedly by a process, we abstractly view each process

as alternating between thinking and ready phases. While

1Note that a system that allows preemptions only at quantum
boundaries satis�es Axiom 2 by de�nition.

thinking , a process p has no enabled atomic statements.

A transition by p from thinking to ready is caused by the

scheduler on p's processor. When such a transition oc-

curs, an operation of the implemented object is selected

nondeterministically and p's program counter is updated

to point to the �rst statement of that operation. p tran-

sits from ready to thinking when it completes an object

invocation.

We de�ne a program's semantics by a set of histo-

ries. A history of a program is a sequence t0
s0
�!t1

s1
�!� � �,

where t0 is an initial state and ti
si
�!ti+1 denotes that

state ti+1 is reached from state ti via the execution of

statement si; unless stated otherwise, a history is as-

sumed to be a maximal such sequence. Consider the

history t0
s0
�!t1

s1
�!� � � ti

si
�!ti+1 � � � tj

sj

�!tj+1 � � �, where

si and sj are successive statement executions by some

process p. We say that p is preempted before sj in

this history i� some other process on p's processor exe-

cutes a statement between states ti+1 and tj . A history

h = t0
s0
�!t1

s1
�!� � � is well-formed i� it satis�es the fol-

lowing condition: for any statement execution sj in h by

any process p,

� no higher-priority process on p's processor has an

enabled statement at state tj;

� if p is preempted before sj , then no other process on

p's processor with the same priority as p executes a

statement after state tj+1 until either (i) p executes

at least Q statements or (ii) p's object invocation

that includes sj terminates.

We henceforth assume all histories are well-formed.

Notational Conventions: The number of processes

and the number of processors in the system are denoted

N and P , respectively. Processors are labeled from 1 to

P . We assume that the priority levels on each processor

range from 1 to V , with V being the highest priority.

We let M denote the maximum number of processes on

any processor. Q denotes the value of the quantum, and

C will be used to refer to a given object's consensus

number (see Sec. 1). Unless stated otherwise, p; q, and

r are assumed to be universally quanti�ed over process

identi�ers. We use valtype to denote an arbitrary type. 2

3 Uniprocessor Systems

In this section, we present a constant-time implementa-

tion of a consensus object for hybrid-scheduled systems.

This implementation uses only reads and writes and is

correct if the quantum exceeds a certain constant value.

Uniprocessor consensus can be solved using the algo-

rithm in Fig. 3. This algorithm was originally proposed

for quantum-scheduled systems (as noted in [1], the al-

gorithm is due to Moir and Ramamurthy, but they did

not publish it). We show here that it is also correct

in hybrid-scheduled systems. The algorithm is correct

provided Q is large enough to ensure that each process

can be quantum-preempted at most once during the for

loop. By replacing the for loop by straight-line code, it

can be seen that Q = 8 su�ces. The algorithm employs

three shared variables, P [1], P [2], and P [3]. The idea

behind the algorithm is to attempt to copy a value from

P [1] to P [2], and then from P [2] to P [3]. Each process

returns the value in P [3]. Correctness follows from the

following lemma.

Lemma 1: In the consensus algorithm in Fig. 3, each

process returns the same value. 2

Proof : Suppose towards a contradiction that two pro-

cesses return di�erent values v1 and v2. Then, some

process s1 must write v1 to P [3] and some process s2

must write v2 to P [3]. Fig. 4 depicts what a history

leading to such a situation must look like. Speci�cally,

we have the following:

(A) s1 reads P [3] = ? and then

(B) writes P [3] := v1 and

(C) s2 reads P [3] = ? and then

(D) writes P [3] := v2. This implies that

(E) s1 either reads P [2] = v1 or writes P [2] := v1 before (A)

and

(F) s2 either reads P [2] = v2 or writes P [2] := v2 before (C).

(G) We assume, without loss of generality, that E < F .

(H) Some process r1 writes P [2] := v1 at or before (E). (N.B.

The dashed line indicates that it could be that r1 = s1 and

(H)=(E).)

(I) Also, some process r2 writes P [2] := v2 after (E) and at

or before (F). (N.B. The dashed line indicates that it could

be that r2 = s2 and (I)=(F).)

(J) r2 previously reads P [2] = ? (must be before (H) be-

cause P [i] 6= ? is stable).

(K) Similarly, r1 previously reads P [2] = ?.

(L) r1 reads P [1] = v1 or writes P [1] := v1 before (K).

(M) r2 reads P [1] = v2 or writes P [1] := v2 before (J).

(N) In the diagram, we have assumed (L) < (M). The rest

of the proof is symmetric for the other case.

(O) Some process p writes P [1] := v1 at or before (L). (N.B.

The dashed line indicates that it could be that p = r1 and

(O)=(L).)

(P) Some process q writes P [1] := v2 after (L) and at or

before (M). (N.B. The dashed line indicates that it could be

that q = r2 and (P)=(M).)

(Q) q reads P [1] = ? before (P) and before (O) because

P [i] 6= ? is stable.

Observe that process p takes a step ((O)) between

two steps of process q ((Q) and (P)). Therefore,

priority(p) � priority(q). If priority(p) > priority(q),

then p completes execution before q resumes, which

contradicts P [2] = ? at (J). Thus, priority(p) =

priority(q). Similarly, priority(r1) = priority(r2).

(Note that (J) < (H) < (I) and that if r1 completed

execution before (I), P [3] 6= ? would hold at (C).)

If priority(q) > priority(r2), then q would run to

shared variable P : array[1::3] of valtype [? initially ?

procedure decide(val: valtype) returns valtype
private variable v; w: valtype

1: v := val ;
2: for i := 1 to 3 do
3: w := P [i];
4: if w 6= ? then

5: v := w

else

6: P [i] := v

�

od;
7: return P [3]

Figure 3: Consensus algorithm for hybrid uniprocessors.

s1

s2

r1

r2

p

q

P[3]:=v2P[2]=v2

P[3]:=v1P[2]=v1

A B

C D

E

F

G

I

P[2]:=v2

H

P[2]:=v1

J

K

M

P[1]=v2

L

N

P[1]:=v2

Q P

O

P[1]:=v1

P[1]=v1 P[2]=

P[1]=

P[3]=

P[2]=

P[3]=

Figure 4: Proof of Lemma 1.

completion before (M), contradicting P [2] = ? at (J).

Also, if priority(q) = priority(r2), then q would run

to completion before (H), contradicting P [3] = ? at

(C). To see this, observe that q has already been pre-

empted once by a process of the same priority (namely

p) before (P). Therefore, q runs to completion before

any other process of the same priority runs again. How-

ever, because process r1 executes a statement at (H) and

because priority(r1) = priority(r2), this contradicts

P [3] = ? at (C). Therefore, priority(q) < priority(r2),

which implies that priority(q) < priority(r1) (recall

that priority(r1) = priority(r2)). But q executed a

statement ((P)) between two statement executions of r1

((L) and (H)). Contradiction. 2

Theorem 1: In a hybrid-scheduled uniprocessor system

with Q � 8, consensus can be implemented in constant

time using only reads and writes. 2

4 Multiprocessor Systems

In this section, we consider multiprocessor systems with

hybrid schedulers. In Sec. 4.1, we present a multiproces-

sor consensus algorithm based on C-consensus primitives

that is correct provided the quantum Q is as speci�ed in

Table 1. Then, in Sec. 4.2, we show that our character-

ization of the required quantum is asymptotically tight

if C = P or if C-consensus objects must be hard-wired.

4.1 Multiprocessor Consensus

In this subsection, we establish the bounds on Q given

in Table 1 for hybrid-scheduled multiprocessor systems.

Speci�cally, we present a wait-free consensus algorithm

for any number of processes executing on P processors,

where the processes on each processor are scheduled us-

ing a hybrid scheduler. The algorithm uses C-consensus

objects, where C � P , and requires the quantum Q to

be as speci�ed in the table. For simplicity, we assume in

the rest of this section that C < 2P , because for larger

values of C, the algorithm we give for C = 2P � 1 can

be applied to obtain the results in Table 1.

Our consensus algorithm is shown in Fig. 5. This al-

gorithm has been obtained by modifying a similar al-

gorithm presented previously in [1] for purely quantum-

scheduled systems. The modi�cations allowmultiple pri-

ority levels to be supported. In addition to C-consensus

objects, the algorithm employs a number of uniproces-

sor compare-and-swap (C&S), fetch-and-increment (F&I),

and consensus objects. We use \local-C&S", \local-F&I",

and \local-consensus" in Fig. 5 to emphasize that these

are uniprocessor objects. Operations on these uniproces-

sor objects can be implemented in constant time using

algorithms for quantum-scheduled systems given in [1].

We begin our description of the algorithm by giving

a very brief overview of it; details are provided in the

following paragraphs. The algorithm works by having

each process participate in a series of \consensus lev-

els". There are L consensus levels, as illustrated in Fig.

6. L is a function of M , P , and C, as described below.

Each consensus level consists of a C-consensus object,

where C = P + K, 0 � K < P . Also associated with

each consensus level l is a collection of shared variables

Outval [i; l], where 1 � i � P . A process on processor

i \publishes" the decision value of level l by recording

it in Outval [i; l], and by then updating another shared

variable, as described below, to indicate that a published

value exists at this level (see lines 32-33 in Fig. 5). The

processes on each processor attempt to progress through

all levels in sequence, using published results from pre-

vious levels as inputs to subsequent levels. Each pro-

cess begins by skipping over any levels for which lower-

priority processes executing on the same processor have

already published results (lines 5-13). The remaining

levels (if any) are accessed in sequence until an overall de-

cision can be reached (lines 14-36). Note that if a process

is preempted by a higher-priority process, then by the

time it resumes execution, an overall decision must have

already been reached. Such a situation is checked for in

line 16. If not preempted by a higher-priority process, a

process returns as its decision value the output value of

the highest-numbered level with a published value.

The requirement that at most C processes can access a

C-consensus object is enforced by de�ning P+K \ports"

per consensus level. Processors 1 through K have two

ports per object, and processors K + 1 through P have

one port. A process can access a C-consensus object only

by �rst claiming one of the ports allocated to its pro-

cessor (note that we are using hard-wired C-consensus

objects here). A process claims a port by executing lines

17-26. On each processor, all ports across all consensus

levels are numbered in sequence, starting at 1. A pro-

cess p on processor i claims a port by �rst incrementing

a counter Port [i; v], where v is its priority, and by then

invoking a local consensus object associated with that

port. The Port counters ensure that at most one pro-

cess of a given priority attempts to acquire a given port.

The local consensus invocation ensures that, if several

processes with di�erent priorities attempt to acquire a

port, then only one succeeds. It is easy to see that a

process can fail to \win" such a local consensus invoca-

tion only if it is preempted by a higher-priority process.

In this case, when the process resumes execution, it will

quickly detect that a decision has been reached and ter-

minate. If a process with priority v is not preempted by

higher-priority processes, then each time it increments

Port[i; v], it atomically reserves the next available port.

We now describe the manner in which the Port vari-

ables are incremented. If processor i has one port per C-

consensus object, i.e., i > K, then Port[i; v] is updated

by simply performing a F&I operation. If processor i has

two ports per object, i.e., i � K, then the situation is

a bit more complicated. In particular, if a process p ac-

quires the �rst of processor i's ports at some level l and

then simply increments Port [i; v], p is then positioned to

acquire the second of processor i's ports at level l, which

is pointless because a decision has already been reached

at that level. To correct this, Port [i; v] is updated in

such a case using a C&S operation in line 21. Because

Port[i; v] is updated only by processes with the same

priority, the F&I and C&S operations used in updating

it can be implemented from reads and writes using the

constant-time algorithms for purely quantum-scheduled

systems presented in [1]. The local consensus object for

each port can also be implemented from reads and writes

in constant time, using the algorithm given in Sec. 3.

Having explained how ports are acquired, we now ex-

plain in more detail how an overall decision value is

reached. Each process attempts to participate in each

consensus level, in order, skipping over levels for which

a decision value has already been published. When a

process accesses some level, the input value it uses is ei-

ther the output of the highest-numbered consensus level

for which there is a published value on its processor, or

its own input value, if no previously-published value ex-

ists (see lines 4, 27, and 28). So that an input value for

a level can be determined in constant time, a counter

Lastpub[i; v] is maintained on each processor i, for each

priority level v. This counter points to the highest-

constant L = (K + P)M(P �K + 1) + (P �K)2M + 1 =� total number of consensus levels for C = P +K, 0 � K < P �=

shared variable

Lastpub: array[1::P;1::V] of 0::L initially 0; =� Lastpub[i; v] is the highest level on a processor i : : : �=
=� : : : for which some process with priority v (or lower) has published a consensus value �=

Outval : array[1::P;1::L] of valtype [? initially ?; =� Outval [i; l] is the consensus value for level l on processor i : : : �=
=� : : : we assume no input value (and hence consensus value) is ? �=

Port : array[1::P;1::V] of 1::2L+M initially 1 =� Port [i; v] is the next available port for processes of priority v : : : �=

=� : : : on processor i (each processor has L or 2L ports; the \+M" term is needed because of overshoots) �=

private variable =� local to process p �=
input , output, lastval: valtype; =� input/output value for a level, output value of last level �=
level , prevlevel : 0::L+M ; =� consensus level accessed by p in current (previous) iteration of the while loop �=
numports : 1::2; =� number of ports per consensus object on processor pr(p) �=
port, newport, lowerport: 1::2L+M ; =� port numbers �=
publevel , lowerpublevel : 0::L; =� used to determine last level for which there is published value on processor pr(p) �=
v: 1::V

procedure decide(val : valtype) returns valtype
1: lastval := Outval [pr(p);L];

=� return if other processes have already decided �=
2: if lastval 6= ? then return(lastval) �;
3: if pr(p) � K then numports := 2 else numports := 1 �;
4: input ; prevlevel ; level := val ; 0; 0;

=� lower-priority processes may have made some �=

=� progress, so initialize Port & Lastpub accordingly �=

5: for v := 1 to priority(p)� 1 do
6: lowerport := Port[pr(p); v];

7: port := Port [pr(p);priority(p)];
8: if lowerport > port then

9: local-C&S(&Port [pr(p); priority(p)]; port ; lowerport)
�;

10: lowerpublevel := Lastpub[pr(p);v];

11: publevel := Lastpub[pr(p); priority(p)];
12: if lowerpublevel > publevel then

13: local-C&S(&Lastpub [pr(p);priority(p)];
publevel ; lowerpublevel)

�

od;
=� decide (continued) | proceed through levels �=

14:while level � L do

15: lastval := Outval [pr(p);L];

=� return, if HP processes preempt and decide �=
16: if lastval 6= ? then return(lastval) �;

=� determine port and level �=
17: port := Port [pr(p);priority(p)];
18: level := ((port � 1) div numports) + 1;

=� decide (continued) | if level didn't change, make correction �=
19: if prevlevel = level then

20: newport := port + numports ;
21: if local-C&S(&Port [pr(p);priority(p)]; port; newport + 1) then
22: port := newport

23: else port := local-F&I(&Port [pr(p); priority(p)])

24: �

else

25: port :=local-F&I(&Port [pr(p);priority(p)])
�;

26: level := ((port � 1) div numports) + 1;
=� determine input for next level �=

27: publevel := Lastpub[pr(p);priority(p)];
28: if publevel 6= 0 then input := Outval [pr(p);publevel] �;
29: if level � L then

=� local consensus ensures at most one process accesses port �=
30: if local-consensus(pr(p);port ; p) = p then

=� invoke the C-consensus object �=
31: output := C-consensus(level ; input);
32: Outval [pr(p); level] := output; =� publish result �=
33: local-C&S(&Lastpub[pr(p); priority(p)]; publevel ; level)

�

�;
34: prevlevel := level

od;
35: publevel := Lastpub[pr(p); priority(p)];

36: return(Outval[pr(p);publevel])

Figure 5: Multiprocessor consensus algorithm.

numbered level for which a process on processor i with

priority v (or lower) has published a value. Due to pre-

emptions, Lastpub[i; v] may need to be incremented to

skip over an arbitrary number of levels. It is therefore

updated using a C&S operation instead of F&I (see line

33). Like Port [i; v], Lastpub[i; v] is updated only by pro-

cesses with priority v, so the C&S operations that update

Lastpub[i; v] can be implemented from reads and writes

in constant time [1]. If a process on processor i is pre-

empted by higher-priority processes, or if a decision is

reached before it starts, then it may safely return the

output value from level L (lines 2 and 15). Otherwise, it

completes execution by returning the output value from

level Lastpub[i; v], where v is its priority (lines 35-36).

The main di�culty associated with our algorithm is

that of determining an input value to use when accessing

a given level. When a process p attempts to determine

an input value, there may be a number of previous lev-

els that are inaccessible to p (because all ports on p's

processor have been claimed) yet no decision value has

been published. This can happen for a previous level

l only if the process(es) on p's processor that acquired

that processor's port(s) at level l were preempted before

publishing an output value (in particular, such a process

must have been preempted while executing within lines

21-33). We call such a situation an access failure, and

say that the preempted process(es) at level l cause an

access failure at level l. We call an access failure a same-

priority (di�erent-priority) access failure if the processes

involved (i.e., p and the process(es) preempted at level

Multiprocessor Consensus Value

1

2 An 8−consensus object

x x

x x x x x x

K

}

P−K}

Processors 1..K: 2 ports
Processors K+1..P: 1 port

L

Figure 6: Consensus levels of the algorithm in Fig. 5.

l) have the same priority (di�erent priorities).

Obviously, there is a correlation between the number

of access failures that can occur on a processor and the

number of preemptions that can occur on that proces-

sor. The number of preemptions that can occur in turn

depends on the number of processes per processor and

the size of the scheduling quantum Q. We show below

that with a suitable choice of Q, the number of levels for

which an access failure occurs on each processor is lim-

ited to a fraction of all the levels. Using a pigeon-hole

argument, it is possible to show that if the number of lev-

els L is selected appropriately, then in any history, there

exists some level for which no process on any processor

experiences an access failure. We call such a level a de-

ciding level . A simple inductive argument shows that, if

l is a deciding level, then the output value of level l is

used by every process on every processor when accessing

any level k > l, even if access failures occur when access-

ing levels numbered higher than l (i.e., levels below l in

Fig. 6). Thus, the �nal decision value returned by all

processes is the same.

We now state some lemmas about the number of access

failures that may occur in a history. For each lemma, we

assume that the given history is �xed. Let AF denote

the number of levels for which there is an access failure in

this history. Further, let AF same (respectively, AF di�)

denote the number of levels for which there is a same-

priority (respectively, di�erent-priority) access failure in

the history. It follows that AF � AF same + AFdi� ,

because a preemption could potentially result in both a

same-priority and di�erent-priority access failure.

Each process can cause a di�erent-priority access fail-

ure at at most one level. In particular, if a process p

causes a di�erent-priority access failure at level l, then

it was preempted by a higher-priority process on its pro-

cessor while accessing level l. By the time p resumes ex-

ecution, higher-priority processes have already reached a

decision, so p terminates without accessing any more lev-

els. This argument yields the following bound for AFdi� .

Lemma 2: If there are at most M processes on any

processor, then AFdi� � PM . 2

In the next lemma, we concentrate on bounding

AF same. In the statement of this lemma, we consider

a process to access a level i� it successfully acquires a

port for that level. A proof of this lemma is given in [2].

Lemma 3: Suppose that C = P+K, where 0 � K < P ,

and that Q is large enough to ensure that each process

can be preempted at most once by processes of equal

priority while accessing any P � K + 1 consensus lev-

els in succession (these levels don't have to be con-

secutive). If there are L levels, and at most M pro-

cesses on any processor, then AF same � KM + (P �

K)(L + M (P � K))=(P � K + 1). Furthermore, if

L > (K+P)M (P�K+1)+(P �K)2M , then a deciding

level exists. 2

It follows from Lemma 3 that with L as de�ned in

Fig. 5, the algorithm is correct. It is easy to see that

each consensus level is accessed in constant time (recall

that the uniprocessor C&S, F&I, and consensus algorithms

used at each level take constant time). Thus, letting the

constant c denote the worst-case number of statement

executions per level, we have the following theorem.

Theorem 2: In a P -processor system in which the pro-

cesses on each processor are scheduled using a hybrid

scheduler, consensus can be implemented in a wait-free

manner in polynomial space and time for any number

of processes using read/write registers and C-consensus

objects if C � P and Q � max(2c; c(2P + 1� C)). 2

If we were to incorporate time within our model, then

we could easily incorporate the T term given in Table 1

in the bound on Q given in Theorem 2.

4.2 Lower-Bound Results

In this subsection, we show that if C = P , then our char-

acterization of the quantum required for universality is

is asymptotically tight. As explained below, with only

a few modi�cations, the proof strategy given here can

be used to show that, if C-consensus objects must be

hard-wired, as in the algorithm of the previous subsec-

tion, then all of the bounds on Q given in Table 1 are

asymptotically tight. Due to space limitations, we only

sketch the main ideas of the C = P proof here. The

complete proof can be found in [2].

We restrict attention to systems with schedulers that

are purely quantum-based, i.e., we assume there is only

one priority level per processor. Clearly, lower bounds for

such a system will apply to a system with multiple pri-

ority levels as well. In the remainder of this subsection,

we let A denote a consensus algorithm for an arbitrary

number of (deterministic) processes executing on a P -

processor system with a single priority level per proces-

sor such that all underlying objects are either read/write

registers or P -consensus objects. For simplicity, we as-

sume that any invocation of any of these underlying ob-

jects takes one atomic statement. We also assume that,

in any history, if a P -consensus object is invoked more

than P times, then all invocations after the P -th return

the value ?.2 Our objective is to show that A cannot

be correct in a system for which Q = P . Assume, to the

contrary, that A is correct in such a system. We show

that this assumption leads to a contradiction.

Our proof is based on a valency argument [3, 4], and

we assume that the reader is familiar with the general

structure of such an argument. In particular, we as-

sume that the reader knows what it means for a state

of A to be bi-valent , uni-valent , or x-valent , where x

is the input value of some process [3, 4]. We derive a

contradiction by showing that there exists a history of

A consisting of an in�nite sequence of bi-valent states,

contradicting the fact that A is wait-free. The proof is

similar to other valency arguments presented elsewhere

[3, 4], with two important exceptions. First, we must

carefully keep track of when a given process may be pre-

empted. Second, we de�ne the valency of a state with

respect to the set of currently-running processes at that

state. In other words, the valency of a state t is de-

�ned by considering only histories starting from t that

include statement executions of the P processes that are

currently running at t.

We assume that there are exactly two processes on

each processor. We denote the processes assigned to

processor i as pi1 and pi2. The initial set of running

processes is de�ned to be fp11; p
2
1; : : : ; p

P

1 g. Because the

set fp11; p
2
1; : : : ; p

P

1 g consists of P processes and P is the

size of the quantum, we can \stagger" the execution of

these processes with respect to quantum boundaries so

that, of these processes, one has executed at least P � 1

statements since last being preemptable, another has ex-

ecuted at least P�2 statements since last being preempt-

able, and so on. We call a bi-valent state at which this

\staggered execution" property holds strong-bi-valent .

In the full proof, we inductively show that an in�-

nite sequence of bi-valent states exists by proving that

from any strong-bi-valent state we can reach another

strong-bi-valent state. With fp11; p
2
1; : : : ; p

P

1 g as the set

of currently-running processes, as we move from state

to state, we can fail to extend this inductive argument

only if there exists a reachable strong-bi-valent state t,

at which each of p11; p
2
1; : : : ; p

P

1 is enabled to invoked a

common consensus object O, such that if any one of

p11; p
2
1; : : : ; p

P

1 takes a step from t, the resulting state is

2We could instead require that such invocations return random
values, or that such invocations are in fact not allowed. The key
requirement here is that all invocations after the P -th return no
\useful" information.

t

uyux

O

p
1
1 p

1

P
− invoke

object O

O

p
2
1execute

until it
invokes O

Figure 7: Two histories ending in x-valent and y-valent

states. Process pP2 cannot distinguish between the two his-

tories by invoking object O, so it chooses the same decision

value in both histories, which is a contradiction.

uni-valent (we emphasize that such a state is considered

to be uni-valent with respect to the set of running pro-

cesses fp11; p
2
1; : : : ; p

P

1 g). Furthermore, among the states

reachable from t by having each of p11; p
2
1; : : : ; p

P

1 take a

step, there is an x-valent state ux and a y-valent state

uy, where x 6= y (see Fig. 7).

Because t is strong-bi-valent, of the processes in

fp11; p
1
2; : : : ; p

P

1 g, one has executed at least P � 1 state-

ments since last being preemptable, another has exe-

cuted at least P � 2 statements since last being pre-

emptable, and so on. Thus, at states ux and uy, one

of these processes has executed at least P statements

since last being preemptable, another has executed at

least P �1 statements since last being preemptable, and

so on. Moreover, the process that has executed at least

P statements since last being preemptable can be pre-

empted once again. Without loss of generality, assume

this preemptable process is p11.

Suppose we change the currently-running set of pro-

cesses at state ux by replacing process p11 by p
1
2. If ux is

bi-valent for this new set of running processes, then we

have reached yet another strong-bi-valent state (with a

di�erent set of running processes than before) and the

induction continues. If, on the other hand, ux is uni-

valent for this new set of running processes, then it must

be x-valent, because we know that if we run, say, process

p21 in isolation from ux, it returns x as its decision value.

In this case, if we run p12 in isolation from ux, it too must

eventually choose x as its decision value.

All of the reasoning in the previous paragraph can

be applied to state uy as well, i.e., if we de�ne

fp12; p
2
1; p

3
1; : : : ; p

P

1 g to be the set of currently-running

processes at uy, then state uy is either bi-valent or y-

valent for this set of processes. In the former case, the in-

duction continues, and in the latter case, p12 must choose

y as its decision value if it is run in isolation from uy.

To �nish the proof, note that if we run p12 in isolation

from both ux and from uy, then it must return the same

decision value in both histories. This is because object O

has consensus number P and has already been invoked

P times. Thus, p12 cannot distinguish between the two

histories. We conclude that, with fp12; p
2
1; p

3
1; : : : ; p

1
1g de-

�ned as the set of currently-running processes, at least

one of ux and uy is bi-valent, and therefore the inductive

argument can be continued, i.e., A is not wait-free.

If C-consensus objects must be hard-wired, then a vir-

tually identical proof shows that all of the bounds on Q

given in Table 1 are asymptotically tight. In this case,

as we move from state to state, we maintain the invari-

ant that P � Q + 1 processes exist that have executed

at least Q � 1 statements since last being preemptable,

and of the remaining processes, one has executed at least

Q� 2 statements since last being preemptable, another

has executed at least Q � 3 statements since last being

preemptable, and so on. As before, we can fail to in-

ductively extend the history being constructed for the

current set of running processes only if a situation as de-

picted in Fig. 7 is eventually reached. In this case, of the

P � Q + 1 processes that have executed at least Q � 1

statements before t since last being preemptable, at least

one, say p11, does not have a port associated with object

O. For exactly the same reasons as in the C = P proof,

if we change the current set of running processes by re-

placing p11 by p12, then the induction can continue. The

results of this subsection give us the following theorem.

Theorem 3: In a P -processor quantum- or hybrid-

scheduled system, there is no wait-free consensus al-

gorithm for an arbitrary number of processes using

read/write registers and C-consensus objects (i) if C =

P and Q � P , and (ii) if the C-consensus objects are

hard-wired and C � P and Q � max(1; 2P �C). 2

5 Concluding Remarks

We have heretofore assumed that all task priorities are

statically de�ned. However, the multiprocessor consen-

sus algorithm given in Sec. 4 can be easily extended to

support dynamic priorities. We can obtain the iden-

ti�ers required by the algorithm by using a uniproces-

sor renaming algorithm that assigns the same name to

same-priority processes. Our uniprocessor consensus al-

gorithm is correct in a dynamic-priority system as stated,

so we know that reads and writes are universal in a

hybrid-scheduled uniprocessor with dynamic priorities.

As a result, it is straightforward to show that the re-

quired renaming object can be implemented.

Our de�nition of a hybrid scheduler assumes that such

a scheduler can \unfairly" allocate quanta to processes of

the same priority. If we assume that quanta are \fairly"

allocated, then P -consensus primitives can be used to

implement consensus for any number of processes on P

processors, using a quantum of constant size. To see this,

consider the multiprocessor consensus algorithm given

in Fig. 8. In this algorithm, we �rst \elect" one pro-

cess per priority level on each processor by means of

invoking a local uniprocessor consensus object for that

level/processor. If a process loses the election for its pri-

shared variable

Output: valtype [? initially ?

procedure decide(val : valtype) returns valtype
private variable

output: valtype

1: if local-consensus(pr(p);priority(p); p) 6= p then

2: while Output = ? do od;

3: return(Output)
�;

4: output :=global-PB-consensus(val);
5: Output := output ;
6: return(output)

Figure 8: Multiprocessor consensus with fair scheduling.

ority level, then it waits until the other processes choose

a decision value. Because the quantum-based scheduling

on each processor is fair, each process waits for only a

�nite time. The election winners all invoke a multipro-

cessor priority-based consensus algorithm to determine a

decision value. One may feel that the algorithm in Fig.

8 violates the spirit of wait-freedom. However, if we de-

�ne wait-freedom to mean that each process completes

an operation in a �nite number of its own steps, then

this algorithm is indeed wait-free.

Acknowledgements: Srikanth Ramamurthy helped in de-

veloping the algorithm in Fig. 3. Eli Gafni initially suggested

to us the possibility of designing wait-free algorithms that

work correctly in both priority- and quantum-based systems.

References

[1] J. Anderson, R. Jain, and D. Ott. Wait-free synchro-

nization in quantum-based multiprogrammed sys-

tems. In Proceedings of the 12th International

Symposium on Distributed Computing, pp. 34{48.

Springer Verlag, Sept. 1998.

[2] J. Anderson and M. Moir. Wait-free synchro-

nization in multiprogrammed systems: integrating

priority-based and quantum-based scheduling (ex-

panded version of this paper). Available at http:

//www.cs.unc.edu/ ~anderson/papers.html.

[3] M. Fischer, N. Lynch, and M. Patterson. Impossibil-

ity of distributed consensus with one faulty process.

Journal of the ACM, 32(2):374{382, April 1985.

[4] M. Herlihy. Wait-free synchronization. ACM Trans-

actions on Programming Languages and Systems,

13(1):124{149, 1991.

[5] S. Ramamurthy, M. Moir, and J. Anderson. Real-

time object sharing with minimal support. In Pro-

ceedings of the 15th ACM Symposium on Principles

of Distributed Computing, pp. 233{242. May 1996.

