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Abstract

We consider the implementation of a Pfair scheduler on a symmetric multiprocessor (SMP). Although
SMPs are in many ways well-suited for Pfair scheduling, experimental results presented herein suggest that
bus contention resulting from the simultaneous scheduling of all processors can substantially degrade perfor-
mance. To correct this problem, we propose a staggered model for Pfair scheduling that strives to improve
performance by more evenly distributing bus traffic over time. Additional simulations and experiments with
a scheduler prototype are presented to demonstrate the effectiveness of the staggering approach. In addition,
we discuss other techniques for improving performance while maintaining worst-case predictability. Finally,
we present an efficient scheduling algorithm to support the proposed model and briefly explain how existing
Pfair results apply to staggered scheduling.
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1 Introduction

Recent research on real-time multiprocessor scheduling
has shown that global scheduling provides many advan-
tages over partitioning approaches, including improved
schedulability and flexibility [1, 2, 12]. Furthermore,
these benefits can be achieved without incurring sig-
nificantly more (worst-case) overhead [14]. However,
there remain questions as to whether global scheduling
can achieve comparable average-case performance.

Though partitioning provides many performance ad-
vantages, such as improved cache performance (on av-
erage) and low scheduling overhead, it is inherently
suboptimal: some systems are schedulable only when
migration is permitted. In addition, optimal parti-
tioning methods are costly. Thus, in on-line settings,
suboptimal heuristics must be employed. Furthermore,
the actual benefit obtained from characteristics like im-
proved cache performance can be difficult to determine
analytically. Hence, many of the advantages of parti-
tioning do not benefit worst-case analysis.

Proportionate-fair (Pfair) scheduling [3] is a partic-
ularly promising global-scheduling approach. Indeed,
Pfair scheduling is presently the only known optimal
means for scheduling periodic, sporadic, and rate-based
tasks on a multiprocessor [12]. Hence, Pfair scheduling
is seemingly well-suited for systems in which worst-
case predictability is required. However, some aspects
of Pfair scheduling may degrade performance and have
led to questions regarding its practicality. These as-
pects are discussed in detail below.

First, Pfair scheduling is based on synchronized tick
(or quantum-based) scheduling. Scheduling points oc-
cur periodically and, at each point, all processors are
simultaneously scheduled. If a scheduled task yields
before the next scheduling point, then that task is still
charged for the unused processor time and the proces-
sor is idled. Fig. 1(a) illustrates this characteristic.

Second, Pfair scheduling uses weighted round-robin
scheduling to track the allocation of processor time in
a fluid schedule, i.e., a schedule in which each task exe-
cutes at a constant rate. This achieves theoretical opti-
mality, but at the cost of more frequent context switch-
ing. In practice, this cost is undesirable since it may
increase scheduling overhead (depending on the quan-
tum size) and reduces cache performance. Fig. 1(b)
shows a Pfair schedule, the corresponding fluid sched-
ule, and a schedule with minimal switching.

Finally, task migration is unrestricted under Pfair
scheduling. In the worst case, a task may be migrated
each time it is scheduled. In practice, this may also
negatively impact cache performance.

In recent work, we have extended Pfair scheduling
to address the above concerns and to enable its im-

plementation and eventual comparison to partitioning.
These extensions include task synchronization mecha-
nisms [7, 8], techniques for accounting for system over-
heads [14], and support for hierarchal scheduling [6,
7, 8, 9]. To evaluate Pfair scheduling and its exten-
sions, we have developed a Pfair prototype (from which
we obtained some of the results presented later) that
runs on a bus-based symmetric multiprocessor (SMP).
This choice of platform follows from the fact that tight
coupling is needed to keep preemption and migration
overhead low. In addition, the worst-case cost of a mi-
gration is effectively the same as that of a preemption
under a cache-based SMP.

Contributions of this paper. In this paper, we show
how Pfair scheduling actually promotes bus contention,
and then propose an alternative scheduling model that
strives to avoid this problem. The contention problem
stems for the fact that a preempted task may encounter
a cold cache when it resumes. Since bus traffic increases
while reloading data into the cache, scheduling all pro-
cessors simultaneously can result in very heavy bus
contention at the start of each quantum. The worst-
case duration of this contention grows with both the
processor count and working-set sizes.

Fig. 2(a) illustrates this contention on eight pro-
cessors. The number of pending bus requests across
three scheduling points (i.e., spanning three quanta)
are shown. In this experiment, each task was given an
array that matched the cache’s size and it simply wrote
to each cache line iteratively. As shown, heavy con-
tention follows each scheduling point. Other results,
presented later, suggest that such contention can sig-
nificantly lengthen the execution times of tasks.

The primary contribution of this paper is a new
staggered model for Pfair scheduling that more uni-
formly distributes these predictable bursts of bus traf-
fic. Results of simulations and experimental measure-
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Figure 1: (a) Two scheduled tasks yield before the next
scheduling point. (b) Relationship between a Pfair sched-
ule (middle), the corresponding fluid schedule (upper), and
a schedule that minimizes context switching (lower).
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Figure 2: Each graph shows the bus load across three scheduling points in an eight-processor system using blocking
caches. Graphs show contention (a) under the aligned model, the (b) under the (proposed) staggered model.

ments obtained from our prototype system suggest that
this model can significantly reduce bus contention and
hence improve performance. This model provides the
additional benefit that scheduling overhead can be dis-
tributed across processors, thereby reducing the per-
processor overhead. Our second contribution is an effi-
cient distributed scheduling algorithm for the staggered
model and an evaluation of its performance. Finally,
we characterize the impact of the new model on prior
results and explain how these results can be modified
for use under the new model.

Fig. 3(b) shows the proposed staggered model along-
side the traditional aligned model. Repeating the ear-
lier experiment using the staggered model results in
dramatically lower contention, as shown in Fig. 2(b).
Under the aligned model, all scheduling decisions are
made by processor 1 (see Fig. 3(a)). As a result, cy-
cles are lost due to stalling the other processors. Un-
der the staggered model, each processor can make its
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Figure 3: (a) Under the aligned model, processors are si-
multaneously scheduled and all decisions are made on a
single processor. (b) Under the staggered model, schedul-
ing points are uniformly distributed and each processor can
make its own scheduling decision.

own scheduling decision (see Fig. 3(b)). By avoiding
processor stalls, both the worst-case and average-case
scheduling overhead is reduced.

Related Work. Unfortunately, little (if any) prior
work has considered techniques for improving perfor-
mance in multiprocessor systems that require worst-
case predictability. Consequently, available techniques
are typically heuristic in nature and lack supporting
analysis. (Affinity-based scheduling algorithms are one
common example.) Without analysis, these solutions
are not appropriate for hard real-time systems, which
are the focus of our work. Techniques for optimiz-
ing Pfair scheduling for a general-purpose environment
(again, without supporting analysis) were previously
proposed by Chandra, Adler, and Shenoy [5].

The remainder of the paper is organized as fol-
lows. Sec. 2 summarizes Pfair scheduling. An efficient
scheduling algorithm for the staggered model is pre-
sented in Sec. 3. In Sec. 4, we explain how prior work
relates to the proposed model. Experimental results
are then presented in Sec. 5. We conclude in Sec. 6.

2 Background

In this section, Pfair scheduling is formally defined and
previous work is summarized.

2.1 Basics of Pfair Scheduling

Let τ denote a set of N tasks to be scheduled on M pro-
cessors. Each task T ∈ τ is assigned a rational weight
T.w in the range (0,1]. Conceptually, T.w is the rate
at which T should be executed, relative to the speed
of a single processor. Pfair scheduling algorithms allo-
cate processor time in discrete time units called quanta.
The time interval [t, t+1), where t ≥ 0, is called slot t.
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Figure 4: The windowing for a task with weight T.w = 3/10 is shown under a variety of circumstances. (a) Normal
windowing used by a Pfair task. (b) Early releases have been added to the windowing in (a) so that each grouping of
three subtasks becomes eligible simultaneously. (In reality, each subtask will not become eligible until its predecessor
is scheduled.) (c) Windows appear as in (b) except that T2’s release is now preceded by an intra-sporadic delay of six
slots. (T5 and T6 are not shown.) (d) Windows appear as in (c) except that T3 is now absent.

In each slot, each processor can be assigned to at most
one task and each task can be assigned to at most one
processor. Task migration is allowed.

Scheduling decisions are based on comparing each
task’s allocation to that granted in an ideal (fluid) sys-
tem. Ideally, a task T receives T.w ·L units of processor
time in any interval of length L. The concept of track-
ing the ideal system is formalized by the notion of lag .
Letting A(T, t) denote the number of quanta allocated
to task T over the time interval [0, t), the lag of T at t
can be formally defined as lag(T, t) = T.w · t−A(T, t).
A schedule respects Pfairness if and only if the magni-
tude of all task lags is strictly less than one always, i.e.,
(∀T, t :: |lag(T, t)| < 1). As shown in [3], a schedule re-
specting Pfairness exists if and only if

∑
T∈τ T.w ≤ M .

The above lag constraint effectively sub-divides each
task T into a series of evenly distributed quantum-
length subtasks. Let Ti denote the ith subtask of T .
Fig. 4(a) shows the time-slot interval (or window) in
which each subtask must execute to achieve Pfairness
when T.w = 3/10. For example, T2’s window spans
slots 3 through 6: T2 is said to be released at time 3
and to have a deadline at time 7.

At present, PF [3], PD [4], and PD2 [2] are the
only known optimal Pfair scheduling algorithms. These
algorithms prioritize subtasks on an earliest-deadline-
first basis, but differ in the choice of (non-trivial) tie-
breaking rules. Since the PD2 prioritization is the most
efficient, we assume its use. For our purposes, it is suf-
ficient to know that PD2 priorities can be determined
and compared in constant time.

Model specifications. Let t(i, k) denote the time (in
quanta) at which the ith scheduling point occurs on

processor k, where 0 ≤ k < M . The aligned model
is then defined by the expression t(i, k) = i, while the
staggered model is defined by t(i, k) = i + k

M .

2.2 Extensions

We now discuss relevant extensions to Pfair scheduling.

Increased flexibility. Srinivasan and Anderson [1,
12] introduced three variants of Pfairness to improve
scheduling flexibility. They also proved that PD2 cor-
rectly schedules each variant whenever the cumulative
task weight does not exceed the processor count. Early-
release fairness (ERfairness) allows subtasks to execute
before their Pfair release times, provided that they
are still prioritized by their Pfair deadlines. Intra-
sporadic fairness (ISfairness) extends ERfairness by al-
lowing windows to be right-shifted (i.e., delayed rela-
tive to their Pfair placement). However, the relative
separation between each pair of windows must be at
least that guaranteed under Pfairness. Finally, gener-
alized intra-sporadic fairness (GISfairness) extends IS-
fairness by allowing subtasks to be omitted. Fig. 4 il-
lustrates these variants. In addition to these variants,
Srinivasan and Anderson also derived conditions under
which tasks may leave and join a system [13].

Supertasking. Supertasks were first proposed to sup-
port the static assignment of tasks to processors [11].
Each supertask represents a set of component tasks,
which are scheduled as a single entity. Whenever a
supertask is scheduled, one of its component tasks is
selected to execute according to an internal scheduling
algorithm. In previous work, we presented algorithms
for deriving supertask weights from component task
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sets using either quantum-based [6] or event-driven [9]
scheduling. In addition to hierarchal-scheduling sup-
port, supertasks also provide a means to selectively
restrict which tasks may execute in parallel. Such re-
strictions can be imposed to reduce the worst-case con-
tention for shared resources, as demonstrated in [7, 8].

Synchronization. In other prior work, we developed
techniques for supporting lock-free [7] and lock-based [8]
synchronization under Pfair scheduling. For lock-based
synchronization, we presented two approaches: timer-
based and server-based protocols. Timer-based pro-
tocols are designed to delay the start of short critical
sections that are at risk of being preempted before com-
pletion. Hence, this approach exploits the quantum-
based nature of Pfair scheduling to ensure that tasks
will never hold locks while preempted. On the other
hand, the server-based protocol uses a simple client-
server model in which a server task executes all critical
sections guarded by its associated locks.

2.3 Comparison with Partitioning

Conventional event-driven schedulers can usually be
tested by replacing the schedulers in conventional oper-
ating systems, such as Linux or FreeBSD. However, due
to its time-driven approach, forcing a Pfair scheduler
into a conventional system will almost certainly pro-
duce both poor performance and measurements that
are not reflective of a from-scratch implementation.
Accurate assessment is essential to making an unbi-
ased comparison to partitioning. Hence, mechanisms
that exploit strengths and compensate for weaknesses
are an important factor. Unfortunately, such mecha-
nisms must first be developed for Pfair scheduling.

To determine whether such a (time-consuming) com-
parison was warranted, we conducted a study of schedul-
ing overhead and schedulability loss based on analy-
sis and simulation [14]. We found that the schedula-
bility loss is comparable under both approaches and
that Pfair scheduling does not incur prohibitively high
scheduling overhead. We also noted several benefits to
using Pfair scheduling, including efficient synchroniza-
tion across processors, support for dynamic task sets,
temporal isolation, and improved failure/overload tol-
erance. These results are promising since Pfair schedul-
ing was proposed relatively recently and will likely im-
prove as it is refined. Partitioning, on the other hand,
is well-studied and hence is not likely to improve.

3 Scheduling Algorithm

In this section, we present an efficient scheduling algo-
rithm for the staggered model.

Back-to-back scheduling. Under staggering, quanta

from different slots can overlap, as the A3 and B1
quanta illustrated in Fig. 3(b) (see Sec. 1). Hence,
the scheduler must ensure that tasks scheduled back-
to-back (i.e., in consecutive slots) are not granted over-
lapping quanta. Safety is ensured by employing an
affinity-based assignment policy. Specifically, tasks can
be migrated only after preemptions. Hence, a task that
is scheduled back-to-back will execute on the same pro-
cessor in both slots. This and similar policies can be
used to improve cache performance as well. When used
with supertasks, the benefits of such a policy can be
substantial, i.e., the cache performance of a group of
EDF-scheduled component tasks in a heavily weighted
supertask will resemble that of using EDF scheduling
on a dedicated uniprocessor.

Concept. Consider scheduling slot t on the first pro-
cessor after executing task T in slot t − 1. To be com-
putationally efficient, the scheduler must require only
O(log N) time on each processor. (PD2 schedules all M
processors in O(M log N) time [12].) In addition, the
decision must respect the guarantee described above if
T is scheduled back-to-back. However, identifying all
tasks scheduled in slot t is an Ω(M) operation.

The implication is that the tasks scheduled in slot t
must be identified before invoking the scheduler at the
start of slot t. To achieve this, our algorithm divides
scheduling into two steps: (i) up to M tasks (if that
many are eligible) are selected to execute in slot t and
stored in t’s scheduling set , and (ii) each processor later
selects a task to execute from those in t’s scheduling set.
To ensure that t’s scheduling set is known at the start
of slot t, Step (i) is actually performed one slot early
(i.e., by the scheduler invocations in slot t − 1).

3.1 Basic Algorithm

We begin by presenting procedures needed to support
Pfair or ERfair scheduling of static task sets (shown
in Fig. 5). Later, we present additional procedures to
support the remaining Pfair-scheduling extensions.

Data structures. When scheduling slot t , tasks sched-
uled in slot t (respectively, t +1) are stored in the Now
(respectively, Next) heaps. The Sched (respectively,
Resched) heaps store tasks that are not (respectively,
are) scheduled back-to-back. The Eligible heap stores
all remaining tasks that are eligible in slot t + 1. All
heaps are ordered according to task priorities. (The �
and � relations, which define this ordering, are defined
below.) In addition, the Incoming [t] heap stores tasks
that will not be eligible to execute until slot t. (We
present these heaps as an unbounded array solely to
simplify the presentation.) We assume that each task
is initially stored in the appropriate Incoming heap.
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typedef task :
record

elig: integer;
prio: ADT

shared var
t : integer initially −1;
SchedCount : integer initially M ;
Running: array 1 . . . M of task ∪ {⊥} initially ⊥;
SchedNow : min-ordered heap of task initially ∅;
ReschedNow : min-ordered heap of task initially ∅;
SchedNext : min-ordered heap of task initially ∅;
ReschedNext : min-ordered heap of task initially ∅;
Eligible: max-ordered heap of task initially ∅;
Incoming: array 0 . . . ∞ of max-ordered heap of task

private var
p: 1 . . . M ; T : task ∪ {⊥}

procedure Initialize()
1: Eligible := Eligible ∪ Incoming[0];
2: while |Eligible| > 0 ∧ |SchedNext | < M do
3: SchedNext := SchedNext ∪ {Extract-Max(Eligible)}

do

procedure SelectTask(T )
4: if T ∈ S t then
5: ReschedNext := ReschedNext ∪ {T}

else
6: SchedNext := SchedNext ∪ {T}

fi

procedure Schedule(p)
7: if SchedCount = M then
8: t := t + 1;
9: Eligible := Eligible ∪ Incoming[t + 1];
10: Swap(SchedNow , SchedNext);
11: Swap(ReschedNow , ReschedNext)

fi;
12: if Running[p] ∈ ReschedNow then
13: T := Running[p];
14: ReschedNow := ReschedNow / {T}
15: else if |SchedNow | > 0 then
16: T := Extract-Min(SchedNow)

else
17: T := ⊥

fi;
18: Running[p] := T ;
19: if T �= ⊥ then
20: UpdatePriority(T );
21: if T .elig ≤ t + 1 then
22: Eligible := Eligible ∪ {T}

else
23: Incoming[T .elig] := Incoming[T .elig] ∪ {T}

fi
fi;

24: if |Eligible| > 0 then
25: SelectTask(Extract-Max(Eligible))

fi;
26: SchedCount := (SchedCount mod M ) + 1

Figure 5: Basic staggered scheduling algorithm.

Each task is represented by a record that contains
(at least) the earliest slot in which the task may next
execute (elig) and the task’s current priority (prio).
We assume that task priorities are implemented as an
abstract data type that supports the ≺, �, 	, and �
comparisons, where ρ1 ≺ ρ2 (respectively, ρ1 � ρ2) im-
plies that priority ρ1 is strictly lower than (respectively,
lower than or equal to) priority ρ2. We further assume
that UpdatePriority() encapsulates the algorithm for
updating prio and elig .

The remaining variables include two counters (t and
SchedCount) and the Running array. t is the index of
the current slot. SchedCount indicates the number of
scheduler invocations that have been performed for slot
t . Finally, the Running array indicates which task is
currently executing on each processor.

To simplify presentation, some branches test for set
inclusion (∈) and the branch at line 4 uses S t to denote
the set of tasks selected to execute in slot t . All of these
tests can be implemented in O(1) time complexity and
O(N) space complexity by associating a few additional
variables with each task.

Detailed description. Initialize is invoked before
all other procedures and schedules slot 0. First, tasks
present at time 0 are merged into the Eligible heap at
line 1. Lines 2–3 then make the scheduling decisions.

SelectTask schedules a task T in slot t +1. Line 4

determines whether T is scheduled back-to-back. T is
then stored in the proper heap in lines 5–6.

Schedule(p) is invoked to schedule processor p.
Lines 8–11 initialize a round of scheduler invocations
by incrementing t , by merging newly eligible tasks into
Eligible, and by initializing SchedNow , ReschedNow ,
SchedNext , and ReschedNext . Lines 12–18 select the
task to execute on processor p and record the deci-
sion. The task is then updated and stored according
to the priority of its successor subtask in lines 20–23.
Lines 24–25 then select a task to execute in the slot
t + 1. Finally, progress is recorded by updating Sched-
Count at line 26.

Example. Fig. 6 shows a sample schedule produced
by the staggered algorithm. To illustrate the operation
of the algorithm, a trace of task T3’s heap-membership
changes is presented in the right frame of Fig. 6.

3.2 Extensions

We now present the procedures needed to support tasks
leaving and joining the system (shown in Fig. 7).

Concerns. Two problems arise from tasks leaving and
joining. First, these actions require modification of
the scheduler’s data structures. Hence, access to these
structures must be synchronized. Second, adding and
removing tasks can lead to incorrect scheduling deci-
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Figure 6: Four tasks (T1–T4) are executed on two processors (P1–P2) under the staggered model. The left frames show
two views of the schedule. The right frame shows a trace of task T3’s movement through the scheduler’s heaps. Event
labels in the trace correspond to the event timeline in the upper-left frame.

sions. To avoid this potential problem, the presented
procedures ensures that one of the two conditions given
below holds after the execution of every procedure.

(I1) |SchedNext |+ |ReschedNext | = SchedCount and,
for all T ∈ (SchedNext ∪ ReschedNext) and U ∈
Eligible, T.prio � U.prio

(I2) |SchedNext | + |ReschedNext | < SchedCount and
|Eligible| = 0

Detailed description. Invoking Deactivate(T ) in
slot t causes task T to be ignored when scheduling slots
at and after t + 1. If T has been selected to execute
in slot t but has not been granted a processor, then
the decision to execute T is nullified; however, T is
still charged as if it did execute. (This is analogous to
having a task suspend immediately after it is granted
the processor: the entire quantum is wasted.) When
removing T , three cases must be considered: (i) T is
scheduled in slot t + 1 (it is in either SchedNext or
ReschedNext), (ii) T is scheduled in slot t but has not
been granted a processor (it is in either SchedNow or
ReschedNow), and (iii) T is not scheduled in slot t +1
(but may be currently executing in slot t). Lines 28–
32 handle Case (i) by locating and removing T from ei-
ther SchedNext or ReschedNext at lines 28–30 and then
scheduling a replacement task at lines 31–32. Lines 33–
37 handle Case (ii) by locating and removing T from
either SchedNow or ReschedNow at lines 33–36 and

then charging T for the unused quantum at line 37.
Lines 38–40 handle Case (iii).

Invoking Activate(T ) within slot t causes task T to
be considered when scheduling slots at and after t + 1.
Again, three cases must be considered: (i) T is not eli-
gible to execute in slot t+1, (ii) T is eligible to execute
in slot t + 1 and a processor will idle in that slot, and
(iii) T is eligible to execute in slot t+1 but no processor
will idle in that slot. Lines 51 and 42–43 handle Cases
(i) and (ii), respectively. Lines 44–50 handle Case (iii).
Specifically, lines 44–46 determine which of SchedNext
and ReschedNext contains the lowest-priority task that
is scheduled in slot t +1. If this task’s priority is lower
than T ’s priority, then it is removed and replaced by T
at lines 47–49. Whichever task is not scheduled in slot
t + 1 is then stored in Eligible at line 50.

3.3 Time complexity

Since task priorities can be updated and compared in
constant time, the only significant complexity results
from heap operations. Each procedure performs a con-
stant number of heap operations and a constant num-
ber of calls to other procedures. Therefore, the time
complexity of each procedure is O(log N) when using
binomial heaps and PD2 task priorities, and the ag-
gregate time complexity of M scheduler invocations is
O(M log N). Hence, the presented algorithm is com-
putationally efficient.

Recall that under the aligned model, all scheduling
decisions are made on a single processor, resulting in
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procedure Deactivate(T )
27: if T ∈ SchedNext ∪ ReschedNext then
28: if T ∈ ReschedNext then
29: ReschedNext := ReschedNext / {T}

else
30: SchedNext := SchedNext / {T}

fi;
31: if |Eligible| > 0 then
32: SelectTask(Extract-Max(Eligible))

fi
33: else if T ∈ SchedNow ∪ ReschedNow then
34: if T ∈ ReschedNow then
35: ReschedNow := ReschedNow / {T}

else
36: SchedNow := SchedNow / {T}

fi;
37: UpdatePriority(T )
38: else if T ∈ Eligible then
39: Eligible := Eligible / {T}

else
40: Incoming[T .elig] := Incoming[T .elig] / {T}

fi

private var
H : pointer to min-ordered heap of task

procedure Activate(T )
41: if T .elig ≤ t + 1 then
42: if |SchedNext | + |ReschedNext | < SchedCount then
43: SelectTask(T )

else
44: if |SchedNext | = 0 ∨ (|ReschedNext | > 0

∧ Min(SchedNext).prio 
 Min(ReschedNext).prio) then
45: H := &ReschedNext

else
46: H := &SchedNext

fi;
47: if Min(*H ).prio ≺ T .prio then
48: SelectTask(T );
49: T := Extract-Min(*H )

fi;
50: Eligible := Eligible ∪ {T}

fi
else

51: Incoming[T .elig] := Incoming[T .elig] ∪ {T}
fi

Figure 7: Extensions to support departures and suspensions (left), and arrivals and resumptions (right).

O(M log N) time complexity on that processor. The
per-processor overhead under the staggered model is
proportional to the time required by one invocation of
Schedule, which has only O(log N) time complexity.
This suggests that the staggered model can provide up
to a factor-of-M improvement with respect to schedul-
ing overhead. (The actual improvement will depend on
the system architecture, as we later show.)

4 Impact on Analysis

We now discuss how staggering impacts prior results.

Side effects. A staggered slot extends up to ∆ = M−1
M

beyond its placement when aligned. Hence, slot i on
a processor may overlap slots i + 1 and i − 1 on other
processors, which leads to the following side effects.

(E1) An event occurring at t under the aligned model
may be delayed until t + ∆ under staggering.

(E2) Each quantum overlaps M − 1 other quanta
when aligned, but 2(M − 1) when staggered.

Basic analysis. Consider independent-task schedul-
ing. Independent tasks are oblivious to the execution
of other tasks and, hence, are unaffected by (E2). (E1),
on the other hand, has two implications.

First, deadlines guaranteed under the aligned model
may be missed by up to ∆ under staggering. Deadlines
can be strictly enforced by increasing each task’s weight
so that each strict deadline occurs one slot earlier than
its true position. The resulting loss depends on the
task’s parameters: a task T requiring a quanta every b

slots will need T.w ≈ a
b under the aligned model, but

T.w ≈ a
b−1 under staggering.

Second, events (such as suspension requests) occur-
ring in slot t may occur after time t+1, at which point
the scheduling decisions for slot t + 1 are committed.
As a result, a suspending task may occasionally (when
scheduled back-to-back) cause a quantum to be wasted,
as illustrated in Fig. 8. Server tasks that suspend when
no requests are pending will likely be most impacted by
this property since worst-case analysis must pessimisti-
cally assume that a quantum is wasted each time the
server suspends.

Supertasking. In [6, 9], a supertask weight is cho-

�
�
�

�
�
�

t t+2 t+3
Time (ticks)

T

Suspension requested Suspended

Slots on T’s Current Processor at Time t (ticks)

t+1

(a) Aligned Model

Wasted Quantum
�
�
�

�
�
�

Slots on T’s Current Processor at Time t+1 (ticks)

t+1t t+2 t+3
Time (ticks)

T

Suspension requested Suspended

(b) Staggered Model

Figure 8: Illustration of how an event timing differs be-
tween (a) the aligned model and (b) the staggered model.
An event in slot t is no longer guaranteed to occur before
time t + 1 under the staggered model. Due to this, a task
may have already been scheduled in the next slot before a
suspension request is issued, as shown in (b).
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sen by comparing the least amount of processor time
guaranteed to a supertask to the total processor-time
requirement of all component tasks. Only the first of
these two quantities requires adjustment due to stag-
gering, and is independent of (E2).

The primary impact of (E1) is that the amount of
processor time guaranteed to the supertask is slightly
lower under staggering. As in the case of independent
tasks, this delay may result in bounded (component-
task) deadline misses. Strict deadlines can be guaran-
teed by simply applying the analysis presented in [9]
with an adjusted estimate of the amount of processor
time granted to the supertask.

Lock-free synchronization. Lock-free operations are
optimistically attempted and retried until successful.
A bound on retry overhead can be derived by deter-
mining the worst-case number of failures. The analysis
presented in [7] assumes that (i) a failure implies the
success of a competing operation, and (ii) each oper-
ation is short enough to be preempted at most once.
By (i), the number of failures experienced by some task
T due to parallel interference within a slot is bounded
by the number of operations that can be performed
in parallel within that slot. Hence, under the aligned
model, it is sufficient to assume that the worst-case
mix of M −1 interfering tasks executes in parallel with
T . By (E2), similar reasoning can still be applied un-
der staggering; however, 2(M − 1) tasks must now be
considered, which potentially doubles the overhead.

Timer-based lock synchronization. Two timer-
based locking protocols are presented in [8]. Each de-
lays lock-requesting operations that are at risk of being
preempted until the start of a new quantum. (See [8]
for details.) This action prevents preemptions from
lengthening the duration of time that a lock is held.
Both protocols guarantee that only executing tasks can
hold locks, and hence can block a requesting task T .
As in the lock-free case, this analysis assumes that each
task T can be preempted at most once before an op-
eration completes. Hence, the situation is quite simi-
lar to that discussed above: bounds on T ’s worst-case
blocking overhead are computed by considering the in-
terference of M − 1 tasks under the aligned model and
2(M − 1) tasks under the staggered model.

Server-based lock synchronization. A server-based
approach that uses a FIFO-ordered request queue is
also presented in [8]. Since the analysis assumes that
every competing task has its request executed before
the requesting task T , the worst-case time required
to process T ’s request is unaffected by (E1) and (E2).
However, since both the requesting task and lock server
may suspend under this protocol, they may suffer from

the suspension-related problems mentioned earlier.

Trade-off. Staggering represents a trade-off between
off-line schedulability and on-line performance. Of the
costs mentioned above, those related to suspensions
and synchronization will likely be the highest in prac-
tice. We consider each below.

As mentioned in Sec. 1, a task that yields before
the next scheduling point is charged for the unused
processor time. Hence, frequent suspensions will likely
lead to both poor task performance and low utiliza-
tion. To achieve good performance, tasks exhibiting
such behaviors should not be Pfair-scheduled. Indeed,
this observation was a driving motivation behind our
work on supertasking [9], which allows such tasks to
be scheduled as a group rather than individually. The
benefit is that the global scheduler sees only the su-
pertask, which never suspends, while component tasks
can be scheduled using a uniprocessor algorithm that is
more flexible (with respect to suspensions). Given the
availability of mechanisms to help avoid this problem,
suspensions are expected to occur infrequently in the
global schedule and, hence, should contribute little to
the actual cost of staggering.

Similarly, synchronization at the global level should
be limited to lock-free and timer-based locking synchro-
nization. As shown in [7, 8], these approaches tend to
result in very low overhead in practice. Since stagger-
ing at most doubles this overhead, the cost of synchro-
nization should remain relatively low under staggering.

Based on this reasoning, staggering is expected to
result in only slight schedulability loss in practice. More
importantly, experimental results presented in the next
section suggest that substantial performance gains can
be achieved through staggering. These gains translate
into decreased execution times, which are beneficial in
both the average and worst case. We expect the losses
considered in this section to be exceeded by the gains
provided by these decreased execution requirements.

5 Experimental Results

This section contains an experimental evaluation of
staggering and the proposed scheduling algorithm.

5.1 Simulations

In this subsection, we present a simulation-based com-
parison of the Pfair models. The advantage of simu-
lation over direct measurement is that the processor
count can be varied and the cache characteristics can
be set arbitrarily. The latter trait was used to test
performance on a simple blocking cache.

Experimental setup. These experiments used the
Limes [10] simulator. Limes simulates execution close
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to the hardware level. As such, it provides no process
management. However, Limes permits hardware-level
aspects of the system to be more easily controlled than
more complex simulators. Due to the limitations of
Limes, preemption effects were only simulated. Specif-
ically, caches were initially filled with dirty lines. Each
task then performed writes to a local array until a “pre-
emption” was detected. Tasks reacted to preemptions
by exchanging their arrays for other uncached local
ones. Hence, the cold-cache effect of preemptions was
simulated using working-set changes.

We consider processor counts in the range [1, 16]
and report behavior across three slots. The system
consisted of 200 MHz i86 processors using a 10 millisec-
ond quantum. Caching consisted of blocking, direct-
mapped caches with 256 KB capacity and 32-byte lines.
The MESI coherency protocol was used. Since our goal
was to measure only preemption-related contention,
both actual and false data sharing was avoided.

Bus contention was measured by counting pending
bus requests at each cycle. Since only one request could
be serviced in each cycle, the presence of k requests im-
plied that k−1 tasks wasted that cycle waiting for bus
access. Cycles required to service a task’s bus requests
were not counted as wasted cycles.

Relevance. These simulations focus on simultane-
ously scheduled tasks that process large data sets. Con-
sideration of this scenario is motivated by the fact that
many real-time multiprocessor systems consist of sig-
nificant numbers of such tasks. Signal-processing and
virtual-reality systems are two examples. Hence, we
believe that these scenarios do represent situations that
can arise in practice.

Worst-case contention under the aligned model.
The first experiment estimated the worst-case bus con-
tention under the aligned model (when working sets
are fully cacheable). (This experiment does not char-
acterize the worst case for staggering.) The worst case
occurs when each task writes to each cache line in its
working set at the start of each quantum. Fig. 9(a)
shows the average number of cycles lost per task.

Notice that both curves converge as the processor
count increases, which indicates an overload of the bus.
When tasks fail to completely load their working sets
within a single quantum, the resulting traffic pattern is
approximately uniform across every quantum. As a re-
sult, staggering provides no benefit. Hence, increasing
the volume of bus traffic must eventually cause perfor-
mance under both models to converge.

Random-access contention. Our second experiment
measured performance under a random-access pattern
when working-set sizes vary. Each task randomly se-

lects cells to access from a fraction α of the full array.
This behavior results in a burst of bus traffic at the
start of each slot, followed by a gradual decline as the
probability of referencing an uncached line decreases.
The value of α was chosen from { 0.2k | 1 ≤ k ≤ 5 }.

Results are shown in Fig. 9(b)–(c). As shown, stag-
gering produces significantly less loss in all cases. This
experiment was repeated several times, producing vir-
tually identical results. (These simulations were unfor-
tunately too long to produce confidence intervals.)

5.2 Prototype Measurements

In this subsection, we present a comparison of the stag-
gered and aligned models using our Pfair prototype.

Experimental setup. The prototype microkernel ex-
ecutes as a thread package within QNX Neutrino 6.2.1

The system consists of four 200 MHz Pentium Pro
processors, each of which has a 4-way, 512 KB L2
cache. These processors provide several latency-hiding
features, including out-of-order execution, branch pre-
diction, non-blocking caches, and support for multi-
ple pending bus operations. Hence, this experiment
will demonstrate whether staggering can improve upon
simply applying common hardware-based techniques.
Staggering should provide a much greater benefit to
systems with fewer latency-hiding features.

Both experiments described in the previous section
were conducted on the prototype. Due to the hardware
complexity, performance was measured at the user level
by calculating the average number of cycles per write
operation in each quantum.

Results. Results are shown in Fig. 10. The upper two
graphs in the left (respectively, right) column show the
average number of cycles per write under the linear-
access (respectively, random-access) reference pattern.
99% confidence intervals were computed, but are omit-
ted due to scale. (Marked intervals show the observed
sample range.) As shown, staggering provides an in-
creasing improvement until the array size reaches ap-
proximately 150 KB, at which point overload occurs.

The two graphs at the bottom of Fig. 10 show the
ratios of corresponding sample means from the other
graphs. As shown, up to 7 (respectively, 2.5) times
more writes were performed under the staggered model
with the linear-access (respectively, random-access) pat-
tern. Recall that this comparison is on a platform with
latency-hiding features: improvement should be more
dramatic without such features.

1The prototype takes control of the system when running.
Neutrino was selected specifically to support this approach.
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Figure 10: Results of linear- (left) and random-access (right) experiments conducted in the prototype Pfair system.

5.3 Scheduling Overhead

In the final series of experiments, the per-slot schedul-
ing overhead of the algorithm from Sec. 3 was compared
to that of the master/slave PD2 algorithm from [1].

Experimental setup. Each experiment described be-
low tested 1,000 randomly generated sets of indepen-
dent tasks for each pairing of N ∈ { 10n | 1 ≤ n ≤ 50 }
and M ∈ {2, 4, 8, 16}. From the execution-time mea-
surements, the ratio of the average per-slot overhead
of the master/slave algorithm to that of the staggered

algorithm was computed. Again, 99% confidence inter-
vals were computed, but are omitted due to scale.

Warm cache. In the first experiment, we consid-
ered performance when scheduler invocations are per-
formed iteratively on a uniprocessor (a 700-MHz Dell
PC running Red Hat Linux 2.4). After a warm-up
delay, all memory references hit in cache. This exper-
iment approximates the best-case performance of each
algorithm. Architectures with highly effective latency-
hiding features should provide comparable performance
on average. Fig. 11(a) shows the results from this
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Figure 9: Cycles lost to bus contention are shown. (a)
Each working set completely fills the cache and lines are
systematically written. (b)–(c) Random writes are per-
formed and working-set sizes are varied.

experiment. As shown, the staggered algorithm ap-
proaches, and often matches, the factor-of-M improve-
ment suggested by its time complexity.

Cold cache. Due to idealized cache behavior, the pre-
vious experiment provides no insight into how the al-

gorithms perform on simpler architectures or in worst-
case situations. To provide more realistic estimates,
we performed a second comparison on an SGI Reality
Monster with 32 300-MHz R10000 processors in which
multiple copies of the scheduler were distributed on
the processors. Control was then transfered between
these copies at appropriate points so that the sched-
uler would encounter a (somewhat) cold cache.2 Un-
der master/slave (respectively, staggered) scheduling,
these transfers occurred after each scheduler (respec-
tively, Schedule) invocation. Fig. 11(b) shows the re-
sults from this experiment. Caching effects close the
performance gap substantially compared to the pre-
vious experiment. Despite this, staggering still pro-
vides a significant improvement. Indeed, since each in-
vocation of Schedule makes fewer memory references
than the master/slave algorithm, staggered scheduling
should never produce more overhead, regardless of the
platform. However, the magnitude of the improvement
may vary significantly, as these experiments suggest.

6 Conclusion

Although SMPs are well-suited to Pfair scheduling in
many ways, experimental results presented herein sug-
gest that preemption-related bus contention can sig-
nificantly degrade performance. To address this prob-
lem, we proposed and demonstrated the effectiveness
of a staggered model under which preemption-related
bus traffic is more evenly distributed over time. Fur-
thermore, we developed and experimentally evaluated
an efficient scheduling algorithm to support this model
that also produces less scheduling overhead than cur-
rent Pfair algorithms. Finally, we explained how ex-
isting results can be applied, with minor modification,
to the proposed model. In future work, we intend to
extend our Pfair prototype to enable an empirical com-
parison to the partitioning approach.

Acknowledgement: The authors would like to thank
Prashant Shenoy for reading an earlier draft of this
paper and suggesting ways to improve the presentation.
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