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Abstract

Prior work on Pfair scheduling has resulted in three optimal multiprocessor scheduling algorithms, and one algorithm,
EPDF, that is less expensive but not optimal. EPDF is still of interest in soft real-time systems, however, due to its ability to
guarantee bounded tardiness. In particular, it has been shown that a tardiness kaurahtd is possible under EPDF if all
task weightsi(e., shares or utilizations) are restricted to a value specified as a functtorirofn actual system, however,
different tasks may be subject to different tardiness bounds. If such a system is scheduled under EPDF, then the tardiness
of a task with a higher bound may cause the tardiness bound of a task with a lower bound to be violatedpthpbis|
isolationamong the various tardiness classes may not be guaranteed. In this paper, we propose an algortihm based on EPDF
for scheduling task classes with different tardiness bounds on a multiprocessor. Our algorithm provides temporal isolation
among classes, allows the available processing capacity to be fully utilized, and does not require that previously established
per-task weight restrictions be made more stringent.

*Work supported by NSF grants CCR 9988327, ITR 0082866, CCR 0204312, and CCR 0309825.
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tgsks exgcunon rate is defined by m'ght. ((_)r utiliza- Class k X Al hedlefa e
tion). Uniform rates are ensured by subdividing each task S K quanta thei priorq1.
T into quantum-lengtisubtaskshat are subject to interme- "™ i

diate deadlines. To avoid deadline misses, ties among sub- e T T
tasks with the same deadline must be broken carefully. In

fact, tie-breaking rules are crucial when devising optimal Figure 1. Under Pfair scheduling, each of a task’s sub-
Pfair scheduling algorithms. tasks has an associatethdowin which it shouldbe sched-

As discussed by Srinivasan and Anderson [9], overheads uled; the end of a subtask’s window is its deadline. In this
associated with tie-breaking rules may be unnecessary or figure, a schedule for different classes of soft-real-time tasks
unacceptable for many soft real-time systems. A soft real- on M processors under EPDF is depicted. Tasks in Glass
time task differs from a hard real-time task in that its dead- are allowed to miss their deadlines by upitquanta. For
lines may sometimes be missed. If a jole.( task instance) clarity, only a few subask windows have been shown; for
or a subtask with a deadline at tirdecompletes executing each subtask shown, an ‘X’ denotes where it is scheduled.
at timet, then itis said to have rdinessof max(0, t — d). At time ¢, more thanM subtasks of Classes 2 and higher
As discussed in [6], the results produced by a soft real-time with deadlines prior ta have not yet been scheduled. As
job are of decreasing usefulness after its deadline. Thus, ana result, a subtask of Class 1 with a deadline @annot be
implicit bound exists on the tardiness that such a job can scheduled at, and hence, misses its deadline by two quanta,
tolerate. i.e.its miss threshold is exceeded.

Systems with quality-of-service requirements, such as
multimedia applications, are examples where bounded
deadline misses may be tolerable. Here, fair resource allo-
cation is necessary to provide service guarantees, but oc&zntributions.  In the work summarized abovell tasks
sional deadline misses often result in tolerable performan@€ assumed to have equal tolerance to tardiness. However,
degradation. Hence, an extreme notion of fairness that pras discussed in [6], the usefulness of results produced by
cludes all deadline misses is usually not required. different soft real-time applications may decrease with tar-

In dynamic systems that permit tasks to join or leave, th@liness at different rates; thus, different applications can be
overhead introduced by tie-breaking rules may be unaccegpected to have different tardiness bounds. To support mul-
able. In such a system, spare processing capacity may Bigle bounds, different tardiness classes mustelpeporally
come available. To make use of this capacity, task Weigh'tgolated from one another so that deadline misses in one
must be changed on-the-fly. It is possible to reweight eacHass do not cause tardiness bounds to be exceeded in other
task so that its next subtask deadline is preserved [9]. If fdasses. Preserving temporal isolation is especially impor-
tie-breaking information is maintained, such an approactnt when multiplexing separately developed applications
entails very little overhead. However, weight changes ca@nto a multiprocessor. (Temporal isolation is a key virtue
cause tie-breaking information to change, so if tie-breakingf fair scheduling.)
rules are used, reweighting may necessitaf® & log V) The tardiness bound that can be guaranteed to a task
cost for NV tasks, due to the need to re-sort the schedulersystem under EPDF depends on the largest task weight.
priority queue. This cost may be prohibitive if load changesience, if tasks with varying tardiness bounds and weights
are frequent. are present in a system and are scheduled using EPDF, then

The observations above motivated Srinivasan and Anddt-may not be possible to guarantee every task its bound. As
son to consider the viability of scheduling soft real-time apilustrated in Fig. 1, breaking deadline ties in favor of tasks
plications using the simpleearliest-pseudo-deadline-first with more stringent tardiness bounds also may not be help-
(EPDF) Pfair algorithm, which uses no tie-breaking rulesful. An obvious next solution would be to partition the tasks
They succeeded in showing that EPDF can guarantee atariito classes by their tardiness bounds and schedule each
ness oft quanta for every subtask of a feasible task systensjass independently on disjoint sets of processors. Unfor-
in which each task’s weight is at mo% [9]. In recent tunately, if the total utilization of a class is not integral, then
work [5], we showed that this condition can be improvedhis approach will lead to wasted processing capacity. For
to ﬁ—i; With either condition, the greater the tardiness alexample, consider a task system comprised of two tardiness
lowed, the less stringent the weight restriction. classes with utilizations/; +6 andM,+1—4, respectively,



where0 < § < 1, M7 + My +1 = M, andM is integral. pseudo-deadliné(T;), where

Under partitioningM; + Ms + 2 = M + 1 processors will ‘ ‘

be required to schedule the two classes. Thus, processing H(T}) = { i—1 J A d(T;) = { ? _‘ ’ )
capacity equivalent to a full processor would be wasted. In wt(T) wt(T)

eneral, withy tardiness classeg— 1 additional processors . . i
9 hu 3 P (For brevity, we often omit the prefix “pseudo-.") To sat-

may be.requwed. . isfy (1), T; must be scheduled in the interval(T;) =
In this paper, WE propose a new .algonthm, pased ce)f;'(Ti),d(Ti)),termed itsvindow For example, in Fig. 2(a),
EPDF, for supporting classes with different tardiness r 7(T1) = 0 andd(T}) = 2. ThereforeT; must be scheduled
quirements. Our algorithm provides temporal iSOIatiorbteithertimeO or time 1.
among classes, allows all available processing capacity to
be fully utilized, and does not require that previously estalBoft real-time scheduling. The notion of tardiness dis-
lished per-task weight restrictions be made more stringergussed in Sec. 1 for soft real-time jobs can be extended in
Our algorithm is described in Sec. 3 after first giving needeg straightforward manner to subtasks of soft real-time tasks.

definitions in Sec. 2. An experimental evaluation of it is preThetardiness of a subtask; is defined agardiness(T}) =

sented in Sec. 4. max(0,t — d(T;)), wheret is the time thatl; completes
execution. Theardiness of a task systeim then defined
2 Pfair Scheduling as the maximum tardiness among all of its subtasks in any

schedule [9].

In this section, we summarize the concepts of Pfair The earliest-pseudo-deadline-first (EPDF) algorithm [9]

scheduling and some prior results from [4, 2, 3, 1, 8]. To b is the algorithm that we consider for scheduling soft tasks,

gin with, we limit attention to periodic tasks, each of which,or the reasons discussed in the introduction. EPDF prior-

begins execution at time 0. A periodic téBkvith an integer |t|_zes_subtasks by their d(_eadllnes, _and resolves any ties ar-
. . . : bitrarily. Although EPDF is not optimal on more than two
period T'.p and an integeexecution cosf.e has aweight

wi(T) = T.e/T.p, where0 < wt(T) < 1. A task islight if processors [1], as discussed earlier, it can ensure atardmess
. o . of at mostk > 1 quanta for each subtask, provided certain
its weight is less tham/2, andheavyotherwise.

) ) _ o per-task weight restrictions hold.
Pfair algorithms allocate processor time in discrete

quanta; the time interval, ¢t + 1), wheret € N (the set of Taskmodels. In thi_s paper, we considertﬁrﬂra—sporadic
nonnegative integers) is callstbtt. (Hence, timet refers  (IS) and thegeneralized-intra-sporadi¢GIS) task models
to the beginning of slot.) A task may be allocated time [3; 8], which provide a general notion of recurrent execu-
on different processors, but not in the same dlet, (inter- 10N that subsumes that found in the well-studied periodic

processor migration is allowed but parallelism is not). Th nd sporadic task models. Thporadicmodel generalizes

sequence of allocation decisions over time definesheed € periodic model by allowing jobs to be released "late,
. ~ the IS model generalizes the sporadic model by allowin
ule S. Formally,S : 7 x N — {0, 1}, wherer is a task set. J P y g

° . . subtasks to be released late, as illustrated in Fig. 2(b). That
S(T',t) = 1iff T is scheduled in slot. On M processors, s an |S task is obtained by allowing a task’s windows to be
>re. S(T,t) < M holds for allt. shifted right from where they would appear if the task were
periodic. Letd(T;) denote the offset of subtagk, i.e., the
amount by whichu(T;) has been shifted right. Then, by (2),

Lags and subtasks. The notion of a Pfair schedule is de- ;
we have the following.

fined by comparing such a schedule to an ideal fluid sche

ule, which allocatesut(T") processor time to task in each i—1

slot. Deviation from the fluid schedule is formally captured " (7:) = 0(T3)+ Lut(T)

by the concept ofag. Formally, thelag of task T at time

tis lag(T,t) = wt(T) - t — Zf:o S(T,u). A schedule is The offsets are constrained so that the separation between

defined to bdPfair iff any pair of subtask releases is at least the separation between
those releases if the task were periodic. Formally,

J A d(Ti)=0(T¢)+mezTJ ®)

VTt =1 <lag(T,t) < 1). 1)
k>i=0(T,) > 0(T;). 4)
Informally, the allocation error associated with each task
must always be less than one quantum. (For conciseness,Each subtask’; has an additional paramete{T;) that
we leave the schedule implicit and use (T, t) instead of ~specifies the first time slot in which it is eligible to be sched-
lag(T\t,S).) uled. Itis assumed thatT;) < r(T;) ande(T;) < e(Ti41)
for all « > 1. Additionally, no subtask can become eligible

The lag bounds above have the effect of breaking ea fore its predecessor completes execufien

taskT into an infinite sequence of quantum-lengttbtasks
Ty,T5,.... Each subtask hasgseudo-release(T;) anda h<i A e(Ti) <r(Ti) A S(Th,u) =1= u<e(Ti). (5)
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Figure 2. (a) Windows of the first job of a periodic task with weight8/11. This job consists of subtasks, .. ., Tz, each of
which must be scheduled within its window, or else a lag-bound violation will result. (This pattern repeats for evelty) johg
Pfair windows of an IS task. Subtagk becomes eligible one time unit laté) The Pfair windows of a GIS task. Subtdgkis

absent and5 is one time unit late.

The interval[r(T;),d(T;)) is called thePF-windowof T;  on M processors iff

and the intervale(T;), d(T;)) is called thelS-windowof

T;. A schedule for an IS system ialid iff each subtask Z wit(T) < M. (6)
is scheduled in its IS-window. (Note that the notion of a job Ter

is not mentioned here. For systems in which subtasks are

grouped into jobs that are released in sequence, the defini-

tion of e would preclude a subtask from becoming eligibleShares and lags in IS and GIS task systems.lag(T t) is
before the beginning of its job.) defined for IS and GIS tasks as before [8]. Létal(T,t)

The IS model is suitable for manv apolications in whic denote the processor share tiiateceives in an ideal fluid
Y app hff_)rocessor—sharing) schedule[int). Then,

processing steps may be jittered. For example, in an app
cation that processes packets arriving over a network, pack-
ets may arrive late or in bursts. The IS model treats these
possibilities as first-class concepts: a late packet arrival cor-

responds to an IS delay, and if a packet arrives early (as padwards definingdeal(T, t), we defineshare(T, u), which
of a bursty sequence), then its eligibility time will be lesss the share assigned to taBkn slotu. share(T,u) is de-
than its Pfair release time. Note that its Pfair release timiined in terms of a functiorf (7;, ¢) that indicates the share
determines its deadline. Thus, in effect, an early packet aassigned to subtask; in slot¢. f(7;,t) is defined as fol-
rival is handled by postponing its deadline to where it wouldows.

t—1
lag(T,t) = ideal(T,t) — > S(T,u). 7
u=0

have been had the packet arrived on time. - ) ,
({WJ S 1) X wi(T) = (i— 1), if ¢ =r(T})
G lized int dic task svst A lized z‘—([wt;Tﬂ — 1) x wt(T), ift =d(T;) —1
eneralized intra-sporadic task systems. A generalize wt(T), if t € (r(13),d(T3)—-1)

intra-sporadic (GIS) task system is like an IS task system .
g . L0, otherwise
except that a task may omit some of its subtasks. Specifi- ®)

cally, a task7’, after releasing subtask, may release sub- jq 3 shows somé values for a task of weighit/16. Given
taskTy, wherek > i+1, instead ofl; , with the following #, share(T,w) can be defined as

restriction: r(Ty) — r(T;) is at Ieast{%J - {#%)J
In other words,r(T},) is not smaller than what it would share(T,u) = > f(T;,u). ©)
have beenifl; 1, T;12, ... Tx—1 Were present and released i

as early as possible. For the special case Wﬁ@}:ﬁflthe As shown in Fig. 3share(T, u) usually equalsst(T), but

first subtask released by, (T} ) must be at Ieaska. in certain slots, it may be less tharn(T). Thus,
Fig. 2(c) shows an example. H; is the most recently re-

leased subtask @f, thenT may releasd’,, wherek > i, as (VT,t > 0: share(T,t) < wt(T)). (10)
. . : ] k—1 _ i—1 <
its next subtask at time if r(73) + {wt(T)J {wt(T)J =% We can now defineideal (T, t) as '\ share(T,u).

If a taskT’, after executing subtask;, releases subtask;, Hence, from (7),
then T}, is called thesuccessoof T; andT; is called the
predecessoof T.

As shown in [3], an IS or GIS task systemis feasible

lag(T,t+1) = Z(share(T7 u) — S(T,u))

u=0
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Figure 3. Fluid schedule for the first five subtask, (. . ., Ts) of a taskT" of weight5/16. The share of each subtask in each
slot of its PF-window is shown. I¢), no subtask is released late;(in), 7> and7; are released late. Note thdtare(T, 3) is
either5/16 or 1/16 depending on when subtaZk is released.

= lag(T,t) + share(T,t) — S(T\,t). (11) guaranteed a lower tardiness bound, without impacting the
tardiness of other tasks. Letting denote the set of all tasks

Similarly, the total lag for a schedulé and task sys- i, cjass., this classification ensures the following property.

temr at timet + 1, denotedL AG(r,t + 1), is as follows. o et .
(LAG(r,0) is defined to be.) W) (VT € 7¢: <= <wi(T) < Z5)
Property (W) can be ensured@®(N) time by simply plac-

ing task7 in Class[ T.e

LAG(r,t+1) = LAG(r,t)+ Y _(share(T,t)=S(T,1)). (12)

Ter

Tp—T.e |
We denote the total utilization of° by M €. Thus,

. . q q
3 Integrating Tardiness Classes o U o, Me = Z wt(T), and M = ZMC' (13)

In this section, we present Algorithm I-EPDF, which ¢! TeT’ =t
schedules a soft real-time task systermomprised of tasks
with different tardiness bounds. We let tasks that can be, = | . . _
guaranteed a tardinessguanta comprise Class Thus, if Distribution phase. The goal of this phase is to_d|str|bute
every task can be guaranteed a tardiness of at gst1), the M processors among the classes and to define how pro-

then there are at mogtclasses. Any class, except Clags CESSOrs are shared. The processors are divided grioups

) ) " . :
may be empty. If\/ denotes the total utilization of, then  Of SiZ€SP1, ..., Py, with thei™ group assigned to Class

I-EPDF scheduled on at most[ /] processors. Without BEcause the number of processors assigned to Oase-
loss of generality, we assume thit is integral. If neces- gral, whereas its total ut|I|zat|.oMZ may r]ot be, each class
sary, this property can be ensured by adding a dummy tagq(alloyved to borrow processing capacity from at most one
of weight[M] — M to . I0\_Ner-|ndex_ed .class.. To ensure correctness fo_r each class,
this borrowing is subject to a number of rules given below.
Later, in Sec. 3.2, we present an algorithm for defining an
ignment that satisfies these rules. Before stating these

c{ules, we introduce some relevant notation.

The algorithm consists of three phas@¥a classification
phase(ii) a distribution phase, an(di) a scheduling phase.
In the classification phase, the tardiness class of each t
is identified, based on its weight. As already mentione
Srinivasan and Anderson established a per-task weight re-

striction of £ for ensuring a tardiness @f quanta under Notation. w’ denotes the amount of processing capacity

EPDF [9], which we later improved t@% [5]. In this pa- that Class borrows from some lower-indexed clasSup;

) A . . . .
per, we assume that task weights are restricted for each cléifié‘mes the Iower-lndefed class that supplies to Glass
using the;%; condition, as the proof is simpler. Our goalin®’ = 0: the”SZ?‘Pi = 0. f* denotes the fractional part of the
this paper is only to illustrate the idea of integrated scheduttilization of 7*, i.e,,
ing. Our approach is still correct when t%% condition is

o fi= M M), (14)

Classification phase. We include in Class all tasks with ~ To enable the different classes to share processors at run-
weights in the rangé<—*, 7], i.e., tasks that can be en- time, a donor tasl)’ (1 < j < ¢) of weightw’ > 0 may
sured a tardiness efquanta under EPDF. Note that this hade created]D’ is added to Class wherei = Sup,;. (The

the advantage that a tagkwith wt(7') < _%; that can tol- mannerin whichD’ is used to share processors is explained

erate a tardiness aof > ¢ can be assigned to Classand in Sec. 3.1.) The set of all donor tasks added to Class




Class _ _ _ A N
(7) 7| M* | w' | Sup, A M' | P D' | w'
1 |73 |0 0 [{DD| 5 |5
D*, D%} D' 0
2 || 4t | ¢ 1 0 42 | 4 D* | 3
3 73 41—70 % 1 {D%} 5;—3 5 D? ;—é 17/20 14
a | [t 1 o |33 D' | 1 { Gj
5 | 7|32 | ] 3 0 3111 3 D® | i o
6 | 0|45 | & 1 {D"} |54 | 5 D° | % 6)4
7 077 43| 3 6 {D%} 5; | 5 D" | 1
8 | %] 32| 3 7 (D%} | 4% | 4 Dd |1 3/:
9 | 7| 43 | 2 8 0 43 1 4 D’ | 3 @
(a) (b) (c)

Figure 4. (a) Distribution of processors to the nine tardiness classes of a soft real-time task system. Column headings refer to
various terms mentioned in the texb) Weights of donor taskg(c) Tree representation of the task system in (a). Labels within

nodes indicate class indices. The integer adjacent to a node denotes the number of processors assigned to the class that the node
represents. Edge, b) defines the supplier/borrower relation beween Clagseglb; if a < b, then Class supplies a processing

capacity ofw(a, b) to Classh, wherew(a, b) is the weight of(a, b).

denoted\’. 7% extendsr? by including these tasks: (R3) Classi, wherei > 3 and f¢ < 2/3, does not lend any
} } A processing capacity to other classed) ¥ f* < 1/2,
Tr=T7"U N (15) then Class borrows a capacity of* from Class 1;
if f* ranges between 1/2 and 2/3, then it borrofts
Correspondingly, we define from Class 2. Iff* = 0, then Clasg does not borrow.
Mi:Mi—‘,— Z wt(T). (16) (Vi:i>3 A ff=0:w"=0 A Sup,=0) (21)
e (Vi:i>3 A0< fi<1/2uw=fA
Sup; =1 A (Vj: Sup; # 1)) (22)
Processor sharing rules: The sharing of processors (Vi:i>3 A1/2< f1<2/3xw =f'A
among classes is governed by the following rules. Sup; =2 A (Vj: Sup; # i) (23)
(R1) The processing capacity that Clasborrows is at . ) )
most the fractional part of its utilizationg., (R4) The processing capacity that Clagsr higher bor-

‘ ‘ rows is less than what it lendisg.,
0<w' < fh. 7) -
(Vi:i>3:(Vj: Sup; =i = w' <w)). (24)
(R2) Classi borrows processing capacity from at most on
class with a lower tardiness bound (or a lower-indexe
class), and lends to zero or more classes. In other
words, the following hold.

5) The number of processors assigned to the various
classes must satisfy the following.

(Fi:P=M —w'+ > w) (25)
(Vi:i>1: Sup; <1i) (18) {j:Supj=i}
(Vi:i>1:x={j| D" €N} ={Sup,;}) (19) Pr=[M"+w?+ 30 ea a i<z W (26)
L 4 =1} > _ 2 j
(Vi |{j: Sup; =i} > 0) (20) Py=[M?+ 37 isa) n (o< picaya W) (27)
(Vi:i>3: P =[M7vV | M) (28)
1Some of these rules are somewhat technical in nature. They are q
included to address certain cases that arise in showing that I-EPDF is Z =M (29)
correct. —



ALGORITHM I-EPDFT) 10 if r(DS) <tA d(DS) > t+ 1then

&1,...,&,: integer; /* to denote the number of 11 if r(Dg) < t) thens := 1fi;
tasks eligible at time in each class */ 12 - r(Dg), e(D5) =t 41, t+1

Py, ..., Py integer; i

D', ..., D9: Tasks; fi

1, ..., 7% GIS task sets; od, '

#1,...,7%: GIS task sets; 13 &; := # of eligible tasks irF*, excluding those

AL, ..., A2 GIS task sets initiall@; /* Set of all that are early-released (it suffices to
donor tasks added to a class */ _ determine ifP; + 1 are eligible)

Supy,...,Sup,: integer initially O; fi

tighty, . .., tight,: boolean initially TRUE od;

14 for i := 1togdo

Classification Phase * The lowest-indexed class is always tight */

1 Group tasks into at mogttardiness classes. Task sets 15 if teght, then

7%, wherel < i < g, are known at the end of this phase. 16 Imaf”SChed“lable =F
else
Distribution Phase 17 maxSchedulable := P; + 1
2 Determinew? and createD?. Determine\?, fi;
18 Schedule at mostazSchedulable tasks of

7t andP;, foralli > 1. chel : )
7* using EPDF (for Clas8 and higher, break ties

Scheduling Phase involving the heavy donor task, if any,

3 t:=0; in favor of the donor task);
4 while %RUE do 19 for each D¢ in A* do
5 for ¢ := q downto 1 do 20 if D¢ is scheduledhen
6 if ¢ # () then 21 tight,, := FALSE
7 for each D¢ in A% do else
8 if £ < P.then 22 ' tight, := TRUE
9 s := index of next eligible subtask db¢; dfl

0oa;

23 t:=t+1
od

Figure 5. Algorithm I-EPDF—detailed pseudo-code for the scheduling phase.

The supplier/borrower relationship among classes can la every time instant. If at tim& a donor taskD’ in A’ is
represented as a weighted tree in which nodes represacheduled, then one of the processors of Clasthanded
classes. An edge of weight between nodesand;, where down to Classj. Thus, Clasg hasP; + 1 processors for
i < j, implies thatw’ = w and Sup; = i. As an exam- scheduling the tasks itV at timet, zero of more of which
ple, Fig. 4 shows an assignment of processors to classes andy be handed down to higher-indexed classes, recursively.
e ey h s patof e schedulng phase, gven byt

eI%op of lines 5-13, the number of eligible subtasks ot
classes. . o - .
. : time ¢ is identified, when = c. Because théor loop con-

The following properties follow from (R1)~(R5). siders the classes in decreasing index order, the number of
(L1) There are at most two tasks ' with weights gligible tasks in classes with higher indices thame known

exceedingl /2. at this time. Therefore, if© includes donor task* and the
(L2) The weight of every task if® is in (3, 3]. number of eligible tasks if* is at mostP;, then the release
(L) (Vi:i>3A N # D= f>2) time of the next subtask* of D* is postponed to + 1, if

its deadline is greater than- 1. We do this because Class
3.1 Scheduling Phase of I-EPDF is not able to use an extra processor that it would be given,

and hence, by postponing the release time of the next sub-

Assuming that processors are assigned to classes per task of its donor task under the conditions specified, Ctass
rules above, we now explain the scheduling phase. A proafiay be provided with an extra processor sooner in the future
that it is correct is given in Appendix C. As mentioned earthan may otherwise be possible. We refer to this scheduling
lier, Sec. 3.2 presents an algorithm for creating such an aste in lines 8-12 as thepostponemenule. Another related
signment. In the scheduling phase, a separate instantiatiasre in line 11 is that if the release time &* before the
of EPDF is used to schedule eath The pseudo-code for postponement was earlier tharthenD¥ is replaced byD¥
this phase is shown in lines 3-23 in Fig. 5. Note tain-  with r(D%) set tot + 1. This rule shall be referred to as the
cludes the donor tasks ixf, which compete with tasks irf ~ resetrule. As discussed later, this rule does not impact the



Class 1 time is possible. Fig. 7 presents the detailed pseudo-code
for the distribution phase. In describing this code, we refer
Taskein <! o e to Class; as ani-borrower if Class;j borrows processing
32 (Total util. PT - Pseudo-tight capacity from Class. The computation here proceeds in
5 procs. P of L o for Class 4 three steps. Théor loop in lines 0-0 comprises the first
) :(lgmtsforClass4 step, which is responsible for ensuring that (R3) holds, and
. together with the third step (see below), that (28) is satis-
Donor tasks D2, D3, D* and D ﬁ fied. In this step, Class wherei > 3, is set to borrow its
- - 13 <Tg§l)u‘”l°:ffl.9'{°f entire fractional utilization off from Classl, if f* < 1/2,
D* i ——— ix or from Clas, if 1/2 < f* < 2/3. This is done by setting
o i — w' = M'—| M| = fiinline 0, followed by the addition of
. Class 4 a donor taskD? of appropriate weight to Clagsor Class2.
T i o T EPTEPT; W ;NT: 7 Every class that i; made' a 1- or2eborrower at thg 'end
3 procs. T T of Step 1, is considerefinished and does not participate
Tasks in T4 : : in future distribution steps. This is marked by setting the
: boolean variablelone; to TRUE. Such a class is assigned
| M?| processors, which are not shared with other classes.
For example, consider Fig. 4. The total utilizationrdfis
(‘) I‘ 2‘ l J; s‘ ﬁ‘ 7‘ A (‘) ]‘0 I‘I ]‘2 1‘3 ]‘4 I‘s ]‘6 1‘7 3%, with a fractional partf = 1/5 < 1/2. Therefore, at

the end of the step just described, a donor slof weight
Figure 6. Classes 1 and 4 of the example task system in w* = 1/5 is added to Clas, three processors are assigned

Fig. 4. Class 1 is assigned five processors and supplies pro- t0 Classt, and it is marked finished.
cessing capacity to Classes 2, 3, 4, and 6. Class 4 is assigned  Lines 8-12 comprise the next step, which ensures (27).
three processors and borrows a processing capacityof In this step, Clas8 is made al-borrower by letting it bor-
from Class 1. An additional processor is handed down to FOW & processing capacity of = (]V[2+ET€)\2 wt(T))—
Class4 from Classl when donor taskD* is scheduled in | (M? + ZTEAQ wt(T))] from Classl. It is then marked
Classl. The example partial schedule shows the first three finished. In the example in Fig. 4, the fractional part of the
subtasks oD*, which are scheduled in the slots marked by utilization of no class is betweely2 and2/3. Therefore,
an ‘X". The release of the third subtask is postponed from no donor tasks are added to Clasi the previous step.
time 10 to time 12. Thus, slots 4, 8, and 14 are non-tight for  Thus,w? = 4/5, a donor taskD? of weight4/5 is added to
Class 4, slots 10 and 11 are pseudo-tight (see the appendix), Classl, and Clasg is marked finished.
and the rest are tight. The while loop in lines 14-40 constitutes the third step
in the distribution phase. This step is responsible for en-
suring (24), (26) and (28). In this step, every class that is
tardiness of other tasks. not yet finished is considered in increasing index order. The
The second part of the Schedu"ng phase’ given by tmal of theith iteration is to determine at most two higher'
for loop in lines 1423, determines the maximum numbedexed classes with which Classan share its spare ca-
of tasks of#¢ that can be scheduledngzSchedulable) at ~ Pacity (given byspare; = [M' —w'] — (M* —w")). (To
t, and schedules those with the highest priority. For all bignsure the tardiness bound of the borrowing class, it is nec-
the lowest-indexed classypazSchedulable is either P, or ~ €ssary to ensure that it does not borrow from a class with
P, + 1, based on whethdp® is scheduled. 1>, processors @ larger bound.) Classis also marked finished at the end
are available for scheduling tasksff, thent is said to be ©Of the " iteration. Thus, at the beginning of iteration
atight slot for 7¢; otherwise/ is anon-tightslot for 7. An ~ every class with a lower index thanis already finished.
example is given in Fig. 6, in which Classes 1 and 4 froniNote that for Class and higher,M/* = M"* holds at the
Fig. 4 are considered. beginning of the iteration in which it is considered. This is
Selecting the highest priority tasks to schedule dominatdé$cause these classes are not augmented with donor tasks
the per-s'ot time Comp|exity of this phase' and hence, it igl’ior to this pOint. Line 19 identifies Clagswith the low-
the same as that of EPDiFg., O(M log N). est index greater thaithat is not finished that can be made
3.2 Distribution Phase of I-EPDF an i-bo_rrower. To ensure (R1), if! g spare; hplds, then
Class] is made to borrow a processing capacityfbfrom
(R1)—(R5) can be expressed as linear constraints and t@#ass: and is marked finished in thieblock in lines 21-27.
problem solved using integer or mixed integer programkine 27 identifies and sefgo the next higher-indexed class
ming. (Floors and ceilings in the expressions can easily libat is not yet finished.
eliminated.) However, as we now show, a solution in linear Irrespective of whether the test in line 21 succeeded, at



PROCEDUREADDDONORTASK (%, w, sup) 11 if [M'] = M then

1 D' := donor task of weightv; 12 Py, done; := M?', TRUE

2 Sup; = sup; fi:

3 fsup \sup .= psup  {Di}, ASP U {Di}; 13 i:=1;

4 DNSUP .= N[SuP 4 wh; 14 while: < g do

5 return I* doneq 1 handles the boundary condition */

15 while done; doi := 7 + 1 od;

ALGORITHM I-EPDF(7) 16 ifi < qthen

. 17 avail := spare; := [M? — w'] — (M* — wt);
Pll,...,Pq: integer, 18 l:=i+1;
w o ,w: rational; 19 while done; dol := 1+ 1 od;
D', ..., D1?: GIS tasks; 20 if | < g then
1 . . =
T -, 79 GIS task sets; 21 if avail >0 A (M! — | M!]) < avail then
71,...,79: GIS task sets; 22 wl = M — M,
AL ..., \2: GIS task sets initially; /* Set of all 23 ADI.DDONORTASK(Z’ wl,i);
donor tasks added to a class */ o4 Py, done, :— LMlJ TRUE:
Supy, ..., Sup,: integer initially 0; 25 avail = avail — wh: '
spareq, ..., spare,: rational initially O ; 26 l=1 + 1: '
doney, ..., doneg1: boolean initially FALSE 27 while done; dol := [ + 1 od

N fi;
Classification Phase 28 if avail > 0/* Al < q*/ then

/* Group tasks into at mogt tardiness classes. Task sets

. -
7%, wherel < i < g are known at the end of this phase. */ gg XDngz[(l)ZFlz’TASK(l, wl, i);
31 d, j=1,1
o 32 while w? < w’ do
L psbution F;htfose 33 7, i= # = (DU}, N —{D);
2 if Mi— | M?] < 2/3then 34 w), M7= w? —wf, M7 —wh
3 wi = M — [ M*]; 35 #Sup’ = 35ur’ Y (DO},
4 if w* > 0then 36 ASup? .= \Sup’  {pdY;
5 if w? < 1/2then Sup, := 1 elseSup; := 2 fi 37 if wi < wethend := j fi;
6 ADDDONORTASK (i, w?, Sup;) 38 j = Sup;
fi; od
7 P;, done; := | M*|, TRUE fi;
fi 39 P;, done; := | M*|, TRUE;
od; fi
8 w?:= M2 —|M?]; 40 i:=1
9 if w? > 0then ADDDONORTASK(2,w?, 1) fi; fi
10 P, dones := | M?|, TRUE; od

Figure 7. Algorithm I-EPDF—detailed pseudo-code for the distribution phase.

line 28, ' > awvail holds. This is clearly the case if the testof weightw? = % were added to Classin Steps 1 and 2,
in line 21 failed. On the other hand, if this test succeedegespectively)/! = M +w*+w? = 3%+%+% = 4%, and
then becaus¢! > 2/3 holds for every class of index three hence[M!] = 5, at the end of Step 2.) In this iteration, the

. . - .
or higher that is not finished by Step@, > 2/3 holds at it ynfinished class with a higher index than one, which is
line 25. Becausepare;, as computed in line 17, is less thanc|3ss3. is made a-borrower (lines 28-30). Thus= 3 in
one,avail < 1/3 holds at the end of line 25. Hence, for g case. Hence, at the end of the first iteratiof,is set
the same reason th#t > 2/3 holds for every class of index to 3/5 (line 29) and a donor task® of weightw? is added

exceeding three that is not finished by Stepf2> avail 15 Classi (line 30). Clasd is then marked finished (line
holds at line 28. Because the amount of processing capacgg)' The unfulfilled utilization of Class is now4 7 — 3

. . . 1 . X 10 5
that Classl borrows is set tanin(avail, f*), Classi can 4L Therefore, Clas has a spare capacityare, = -

have at most two donor tasks added to it ir)ztﬁeiterati.on. Because Class 3 is the next unfinished class, classes with
L is the unfinished class with the lowest index at line 40y hich its spare capacity is shared are identified in the next
Therefore; is updated td so that Class is considered for jiaration.

the addition of donor tasks in the next iteration.

One final adjustment is performed in lines 32—-38. If the
Using our example (Fig. 4)xpare, at the beginning of weight of the donor task/ that is added to Clagsis less
the first iteration of thevhile loop in lines 14-40 i$M1] — thanw?, i.e., the processing capacity that Classorrows
M' =5-42 = 2. (Because’ of weightw* = L andD? in turn from its supplierj = Sup;, then Clasg is made
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Figure 8. Empirical determination of additional processing capacity, expressed as a percentage of total utilization, that may be
required if I-EPDF is not used to schedule soft real-time task sets comprised of multiple c{a}#eklitional capacity vs. Total
utilization. (b) Additional capacity vs. Number of classes.

Classl’s supplier, too. This is done by moving’ to Classj  and sharing of processors among classes.

from Classi. w’ is appropriately reduced so that the total It can be shown that the complexity of the above algo-
capacity that Clasg supplies remains the same. As a resultithm is©(q). A proof that it ensures (R1)—(R5) is presented
of this adjustment, Classwill now have two donor tasks in Appendix B.

D' and D! in place of D* (it is possible that Clasg has . )

some other donor tasks, whose weights are not altered 4 EXperimental Evaluation

this iteration), and it is possible for one of them to be lighter
thanD7. If this is the case, then thehile loop in lines 32—
38 moves the lighter of the two donor task¥, and D!, up
the supplier chain, to ensure (R4).

In this section, we report results of our empirical evalu-
ation of the additional processing capacity that may be re-
quired, when classes do not share processors. The evalu-
ation procedure was as follows. 1,000,000 task sets were
In our example, as described earligigre, = % atthe generated at random, with total utilizatidd in the range
end of the iteration for Class This holds at the beginning 5..64. The tasks in each task set were divided ipttar-
of the iteration for Clas8, wheni = 3. Recall that Clasg  diness classes based on their weights. The total number
is already finished, and hence, Clads the next unfinished of processors® required to schedule the task set was then
class. Becausg® = % which is less thampare,, the code computed, assuming that each tardiness class has exclusive
in lines 21-27 makes Classborrow the entire fractional access to the processors that it requires. The difference
part of its utilization from Clas8, and reducesvail to -5 — E = P — M, which represents the additional processing
;—g = % (in line 25). The next unfinished class is identifiedcapacity required, was then determined. The average value
to be 6 in line 27. Hencd, = 6 at line 28, and the code of E (expressed as a percentage\dj with respect to total
in lines 28-30 makes Clagshorrow a capacity sz% from utilization (M) and the number of classeg) (s plotted in
Class3. Thus, at the end of line 30, donor tagkR8 andDS,  Fig. 8. 99% confidence intervals are also shown on these
of weightsw® = % andw® = %, respectively, are added plots. The figure also depicts the worst-case observed val-
to Class3. Recall that Clas8 already borrows a processing ues of E/, for each value of\f andq. The graphs show that
capacity ofg from Classl. Thereforew? = g and hence, the average percentage of loss is quite high (over 30%), for
wb < w3. As aresult,D% is moved to Clas$, the supplier small values of\/ andgq, and decreases with increasifg
of Class3, and the weight ofD? (w?) is reduced byw® to  andgq. The reason for this is as follows. In Fig. 8(a), the
%. In other words, at the end of the iteration for Class value ofq for a given M is the average over all task sets
Class3 borrows only% from Classl and is augmented with with that value ofM, and in Fig. 8(b), the value ¥/ for a
only one donor taskl®. Fig. 4 shows the final distribution givenq is the average over all task sets with that valug.of
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gorithm provides temporal isolation among classes, allows
available processing capacity to be fully utilized, and does ] ] o ]
not require that previously established per-task weight réd  Pfair Scheduling — Additional Properties
strictions for a given tardiness threshold be lowered. Our
experiments indicate that the proposed algorithm allows a In this appendix we state additional properties of pfair
substantial amount of processing capacity to be reclaimedscheduling that is needed for the correctness proof of I-
The algorithm presented could be extended to allow hafdPDF presented in Appendix C.
tasks, in addition to soft tasks. In that case, an optimal al- The first three lemmas concern lengths of windows of
gorithm (with tie breaks) is used for scheduling hard tasksubtasks.
while a separate instantiation of EPDF is used for each saqft . .
class. However, it may be required to promote a few Sochlemmall [1] The Ilength of each window of a ta%kis ei-
tasks to the hard category. er [W] or [W] +1.

As (ljl'scussed n Sec. 1, one.motlvatllon for using EPDF IS0 1ima 2 [1] The following properties hold for any tagk
the ability to reweight tasks efficiently in dynamic systems.

However, reweighting a task may alter the tardiness bourﬁ) If (i — 1) is a multiple ofT.e, then|w(T})| = [
that can be guaranteed to it, and hence, may require that the

task be migrated to a different tardiness class. Redistributirqg) If b(T;) = 0, then|w(T})| = |w(T;
processors to the redefined classes can be done in constant

time. It only remains to be proved that the tardiness bound$§) If b(Z;) = 0, thenw(Z;) is a minimal window of".
of individual tasks can still be guaranteed. We are Current%) If T is heavy and(T;) = 0, then|w(T})| = 2
working on this problem. ! ’ ! '
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(b) If f(T5,7(T3)) < wt(T), thenb(T;_1) = 1. next iterationdone, is updated taRUE in the previous line

(
(line 39). Note that 39 is always executed i q. |
(c) If f(T;,d(T;) — 1) < wi(T), thendb(T;) = 1.

(d) Ifb(T;—1) = 1 andT; exists, therf ((T;-1,d(T;-1)))+ Lemma 8 D¢, wherec > 1, is created at most once.

f(Ti,r(Th)) = wi(T). : .
Proof: By Lemma 6, donor taskD€ is created only if

L . done, = FALSE holds prior to its creation. Therefore, it
B Correctness Proof for the Distribution suffices to show thaionfc is updated taRUE either imme-
Phase diately after the creation db¢, or before an attempt can be
made to create it again.
In this appendix, we state and prove lemmas concerning Donor tasks are created in lines 6, 9, 23, and 30. If cre-
properties that hold at the end of the distribution phase a@ited in line 6, 9, or 23done, is updated toTRUE in the
Algorithm I-EPDF. For conciseness, by I-EPDF, we refer tsubsequent line. If created in line 30, thea= ¢ holds in

its distribution phase in this section. that line. It can be verified thatis updated td, i.e., cin
All references to line numbers are with respect to théne 40 for the next iteration of thehile loop.By Lemma 7,
pseudo-code in Fig. 7. done, = TRUE will hold at the end of the next iteration.

It can also be verified that in an iteration of tivbile loop
Lemma 5 Donor tasks are not added to Classvherec > referred to, D is not created. Thereforé)® will not be
3, before the iteration of thevhile loop in lines14—40, in  ¢reated for a second time in the future. O
whichi = c.

Proof: Inspection of code in lines 1-12 shows that donoLemma 9 D¢ is created and added to a lower-indexed class
tasks are not added to Clasé that part. Thewhile loop before donor tasks are added to Classvherec > 3.

in lines 14-40 considers classes in increasing index order.

(The value ofi for the next iteration of the loop is updated 00 Follows from Lemmas 5, 6, and 7, and the fact that
to 1 in line 40, and it can be verified that> i.) In the D¢ is not creqteq in that iteration of thehile loop in lines
ith iteration, new donor tasks are added only to Claiss 14-40, for whichi = c holds. -
lines 23 and 30. Thevhile loop in lines 32—-38 moves donor

tasks across classes, but only across those classes thatl&mma 10 If D¢ is created in line23 or 30, thenc > 3 and
already augmented with such tasks. Therefore, donor tasks > 2/3.

X ; : O _ o
are not added to a class with an index greater than Proof: D! is never created (or does not exidly’ is created

inline 9, and ifc > 3 A f¢ < 2/3, thenD°¢ is created in
Lemma 6 If donor taskD¢ is created, thedone. = FALSE  line 6. By Lemma 8, a donor task is created exactly once.
holds prior to its creation. The lemma follows from these facts. a

Proof: Donor tasks are created in lines 6, 9, 23, and 30. We

consider each case. Lemma 11 Letw® = f¢, wherec > 3. Then, Clasg is not
Thefor loop in lines 1-7 considers Clagsand higher in  augmented with donor tasks.

increasing index order exactly once. Becauseithe: array Proof: De

is initialized to FALSE, and is not altered for Clagsuntil :

after D¢ is created (which is done at most onel)e. =

, Wherec > 3, may be created in lines 6, 23, or
30. We consider two cases.

FALSE holds before the creation @c. Case 1:D¢ is created in line 6 or 23.In this casew® = f¢,
In line 9, D? is created. It can easily be verified that@nddone. = TRUE holds immediately after. By Lemma 9,
dones = FALSE at this time. Classc is not augmented with donor tasks befdpe is cre-

In lines 23 and 30, donor tasks' are created, where ated, and by Lemma 5, the augmentation occurs only in the

is determined in lines 19 and 27 such thate;, = FALSE iteration of thewhile loop in lines 14-40, for which = ¢
holds. o holds. However, becausi@ne. = TRUE holds, by line 15,

Classc is skipped from consideration in thehile loop, and
hence, is not augmented with donor tasks.

Case 2: D¢ is created in line 30. For this case, we first
show thatv® < f€ holds at the time of creation d#¢. Con-
sider the iteration of thevhile loop in which D¢ is created
Proof: Within the while loop, the value of is modified in in line 30. Prior to the creation dp¢, a different donor task
lines 15 and 40 only. If modified in line 15, thefone, = D¢ may have been created in line 23in the same iteration.
TRUE already holds. Beforeéis updated in line 40 for the We consider both possibilities. If no other donor task was

Lemma 7 If i = ¢, wherec < ¢, holds for an iteration of
thewhile loop in lines14—40, thendone,. = true holds at
the end of the iteration.
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created, then the test in line 21should have failed. Becauséthewhile loop in lines 14—-40. Therefore, by (16), at line
D¢ is created in line 30, the test in line 28should have suct7, wheni = ¢, M¢ = Me¢. Thereforespare,, is given by
ceeded, which implies that’' — | M| = f! > avail holds.

Becausev! is set toavail in line 29beforeD! is created, by [M¢ — w] — (M — w°)

c = [, itimplies thatf¢ > w* holds. On the other hand, if = T[|M¢] + f¢ —w°] — (|[M¢]| + f¢ — w®) (from (14))
D® was created in line 23prior to the creationof in line = M)+ [fe —w] — | M€| — £° + we

30we reason as follows. The value @fail as computed . . . .

in line 17is at most one. By Lemma 1¢? > 2/3, and be- ~ ~ [fe—wl = fo+w

causew? is set tof? in line 22anduvasil is reduced byv? in = 1-fo4w

line 25,avail < 1/3 holds at line 29. Again, by Lemma 10, . . )
f¢ > 2/3, whereasw® is set toavail, which is less than The final step is by Lemmas 11 and 12sphire,. is less than
- o equal tow®, then it would imply thatv® > 1 — f€ + w°,

1/3. It can be verified that the only piece of code that ma . s o
alter the weights of the donor tasks is thisile loop in lines ~ °F thatf* > 1, which is a contradiction to (14). =

32-38, and that the weights are only decreased. Therefore, .
w® can never equaf®. g Lemma 14 The sum of the weights of the donor tasks added

to Classc in that iteration of thewhile loop in lines14— 40
for whichi = c is exactly equal tepare,., as computed in
line 17 either at the end of [in€7 or line 30.

Proof: w¢ is initialized to zero, modified whe®< is cre- Proof: The proof follows from the fact that/ is integral.
ated, and may later be modified in tivbile loop in 32-38. ]
By Lemma 8,D°¢ is created exactly once. Inspection of the

code shows thab¢ is created in lines 6, 9, 23, or 30. If Lemma 15 w' = 0.

Lemma 12 0 < w® < f¢, wherec > 1.

created in lines 6, 9, or 23, = f*. Therefore, it remains proof: Straightforward. O
to be shown thatw® < fc holds, if D¢ is created in line 30.
By Lemma 10, ifD is created in line 30, then Lemma 16 If the sum of the weights of the donor tasks

added to Clasg equals1 — f7/ + w’ prior to the execu-
tion of an iteration of thevhile loop in lines32-38, then the

We consider execution from the beginning of the iteratiorf 2'e relation holds at the end of the iteration.

of thewhile loop in lines 32-38 in whiclD® is created. It Proof: At the beginning of the iteration, we have
is easy to see thatvail = spare; < 1 holds at the end > (k:Supr=j} w® =1~ f7+w?. Within thewhile loop, one
of line 17. If the test in line 21 succeeded, then anothetonor taskD? is moved from Clasg to ClassSup ;. There-
donor taskD*, whered < c is created in line 23 befor®®  fore, 3" ;. g, =iy w* = 1— f/+w’ —w?, atthe end of the
in the same iteration. By Lemma 10 > 2/3. Because ijteration. Howeverw/ is reduced byo? to w/ — w? in the
w? = f4 holds by the assignment in line 22andail is  same iteration. Thereforg, . Lk =1 7w,
updated tawail — w? is line 25,avail < 1/3 holds atline  stj|| holds at the end of the ft%fgﬁ’é?‘j} O
28. Therefore, by (30)f¢ > avail holds at line 28. If the

test in line 21 failed, while that in line 28 succeeded, thefemma 17 The values of A77 | and A75“"’ at the end the
it is easy to see th¢” > avail holds. w® is set toavail,  execution of an iteration of thehile loop in lines32-38 are
which by the argument just concluded is less tlfiarbefore  the same as their values at the beginning of that iteration.

D (')S creat?(: in line 30. lue. th lueush dified Proof: By Lemmas 15 and 12, and the test in line 32, we
nce setlo anon-zero value, the valuewolis moditie have;j # 1. It can also be easily shown that# 2, and

only in thewhile loop in lines 32-38. However, the value hence; > 3 holds. Therefore, by Lemmas 14, 13, and 16
is never increased, and if decreased, the reduction is by a J = ' ' T '

c>3 A f¢>2/3. (30)

. . . have
amount that is strictly less than its present value. Therefore, Z Wb =1 fi 4w (31)
if set to a non-zero valué), < w® < f¢ holds. If never set, L= :
thenw® = 0 holds. O {k:Supk=5}

We first show that M7 | is not altered.| M7 | at the be-

Lemma 13 Let Classc, wherec > 3, be augmented with 9inning of an iteration of the loop is given by
donor tasks. Then, the value gfare,, as computed in line

_— _ .
17, is equal tol — f¢ + w®, which is greater tham°. M7 = M7+ D suph=y W 3]

- J _ i J
Proof:  spare, as computed in line 17 is given by M + 1-f + w’ ] (from (31)) (32)
[M€ —we] — (M€ — we). If ¢ > 3, then by Lemma 5, = [[M7]+1+w?] (from(14)) (33)
Classc is not augmented with donor tasks until the iteration = |M7]+1. (34)
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Within the while loop, D¢ is moved from Clasg to Lemma 20 The sum of the weights of the donor tasks added
ClassSup;. Therefore, by (31), the sum of the weights ofto Classc, wherec > 3 is given byl — f< 4 w*.
the donor tasks present in Clagat the end of the iteration
is given by>" ;. g,0—jy w* =1~ f/ +w’ —w. Hence,
| M| at the end of the iteration is given by

Proof: Follows from Lemmas 5, 13, 14, and 16. O

Lemma 21 The sum of the weights of the donor tasks added

Lij = M7+ Z{k:Supk:j w"}] to Classc, wherec > 3, is greater thanw® and is at most
= LMj +1— fj 4+l — wdj (35) one.
= [[M7]+1+w/ —w?| (from(14)(36) Proof: By Lemma 20, the sum of the weights of the donor
= M7 +1+ [w —w? (37) tasks added to Classis given byl — f¢ + w®, where by
= |M7] +1. (becauser’ > w) (3g) Lemmas 12 and 11, — f¢ + w° < 1. By Lemma 13, this

value is greater thaw*®. ]

(34) and (38) imply that the value ¢f\ | is not altered by

the execution of thevhile qups' N Lemma 22 If Classc, wherec > 3 is augmented with a
To see that the value af/~“Ps is not altered, note that donor taskD? with weightw? > 5/6, thenw® > 1,/2

D with weightw is moved toSup;, while the weight of - '

an existing donor taskp’, is reduced byw?. Therefore, By (L3), f¢ > 2/3, and by Lemma 20, the sum of the
the sum of the weights of the donor tasks presestip; is  weights of the donor tasks added to Clagsjualsl — f¢ +
not altered at the end of the iteration, and therefore, by (16),c. Becausew? > 5/6 and f¢ > 2/3, it implies that

MSvPi s not altered. 91— f°+w">5/6, orthatw’ > 1/2. -

L 18 P, = M. . :
emma 18 7 Lemma 23 If Classc, wherec > 3, is augmented with a
Proof: The value ofP; is set in line 12 or 39. If assigned donor taskD?, thenw? > w°®.

in line 12, P, takes a value ofi/!, and the lemma holds. .
Therefore, in the rest of the proof we assume thats set Proof Sketch: We have the following from Lemmas 5, 13,

in line 39. By Lemma 15y" = 0 holds. Thereforespare,, and 14, and inspection of code in tiwdile loop beginning
as computed in line 17, in the iteration of tidile loop  atline 14. Clasg is augmented with donor tasks for the first

in lines 14-40 for which = 1 equals| M| — M'. By time in that iteration of thevhile loop of line 14, in which
Lemma 14, the sum of the weights of the donor tasks addéd= c; the augmentation is in line 23 or 30 or both. The sum
to Classl in thewhile loop’s iteration wheni = 1 is exactly ~ of the weights of the donor tasks added is exactly equal to
equal tospare, = | M| — M*. Therefore, at line 39}/  spare., as computed at the beginning of the iteration in line
equals)M? as of line 17, plussppare,, i.e., UWJ as of line 17, and lines 23 and 30 are executed at most once. If only
17. ThusM! isintegral at line 39, and henceg\l! | = M1, one donor task is added, then the lemma follows directly
and the assignment in line 39 ensures that= M. from Lemma 21. Hence, the lemma may be falsified only
Inspection of the code in lines 14—40 shows that 1  if two donor tasks are added, one each in lines 23 and 30.
holds only for one iteration of thehile loop in those lines. We show that if a donor task® with w? < w* is added to
Therefore, P, is assigned exactly once. After the assignClassc in an iteration of thevhile loop of line 14, then the
ment, P, = M?! can fail to hold only if donor tasks are inner nesteavhile loop in lines 32-38ensures that > w°
added or removed after the assignment. Again, no newliolds before the end of the iteration of the outgrile loop,
created donor tasks can be added to Class 1 after the firsthout causing any other class to have donor tasks with
iteration of thewhile loop. However, existing donor tasks Weights less than the weight of the donor task for that class.
may be moved from some other class to Class 1 imthiee  (In the rest of this proof, references to thile loop are to
loop in lines 32—-38. By Lemmas 15 and 12, and the test ihe inner loop.)
line 32, we haveg # 1 for thewhile loop, and by Lemma 17,  We consider the situation just after two donor tasks,
M5?i is not altered by the execution in théile loop. In- andD?, are added (at lines 23 and 30) to Classid before
spection of the code in thehile loop shows that only the the execution of thevhile loop commences. We assume
composition of Classegand Sup; may be altered. There- that Class: is the only task with a donor task whose weight
fore, the value oftI! is not altered afteP, is set. o islessthanw®. Therefore, the following holds.
. (Vi:i>3Ai#c: (VDI €N w! >wt)) (39)
Lemma19 P. = | M¢], forc > 2.
Proof: Similar to the proof of Lemma 18. o To show thatw? > we holds at the end of thevhile loop,
we show that the following is an invariant of the loop. In the
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rest of this proof, the values gfandd are as dictated by the by the arguments for the two cases above implies that
code in lines 28-38. Classj does not contain any donor task with weight less
thanw?. This fact, together with the loop invariant implies
(Vk:k>3A k#j:(YD™ e X w™ >wF) (40)  that
S o ] ) (Vi:i>3: (VDI € N wl > wt))
Initialization: Before the first iteration of thevhile loop,
j = c¢. Therefore, the invariant follows from (39). U
Maintenance: We consider the following cases.
Case 1:j = c. j = cfor the first iteration of thevhile loop. Lemma 24 Let D™ be a heavy donor task added to Class
BecauseD" and D" are the only donor tasks in Clagsby =~ Wherec > 3. Then,D™ is the only donor task in®.

Lemma 21, Proof: Let D" be a second donor task added to Class
w* +w’ > we. (41)  Then, by Lemma 21w™ > w®. By Lemma 20, the sum
BecauseD* is added in line 23" = f* holds, where Of the weights of the donor tasks added to Clagsjuals

f* > 2/3. (Otherwise, D" is added to Class or Clas2in 1 — f+w*. Therefore] — f¢ +w® > w™ 4 w". Because
lines 1-7.) Becausevail = spare, < 1 (line 17), andw® @™ > 1/2andw™ > w*, we havel — f°+w® > 1/2+w°,
is assigned the value afail updated tarwail —w®, which ~ Of f < 1/2, which contradicts (L3). Thereford)™ is the
is less thari /3 in line 25,uw" < w* holds at line 30. Thus, ©nly donor task added to Class O
we havew’ < w".

Lemma 25 w® = M¢ — | M¢].

d is assigned a value that is equal to the index of the SeE’_roof' We consider the following cases
ond donor task added to Clasm line 31. Therefored = v ' '
holds, and within thewhile loop, D?, which is lighter of Case 1:c = 1. By Lemma 15w' = 0. By Lemma 18,
the two tasksD* and D?, is removed from Classand is 11 = M, which implies that\/* is integral. Therefore,
added to ClasSup,, while ¢ is decreased byv. Thus, M' = [M'] ie, M'—|M'] =0, and hence, the lemma
Classc now contains only one donor task®. By (41), holds for this case.

w* > w® — w?, wherew® — w? is the new value ofv®. Case 2: ¢ = 2. After the assignment in line 8y¢ =
Therefore, at the end of the first iteration, Clas®ntains a 1/ — | M<] holds. It can be shown that donor tasks are nei-
single donor taslO™ with w* > w°. However, becausP” ther added to Classnor are their weights altered after this

is moved to Class$up,,, w® > wSUP. may not hold. But assignment. (Because the classes to which Gasgpplies
then; is updated tcup; in line 38, and because= ¢ held do not have donor tasks added to thenwill never equal

before the update, the loop invariant can be seen to hold te indices of those classes, and hence, 2, imttite loop
the end of lteration 1. in lines 32—38, where donor tasks are moved across classes

Case 2:j # ¢. Classj, wherej # ¢ may have a donor ©F their weights are modified.)

task with weight less tham? only if during the previous it- Case 3:c > 3 Aw® = f°. Inthis case, by Lemma 11, donor
eration of the loop, a donor task, s&, were moved to to tasks are not added to ClassTherefore,//¢ = M¢, and
Classj, and the weight of an existing donor task, say, henceM¢—|[M¢] = M¢—|M¢], whereM“—|M¢| = f¢,
(whose identity wag in that iteration) were reduced hy". by (14).

Because no other donor task, other thiah had its weight Case 4:c > 3 Aw® # f¢. By Lemma 12, we have® < f¢.
altered, and)" is the only new donor task moved to Clgss By Lemma 20, the sum of the weights of the donor tasks
because (39) held prior to the execution of theile loop, added to Class is given byl — f¢ 4+ w®. Therefore, by
D" and D?® could be the only donor tasks in Clagsvith  (16),

their weights less than’. The lighter of these two donor Me¢ =M +1— f¢+we, (42)

tasks, sayD", is determined in line 37 during the previous . . . N .
w g P which implies that| M/¢| = |M°+1— f°+ w®|, which

iteration, which in turn is moved tSup . during this itera-
UP; g equals| | M€] + 1+ w¢| by (14). Becausev® < f¢ and

tion. The weight ofD’ is also appropriately reduced. It can”,, . A .
now be shown easily that the weight of the other donor tast(,ofdsl’ we have| [ M®] +1+w®] = [M®] +1. In other

D?, is greater thanw’. Therefore, at the end of this itera-
tion, Classj would not contain any donor task whose weight
is less thanw’. However, the class from which Clagdor-  From (42), we haves® = M¢ — (M¢+1— f°), which by
rows, Sup;, may now have donor tasks with weights lesg14) equalsi/¢ — (| M¢] +1). Thatw® equalsh© — | M¢|
Supj. then follows from (43). |

| M| = | M| +1. (43)

thanw Because = Sup; for the next iteration (by
Termination: When the loop terminates;? > w7, which lemmas in this subsection.
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C Correctness Proof for the Scheduling asis the case with!, by (L1), then the sum of thé/ — 1
Phase largest task weights is at mo%il. In the proof in [9],
LAG is bounded by bounding the lags of individual tasks.

In this section, a complete correctness proof for the! differs from the task systems considered there only in
scheduling phase of Algorithm I-EPDF is presented. Fahe nature of the subtasks of its donor tasks due to the re-
brevity, we use “I-EPDF” to refer to its scheduling phase irset rule. However, this rule neither violates the feasibility
this section. Proving that I-EPDF is correct consists of proveondition in (6) nor leads to an increased lag bound6t,
ing that tasks inr¢ are guaranteed a tardinesscofWe do  and hence, correctness for Clas®llows directly from the
this by showing that I-EPDF guarantees a tardinessfof  result in [9].
tasks in7c.

Based on the donor tasks they are augmented with, ti@2 Tardiness Bounds for72
tardiness classes that result at the end of the distribution
phase may be classified as follows. By Lemma 25uw? = M2 — | M?|, and by Lemma 19,

P, = | M?]. Thus, tasks iri2 are assuredi)/? | processors

at all times. By our assumption;? is non-zero, and because
D? is added to Class, tasks in2 will be provided with an
additional processor assigned to ClassvheneverD? is
scheduled irf!. As mentioned earlier, a slois callednon-
éight or tight based on whgthelfﬂ is scheduled irt or not.
Thus, in a non-tight slot, M/2] processors are available for
scheduling tasks if2, and in a tight slot| 172 | processors
Type 3 Includes every class that is not of Type 1 or Type 2?5\3 %Va"a%' Our assumption that > 0 also implies that
Our proof obligation is to show that I-EPDF is correct for all At t?iémLe t,J|-EpD|: postpones the release time of the
the three types of classes. For notational simplicity, we shopext eligible subtask of a donor task#e- 1 in line 12, if

that I-EPDF correctly schedules the class with the loweshe class that the donor task serves cannot utilize an extra
index possible in each type. The resulting arguments cgtocessor at. This results in tight slot resembling a
easily be generalized to apply to classes with higher indicegon-tight slot to the served class. We distinguish such slots

It can easily be verified that Clagsif non-empty, is of by calling thempseudo-tight Fig. 9 illustrates this. The
Type 1. From (L2), we can conclude that Classf non-  following is a formal definition of pseudo-tight slots.
empty, is of Type 1 or 2. Classand higher can be of any of peinition 1: A tight slot ¢ is a pseudo-tight slofor 7
the three types. Therefore, we assume that Qla€$ass2, it the release time of the next eligible subtask Bf is
and Class are non-empty, are of Types 1, 2, and 3, réSPeQsostponed ta + 1, and thus made ineligible, &t
tively, and prove that I-EPDF guarantees a tardiness of one,
two, and three, respectively, to these classes.

The total lagLAG of a task system, as discussed in
Sec. 2, if positive, is a measure of the extra demand on tf. I o
system in the future, over what it is equipped to handl€: its deadline is later thgn+ 1. Next, if prior to the pogt-
Hence, if LAG is high and work arrives at the prescribedponemem’ the [:elease time bf were earlier tham, then it
rate in the future, then the tardiness bounds may be violate'a.remacecI b)Dl_' . .

Therefore, the proof for all the three classes primarily con- Before cor_15|der|ng ps.,eudo-t|ght. slots further, we Qe—
sists of showing thal AG' does not increase to an amountscrlbe the notion of an active task as introduced in [8], which
that is necessary for a violation. is used in later Iemmas _that concern such slots. The share
that a GIS task receives in the ideal system may be zero dur-
ing certain time slots, if subtasks are absent or are released
late. Tasks with and without subtasks at titnean be dis-
tinguished using the following definition of attivetask.

™ . ~ 1 ~1 . A
te -Ir—glez;r? éilhlglgéegéoingogggeé%&?Iafsccgszﬁz 1&:”':(% Definition 2:[8] A taskU is activeat timet if it has a subtask
9 b P : ' U; such thae(U;) <t < d(Uj).

the proof of Theorem 1 in [9], which states that if the sum . .
K . g1 The next three lemmas are concerned with pseudo-tight
of the M — 1 largest task weights is at mo$tt, then a
X slots.
tardiness of at most one can be guaranteed, can be applied

directly. Note that this implies a per-task weight restriction emma 26 Let a donor taskD¢ be inactive over time slots
of SE%, which converges tg, for large M. It can easily [t ¢,], and active at, + 1. Then , is a pseudo-tight slot

be shown that if the weights of at most two tasks exc§ed for 7¢.

Type 1 Classc is of Type 1 iffw® = 0.

Type 2 Classcis of Type 2 iffw® > 0, and for allD? € ¢,
w? < =1-In other words, Classis of Type 2, iff the
weight of every donor task added to it is at most th

maximum weight permissible for a tardinesscof

There are a few other details that need explanation. First,
e next eligible subtask dP¢, D¢, is postponed at, only

C.1 Tardiness Bounds fors!
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Figure 9. Partial schedule of a soft real-time system with two classes, Classl Clas®, whereM' = 77 and M* = 42,

and hencewt(D?) = w® = 2. (a) The windows of the first six subtasks 6f* are depicted. No subtask &> is postponed.

D? is scheduled in time slots 2, 4, 12, 15, 22, and 26, which are marked by an ‘X’. Therefore, 5 processors are available for
scheduling tasks of Clagsin these slots, which are thus “non-tight” for ClassThe remaining slots are “tight(b) The release

times of subtask®3 and D3, are postponed at times 4 and 10, respectively. The release time of silitéskostponed at time

21. Because(D3?) is originally 20, which is less than 21, the time of postponement, the index of the next subfadkfeset

to 1. 4, 10, and 21 are therefore pseudo-tight slots for Ga3#me slots marked by an ‘X’ are non-tight and the remaining slots

are tight.

Proof: For D¢ to be inactive at, and active at; + 1, its  released late, while in the latter casBy, | is either absent

next eligible subtask &t must have had its eligibility and or is released late.

release times postponeditot1. Hencey, is a pseudo-tight proof: Becauseshare(De,t) = S, f(Dg, t), and (8) im-

slot for 7<. O plies thatf (D¢, t) = we if t # r(DS) andt # d(D¢) — 1,

we havet = r(D$) ort = d(D§) — 1. Parts (b) and (c) of

Lemma 4 imply that in the former cagéD{_,) = 1. There-

fore, if DY is not released late, then= d(D$_;) — 1, which

by Lemma 4(d) implies thathare(D¢, t) = w, which is a

contradiction. A similar contradiction can be arrived at for

Proof Sketch: Let DS be the next eligible subtask dp  the latter case also, b7, , is present and is not released

att, and Dy its predecessor. We consider the release timeate. |

and deadlines oD$ and Dy before D is postponed. Be-

causet is a pseudo-tight slot, by Def. ¥(DS) < t. Be- Lemma 29 Let share(D¢,t) < w® and lett = r(Df),

cause windows of successive subtasks can overlap byfat somei > 0. Then D{'s predecessor isDf_; and

most one slot, this implies thal{ D§) < ¢ + 1, and that share(D¢, d(Df_;)—1) = w® —share(D¢,t). Also, every

if d(D§) =t + 1, theni = j — 1. After the postpone- slotin[d(Dg_,) —1,¢ — 1] is pseudo-tight.

ment,e(D;‘) = r(D;‘) > t. Therefore, forD¢ to be active  Proof Sketch: By Lemma 28,D¢ is definitely released late.

in ¢, there should exist some other subtask satisfying Def. &, can be verified from lines 5-13 of Fig. 5 that I-EPDF in-

which by the previous discussion implies tdaDs) = t+1  terrupts the periodic nature d° in one of the following

andi = j — 1. The alignment of the windows db$_, and  ways only. It postpones the release of the next eligible sub-

D$ must be as shown in Fig. 10(e). From the figuf¥s  task, or makesD$ the next subtask, releasable at the next

share in slot equalsshare(D$_,,t), which by (8) is less time instant. In the latter case, it can be verified from (8)

thanwt(D¢). that f (D¢, r(D5)) andshare(D¢, r(D$)) equakw®. There-
We next show thatag(D€,t) = —share(D¢,t). Be- fore, by the statement of the lemma, it should be the case

causet is a pseudo-tight slot)“ is not scheduled at Be- thati # 1. It can also be verified from the pseudo-code that

cause at a pseudo-tight slgtthe release time of the next the indices of the subtasks &f¢ occur in sequence, unless

eligible subtask ofD° is postponed, every preceding sub-reset to one. Therefore, the predecessobDgfshould be

task of D¢ has been scheduled. From Fig. 10(e), this imD¢ ,. Becauseshare(D¢, r(D$)) < w¢, from (9) and (8)

plies that, at timef, D¢ is ahead of the ideal system bywe have

an amount equal td*’s share in slott. It follows that

lag(D*,t) = —share(D°,t). ] f(D§,r(DS)) = share(D¢,r(D§)) < w®, (44)

Lemma 27 Lett be a pseudo-tight slot in a schedus,
and let D¢ be active int. Then,0 < share(Dt) <
wt(D¢) andlag(D®,t) = —share(D¢,t).

which by Lemma 4(b) implies that
Lemma 28 Let0 < share(D¢,t) < w®. Thent = r(Df)
ort = d(Df)— 1, for some > 0. In the former case]y is b(T;i—1) = 1. (45)
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Figure 10. Two consecutive subtask3; and D, ; of D¢ with weight 2/5. Flows are shown in each sl¢&) There is no IS
separation betweeR{ and Dy, ;. The share oD° equals its weight in all slots show(b) The release time aby, ; is postponed
att — 1; hence, the share @ is less than its weight in both— 1 andt¢, andt — 1 is a pseudo-tight slo{c) The release time of
Dg,, is postponed at both— 1 andt; hence,D¢ is inactive at, and its share is less than its weightir 1 andt + 1. Botht — 1
andt are pseudo-tight(d) The release time aby, ; is postponed at, but not att — 1; hence,D¢ is inactive att, and its share is
less than its weight only ih— 1. In this case, only is pseudo-tight(e) Lemmas 27 and 3Qf) Lemma 33.

Therefore, by Lemma 4(d)f(D§_,,d(D$_,) — 1) + in Fig. 10(d). Becauseis pseudo-tight, where the release
f(Dg,r(D5)) = we, or by (44),f(Di_,,d(Di_;) — 1) = time of Df is postponedD$_; must have been scheduled
w® — share(D°,r(DS)). Because no subtask other tharprior to¢. Thus, by timet + 1, both the ideal and the ac-
Dg can overlap with the last slot @b ; and Dy is re- tual systems have scheduled alllof’s subtasks up through
leased late, the share 6f in that slot in the ideal system D$_, prior tot + 1. This implies thatag(D¢, ¢ + 1) = 0.

is given by the flow received b$ ;. Therefore, we have a
share(D°, d(D$_,)) = we—share(D¢,r(DS)). This com- )
pletes the proof for the first part of the lemma. This is also We prove tha.t u_nder I-EPDF the tardlnesi%)fs ","t most
illustrated in Figs. 10(b) and (c). two, by contradiction. If not, thery, 7, and7* defined as

To see that every slot ifi(D$_,) — 1,¢ — 1] is pseudo- follows exist. (In these defini'tions, it is assumed that for
tight first observe that — 1 is necessarily pseudo-tight. If te task systems and o mentioned, Classes 1 and 2 are

d(D¢ ) = t, then the proof is complete. Therefore, as"OMeMPLY.)
sumed(D;_;) < t. Next, consider the latest slt< ¢t — 1  Definition 3: ¢, is the earliest subtask deadline for which
in the interval specified, that is not pseudo-tight. Becausgere is a violation under I-EPDFe., there exists some task
b(Dj_;) = 1 (by (45)), if D is not postponed, then systemr with a subtask inF2 with a deadline at; and a
r(D{) = d(D{_,) — 1. Also, I-EPDF postpones the re- tardiness of three, and there does not exist any other task
lease times of the subtasksDf by at most one slofg., at  systemos with a subtask in5? with a deadline prior tdg
timet, it postpones the release timette 1). Therefore, the and a tardiness of three.
release time oD¢ could not have been postponeditat- 1
or later, prior tot’. Therefore, because is not pseudo-
tight butt’ + 1 is, it implies thatr(Df) as of timet’ + 1
Tréo;tl)d':have been at or befoi’(ca I thact were the case, then (T1) t,4 is the earliest deadline of a subtask7if with a
- would have replaceBs by Dy (refer lines 9-12 of /

. v . . tardiness of three under I-EPDF.
Fig. 5), and hence, our assumption tHas not pseudo-tight

is incorrect. Therefore, every slot in the interval specified i§T2) No other feasible task system satisfying (T1)
pseudo-tight. O  contains fewer subtasks of tasksifithanr.

(T3) No feasible task systemsatisfying (T1) and (T2) has
L 30 If ] do-tiaht slot. thelpe( D¢ £.4.1 a larger rank tham, where therank of a task system att
o @ pseudo-nght slot, Neng(D" 1+1) = is defined a8, 22 521, iy (70

Definition 4: 7 is a feasible task system with the follow-
ing properties.

Proof: If ¢ is a pseudo-tight slot, then the release time of the By (T1) and (T2), exactly one subtask4f has a tardi-
next releasable subtask Bf is postponed &t as illustrated ness of three: if several such subtasks exist, then all but one
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can be removed and the remaining subtask will still have The next three lemmas are concerned with the lagf
a tardiness of three, contradicting (T2). Additionally, thethe donor task of!.

following assertions follow from the above properties and

definitions. Lemma 33 —1 < lag(D?t) < 1 + w?, for all ¢.

(Al) (3T; € 72 : d(T;;) = ta A tardiness(T;) = 3)

(A2) (VT; € 72 : d(T;) < tq = tardiness(T;) < 2)

In the rest of this paper, we use to denote an |I-EPDF
schedule forr and S¢ to denote that part of that corre-

sponds to the schedule fof. in the lemma holds because each subtaskdfhas equal

Itis easy to see that the tardinessTofis not affected  g|igipility and release times.e., the IS and PF windows for
by subtasks with deadlines greater thign Note that any ¢ ,ch subtasks are always the same. O
such subtask is scheduled befogeonly if no subtask with

a deadline at mogt; is eligible at that slot. Thus, by (T2),
we can assume that no subtasknhas a deadline greater | amma 34 If lag(D?,t) > 1, and the next releasable sub-

thant,. In other words, the following holds. task of D? is not postponed at thent is non-tight.

(A3) (VTL €72 d(Tl) < td).

We next determine the number of subtasksdfhat should ~ Proof: |féag(D27t) 2 1. thenby (11)lag(D?, t+1) > 1+
miss their deadlines aj, for 72 to have a tardiness of three Shm'e(D27 t)—=S(D 7t2)- Ifthe2re arenolS sgpa2rat|ons, then
(att,). Unless otherwise specified, all remaining lemmaghare(D®,t) = wt(D*) = w*. Therefore, ifD* were not

Proof: This lemma follows easily from the fact that a tardi-
ness of one is guaranteed for Clasdf a taskT may miss

its deadline by only at most one quantum, then its lag must
always be strictly less thah+ wt(7). The—1 lag bound

are assumed to apply 5. scheduled at, thenlag(D?,t + 1) > 1+ w?, contradicting
_ Lemma 33. Therefore)? is scheduled at, and thust is
Lemma 31 The number of subtasks that have their deadnon-tight. O

lines at or prior tot,; and are not scheduled Ity is at least
2. |M2%] + k + 1, wherel < k < 2, is the number of
non-tight slots in the next two slots, andt, + 1. Lemma 35 If lag(D?,t) > k — w?, wherel < k < 2, and
Proof: We prove the lemma fot = 1; the other cases the next releasable subtask Bt is not postponed atand

are similar. By (Al), some Subtaﬂ% with a deadline at t 4 1, then at least of slotst and¢ + 1 are non-tight.
ty has a tardiness of three. It follows that this subtask is
scheduled in slot; + 2. Because both,; andt,; + 1 are
tight, | M2| processors are available to the taskstnin  Proof: We prove the lemma fok = 1. The proof fork = 2
each of these slots. By (A3), it suffices to show thﬁfzj is similar. If¢ is non-tight, the proof is complete. Therefore,
subtasks from#2 are scheduled in each of these slots. Firs@Ssume is tight. If lag(D?,¢) > 1 — w?, then by (11),
suppose that fewer tha /2| such subtasks are scheduledag(D?,t+1) > 1—w?+share(D? t)—S(D?,t). If there
in slot#; + 1. Then, becaus&; could not be scheduled are no IS separations, thehare(D?,t) = w?*. Therefore,
there, its predecessor must have been schedulegiatl.  lag(D?,t + 1) > 1, which by Lemma 34 implies that+- 1
But then,T;’s predecessor would have a tardiness of at lea#t hon-tight. o
3, contradicting the fact that onif; _has a tardlngss of three In what follows, we obtain the desired contradiction by
(and no subtask has greater tardiness). Having shown thsaﬁtowin 2 e N fr e :

o 5 . g thatL AG(74,tq) is (i) less thar2 - | M= | + 1 if ¢4
| M*| subtasks fron= are scheduled at; + 1, it follows dt 1 are both tiaht i less thare - | 172 5 if at
that the same is true a@f;. Otherwise, one of the subtasksan d ight(ii) [M7)+ 21

- most one oft; andt,. ;1 is not non-tight, andiii) less than
scheduled at; + 1 would have been eligible & and hence, o . .
would have been scheduled there. 2. |[M?| + 3 if ty andty + 1 are both non-tight, thereby

contradicting Lemma 32. We do this by establishing the

From the above lemma, we have the following. following.
Lemma 32 LAG(72,t4)is atleast2 - | M2 | +k+1, where LAG(7#2,tg) < 2+ | 2| + lag(D?,tg) + w®  (46)
1 < k < 2 is the number of non-tight slots in the next two
slots,ty andtg1. It can be verified that if (46) holds, then Lemmas 33-35

Proof: Again, we consider only whel = 1. The ideal sys- MPly that LAG(?Q’fg) is always less thad - [M1%] + 3,
tem (by definition) completes the execution of every subtaskd IS less thal - [ M=] + £+ 1, if at most2 — k of the next

in #2 (each of which, by (A3), has a deadline at or befigle WO SI0ts are not non-tight. »

by timet,. By Lemma 31, Algorithm I-EPDF fails to sched- 10 establish (46), a few more definitions are needed.

ule at leas® - | 12| + 1 of these subtasks by tintg. Thus, Some definitions and lemmas that follow apply to a generic
LAG(#2,t0) > 2 | V2] + 1. g class, Class, and are indicated as such. The remaining are

specific to Class.
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Holes [8]. Sometimes, the tasks itf may not be able to Proof: Let U be any task inB(t). BecausdJ is active at
fully utilize the processors allocated to themhlprocessors t, t lies within the eligibility interval of some subtask ©of.
are idle at some time¢, then we say that there ateholes Let Uj, be any subtask satisfyindU;,) < t < d(Uy) such
(with respect tar®) in t. Thus, a tight (or pseudo-tight) slot that Uy, is scheduled after and its predecessor (if it exists)
has holes if fewer thah/¢ | tasks of+* are scheduled there, is scheduled before (Becausd/ € B(t), no subtask of
and a non-tight slot has holes if fewer thbik?lﬂ tasks are U is scheduled at.) Because is a pseudo-tight slot no
scheduled there. tasks other than those scheduled ate eligible at and the
number of such tasks is at qusM”J. Hence, ifU;, were
eligible att, in addition to the| M €| subtasks scheduled at
t, thent would not be a pseudo-tight slot, which is a contra-
diction. Thus, for all subtasks;, with e(Uy) <t < d(Uy),
Uy is scheduled beforg and in particular, this is true @f’s

B(t): Set of all tasks that are active, but not scheduled at cfitical subtask at. O

Pseudo-tight slots are similar to non-tight slots with holes
in the following sense: in a pseudo-tight slot, up[fa/“]
A(t), B(t), andI(t) form a partition of?<, i.e, processors arpotentiallyavailable to the tasks i but at
most | M€ | such tasks are eligible; in a non-tight slot with

Task classification[8]. Tasks within clas$® may be clas-
sified as follows, based on whether they are active’at

A(t): Set of all tasks that are active and scheduled at

I(t): Set of all tasks that are inactivetat

AR)UB(t)UI(t) =7 A holes,[]\?[ﬂ are (definitely) available to the tasksfi but
A(t)NB(t) = B(t) N I(t) = I(t) N A(t) = 0. (47) at most| M€ | such tasks are eligible. Due to this similarity,
the following lemma, which was originally proved in [5]
The following lemma concerns s&(t). concerning slots with holes, is valid.

Lemma 38 [5] Lett be a slot with holes or a pseudo-tight
slot, and letB(t) be non-empty. Letf, be the latest time
that a task inB(t) is scheduled before Then, there exists
Proof: Let h > 0 be the number of holes in Then, be- @ subtask¥; scheduled atwithe(W;) <, d(W;) = t+1,
causet is a pseudo-tight slot, the number of tasks sched@@ndS(W,t') =0, forall ¢’ € [t,, ¢ — 1]. Also, there are no
uled at¢ is [M¢] — h. By (12), LAG(7¢,t + 1) = holesin[t,, ¢ —1].

LAG(7¢,t)+ Y pepe share(T,t) — (| M¢] — h), which by
(47) equalL AG(7°,t) + X e ayum i) share(T, ) —
(|M¢] — h). Becauseshare(T,t) = 0 for T €
I(t), it follows that LAG(7¢,t + 1) = LAG(7¢,t) +
Yreawunq share(T,t) — ([M°] — h).  Because

Lemma 36 If ¢ is a pseudo-tight slot anAG(7¢,t+1) >
LAG(7¢,t), thenB(t) is not empty.

The next four lemmas give estimates of lags of tasks in
A(t), B(t), andI(t) of 72 at timet + 1, wheret is a pseudo-
tight slot, or a slot with holes. The first two of these are
proved in [9], and apply to any*. The third can be proved

similarly.
LAG(7¢,t + 1) > LAG(7¢t) by the statement of the
lemma, we haved ;¢ 4 up share(T,t) = [M°| — Lemma 39 [9] Lett be a slot with holes or a pseudo-tight
h. By (10), share(T,t) < wt(T), for all T. Hence, slot in the schedule* for 7¢, and letW < I(t). Then
Yreamunm WHT) = [M¢] — h. BecausglA(t)] = lag(W,t+1)=0.

|M¢| — h and wt(T) < 1 for all T, we have , ,
Srean wh(T) < |M¢| — h. This, in turn, implies that Lemma 40 [9] Lett be a slot with holes or a pseudo-tight

. slot in the schedul& for 7¢, and letW € B(t). Then
: O
>rene wHT) > 0, and thatB(t) is not empty lag(W, 1+ 1) < 0.
The definition that follows identifies the last-released .
subtask at of any tasklU. Lemma4l Lett < t; be a slot with holes or a pseudo-

tight in the schedulé&? for 72, slot and let’ € A(t). Then
Definition 5:  Subtaskl; is thecritical subtask ofU at ¢ lag(W,t 4+ 1) < 3 - wt(W).

iff e(U;) <t < d(U;) and no other subtadk; of U, where

k > j, satisfies(Uy) < t < d(Uy). Lemma 42 Lett < t, be a slot with holes or a pseudo-tight
slot in the schedul&© for 7¢, and let B(¢) be non-empty.

Lemma 37 If ¢ is a pseudo-tight slot anf#(¢) is not empty, Then, there exists a tadk’ € A(t) such thatlag(W, ¢ +

then the critical subtask of every task #(¢) is scheduled 1) < wt(W).

beforet.
Proof: By Lemma 38, a subtasi; is scheduled at with

d(W;) = t + 1. Let Wy denoteW,’s successor. (If no
3For brevity, we let the task systef to be implicitin these definitions. SuUccessor exists, the reasoning is as in Case 1 below.) We
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share(D?,t") < w? and LAG(72,t') < 2-|M?| +
2 lag(D%,t') + w?, then LAG(72,t + 1) < 2-|M?| —
B S T share(D?,t') + w?. Else, LAG(72,t +1) < 2-|M?],
@ L, iEiipe which is less thar - [ M?| + lag(D?,t + 1) 4+ w?.
S Sipy
N Dif &pm do_tight Proof Sketch: The conditions of the lemma are illustrated
dght =7 11, in Fig. 11. We first show that AG(72,¢t + 1) < 2- [ M?],
(b) S T T R D2 regardless oD?'s share int””. By (47), LAG(7%,t + 1) =

i+l

Yreamunur) lag(T,t + 1), which by Lemmas 39—
41 implies thatLAG(72,t + 1) < Y pc a4 3 - wi(T).

- \\_J Sf;“sd"‘“gh‘ Becauset is pseudo-tight,|A(t)| < | M2], which by

T T T T T T T (L2) yields LAG(7%,t + 1) < 2- | M?]. By Lemma 30,

v t e lag(D?,t + 1) is zero, and hencd, AG(7%,t + 1) is less
than2 - | M?| + lag(D?,t + 1) + w?.

Figure 11. Lemma 44. Next, consider the case that the shareDdfin " in the

ideal system is strictly less than its weight. This is illustrated
S 5 2 .
consider two cases depending on the value(®F},). in Fig. 11(b). LetDiH_beD s subtask that is released at
Case 1 (W) > In th both th | dt”. If ¢’ is the latest time slot at or beforethat D? was
~ase :r(Wi) 2 ¢ + 1. In this case, both the actual an active, thent’ + 1 should be the deadline of the predecessor
ideal systems completely execute all subtaskd’ahrough of D2

_ . By Lemma 29,D?,,’s predecessor i©?, and
W, by timet + 1 and no later subtasks 6. Therefore, | 1" C)Z/(D_g) 1 Therlgflorep by Lemma 29, we also
lag(W,t+1) = 0. ’ ' ’ ’

have
Case 2:r(W}) > t. Note that, in this case, the windows of
W, andW}, overlap by one slot, and hence by the definition (Vt:telt',t" —1]::t is pseudo-tight (48)
of a GIS systemk = [+ 1. By (3)—(4), we have (W;;2) >
t + 1. Therefore, any additional share tHat may receive We next show that the bound stated in this lemma
by time in the ideal system is due to the flow received by(2 - [M?] — share(D?,t') + w?) holds at every in L =
W41 in the first slot of its windowi.e., f(W41,t). Using [t’,t"], by induction or¢. For the base case, let= t'. Be-
(10), it can be shown that(W;,1,t) < wt(W). Hence, causet’is pseudo-tight by (48) and? is active int’, by
lag(W,t + 1) < wt(W). o Lemma?27,

) ) lag(D?,t') = —share(D?,t). (49)
Lemma 43 t4; — 1 is not pseudo-tight.

Proof: The proof is by contradiction. By Lemma 31, at least "0M Zthe staterQne/nt of2the lemmal AG(72,¢) <

2. |M2| + k, wherel < k < 3, is the number of subtasks 2~ LM~ + lag(DA,Qt ) +w”, which by the above equation

of 72 with deadlines at or prior ta, that are not sched- Implies thatL AG(7,¢) <2- [M? ] —share(D?,t') +w?.

uled byt,, and at mosk — 1 of the next two slotst, and 1S establlshes.the base case. .

tq + 1 are non-tight. Because > 1, atleast - | M?] + 1 Next, assuming thatLAG is at most2-[M?| —

subtasks miss their deadlinestat and because, — 1is  share(D?,t') +w?, att’ throught, wheret < t”, we show

pseudo-tight, the number of tasks schedulet}at 1 is at that the_same bound appli_esta‘t 1. We consider two cases

most| M2 ]. Thatt, — 1 is pseudo-tight implies that at most depending on whethe(¢) is empty or not.

| M2 | tasks are eligible at; — 1, and that all the subtasks Case 1: B(t) = (. By (12) and (47),LAG(7%,t 4+ 1) =

missing their deadlines a§ have their predecessors sched-LAG(72,t) + > oreag share(T,t) — > pe a4 S(T50).

uled att; — 1. That would imply that at least one task hasBecause the share of every task is at most its weight, which

three of its subtasks missing their deadlineg;atvhich by is strictly less than one, and the number of tasks sched-

(3) implies that the tardiness of at least one subtask withwded att equalsA(t), the last equation above implies that

deadline earlier thaty — 1 and scheduled &t — 1 is atleast LAG(72,t + 1) < LAG(#2,t). Therefore, by our induc-

three, contradicting (A2). O tion hypothesis, we havB AG(72,t + 1) < 2. | M?] —

2 41 2

The three lemmas that follow will be used to show thatShare(D b+t ,

(46) is true. Case 2:B(t) # . For this case, by (47) and Lemmas 39—
41, we haveLAG(72,t + 1) < 3rc ay lag(T,t + 1). By

Lemma 44 Lett < t; be a pseudo-tight slott” > ¢, Lemmas 41 and 42, the lag of at least one tHSkn A(t)

the earliest time slot aftet that D? is active, andt’ < s less than its weight, and the lag of the remaining tasks,

t”, the latest time at or before that D? was active. If less than thrice their weights. TherefofedG(72,t + 1) is
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less thanwt(W) + 3> rc 4y - wy 3 - wt(T). t is pseudo-
tight by (48), and henceA(t)| < [M?]. This, together
with (L2), implies thatLAG(72,t + 1) < 2- |[M?] — 1,
which is less thaR - | M?2| — share(D?,t') + w? (because
share(D?,t') < 1). O

Lemma 45 Lett < tq be atight slot and leL AG(72,t) <
2 | M?]+lag(D?,t)+w?. Then, there existst, such that
t <t <tgand LAG(72,t') < 2- | M?] + lag(D?t') +

w?.

Proof: Based on whether there are holeg or not, we con-
sider the following two cases.

Case 1:t¢ contains one or more holes.Let h > 0 be the
number of holes irt. Then,|A(t)| = | M?] — h. By (47),
LAG(7%,t+1) = Xpe awyup o lag(T,t +1), which
is then at mose - | M2 | — 2h, by Lemmas 39-41 and (L2).
Becauseh > 1,2 | M?| — 2h < 2-|M?] — 2, which is
less thar2 - [ M2 + lag(D?,t + 1) + w?, by Lemma 33.
Thus,t’ = ¢ + 1 for this case.

Case 2. There are no holes int. Becauset is tight,
S(D?,t) = 0. Therefore, by (11),

lag(D?,t + 1) = lag(D?,t) + share(D?,t).  (50)

Because there are no hoIestinZTefg S(T,t) = | M?].
Therefore, by (12),

LAG(#2,t 4+ 1) < LAG(#2,t) + M? — | M?|
LAG(72,t) + w? (by Lemma 25)
< 2| M?| +lag(D?,t) + 2 - w?.

(51)
(52)

can be concluded thd@? , is D?’s predecessor i, ¢/
d(D?_,) — 1, andshare(D?,t') = 1 — share(D?,t). Sub-
stituting this value in the previous expression fol G att,
we haveLAG(72,t) < 2 | M?| — 1+ share(D?,t) 4+ w?,
which on substitution in (51) gives

LAG(#2,t+ 1)

< 2| M2?| — 1+ share(D2,t) + 2 - w?
= 2. |M?| —1+lag(D?t+1) —lag(D?t) 4 2 - w?
(from 50)
= 2. |M?| —1+4lag(D?*t+1)+2-w?
(By (53) and Lemma 30ag(D?,t) = 0)
< 2-|M?%| 4 lag(D?t +1) + w?. (by (L2))

On the other hand, if = d(D?) — 1, then by Lemma 28,
D2, is released late. Let' be its eventual time of re-
lease. Then'’ — 1 is pseudo-tight, and hence by Lemma 44,
LAG(72,t') is less thare - | M?] + w?. Because’ — 1 is
pseudo-tightJag(D?,t') = 0, by Lemma 30. Therefore,
LAG(72,t') < 2- | M?| +w? < 2- [ M?] +lag(D?t) +
w?. By Lemma 43¢, — 1 is not pseudo-tight. Therefore,
t <tg—1. Od

Lemma46 Let t < ¢4 be a non-tight slot and let
LAG(72,t) < 2- | M?] + lag(D?,t) + w?. Then, either
LAG(7%,t +1) < 2-|M?| + lag(D?,t + 1) + w? or
LAG(#2,t4) < 2- | M?] +1 holds.

Proof: As with Lemma 45, we broadly consider two cases
depending on whether there are holes ar not.

Case 1:t contains one or more holesBy (47) and Lem-

(By the statement of the lemma.) mas 39-40LAG(72,t+1) < 3¢ o) 3-wt(T). Because

We consider two subcases, based on the sharethae-
ceives in the ideal system.

Subcase 2(a):share(D?,t) = w?. For this case, by (50),

lag(D?,t+1) = lag(D?,t) +w?, which can be substituted

in (52) to yieldLAG(#2,t + 1) < 2- [ M?| + lag(D?,t +
1) + w?. Thus,t’ = t + 1 for this subcase, too.
Subcase 2(b)0 < share(D?,t) < w?. By Lemma 28, the
condition of this subcase implies that eithes r(D?) or
t = d(D?) — 1. We consider both possibilities.

If t = r(D?), then by Lemma 28D? is released late.

¢ contains holes,A(t)| < | M?2|, which together with (L2)
implies that

LAG(7%,t+1) <2 | M?2]. (54)
Becausé is non-tight, it can contain a hole only under the
conditions in either of the two subcases that follow.
Subcase 1(a):it = d(D?) — 1 ort = d(D?), for some
i, and D? is scheduled at in S'. That it is possible fot

to contain a hole can be verified from lines 5-13 in Fig. 5.
Because + 1 > d(D?) andS! does not execute any other

From line 12 of I-EPDF, the postponement of release timgubtask released later tharf beforet + 1, it follows that

is by at most one time unit. ThereforB?’s release should
have been postponediat 1, i.e,
t — 1 is pseudo-tight (53)

Hence, by Lemma 44,LAG(7%,t) < 2-|M?] —

lag(D?,t+1) > 0. (55)

On the other hand, by (54), we ha¥edG(7,t + 1) <
2. |M?|, where, by (55),2-|M?| < 2-|M?| +
lag(D?,t + 1) +w?. This completes the proof for this sub-

share(D?,t') + w?, wheret’ is the latest time slot before Case.

t that D? was active. Therefore! + 1 should be the dead- Subcase 1(b):r(D?) < t < d(D?) — 1, D? is scheduled
line of D%i’s predecessor. With the help of Lemma 29, itatt in S!, the number of subtasks 6f that are eligible and
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Figure 12. Lemma 46a) Subcase 1(b)-iwt(U) > 1/2. Becausel(U;) > tq, U; is not present ir$2. Therefore is a non-tight
slot with holes for?2. (b) Subcase 1(b)-iwt(U) < 1/2.

scheduled atis /2] + 1 —n, wheren > 1, and there ex- LAG(72,t +2) = LAG(72,t + 1) + M? — (| M?] + 1),
ists a set of subtasks, such thatr’| > n and the following which is less thar2 - | M2, by (54), and ift + 1 is a tight

holds. slot, thenL AG(#2,t+2) = LAG(#2,t+1)+ M? — | M?],
which by (54) and Lemma 25 is less than [ M?| + w?,
(VT; € 7' r(Ty) <t A d(T;) > tqg A all subtasks which is less thar - | V2] + 1.

of T precedingl; are scheduled i8” beforet56)  Subcase 1(b)-ii: ¢ > 2 and wt(U) < 1/2. As ex-

. i plained in the next subsection, (46) can be generalized to
Then, the tasks that are eligible tatonsist of the tasks of LAG(#¢,tq) < ¢ | M¢|+lag(D®, tq)+we for Classc. Be-

subtasks of*? that are scheduled atand the tasks of sub- causewt(U) < 1/2 for some task irt®, wherec > 2, (W)
tasks in7’. Therefqreﬁg, as determined atin line 13 of implies thatl is a donor task, say)”™, added to Class.
Fig. 5 is at least M?| + 1 (or P, + 1). Therefore, the Therefore, by Lemma 23, we have

test in line 8 fails, and the release time Bf is not post- ' '
poned. However, the subtasksihare not in72, by (A3) wt(U) > we. (57)
and (56). Thus, the removal of thesubtasks of’ from the

actual schedule to yiel&$?, results in one or more holes Let U; be the subtask of/ that is scheduled at in the

in ¢t in S2. This is illustrated in Fig. 12. We show that non-truncated schedule for Clasand letD7 be the sub-
LAG(7%,tq) < 2-|M?| + 1 as follows. Without loss of task of D¢ that is scheduled atin S¢, the schedule for
generality, we assume thatis the latest slot with a hole Classd, whered < ¢ is the class that Clagsborrows
and that there is no pseudo-tight slot afte(Otherwise, it from. This is illustrated in Fig. 12(b). Then, by (57) and
suffices to consider a later slot with a hole or a later pseud@smma 1, lw(Uy)| < L | 4+ 1. BecauselU; € 7,

tight slot.) w®
_ by (56) we haved(U;) > t4, (U;) < t, and hence,
Let U be the task of some subtaskifi Then, by (L2), | (U;)| = d(U;) — r(U;) > tqa + 1 — t, which implies
the weight ofU is greater thari /2. However, ifc > 2 and _ < Vo< 2] -
Classc is of Type 3, then it is possible thatt(U) < 1/2. thatts — (t+1) < Jw(Ui)l -2 < [wcw 1 Generalizing
Therefore, we consider the two subcases that follow. (54), we haveL AG(7¢,t + 1) < c¢- [M¢]. Because there
are no slots with holes or pseudo-tight slots aftercan be
) ) easily shown that the totdl AG of 7¢ increases by at most
_ Subcase 1(b)-i:c = 2 and wt(U) > 1/2. Fig. 12(8) e across any slot ift + 1, t,]. Therefore LAG(7°, 4) <
illustrates this subcase. Lé&f; be a subtask in’. Be- LAG(,t+1) + ([LW 1) ewt < [N 41
causewt(U) > 1/2, by Lemma 1,U; spans at most three T w® Swese :
slots,i.e. d(U;) — r(U;) < 3, which by (56) implies that Case 2: There are no holes irt. This case can be proved

ty <t+2. If ty =t + 1, then (54) establishes the lemma.n @ manner that is exactly similar to the proof for Case 2 of
On the other hand, if; = ¢ + 2, then as explained ear- Lémma 4s. u

lier, t + 1 neither contains holes nor is it a pseudo-tight

slot. Therefore, ift + 1 is a non-tight slot, then by (12),
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BecauselL. AG(72,0) = 0 andlag(D?,0) = 0, we have than three, we introduce the following scheduling rule.

LAG(#2,0) < 2- | M?) +lag(D?,0) + w?. Thergfore, by (R): Break ties involving the heavy donor task, if any, of
Lemmas 44-46 above, either (46) is true[otG(7°,t4) <  Class3 and higher, in favor of the donor task.
2. | M?] + 1, which contradict Lemma 32. Therefore, (A3)

is false, or the tardiness 6f under I-EPDF is at most two. As shown later, (R) ensures a tardiness of at rostl for

the heavy donor task of Clagsif (46) is slightly strength-

ened. (If Clas$ or above is of Type 1, then it can easily be

shown that no donor task added to the class is heavy. Hence,

(R) will not be applicable to that class, and therefore, the ar-
Sgument given for Type 1 classes is not impacted.)

C.3 Tardiness Bounds fors?

Finally, we are left with showing that the tardines
bounds of classes of Type 3 are metunder I-EPDF. ™ 1o rest of this section contains a formal proof of the
We begin by considering the following difference of IN-informal summary given above
terest between a Type 2 class and a Type 3 class, and itsOur goal now is to show the .following

impact on the proof presented for a Type 2 class. (G1) I-EPDF ensures a tardiness of at medbr Classc

The weight of the donor tasks added to a Type 3 th.at is Qf type 3 and is_, augmented with a donor task
class may exceed the weight restrictions of the ~ With weightw™ exceeding .

class,i.e., the weight of a donor task™ added (G2) I-EPDF (specifically, (R) of I-EPDF) ensures a tardi-
to Classc may be greater thaps;. However, by ness of at most—1 for a heavy donor task added to a Type 3
Lemma 24 and (W), the number of such tasks is ~ class.. _ o

at most one. Proof of (G1) is exactly similar to that of a Type 2 class

presented in Sec. C.2, if (G2) is known to hold. The justifi-

In this subsection, we consider in detail the implicationgation is as follows. Generalizing the arguments of Sec. C.2,
of this difference — the scheduling rule that it necessitatesur goal would be to show th@tAG(7¢, ) < ¢- | M¢] +k,
and the changes to the proof presented in the previous s@gherek ranges between one ardt 1, depending on the
tion that it entails. tightness of the: slots starting at. If (G2) holds, then by

The principal hurdle imposed when the weight of a donoremma 53, the lag oD™ at the end of a slot with holes is
task (or any task for that matter) of a class exceeds the mag mostc. By the same lemma, it can easily be shown that
imum permissible for that class is the following. The proothe lag of a task in at the end of such slots is also at most
strategy of the previous section consists of bounding the lag Therefore,D™ does not cause the total lag #f to be

of a task system at the end of a pseudo-tight slot or a slgjore than what it would be iD™ were like any other class

with holes by the sum of the lags of the tasks schedulegf 7, j.e, we < = and tardiness aD™ is ¢. Hence, the
in that slot. Because the lags of individual tasks are deyroof steps of the previous subsection can be used to show
termined by their weights, the existence of tasks that violat@at tardiness for Classis at moste. Therefore, it suffices

the weight restrictions results in the bound determined using show that (G2) holds.
this approach to exceed the value that needs be established/e prove (G2) for two distinct cases.
for (46) to hold. We overcome this hurdle as follows.

We first observe that because the donor task of GlassCase A: 5/6 < w™ < 1.
(D?) is added to Class, tardiness(D?) = 1, which is
two less than the tardiness that needs to be ensured for taSi@&5€ B 1/2 <w™ < 5/6.
in Class3. As proved later, this property can be exploited
to weaken the right-hand side in the counterpart of (46) fo£.3.1 Case A5/6 < w™ < 1
Class3 to 3 - | M3 + lag(D?,t4) + 2 - w®. Note that the
difference is in the last term. By Lemma 22, if the weight o
the donor taskD™ added to less is at leasb /6, thenD3 tion
is heavy. This implies that - w® > 1, which is sufficient to : . '
counter the increase in the total lag due to the presence of f"r\}\l,f ((iiZ)tdoes not hold, then,, 7, and7* defined as fol-
extra-heavy donor task. On the other hand;# < w™ < ows exist.
5/6, we show that the tardiness bounds of any Claaee  Definition 6: 4 is the earliest of the deadlines of the sub-
not violated, even if the tardiness bf is as high ag — 1.  tasks of D™ with a tardiness of three under I-EPDF.,
(For Class3 it would mean thatardiness(D?) can be up there exists some task systenwith a subtaskD;™ of D™
to two.) in 73 with a deadline at,; and a tardiness of three, and there

However, the difference between the tardiness that needees not exist any other task systemvith a heavy donor
to be ensured for a Type 3 class, say Clasand the tardi- taskD” in 62 with a subtask with a deadline prior tg and
ness of its donor task may not be two, ifD¢ is not added a tardiness of three. Further, the tardiness of all other tasks
to Classl. To ensure this difference for all classes highein 72 is at most three at;.

fAs mentioned earlier, for simplicity, we prove this case for
Class 3j.e, ¢ = 3, and as before, the proof is by contradic-
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Definition 7: 7 is a feasible task system with the follow-  We next present lemmas concerning lagdfatt, which

ing properties. will be used to derive an expression for the total lagof
(T1) t4 is the earliest deadline of a subtask@f* in 73  BecauseD? is in 71, the proofs of the first two lemmas are
with a tardiness of three under I-EPDF. The tardiness of ahe same as the proofs of Lemmas 33 and 34, respectively.
other tasks of3 is at most three at;.

(T2) No other feasible task system satisfying (T1)
contains fewer subtasks of taskssifithanr. Lemma 50 If lag(D?,t) > 1, and the next releasable sub-
(T3) No feasible task systemsatisfying (T1) and (T2) has task ofD? is not postponed at thent is non-tight.

g'g;%i;:ja;gham’ wzh:ere therank of :;task systemr at? The lemma that follows is the counterpart of Lemma 35
resd 2qmlary<tay ¢Ti)- for D3,

Lemma 49 —1 < lag(D3,t) < 1+ w3, forall ¢.

By (T1) and (T2), the deadline of every subtaskih Lemmas5l If lag(D®,t) > k — 2 - w®, wherel < k < 3,
other thanD;™ is at mostt; — 1. SinceD™ has a higher and the next releasable subtaski®f is not postponed &,
priority over other tasks if there are ties, the presence offat- 1, andt + 2, then at least: of the three slots iift, ¢ + 2]
subtask with a deadline at or after cannot affect where are non-tight.

D™ is scheduled, and hence can be removed. AdditionallProof: We prove the lemma fok = 1. If tor¢ + 1
the following assertions follow from the above propertiess non-tight, then the proof is complete. Therefore, as-

and definitions. sume otherwise. lfag(D?,t) > 1 — 2 - w3, then by (11),
(B1)3D" € 73 : d(D™) =ty A tardiness(DI") =3 lag(D?,t+2) > 1, because there are no IS separations and
B2 VI; € # : (I # D™ = d(T;) < D?3 is not scheduled atandt + 1. The required result then

ta A tardiness(T;) < 3) A (T = D™ A d(T,) < followsfrom Lemma 50. O

ta) = tardiness(T;) < 2))) In what follows, we obtain a contradiction to Lemma 48

_ by showing thalLAG(7%,t4 — 1) is less thar - | M?] + £,
We first show that the number of subtasks dthat miss  wherek of the three slots starting 4t — 1 are non-tight. We
their deadlines at; — 1 is atleasB - | M3]. do this by showing that

Lemma 47 The number of subtasks that have their deadEAG (73, t4—1) < 3- | M3| —1+lag(D? t4—1)+2 - w?,
lines at or prior tot; — 1 and are not scheduled by — 1 (58)

is at least3 - [M?] + k, wherek is the number of slots in and appealing to Lemmas 49-51 to imply the contradiction.
[ta — 1,tq + 1] that are non-tight. As mentioned in the previous subsection, several lemmas
proved in that subsection apply to any generic class Glass

Proof: We prove the lemma fok = 0; the other cases are and hence to Class We borrow them where needed.

similar. By (B1),D;" is scheduled at; + 2. Because all of

tq — 1, tq, andty + 1 are tight, only| M3 | processors are Lemma 52 Lett < ¢, — 1 be a slot with holes or a pseudo-
available to the tasks if?® in each of these slots. By (B2), it tight slot in schedules® for 73, and letW € A(t). Then
suffices to show thalt)/3 | subtasks front? are scheduled lag(W,t+ 1) <4-wt(W).

in each of these slots. First, suppose that fewer {ei]  proof: Similar to the proof of Lemmas 39-41 of the previ-
such subtasks are scheduled in glpt- 1. Then, because g5 section.

D;" could not be scheduled there, its predecessor must have

been scheduled a§+ 1. But then,D]™'s predecessor would Lemma 53 Lett be a slot with holes or a pseudo-tight slot
have a tardiness of at least 3, contradicting the factfijat  in scheduleS© for 7¢, and letW € A(t). If the tardiness of
is the only subtask aD™ with a tardiness of three. Having the subtask ofV" scheduled at is k > 0, thenlag(W,t +
shown that 13 | subtasks front3 are scheduled @, +1, 1) < (k+ 1) - wt(W).

it follows that the same is true of andt; — 1. Otherwise, proof: Similar to the proof of Lemma 41.

one of the subtasks scheduled at 1 (¢;) would have been

eligible att, (£, — 1) and hence, would have been scheduleiemma 54 Lett < ¢; — 1 be a slot with holes or a pseudo-
there. o tight slot in schedules® for 73, and letW € A(t). Then

lag(W,t+1) < 3.

Proof: If W # D™, then by (W)4-wt(W) = 3. Therefore,

Lemma 48 LAG(73,tq—1)is atleast3- | M3 | +k, where byLemma52/ag(W,t+1) < 3. Onthe other hand, i =

k is the number of slots ift; — 1, ¢4 + 1] that are non-tight. D™, thentardiness(W) = 2. Therefore, by Lemma 25

and (14)3-w™ < 3, and by Lemma 53ag(W,t+1) < 3.
a

From the above lemma, we have the following.

Proof: Similar to the proof of Lemma 32. |
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Lemma 55 Lett < t;—1 be a pseudo-tight slot > ¢, the Because is non-tight, it can contain a hole only under
earliest time slot aftet that D? is active, and’, the latest the conditions in either of the two subcases that follow.
time at or before that D was active. Ifshare(D?,t") < gypcase 1(a)it = d(D3) — 1 ort = d(D?), for somei,
w® andLAG(7%,') <3 [M?] —141ag(D*,¥)+2-w®,  andD? is scheduled atin S*. The proof for this subcase is
then LAG(7%,t + 1) < 3. |M?| — 1 — share(D*t') +  gimilar to that of its counterpart in Lemma 46.

2-w’. Else, LAG(7°,t + 1) < 3-|M?], which is less supcase 1(b):r(D?) < t < d(D?) — 1, D? is scheduled
than3 - [ M?] —1+lag(D? t +1) +2 - w®. att¢in S', the number of subtasks 6f that are eligible
and scheduled atis |M?] + 1 — n, wheren > 1, and
there exists a set of subtasks such thatr’| > n and the
following holds.

Proof Sketch: The conditions of the lemma are illustrated
in Fig. 11 (SubstituteD?, for D2, though). The proof of
this lemma follows that of Lemma 44 closely. The differ-
ences are in the constants in the expressiorn fa¢;, and (
the bound on the lag aD3. The proof for the first part
is exactly similar to the proof of the corresponding part in
Lemma 44, and hence it is omitted.

We next show thatL AG(7%,t 4+ 1) < 3-|M?3], re-

VT, € 7' r(Ty) <t A d(T;) >tqg—1 A all subtasks
of T precedingl; are scheduled i8? beforet(60)

Then, the tasks that are eligibletatonsist of the tasks of

, . A subtasks of? that are scheduled &in S and the tasks of
gardless ofD™s share int". By (47), LAG(7%,t + 1) = subtasks in’. Therefore£s, as determined atin line 13
ZTeA(t)uB(lt)UI(t) lag(T, ¢ +1). By Lemmas _40' 39, and of Fig. 5is at least M3 | +1 (or Ps + 1). Therefore, the test
54, LAG(7°,t + 1) < 3 pca( 3. Because is pseudo- in ine 8 fails, and the release time 88 is not postponed.
tight, |A(t)] < |M3], and hence,LAG(7#3,t + 1) < However, the subtasks irf are not in73, by (B2) and (60).

3. |M3]. Finally, we show tha8 - |M?| < 3-|M?] — Thus, the removal of the subtasks ofr’ from the actual
1+ lag(D?,t + 1) + 2 - w3. Because is pseudo-tight, by schedule to yield?, results in one or more holes rin S3.
Lemma 30/ag(D?,t + 1) = 0, and by the assumption for We show that in this case expression (ii) in the statement of
this case that® > 5/6 and Lemma 22w*® > 1/2. There- the lemma holds.

fore, the required result follows. = By (W), the assumption for this case that > 5/6, and
Lemma 24, the weight of every task it is greater than

Lemma 56 t,— 2 is neither pseudo-tight nor does it contain 1/2- LetU; be a subtask in’. Then, becauset(U) >

holes. 1/2, by Lemma 1l; spans at most three slot€. d(U;) —
r(U;) < 3, which by (60) implies that; — 1 < ¢t + 2. If
Proof: Similar to the proof of Lemma 43. O tq—1=1t+1,then (54) establishes the lemma. Therefore,

assuming that; — 1 = t + 2, we first derive an expression

. for the total lag at + 2.
Lemma57 Lett < t4 — 1 be a tight slot and let gat+

LAG(#3,t) < 3 - LMBJ — 1+ lag(D3,t) + 2 - w3. Then, Let V;, be a subtask in’, V; its predecessor, and, a
there exists at/, such thatt < ¢ < t; — 1 and latersubtask. Then, by (60) and (3),

LAG(73,t) < 3- [ M3| — 14 lag(D?,t') + 2 - w?.
(Ft) <3-[M7] = 1+1ag(D" ¢) + 2w d(Vy) <t+1 A d(Vi) > tg—1. (61)

Proof: The proof is exactly similar to that of Lemma 45, L N

and is hence, omitted. 0 Because no subtask of is in 73, V}, ¢ 73. and by (61) and
(B2), no subtasks that are later tHgnare in72. Thus, there
does not exist any subtaskdf whose window overlaps slot

Lemma 58 Lett be a non-tight slot and leEAG(7°,¢) < ¢ + 1, and henceV is inactive in slott + 1. Therefore, the

3-|M?|—1+1lag(D?t)+2-w® Then,(i) LAG(7®,t+ share ofV in ¢ + 1 is zero in the ideal system, and hence,

1) < 3-|M?] —1+lag(D?t+1)+2-w?, or (ii) ei- the total share of the remaining tasks?fin ¢ + 1 is given

ther LAG(7°,tq — 1) < 3- [M?], or LAG(7%,tq — 1) < by

3| M?3] + 1 and one of the slots ift; — 1,¢4 + 1] is non-

tight. Z share(T,t + 1)
~3
Proof: We broadly consider two cases depending on”€7 —{V}
whether there are holes iror not. < Z wt(T) (by (10))
Case 1:t contains one or more holesBy (47) and Lem- Te3 (v}

mas 39, 40, and 54"AG(%311?+ 1) < Z.TeA.(t) 3. Because =Y (1) wi(V)
t contains holes,A(t)| < | M?3 |, which implies that et
€T

LAG(#3,t+1) < 3- | M3], (59) = M3 —wit(V) (by (16))
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< M3 —-2/3. (by (W), w? > 5/6,and Lemma 26p) be generalized to apply to Classwherec > 3.

By (12), the total lag of3 att¢ + 2 is given by C.3.2 CaseBil/2<w™ <5/6

LAG(7%,t42) < LAG(7°,t + 1)+ If 1/2 < w™ < 5/6, in order to ensure that the tardiness
Z share(T,t +1) — Z S(T,t+1). (63) bound of Classn is met if the Weig_ht of the donor task
s added to Class: exceeds/6, a tardiness of at most two

rer needs to be ensured far". However, the assumption that
w® > 1/2 and hence, that the tardinesg/of is at mos—2
will not hold. In the case of Clasy while the tardiness of
D3 is at most one, it cannot be assumed that? is at least
or Lng + 1, depending on whether+ 1 is tight or non-  ©N& and hence, the proof presented above does not hold for

tight. (It is not pseudo-tight by Lemma 56.) - 1 is non- all cases. Hence, in this subsection, we briefly show that I-
tight, then by (59) and (63}, AG(73,t +2) < 3 - LM3J 4+ EPDFensuresa tardinessato tasks inr¢ and a tardiness

M? —2/3— | M?| — 1, which by Lemmas 25 and 12 yields ©f ¢ — 1 to D™ in this case also. S
LAG(#,t+2) < 3- LMSJa and completes the proof for We prove this case for Clags and for simplicity of no-

this subcase. Therefore, in what follows, we assume tHgtion, only for Classl, among higher classes. Definitions 6
following. and 7, (B1), and (B2) of the previous case hold for this case

t 4 1is tight. (64) also. However, because the difference between the tardiness
of Classc and that of its dummy task“ may not be greater
Hence, by (59) and (63), we haveAG(7%,¢ + 2) <  than one, we establish the inequality
3+ [ M3|+M3—2/3— | M?], which by Lemma 25 implies
that LAG(#3,tg—1) <3 | M3| —1+lag(D3 tq — 1) + w?,
. (66)

LAG(7%,t+2) <3-|[M?| +w®—2/3.  (65) which s slightly stronger than (58). However, there are cer-
) i tain cases where we distinguish Class 3 from other higher-
We consider two subcases depending.dn indexed classes, where we establish (58) for Class 3 and (66)
Subcase 1(b)-():ta —1 =t +2 A w® < 2/3. Forthis  for higher-indexed classes (by establishing it for Class 4).
subcaseLAG(73,t 4+ 2) < 3. |[M?], from (65) and the (Recall that it is sufficient to establish (58) for Class 3 be-
assumption thaw® < 2/3. cause the difference in the tardiness bounds’aind D? is
Subcase 1(b)-(ii):tg — 1 =t +2 A w® > 2/3. For this guaranteed to be two regardless of the weight of the donor
subcase, we first observe that by (65) and becadse 1, tasks added to Class 3.)
LAG(#3,t +2) < 3-|M3] + 1. We next show that one  If (66) does not hold, then it should be the case that
of the slots int + 2,¢ + 4] is non-tight. If either oft + 2 LAG(7%,t) > 3- [M?| — 1 + lag(D?,t) + w®, for some
andt + 3 is non-tight, the proof for the subcase is completet < t; — 1. As illustrated earlier, the inequality can cease
Therefore, assume that they are both tight. By Lemma 48 hold only at the end of a pseudo-tight slot or a non-
lag(D?t + 1) > —1. Therefore, by (11), (64), and our tight slot, ¢ with holes. Because < lag(D3,;t +1) < 1
assumtion that + 2 andt + 3 are tight,lag(D?,t + 4) >  for sucht, we will only show thatLAG(73,t + 1) <
—1 + 3 - w3, which by the assumption of this subcase thad - [M?| — 1 + lag(D?,¢) + w?®, as opposed to giving a
w® > 2/3 implies thatlag(D?3,t + 4) > 1. Therefore, by full proof.
Lemma 504 + 4 is non-tight. Becausg; — 1 =t + 2, we For the rest of the proof, the following hold.
havet + 4 = t; + 1, and thust, + 1 is non-tight. (D) 1/2 < w™ < 5/6.

Case 2: There are no holes in. This case can be proved (E) w < 1/2.

in a manner that is exactly similar to the proof for Case 2 of )
Lemma 45. Lemmab59 Lett < t4 — 1 be a psudo-tight slot or a slot

with holes, and leD™ € A(t). Then,LAG(#3,t + 1) <
3 3
By LAG(73,0) = 0 andlag(D?,0) = 0, Lemmas 55— 5" [M7] =1+ w.
58 above can be seen to contradict Lemma 48. Thereforeyoof Sketch: By techniques used earlier, it can be easily

(B1)is false, or the tardiness 6f™ under I-EPDF is at most shown that the total lag af® att + 1 is given by
two.

Te?? (v}

Because +2 = t; — 1, we havet +1 = t; — 2, and
hence, by Lemma 56, there are no holes-nl. Therefore,
the second summation in the last expression aboy2/i$|

~3 73 m
Thus, we have established that I-EPDF ensures a tardi-  LAC(T"t+1) <3+ [M7] =3 +3-w™. 67)
ness of at most three for tasksqrﬁ ar_1d a tardiness of at \yi hext show thaty? > wm—1/3.
most two for the donor tasks with weights at leass, and
added to Clas8. As mentioned earlier, the same proof can Claim 1 w3 > w™ —1/3.
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By Lemma 20, the sum of the weights of the donor
tasks added to Classand higher is equal td —
fé+we. BecauseD™ is added to Clas3, we have
w™ < 1 — f3 4+ w3, which implies thatw? >
w™ — 1+ f3. By (L3), f3 > 2/3, and hence,
w3 > w™ —1/3. a

Therefore, if the lemma is false, then (67) would imply

that3- [M3] —3+3-w™ >3- | M?3] — 1 +w?, which by
Claim 1 would imply that-3 + 3 - w™ > —1 + w™ — 1/3,
or that2 - w™ > 2 — 1/3, which implies thato™ > 5/6,
which is a contradiction to (D). |

by (10) and (47) gives

LAG(73,t+1) < LAG(#3,t) + wt(T) — | M3].

>

T3 1(t)
(68)
By the statement of the lemmé;3| > |M3] + 1, which
by (15) and becaus®™ e X3, gives|#3| > |M3] + 2.
Becausd A(t)| = |M?], and by the assumption for this
case,|B(t)| = 0, by (47),|I(t)] > 2, and hence, by (W)
and (D), > ey wt(T') > 1, which when substituted in

(68) givesLAG(73,t+1) < LAG(73,t)+ M3 —1— | M?3],

which equalsL AG(73,t) + w3 — 1, by Lemma 25. It can

be shown thatag(D3,t+1) > lag(D3,t) — 1 +w? (as has
been done earlier), irrespective of the nature ahd hence,

Lemma 60 Lett < t; — 1 be a pseudo-tight slot or a slot thatLAG(7%,¢t+1) < 3 [M?®] — 1 +lag(D?,t +1) +w?®.

with holes, and le3(t) # 0. Then,LAG(7%,t + 1) <
3| M3 —1+lag(D3,t + 1) + w3,

Proof: By (47), LAG(#,t + 1) =
>reamunmurw lag(T,t + 1), which by Lemmas 39
and 40 givesLAG(7°,t + 1) < Y rc ¢ lag(T,t + 1).

BecauseB(t) is not empty, by Lemma 42, there exists

a taskW in A(¢) such thatlag(W,t + 1) < wt(W).
By Lemma ??, the lag of the remaining tasks is at
most three. Because is either pseudo-tight or con-
tains holes, |[A(t)] < [M?®]. Therefore, by (W),
LAG(#3,t+1) <3 |M3?] —3+3/4=3-|M3| —9/4,
which is less tha - | M3 | — 1 + lag(D?, ) + w?.

o

Lemma 61 Lett < t; — 1 be a pseudo-tight slot or a slot
with holes, and letD™ ¢ A(t). Let the total number of
tasks int? (tasks in Clas$ excluding the donor taskde
greater than| A73], and letLAG(73,t) < 3- [ M3] — 1 +
lag(D3,t) + w®. Then,LAG(73,t +1) < 3- | M?| — 1+
lag(D3,t + 1) + w®.

Proof: If B(t) # (), the required result follows from
Lemma 60. Therefore, assuni&t) = () for the rest of
the proof. We consider the following two cases.

Case 1:|A(t)| < | M?]. Inthis case, by (A7) AG(73,t +
1) = Yreamuswuie lag(T,t + 1), which by Lem-
mas 39 and 40 giveBAG (7%, t+1) < 3¢ 4y lag(T, t+
1). By Lemma 53]ag(T,t + 1) < 3, for T' € A(t), which
by the assumption for this case yields\G(73,t + 1) <
3. |M?3] — 3, whichis lessthas - [ M3 —1—lag(D?,t +
1) + w? (becauséag(D?,t + 1) > —1).

Case 2: |A(t)| = |M?]. By (12), LAG(#3,t + 1)
LAG(7%,t) + 32, ss(share(T,t) — S(T.t)). Because
the share of tasks ifi(¢) is zero, and the number of sub-
tasks scheduled atis [M?], by (47), LAG(7%,t + 1) =
LAG(73,t) + > reawun) share(T,t) — | M3], which
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Unless otherwise stated, we assume the following for the
lemmas that follow.

(©) |7°| = |M*), ¢ > 3.

Lemma 62 Lett < tq — 1 be a tight slot with holes. Then
LAG(#,t+1) <3 [M?] - 3.

Proof: Follows from the fact thatl(t) < |M?3| — 1, tardi-
ness of every task in® is at most three, (W), and Lemma 53.
a

Lemma 63 Lett be a pseudo-tight slot or a non-tight slot
with holes. Ift is non-tight, then leti(D?) < ¢, where D3

is the subtask ab? scheduled at in S*. Thenlag(D?3,t +

1) > 0.

Proof: Straightforward. |

The two lemmas that follow can be used to infer about
the tardiness of the subtask Bf” that was scheduled at the
latest time before, if D™ is inactive att.

Lemma 64 Let D" be a subtask oD™ whose release is
postponed. Then, the tardiness of the predecessbY'bfs
zero.

Proof: Assume not. LetD;* be the predecessor @d".
Let ¢ be the slot in whichD;" is scheduled. Then, by our
assumptiond(Dj;*) < t¢'. If there are no IS separations,
then by (2),7(Dj,,) < t', and because™ > 1/2, using
Lemma 2, it can be easily shown that

d(Dy

w) <t 42,

(69)

((69) holds because it can be shown that the length of the
window of D}, |, [w(Dj", )|, istwo if b(D}") = 0 and is at
most three ifb(D}") = 1.) BecauseD}" is scheduled itt’,

the release time ab;"_; cannot be postponed#t Because



(69) holds, the rules of I-EPDF prohibit its postponemenbetweenD;* andD}". By the statement of the lemma, sub-
att + 1 or later. (Refer line 9 in Fig. 5.) Therefore, thetask D! is scheduled atwith a tardiness of. Therefore,

assumption that the tardiness Bf is greater than zero is
false. 0

Lemma 65 Lett be a slot with holes or a pseudo-tight slot,

and letD™ € I(t). Let D! be the last subtask ab™
scheduled before Thentardiness(DI*) = 0.

Proof: Becauset is a pseudo-tight slot, the release tim
of the next schedulable subtask is postponed. atBy
Lemma 64, the tardiness of its predecesB@t is at most
zero. a

Lemma 66 Lett be a tight slot in schedulg® for 7¢, where
c=3o0rc=4,andletD™ € A(t). Let the tardiness of the
subtask ofD™ scheduled at be k. If ¢ + 1 is non-tight or
D™ & At + 1), thenLAG(7°,t +2) < ¢- |[M¢] — ¢+

(k+2) 5.

Proof: By (C), 7¢ = U\Zf ¢|. Therefore, becauseis tight
and D™ is scheduled at, there is at least one tagkin 7¢
that is not scheduled &t This implies that the deadline of
the next eligible subtask; of 7" is not less than the deadline
of any other subtask that is scheduled,atpecifically, that
of subtaskD?" of D™ scheduled at. The conditions speci-
fied in the lemma imply that, if eligibleél; can be scheduled
att-+1. By the previous argument, the tardines§'adt¢ +2

will at most bek + 2. The tardiness of all other tasks is at

mostc resulting in the bound stated in the lemma.

Lemma 67 Lett be a pseudo-tight slot in schedu$¢ for L AG(73,t + 1) = lag(D™,t + 1) +

7¢,wherec = 30orc = 4. and letD™ € A(t). If t+1Ais non-
tightor D™ & A(t+1), thenLAG(7¢,t+2) < ¢-|M€] —c.

d(D")=t+1—k. (70)

We consider two cases based on the length of the window of
D,

Case 1:|w(D")| = 2. By (70), we have (D") = t—k—1.
Because there are no IS separations betwegnand D",

QY (2), we havel(Dy') =t —k —1ord(Dy') =t — k.

Because — 1 is the latest time thaD}" is scheduled, if the
former holds, thetardiness(D}*) < t—(t—k—1) = k+1,
and if the latter holds, theturdiness(Dy*) < t—(t—k) =

k.

Case 2: lw(D!™)| = 3. In this case, we have(D") =
d(D™)—3 = t—k—2, and by parts (d) and (b) of Lemma 2,
thatd(D;") = t — k — 1. Therefore, becausB}’ can be
scheduled no later than— 1, we havetardiness(Dj') <
k+1. ad

Lemma 69 Lett < t4; — 1 be a pseudo-tight slot or a non-
tight slot with holes, and leD™ ¢ I(t). Lett’ < ¢ be the
latest slot in whichD™ is scheduled beforg and lett’ be
tight or pseudo-tight. Them, AG(73,t + 1) < 3- | M3] —

1 +lag(D3 t +1) + wd.

Proof: Let 7' denote the set of all tasks that arerihand
scheduled at’. Then,

T ={T|T € BATE At} (72)

Then, by (47),

Z lag(T,t+1)
3 /

TeT T

+ Z lag(T,t+1).

TeT!

(72)

Proof: The reasoning is similar to that of Lemma 66. Be-

causet is pseudo-tight|7¢| = |M¢|, and D™ is sched-
uled att, there is at least one task that is ineligible at
t. It is easy to see thalug(T,t + 1) < 0. Because
D™ is not scheduled at + 1 or ¢t + 1 is non-tight, T’
can be scheduled at+ 1, if eligible. Therefore, by (11)
lag(T,t +2) = lag(T,t +1) — 1 + wt(T) < 0. The tar-
diness of the remaining tasksiti is at mostc at¢ + 2, and
therefore, their lags are at mostwhich gives the bound
stated in the lemma. a

Lemma 68 Let D" be a subtask aD™ scheduled at some
timet. Lettardiness(D]") = k and letD}" be the prede-
cessor ofD!". Thentardiness(D}*) < k + 1.

Proof: If tardiness(Dj") 0, then the proof is com-
plete. Therefore, assume that-diness(D}*) > 0, which

We consider two cases depending on whethés tight or
pseudo-tight.

Case 1: t' is pseudo-tight. Becauset’ is pseudo-tight,
|A(t")| < |M?3]. Therefore, becausB™ is scheduled at
t', by (C),

17| < | M3] - 1. (73)

BecauseD™ is not scheduled after, by (C), if eligible,
every task inr3, can be scheduled at each slot. Because
every task in®—7' is either inI (¢'), or its critical subtask at

t' has a tardiness of zero, tardiness is zero for every subtask
of atask int® — 7/ that is scheduled aftef. BecauseD™

is inactive att, lag(D™,t + 1) = 0, which by (72), (W),

and Lemmas 39, 40, 52, and 53 yiellslG(73,t + 1) <

3. |M3|—9/4, whichis less thaf - | M3 |—1+lag(D?, t+

1) + wd.

by Lemma 64 implies that there are no IS or GIS separatior3ase 2: ¢ is tight. Let D™ be the subtask oD™ that is
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scheduled at'. Then, by Lemma 65ardiness(DI") = 0, only scheduled in a non-tight slot afterby (C), every task
which implies that(D") > ¢'+1. By the conditions of the in 73 is scheduled in every slot if eligible. We consider two
lemma and this subcaske,= |/| < |[M?3| — 1. Let'W be cases depending on whether all tasks‘irare scheduled in
atask int® — 7/, and letW; be the next eligible subtask of every slot in[t 4 1, . If some task in~® is not scheduled in
W. BecauseD!" is scheduled at’, and has its deadline at a slot, then its tardiness is zerozaand hencd. AG(72, ¢t +

or aftert’ + 1, we haved(W;) >t + 1. BecauseD™ isnot 1) < 3- | M?3| — 2. On the other hand, if every task is
scheduled aftet’, by (C), every task of3, if eligible, can  scheduled in every slot thdhAG(73,t+1) = LAG(73, i+

be scheduled at every slot followirtty Therefore, tardiness 2) + Ei—tﬁrz > peps(share(T,u) — S(T',u)). Because
is at most one for every subtask of a task-ih— 7’ that is every task inr3 is scheduled in every, ZTETS S(T,u) =

scheduled aftet’. BecauseD™ is inactive at, lag(D™, t+ g 3
1) = 0, which by (72), (W) and Lemmas 39, 40, 52, and-"/ |- BY (10) and (13))_,. s share(T, u) < M, for
53 yields LAG(73,t + 1) < 3- LM“;J — 3/2, which by everyu. Therefore, the summation in the expression for

i e : j isM?® — [ M3]. FromM? = M3 4 w™
Lemma 63 is less thah: | M3| —1+lag(D3,t+1 s, LAG just above isM ) LM_ J . -
LM?] =1+ lag( 4w andM?® — | M?] = w?, it easily follows thatV/® — | M?3| =
O w3 — w™. Because > f+ 2, we havet —# — 1 > 2, and
In the three lemmas that follow, we assume thati§ N€NCeLAG(r® t+1) < LAG(T?’»t;L?) +2- (w’ - “ZTZ)'
non-tight, thend(D¢) < ¢ + 1, whereD¢ is the subtask of It can gagsﬂy be shc:xvn thgiAG(T ,tjr32) <3-|M 4
De scheduled at in $5%Pc, wherec = 3 or ¢ = 4, as the 'chSn 'LtMmJ lie Zt'hg: 5. wnz = 33' LM 3 1;’ 2 '3“’0’
case may be. The proof for wheD¢) > t + 1 is the same itimplies that-2 - (w™ = w?) > —1 +2-w?, or
: 2 (w™ —w?) < 1—2-w?, which implies thatv™ < 1/2
as the proof for Subcase 1(b) of Lemma 58. - - ' '
which is a contradiction to (D). m|
Lemma 70 Lett < ¢, — 1 be a pseudo-tight slot or anon-  Finally, we prove the above lemma for Class(A sepa-
tight slot with holes, and leD™ € I(t). Let the slotin rate proof for Clasd is necessary because we need to show
which the last subtask dd™ is scheduled beforebe non- that LAG(74,t4+1) < 4. LM4J —1+w?.) Based on earlier

tight. Then LAG(#3,t + 1) < 3+ | M3] — 1+ 2 w?. discussion, we have the following assumptions.

Proof: We prove this lemma by considering the earliest siotP) 1/2 < w™ < 5/6. (E) w4_ <1/2. .

¢ beforet where the following hold. (i) Subtask?* of We begin by proving a slightly stronger tardiness bound
D™ is scheduled at’ and tardiness(D) = 0. (i) ¢ OF 74, when the number of tasks it is oneji.e, [M*] =

is non-tight. (iii) Every slot where a subtadk" of D™ 1. In other words, we show that when/*] = 1, I-EPDF

that is released later thad’™ is scheduled is non-tight, and €NSUres a tardiness of at most three for By arguments
tardiness(D™) = 0. Thatt exists can be verified from the similar to what have been used several times until now, to
statement ofjthe lemma. show that I-EPDF ensures a tardiness of at most thréé to
Let D} be the predecessor 617". (D} exists. Other- (i.e., to the lone task in* and D™), it suffices to show that
v it v ) A4 7 r4 4 7\ i A4 7
wise, every task in3 is schedulable (if eligible) in every LAG(T,1) < 3 [M*] +lag(D" 1), i.e, LAG(7",1) <
3 + lag(D*,%), for all . For brevity, we only show that

slot in[0, t] and will have a tardiness of zerotat 1.) Then, ) ) L ,
by (i)—(iii), D}" is either scheduled in a slot that is not non-this lag bound is maintained across pseudo-tight slots and

tight or tardiness(DJ") > 0 or both hold. By Lemmas 64 "On-tight slots with holes.
and 68 tardiness(D}’) < 1. Let D}* be scheduled &f,.
Then,t; < t' — 1. We consider the following cases base
on the nature of;.

Case 1:t, is tight or pseudo-tight. In this case, by Lem-

mas 66 and 67LAG(73,t, +1) < 3- LMBJ —3/4 (sub- Proof: Let T be the only task inr*. Then, by (D) and
stitutinge = 3 andk = 1). BecauseD™ is only sched- Lemma 24, there are only two tasksf, 7" and D™, and

uled in a non-tight slot aftet;, by (C), every task in3, if by Lemma 25 and (16), the following holds.
eligible, can be scheduled at every instant afterThere-

(#emma 71 Lett < tq — 1 be a pseudo-tight slot or a non-
ight slot with holes. If M*| = 1 and LAG(74,t) < 3-
| M*| +lag(D*,t), thenLAG(74,t + 1) < 3- [ M*].

fore, LAG(73,t+1) and henceL AG(#3,t+1) is lessthan 1+ wh = wi(T) +w™

3. [M3|—3/4,whichislessthas - [M3] —14+2-w® < =w™ = 1+w'—wt(T)

3. M3] —2/3. (By Lemma 142° > 1/6.) S w™ < 1+1/2-3/4 (from (E) and (W))
Case 2:t; is non-tight. =uwm < 3/4. (74)

We now consider the latest tiniebeforet;, that D™ is
scheduled in a tight slot with a tardiness of two. (AgainBecauset is a pseudo-tight slot or a non-tight slot with
such & exists. Otherwise, every taskifi is schedulable in holes, at most one task is scheduled.iWe consider two
every slot in[0,t].) Thereforef < t' — 2. BecauseD™ is  cases depending on wheth@f® is scheduled in.
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Case 1: D™ is scheduled int. For this case, by Lemma 53 Proof:

and (74)]ag(D™,t+1) < 4-w™ = 3, and by Lemmas 39
and 40Jag(T,t + 1) < 0. Therefore LAG(74,t + 1) < 3,
which proves the lemma.

As with Lemma 70, we prove this lemma by consid-
ering the earliest slot’ beforet in which the following
hold. (P1) SubtaskD!™ of D™ is scheduled at’ and

Case 2: D™ is not scheduled int. For this case, we con- tardiness(Dj*) = 0. (P2)t’ is non-tight. (P3) Every slot
sider two subcases depending on the nature of the slotWhere a subtasl’ of D™ that is released later than;"

which the last subtask dP™ is scheduled before

Subcase 2(a): D™ was last scheduled in a tight or
pseudo-tight slot beforet. As it was shown in Lemma 69,
it can be shown that the tardiness of the subtask sthed-
uled att is at most one, and hence, thatlG (74t + 1) <
8/5.

Subcase 2(b):D™ was last scheduled in a non-tight slot
before t. For this case, we consider the earliest stot
beforet in which the following hold. (i) SubtaskD;* of
D™ is scheduled at’ and tardiness(D[*) = 0. (i) ¢/
is non-tight. (iii) Every slot where a subtask}" of D™
that is released later than}” is scheduled is non-tight and
tardiness(Dj}") = 0. From the statement of the lemmaitis
easy to see that such’aexists.

Let D;* be the predecessor @¥;*. Then, by (i)—(iii),
D; is either scheduled in a slot that is not non-tight or
tardiness(Dj") > 0 or both hold. By Lemmas 64 and 68,
tardiness(Dj') < 1. Let D;* be scheduled at. Then,

t; < t' — 1. We consider the following subcases based on
the nature ot;.

Subcase 2(b)-iit; is tight or pseudo-tight. In this case, by
Lemma 53Jag(T,t; + 1) < 3-(4/5) = 12/5. By (i)—(iii)
and|[M*] = 1, T can be scheduled in every slot after
Therefore, it can be shown thatg(T,¢ + 1), and hence,
LAG(#%,t+1) < 3.

Subcase 2(b)-ii: t; is non-tight. For this case, we con-

is scheduled is non-tight antdrdiness(Dj}") = 0. By our
assumptions, we have

#<t—1. (75)

We first establish the following claim.

Claim 2 Let D¢ be the subtask ab* scheduled
att’'in 73. Thend(D}) < t' + 1.

Proof: Assume to the contrary that(D}) >
t'+1. Then, itis easy to see thatg (D}, ¢ +1) <

0. Therefore, by (75) and the statement of the
lemma, LAG(74, ' + 1) < 4- |M*] — 1 4 w™.

By (C), (P2) and (P3), every task irt, if eli-
gible, can be scheduled &t and in every slot
following ¢’ until ¢, i.e, in every slot in the in-
terval [/, t]. If some task inr* is not scheduled
in some slot in[t’, ¢], then it should be the case
that the task is either inactive or is ineligible at
that slot, using which it can be concluded that its
tardiness at + 1 is zero. Hence, it would eas-
ily follow that LAG(74,t +1) < 4 - | M*] — 3.
On the other hand, if every task irt is sched-
uled in every slot in[t’,¢], then the lag of each
task att + 1 is less than its lag at’ + 1, i.e,

LAG(#*,t4+1) < 4- | M*]| —1+w'. m

sider the predecessdr;" of D;'. By Lemmas 64 and 68,

tardiness(Dy') < 2. If tardiness(Dy') < 1, then the

lemma can be shown to hold using the arguments used for Let D} be the predecessor @f;". Then, by (P1)—(P3),

Case 1. Therefore, for the rest of this case, asume that" is either scheduled in a slot that is not non-tight or

tardiness(Dy') = 2. BecauseD;' is scheduled at;, tardiness(Dj") > 0 or both hold. By Lemmas 64 and 68,

Dy cannot be scheduled later than— 1, i.e, ¢’ — 2. tardiness(Dy') < 1. Let D;* be scheduled at;. Then,

Therefore, the tardiness of the subtaskiotcheduled at ¢, < ¢/ — 1. We consider the following cases based on the

t; can be as high as three, and hence, by Lemma 53 andture oft;.

(W), lag(T't1 + 1) < 4-(4/5). Again, by ()(iii) and  case 1:, is tight or pseudo-tight. In this case, by Lem-

%‘fﬂ - 1le can behscheduled Iat every S||°t Ia_lterhthgn mas 66 and 67, and becausediness(Dj!) < 1, we have
erefore, because there are at least two slots in the inter 4 ord ;

ity 1.1], lag(T.t + 1) < lag(T-ts) — 2(1 — wi(T)) < VBUAG(74, 1, + 1) < 4 - | M*] — 8/5. By (C), every task in

4 can be scheduled in every slot following. Therefore,
16/5 — 2 - (1/5) = 14/5 < 3. i y g

it can be shown thab AG(74,t + 1) < 4 - [ M*]| — 8/5.

We next prove the counterpart of Lemma 70 for Class Case 2: t; is non-tight. For this case, we consider
when|M*] > 1. the predecessoD;" of Dj'. By Lemmas 64 and 68,

tardiness(Dy') < 2. If tardiness(Dy') < 1, then the

Lemma 72 Lett < t; — 1 be a pseudo-tight slot or a slot lemma can be shown to hold using the arguments used for
with holes, and letD™ ¢ I(t). Let|M*| > 1 and the Case 1. Therefore, for the rest of this case, assume that
slot in which the last subtask ™ is scheduled beforebe  tardiness(Dy') = 2. BecauseD;" is scheduled at;, Dy
non-tight. FLAG(7%,t) < 4-|M*| —1+lag(D*,t)+w*, cannotbe scheduled later than-1,i.e. t'—2. We consider
thenLAG(74,t +1) < 4- [M*] — 1 +w™. two subcases based on the naturg pfhe slot in whichD*
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is scheduled. By the discussion above, we have
ty <t —2. (76)

Subcase 2(a)i, is tight or pseudo-tight. By Lemmas 64
and 68,LAG(t%,ty + 2) < 4 - |[M*] — 4/5 (because it

claim. On the other hand, if(D}) < ¢ — 6,
then by (3) and (4)d(D;) < t' — 5, whereD;
is the predecessor db;. BecauseD* ¢ 73,
tardiness(D*) < 3, which implies that the lat-
est time tha'rD;1 may be scheduled i$ — 3. This
would imply thatD?* is not scheduled in at least

can be shown that the tardiness of the subtask offasét
scheduled at, is at most three). Again, by (C), every task
in 74 can be scheduled at every slot that follawsBYy (75)
and (76), we have at least two slots in the interival +
2,t]. Therefore, LAG(74,t + 1) < LAG(t*,ty + 2) —
2(|M*| — M*). Because M*| — M* can be shown to
be equal tow™ — w?, it follows that LAG(74,t + 1) <
LAG(t%,ty + 2) — 2(w™ — w*). If LAG(r*,t + 1) is

reater than or equal tb- | M*| — 1 + w?, then it implies !
?hat—4/5—2(wm(1w4) >L_14J_w4 omzum < 1/5+w5/2 tardiness(U,t+1) < 3 for atleast one taskl in 74 —T. If

which by (E) implies thatw™ < 9/20, which contradicts tardiness(U,¢5 +1) = 3, then becaustl can be scheduled
(D). in every slo(';_m[tg,t], if eI1|g|_bIe, |ts;§rd|ne;s azt+1 1|<s at
Subcase 2(b)t, is non-tight. For this subcase, we considergg St:]gso:ﬁ;rlﬂzf\fj,ah%a:diﬁ ;'Si"(éa; Ti‘;‘i zi,tt:]ren)vxre ir
the latest time; beforet,, that D™ is scheduled in a tight gue as follows. Becausg — #/ _’3 < ¢ — 4. the number of
slot with a tardiness of three. Becauses t' — 2, we have  gio15 spanning the intervith, ¢ + 1] is at least five. Because
wt(U) < 4/5, it can be easily shown that at most four sub-
tasks ofU have their deadlines in consecutive slots. This in
We consider two more subcases basedson turn implies that if the subtadk; of U scheduled at; has a
Subcase 2(b)-i:t; < ¢’ — 3. By (B2), the tardiness of tardiness of four, antl is scheduled in every slot following
every subtask that is scheduledtatt 1 is at most four. t3 upt'ot, then at most three subtasks that follbijwcan have
Becauses < ¢ — 3 andt’ < t, there are at least five slots atardiness of four. In other Wordsgrdiness(U,t+1)_§ 3

in the intervallts + 1,¢ + 1]. Because every task it can  1herefore LAG(7%,t+1) < 4-[M*| —1+1/5, whichis

be scheduled in every slot that follows, and by (W), the €SS thant- (M —1+1/3.
weight of every task in* is at most4/5, it can be shown

that the tardiness of the subtask of every task scheduled at

t is at most three. By Lemma 53, this would imply that

LAG(t%,t +1) < 16 - |[M*|/5. If LAG(r*,t + 1) >

4. |M*| —1+w*, then it would imply that 6 - | M*]/5 >

4. |M*] —1+wh ie, w! <1—4-|M*|/5 Because

|M*| > 1, this would imply thatw® < —3/5, which is

false.

Subcase 2(b)-ii:t3 = t' — 3. If t3 = t' — 3, then it would

imply thatty = ¢/ — 2 andt; = ¢/ — 1. Therefore, by the

conditions of this subcase, we havet’ — 1, andt’ — 2 to

be non-tight. We first establish the following claim.

onslotinft’ —2,¢],i.e, at least one oft’ — 2, ¢’

is not non-tight, which contradicts the conditions
for this subcase. Therefore, the assumption that
w* < 1/3is false. ]

By (C), there is at most one task in 7* that is not
scheduled int;. Every task int* — T, if eligible, can
be scheduled in every slot ift;,¢]. We next show that

ty <t —3. (77)

a

Claim 3 w* >1/3.

Proof: Assume to the contrary that* < 1/3.
Let D} be the subtask oD* that is scheduled
att’. Then, by Claim 24(D}) < ¢ + 1. We
prove the claim ford(D}) = ¢’ + 1. The proof
for d(D}) < ' + 1is similar. Ifr(D}) > ¢ — 2,
thenw(DZ) < 3, which by Lemma 3 contradicts
the assumption that* < 1/3. Therefore, as-
sumer(D}) < ¢’ — 3. Let D} be the predecessor
of D}. Then, by (3) and (4)d(D}) < ' — 2.

If r(D}) > ' — 5, thenw(D}) < 3, which
would contradict our assumption and satisfy the
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