
Fair Integrated Scheduling of Soft Real-time Tardiness Classes on
Multiprocessors ∗

UmaMaheswari C. Devi and James H. Anderson
Department of Computer Science, The University of North Carolina, Chapel Hill, NC

Abstract

Prior work on Pfair scheduling has resulted in three optimal multiprocessor scheduling algorithms, and one algorithm,
EPDF, that is less expensive but not optimal. EPDF is still of interest in soft real-time systems, however, due to its ability to
guarantee bounded tardiness. In particular, it has been shown that a tardiness bound oft quanta is possible under EPDF if all
task weights (i.e., shares or utilizations) are restricted to a value specified as a function oft. In an actual system, however,
different tasks may be subject to different tardiness bounds. If such a system is scheduled under EPDF, then the tardiness
of a task with a higher bound may cause the tardiness bound of a task with a lower bound to be violated; that is,temporal
isolationamong the various tardiness classes may not be guaranteed. In this paper, we propose an algortihm based on EPDF
for scheduling task classes with different tardiness bounds on a multiprocessor. Our algorithm provides temporal isolation
among classes, allows the available processing capacity to be fully utilized, and does not require that previously established
per-task weight restrictions be made more stringent.

∗Work supported by NSF grants CCR 9988327, ITR 0082866, CCR 0204312, and CCR 0309825.

1 Introduction
Pfair scheduling, originally introduced by Baruahet al.

[4], is the only known way of optimally scheduling recurrent
real-time tasks on multiprocessors. Under Pfair schedul-
ing, each task must execute at an approximately uniform
rate, while respecting a fixed-size allocation quantum. A
task’s execution rate is defined by itsweight (or utiliza-
tion). Uniform rates are ensured by subdividing each task
T into quantum-lengthsubtasksthat are subject to interme-
diate deadlines. To avoid deadline misses, ties among sub-
tasks with the same deadline must be broken carefully. In
fact, tie-breaking rules are crucial when devising optimal
Pfair scheduling algorithms.

As discussed by Srinivasan and Anderson [9], overheads
associated with tie-breaking rules may be unnecessary or
unacceptable for many soft real-time systems. A soft real-
time task differs from a hard real-time task in that its dead-
lines may sometimes be missed. If a job (i.e., task instance)
or a subtask with a deadline at timed completes executing
at timet, then it is said to have atardinessof max(0, t− d).
As discussed in [6], the results produced by a soft real-time
job are of decreasing usefulness after its deadline. Thus, an
implicit bound exists on the tardiness that such a job can
tolerate.

Systems with quality-of-service requirements, such as
multimedia applications, are examples where bounded
deadline misses may be tolerable. Here, fair resource allo-
cation is necessary to provide service guarantees, but occa-
sional deadline misses often result in tolerable performance
degradation. Hence, an extreme notion of fairness that pre-
cludes all deadline misses is usually not required.

In dynamic systems that permit tasks to join or leave, the
overhead introduced by tie-breaking rules may be unaccept-
able. In such a system, spare processing capacity may be-
come available. To make use of this capacity, task weights
must be changed on-the-fly. It is possible to reweight each
task so that its next subtask deadline is preserved [9]. If no
tie-breaking information is maintained, such an approach
entails very little overhead. However, weight changes can
cause tie-breaking information to change, so if tie-breaking
rules are used, reweighting may necessitate aΩ(N log N)
cost forN tasks, due to the need to re-sort the scheduler’s
priority queue. This cost may be prohibitive if load changes
are frequent.

The observations above motivated Srinivasan and Ander-
son to consider the viability of scheduling soft real-time ap-
plications using the simplerearliest-pseudo-deadline-first
(EPDF) Pfair algorithm, which uses no tie-breaking rules.
They succeeded in showing that EPDF can guarantee a tardi-
ness ofk quanta for every subtask of a feasible task system,
in which each task’s weight is at mostkk+1 [9]. In recent
work [5], we showed that this condition can be improved
to k+1

k+2 . With either condition, the greater the tardiness al-
lowed, the less stringent the weight restriction.

t

.

Tardiness is 2 for a subtask of
Class 1.

their deadlines prior to t

time

All subtasks scheduled at t have

X
2 quanta

X
k quanta

X
2 quanta

Subtask Window

X

X

Class 1

Class 2

Class k

I

Figure 1. Under Pfair scheduling, each of a task’s sub-
tasks has an associatedwindowin which it shouldbe sched-
uled; the end of a subtask’s window is its deadline. In this
figure, a schedule for different classes of soft-real-time tasks
on M processors under EPDF is depicted. Tasks in Classi

are allowed to miss their deadlines by up toi quanta. For
clarity, only a few subask windows have been shown; for
each subtask shown, an ‘X’ denotes where it is scheduled.
At time t, more thanM subtasks of Classes 2 and higher
with deadlines prior tot have not yet been scheduled. As
a result, a subtask of Class 1 with a deadline att cannot be
scheduled att, and hence, misses its deadline by two quanta,
i.e. its miss threshold is exceeded.

Contributions. In the work summarized above,all tasks
are assumed to have equal tolerance to tardiness. However,
as discussed in [6], the usefulness of results produced by
different soft real-time applications may decrease with tar-
diness at different rates; thus, different applications can be
expected to have different tardiness bounds. To support mul-
tiple bounds, different tardiness classes must betemporally
isolated from one another so that deadline misses in one
class do not cause tardiness bounds to be exceeded in other
classes. Preserving temporal isolation is especially impor-
tant when multiplexing separately developed applications
onto a multiprocessor. (Temporal isolation is a key virtue
of fair scheduling.)

The tardiness bound that can be guaranteed to a task
system under EPDF depends on the largest task weight.
Hence, if tasks with varying tardiness bounds and weights
are present in a system and are scheduled using EPDF, then
it may not be possible to guarantee every task its bound. As
illustrated in Fig. 1, breaking deadline ties in favor of tasks
with more stringent tardiness bounds also may not be help-
ful. An obvious next solution would be to partition the tasks
into classes by their tardiness bounds and schedule each
class independently on disjoint sets of processors. Unfor-
tunately, if the total utilization of a class is not integral, then
this approach will lead to wasted processing capacity. For
example, consider a task system comprised of two tardiness
classes with utilizationsM1+δ andM2+1−δ, respectively,

1

where0 < δ < 1, M1 + M2 + 1 = M , andM is integral.
Under partitioning,M1 + M2 + 2 = M + 1 processors will
be required to schedule the two classes. Thus, processing
capacity equivalent to a full processor would be wasted. In
general, withq tardiness classes,q−1 additional processors
may be required.

In this paper, we propose a new algorithm, based on
EPDF, for supporting classes with different tardiness re-
quirements. Our algorithm provides temporal isolation
among classes, allows all available processing capacity to
be fully utilized, and does not require that previously estab-
lished per-task weight restrictions be made more stringent.
Our algorithm is described in Sec. 3 after first giving needed
definitions in Sec. 2. An experimental evaluation of it is pre-
sented in Sec. 4.

2 Pfair Scheduling

In this section, we summarize the concepts of Pfair
scheduling and some prior results from [4, 2, 3, 1, 8]. To be-
gin with, we limit attention to periodic tasks, each of which
begins execution at time 0. A periodic taskT with an integer
period T.p and an integerexecution costT.e has aweight
wt(T) = T.e/T.p, where0 < wt(T) < 1. A task islight if
its weight is less than1/2, andheavyotherwise.

Pfair algorithms allocate processor time in discrete
quanta; the time interval[t, t + 1), wheret ∈ N (the set of
nonnegative integers) is calledslot t. (Hence, timet refers
to the beginning of slott.) A task may be allocated time
on different processors, but not in the same slot (i.e., inter-
processor migration is allowed but parallelism is not). The
sequence of allocation decisions over time defines asched-
uleS. Formally,S : τ ×N 7→ {0, 1}, whereτ is a task set.
S(T, t) = 1 iff T is scheduled in slott. OnM processors,∑

T∈τ S(T, t) ≤ M holds for allt.

Lags and subtasks. The notion of a Pfair schedule is de-
fined by comparing such a schedule to an ideal fluid sched-
ule, which allocateswt(T) processor time to taskT in each
slot. Deviation from the fluid schedule is formally captured
by the concept oflag. Formally, thelag of task T at time
t is lag(T, t) = wt(T) · t −

∑t−1
u=0 S(T, u). A schedule is

defined to bePfair iff

(∀T, t :: −1 < lag(T, t) < 1). (1)

Informally, the allocation error associated with each task
must always be less than one quantum. (For conciseness,
we leave the schedule implicit and uselag(T, t) instead of
lag(T, t, S).)

The lag bounds above have the effect of breaking each
taskT into an infinite sequence of quantum-lengthsubtasks,
T1, T2, Each subtask has apseudo-releaser(Ti) and a

pseudo-deadlined(Ti), where

r(Ti) =
⌊

i− 1
wt(T)

⌋
∧ d(Ti) =

⌈
i

wt(T)

⌉
. (2)

(For brevity, we often omit the prefix “pseudo-.”) To sat-
isfy (1), Ti must be scheduled in the intervalw(Ti) =
[r(Ti), d(Ti)), termed itswindow. For example, in Fig. 2(a),
r(T1) = 0 andd(T1) = 2. Therefore,T1 must be scheduled
at either time0 or time1.

Soft real-time scheduling. The notion of tardiness dis-
cussed in Sec. 1 for soft real-time jobs can be extended in
a straightforward manner to subtasks of soft real-time tasks.
Thetardiness of a subtaskTi is defined astardiness(Ti) =
max(0, t − d(Ti)), wheret is the time thatTi completes
execution. Thetardiness of a task systemis then defined
as the maximum tardiness among all of its subtasks in any
schedule [9].

The earliest-pseudo-deadline-first (EPDF) algorithm [9]
is the algorithm that we consider for scheduling soft tasks,
for the reasons discussed in the introduction. EPDF prior-
itizes subtasks by their deadlines, and resolves any ties ar-
bitrarily. Although EPDF is not optimal on more than two
processors [1], as discussed earlier, it can ensure a tardiness
of at mostk ≥ 1 quanta for each subtask, provided certain
per-task weight restrictions hold.

Task models. In this paper, we consider theintra-sporadic
(IS) and thegeneralized-intra-sporadic(GIS) task models
[3, 8], which provide a general notion of recurrent execu-
tion that subsumes that found in the well-studied periodic
and sporadic task models. Thesporadicmodel generalizes
the periodic model by allowing jobs to be released “late”;
the IS model generalizes the sporadic model by allowing
subtasks to be released late, as illustrated in Fig. 2(b). That
is, an IS task is obtained by allowing a task’s windows to be
shifted right from where they would appear if the task were
periodic. Letθ(Ti) denote the offset of subtaskTi, i.e., the
amount by whichw(Ti) has been shifted right. Then, by (2),
we have the following.

r(Ti) = θ(Ti)+

⌊
i− 1

wt(T)

⌋
∧ d(Ti) = θ(Ti)+

⌈
i

wt(T)

⌉
(3)

The offsets are constrained so that the separation between
any pair of subtask releases is at least the separation between
those releases if the task were periodic. Formally,

k > i ⇒ θ(Tk) ≥ θ(Ti). (4)

Each subtaskTi has an additional parametere(Ti) that
specifies the first time slot in which it is eligible to be sched-
uled. It is assumed thate(Ti) ≤ r(Ti) ande(Ti) ≤ e(Ti+1)
for all i ≥ 1. Additionally, no subtask can become eligible
before its predecessor completes execution,i.e.,

h < i ∧ e(Ti) < r(Ti) ∧ S(Th, u) = 1 ⇒ u < e(Ti). (5)

2

0 1 2 3 4 5 6 7 8 9 10 11 120 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

T4

T5

T6

T7

T8

T1

T2

T3

T4

T5

T6

T7

T8

T1

T2

T3

T5

T6

T7

T8

(b)(a) (c)

Figure 2. (a) Windows of the first job of a periodic taskT with weight8/11. This job consists of subtasksT1, . . . , T8, each of
which must be scheduled within its window, or else a lag-bound violation will result. (This pattern repeats for every job.)(b) The
Pfair windows of an IS task. SubtaskT5 becomes eligible one time unit late.(c) The Pfair windows of a GIS task. SubtaskT4 is
absent andT6 is one time unit late.

The interval[r(Ti), d(Ti)) is called thePF-windowof Ti

and the interval[e(Ti), d(Ti)) is called theIS-windowof
Ti. A schedule for an IS system isvalid iff each subtask
is scheduled in its IS-window. (Note that the notion of a job
is not mentioned here. For systems in which subtasks are
grouped into jobs that are released in sequence, the defini-
tion of e would preclude a subtask from becoming eligible
before the beginning of its job.)

The IS model is suitable for many applications in which
processing steps may be jittered. For example, in an appli-
cation that processes packets arriving over a network, pack-
ets may arrive late or in bursts. The IS model treats these
possibilities as first-class concepts: a late packet arrival cor-
responds to an IS delay, and if a packet arrives early (as part
of a bursty sequence), then its eligibility time will be less
than its Pfair release time. Note that its Pfair release time
determines its deadline. Thus, in effect, an early packet ar-
rival is handled by postponing its deadline to where it would
have been had the packet arrived on time.

Generalized intra-sporadic task systems. A generalized
intra-sporadic (GIS) task system is like an IS task system,
except that a task may omit some of its subtasks. Specifi-
cally, a taskT , after releasing subtaskTi, may release sub-
taskTk, wherek > i+1, instead ofTi+1, with the following

restriction: r(Tk) − r(Ti) is at least
⌊

k−1
wt(T)

⌋
−

⌊
i−1

wt(T)

⌋
.

In other words,r(Tk) is not smaller than what it would
have been ifTi+1, Ti+2, . . . ,Tk−1 were present and released
as early as possible. For the special case whereTk is the

first subtask released byT , r(Tk) must be at least
⌊

k−1
wt(T)

⌋
.

Fig. 2(c) shows an example. IfTi is the most recently re-
leased subtask ofT , thenT may releaseTk, wherek > i, as

its next subtask at timet, if r(Ti)+
⌊

k−1
wt(T)

⌋
−

⌊
i−1

wt(T)

⌋
≤ t.

If a taskT , after executing subtaskTi, releases subtaskTk,
thenTk is called thesuccessorof Ti andTi is called the
predecessorof Tk.

As shown in [3], an IS or GIS task systemτ is feasible

onM processors iff∑
T∈τ

wt(T) ≤ M. (6)

Shares and lags in IS and GIS task systems.lag(T, t) is
defined for IS and GIS tasks as before [8]. Letideal(T, t)
denote the processor share thatT receives in an ideal fluid
(processor-sharing) schedule in[0, t). Then,

lag(T, t) = ideal(T, t)−
t−1∑
u=0

S(T, u). (7)

Towards definingideal(T, t), we defineshare(T, u), which
is the share assigned to taskT in slot u. share(T, u) is de-
fined in terms of a functionf(Ti, t) that indicates the share
assigned to subtaskTi in slot t. f(Ti, t) is defined as fol-
lows.

(
⌊

i−1
wt(T)

⌋
+ 1)× wt(T)− (i− 1), if t = r(Ti)

i− (
⌈

i
wt(T)

⌉
− 1)× wt(T), if t = d(Ti)− 1

wt(T), if t ∈ (r(Ti), d(Ti)−1)
0, otherwise

(8)
Fig. 3 shows somef values for a task of weight5/16. Given
f , share(T, u) can be defined as

share(T, u) =
∑

i

f(Ti, u). (9)

As shown in Fig. 3,share(T, u) usually equalswt(T), but
in certain slots, it may be less thanwt(T). Thus,

(∀T, t ≥ 0 : share(T, t) ≤ wt(T)). (10)

We can now defineideal(T, t) as
∑t−1

u=0 share(T, u).
Hence, from (7),

lag(T, t + 1) =

t∑
u=0

(share(T, u)− S(T, u))

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

16

5

16

5

16

5 16

5

16

5

16

4

16

1

16

5

16

5

16

3

16

3

16

2

16

5

16

2

16

5

16

4

16

5

16

5

16

5

16

1

16

5

16

5

16

5

16

1

16

2

16

5

16

5

16

4

16

5

16

5

16

4

16

2

16

5

16

3

16

3

16

5

16

5

16

5

16

5

16

1

(a) (b)

Figure 3. Fluid schedule for the first five subtasks (T1, . . . , T5) of a taskT of weight5/16. The share of each subtask in each
slot of its PF-window is shown. In(a), no subtask is released late; in(b), T2 andT5 are released late. Note thatshare(T, 3) is
either5/16 or 1/16 depending on when subtaskT2 is released.

= lag(T, t) + share(T, t)− S(T, t). (11)

Similarly, the total lag for a scheduleS and task sys-
temτ at timet + 1, denotedLAG(τ, t + 1), is as follows.
(LAG(τ, 0) is defined to be0.)

LAG(τ, t+1) = LAG(τ, t)+
∑
T∈τ

(share(T, t)−S(T, t)). (12)

3 Integrating Tardiness Classes

In this section, we present Algorithm I-EPDF, which
schedules a soft real-time task systemτ comprised of tasks
with different tardiness bounds. We let tasks that can be
guaranteed a tardiness ofc quanta comprise Classc. Thus, if
every task can be guaranteed a tardiness of at mostq (≥ 1),
then there are at mostq classes. Any class, except Classq
may be empty. IfM denotes the total utilization ofτ , then
I-EPDF scheduledτ on at mostdMe processors. Without
loss of generality, we assume thatM is integral. If neces-
sary, this property can be ensured by adding a dummy task
of weightdMe −M to τ .

The algorithm consists of three phases:(i) a classification
phase,(ii) a distribution phase, and(iii) a scheduling phase.
In the classification phase, the tardiness class of each task
is identified, based on its weight. As already mentioned,
Srinivasan and Anderson established a per-task weight re-
striction of k

k+1 for ensuring a tardiness ofk quanta under

EPDF [9], which we later improved tok+1
k+2 [5]. In this pa-

per, we assume that task weights are restricted for each class
using the k

k+1 condition, as the proof is simpler. Our goal in
this paper is only to illustrate the idea of integrated schedul-
ing. Our approach is still correct when thek+1

k+2 condition is
used.

Classification phase. We include in Classc all tasks with
weights in the range(c−1

c , c
c+1], i.e., tasks that can be en-

sured a tardiness ofc quanta under EPDF. Note that this has
the advantage that a taskT with wt(T) ≤ c

c+1 that can tol-
erate a tardiness ofd > c can be assigned to Classc and

guaranteed a lower tardiness bound, without impacting the
tardiness of other tasks. Lettingτ c denote the set of all tasks
in Classc, this classification ensures the following property.

(W) (∀T ∈ τ c : c−1
c < wt(T) ≤ c

c+1)
Property (W) can be ensured inΘ(N) time by simply plac-

ing taskT in Class
⌈

T.e
T.p−T.e

⌉
.

We denote the total utilization ofτ c by M c. Thus,

τ =
q⋃

c=1

τ c, M c =
∑

T∈τ c

wt(T), andM =
q∑

c=1

M c. (13)

Distribution phase. The goal of this phase is to distribute
theM processors among the classes and to define how pro-
cessors are shared. The processors are divided intoq groups
of sizesP1, . . . , Pq, with theith group assigned to Classi.
Because the number of processors assigned to Classi is inte-
gral, whereas its total utilizationM i may not be, each class
is allowed to borrow processing capacity from at most one
lower-indexed class. To ensure correctness for each class,
this borrowing is subject to a number of rules given below.
Later, in Sec. 3.2, we present an algorithm for defining an
assignment that satisfies these rules. Before stating these
rules, we introduce some relevant notation.

Notation. wi denotes the amount of processing capacity
that Classi borrows from some lower-indexed class.Supi

denotes the lower-indexed class that supplies to Classi; if
wi = 0, thenSupi = 0. f i denotes the fractional part of the
utilization of τ i, i.e.,

f i = M i − bM ic. (14)

To enable the different classes to share processors at run-
time, a donor taskDj (1 ≤ j ≤ q) of weightwj > 0 may
be created;Dj is added to Classi, wherei = Supj . (The
manner in whichDj is used to share processors is explained
in Sec. 3.1.) The set of all donor tasks added to Classi is

4

Class
(i) τ i M i wi Supi λi M̂ i Pi

1 τ1 3 2
5

0 0 {D2, D3, 5 5
D4, D6}

2 τ2 4 4
5

4
5

1 ∅ 4 4
5

4

3 τ3 4 7
10

11
20

1 {D5} 5 11
20

5

4 τ4 3 1
5

1
5

1 ∅ 3 1
5

3

5 τ5 3 17
20

17
20

3 ∅ 3 17
20

3

6 τ6 4 8
10

1
20

1 {D7} 5 1
20

5

7 τ7 4 3
4

1
4

6 {D8} 5 1
4

5

8 τ8 3 3
4

1
2

7 {D9} 4 1
2

4

9 τ9 4 3
4

3
4

8 ∅ 4 3
4

4

(a)

Di wi

D1 0

D2 4
5

D3 11
20

D4 1
5

D5 17
20

D6 1
20

D7 1
4

D8 1
2

D9 3
4

(b)

1

2 3 4

5

9

6

7

8

11/20 1/20

1/2

3/4

5

4 5 5 3

3

4

4

5

1/54/5

17/20 1/4

(c)

Figure 4. (a) Distribution of processors to the nine tardiness classes of a soft real-time task system. Column headings refer to
various terms mentioned in the text.(b) Weights of donor tasks.(c) Tree representation of the task system in (a). Labels within
nodes indicate class indices. The integer adjacent to a node denotes the number of processors assigned to the class that the node
represents. Edge(a, b) defines the supplier/borrower relation beween Classesa andb; if a < b, then Classa supplies a processing
capacity ofw(a, b) to Classb, wherew(a, b) is the weight of(a, b).

denotedλi. τ̂ i extendsτ i by including these tasks:

τ̂ i = τ i ∪ λi. (15)

Correspondingly, we define

M̂ i = M i +
∑

T∈λi

wt(T). (16)

Processor sharing rules.1 The sharing of processors
among classes is governed by the following rules.

(R1) The processing capacity that Classi borrows is at
most the fractional part of its utilization,i.e.,

0 ≤ wi ≤ f i. (17)

(R2) Classi borrows processing capacity from at most one
class with a lower tardiness bound (or a lower-indexed
class), and lends to zero or more classes. In other
words, the following hold.

(∀i : i ≥ 1 :: Supi < i) (18)

(∀i : i ≥ 1 :: {j | Di ∈ λj} = {Supi}) (19)

(∀i :: |{j : Supj = i}| ≥ 0) (20)

1Some of these rules are somewhat technical in nature. They are
included to address certain cases that arise in showing that I-EPDF is
correct.

(R3) Classi, wherei ≥ 3 andf i ≤ 2/3, does not lend any
processing capacity to other classes. If0 < f i ≤ 1/2,
then Classi borrows a capacity off i from Class 1;
if f i ranges between 1/2 and 2/3, then it borrowsf i

from Class 2. Iff i = 0, then Classi does not borrow.

(∀i : i ≥ 3 ∧ f i = 0 :: wi = 0 ∧ Supi = 0) (21)

(∀i : i ≥ 3 ∧ 0 < f i ≤ 1/2 :: wi = f i ∧
Supi = 1 ∧ (∀j : Supj 6= i)) (22)

(∀i : i ≥ 3 ∧ 1/2 < f i ≤ 2/3 :: wi = f i ∧
Supi = 2 ∧ (∀j : Supj 6= i)) (23)

(R4) The processing capacity that Class3 or higher bor-
rows is less than what it lends,i.e.,

(∀i : i ≥ 3 :: (∀j : Supj = i ⇒ wi < wj)). (24)

(R5) The number of processors assigned to the various
classes must satisfy the following.

(∀i : Pi = M i − wi +
∑

{j:Supj=i}

wj) (25)

P1 = dM1 + w2 +
∑

{j:((j≥3) ∧ (fj≤1/2))} wje (26)

P2 = bM2 +
∑

{j:((j≥3) ∧ (1/2<fj≤2/3))} wjc (27)

(∀i : i ≥ 3 :: Pi = dM ie ∨ bM ic) (28)
q∑

i=1

Pi = M (29)

5

ALGORITHM I-EPDF(τ)

E1, . . . , Eq : integer; /* to denote the number of
tasks eligible at timet in each class */

P1, . . . , Pq : integer;
D1, . . . , Dq : Tasks;
τ1, . . . , τq : GIS task sets;
τ̂1, . . . , τ̂q : GIS task sets;
λ1, . . . , λq : GIS task sets initially∅; /* Set of all

donor tasks added to a class */
Sup1, . . . ,Supq : integer initially 0 ;
tight1, . . . , tightq : boolean initially TRUE

Classification Phase
1 Group tasks into at mostq tardiness classes. Task sets

τ i, where1 ≤ i ≤ q, are known at the end of this phase.

Distribution Phase
2 Determinewi and createDi. Determineλi,

τ̂ i, andPi, for all i ≥ 1.

Scheduling Phase
3 t := 0;
4 while TRUE do
5 for i := q downto 1 do
6 if τ̂ i 6= ∅ then
7 for eachDc in λi do
8 if Ec ≤ Pc then
9 s := index of next eligible subtask ofDc;

10 if r(Dc
s) ≤ t ∧ d(Dc

s) > t + 1 then
11 if r(Dc

s) < t) then s := 1 fi;
12 r(Dc

s), e(Dc
s) := t + 1, t + 1

fi
fi

od;
13 Ei := # of eligible tasks in̂τ i, excluding those

that are early-released (it suffices to
determine ifPi + 1 are eligible)

fi
od;

14 for i := 1 to q do
/* The lowest-indexed class is always tight */

15 if tighti then
16 maxSchedulable := Pi

else
17 maxSchedulable := Pi + 1

fi;
18 Schedule at mostmaxSchedulable tasks of

τ̂ i using EPDF (for Class3 and higher, break ties
involving the heavy donor task, if any,
in favor of the donor task);

19 for eachDc in λi do
20 if Dc is scheduledthen
21 tightc := FALSE

else
22 tightc := TRUE

fi
od;

23 t := t + 1
od

Figure 5. Algorithm I-EPDF—detailed pseudo-code for the scheduling phase.

The supplier/borrower relationship among classes can be
represented as a weighted tree in which nodes represent
classes. An edge of weightw between nodesi andj, where
i < j, implies thatwj = w andSupj = i. As an exam-
ple, Fig. 4 shows an assignment of processors to classes and
a supplier/borrower relation among classes that conforms to
the rules above for a task system comprised of nine tardiness
classes.

The following properties follow from (R1)–(R5).

(L1) There are at most two tasks in̂τ1 with weights
exceeding1/2.
(L2) The weight of every task in̂τ2 is in (1

2 , 2
3].

(L3) (∀i : i ≥ 3 ∧ λi 6= ∅ ⇒ f i > 2
3 .)

3.1 Scheduling Phase of I-EPDF

Assuming that processors are assigned to classes per the
rules above, we now explain the scheduling phase. A proof
that it is correct is given in Appendix C. As mentioned ear-
lier, Sec. 3.2 presents an algorithm for creating such an as-
signment. In the scheduling phase, a separate instantiation
of EPDF is used to schedule eachτ̂ i. The pseudo-code for
this phase is shown in lines 3–23 in Fig. 5. Note thatτ̂ i in-
cludes the donor tasks inλi, which compete with tasks inτ i

at every time instant. If at timet, a donor taskDj in λi is
scheduled, then one of the processors of Classi is handed
down to Classj. Thus, Classj hasPj + 1 processors for
scheduling the tasks in̂τ j at timet, zero of more of which
may be handed down to higher-indexed classes, recursively.

In the first part of the scheduling phase, given by thefor
loop of lines 5–13, the number of eligible subtasks ofτ̂ c at
time t is identified, wheni = c. Because thefor loop con-
siders the classes in decreasing index order, the number of
eligible tasks in classes with higher indices thanc are known
at this time. Therefore, if̂τ c includes donor taskDk and the
number of eligible tasks in̂τk is at mostPk, then the release
time of the next subtaskDk

s of Dk is postponed tot + 1, if
its deadline is greater thant+1. We do this because Classk
is not able to use an extra processor that it would be given,
and hence, by postponing the release time of the next sub-
task of its donor task under the conditions specified, Classk
may be provided with an extra processor sooner in the future
than may otherwise be possible. We refer to this scheduling
rule in lines 8–12 as thepostponementrule. Another related
rule in line 11 is that if the release time ofDk

s before the
postponement was earlier thant, thenDk

s is replaced byDk
1

with r(Dk
1) set tot + 1. This rule shall be referred to as the

resetrule. As discussed later, this rule does not impact the

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D4

τ1

35
2

τ1

15
3

NT − Non tight
 slots for Class 4
PT − Pseudo−tight
 slots for Class 4
 T − Tight
 slots for Class 4

D6

XX

5 procs.

Class 1

Tasks in

 of)

X

3 procs.
NT NT NTPT PTT T T

Class 4

Tasks in

T

 τ4

(Total util.

 tasks)
(Total util. of donor

Donor tasks D , D , D , and2 3 4

Figure 6. Classes 1 and 4 of the example task system in
Fig. 4. Class 1 is assigned five processors and supplies pro-
cessing capacity to Classes 2, 3, 4, and 6. Class 4 is assigned
three processors and borrows a processing capacity of1/5

from Class 1. An additional processor is handed down to
Class4 from Class1 when donor taskD4 is scheduled in
Class1. The example partial schedule shows the first three
subtasks ofD4, which are scheduled in the slots marked by
an ‘X’. The release of the third subtask is postponed from
time 10 to time 12. Thus, slots 4, 8, and 14 are non-tight for
Class 4, slots 10 and 11 are pseudo-tight (see the appendix),
and the rest are tight.

tardiness of other tasks.
The second part of the scheduling phase, given by the

for loop in lines 14–23, determines the maximum number
of tasks ofτ̂ c that can be scheduled (maxSchedulable) at
t, and schedules those with the highest priority. For all but
the lowest-indexed class,maxSchedulable is eitherPc or
Pc + 1, based on whetherDc is scheduled. IfPc processors
are available for scheduling tasks inτ̂ c, thent is said to be
a tight slot for τ̂ c; otherwise,t is anon-tightslot for τ̂ c. An
example is given in Fig. 6, in which Classes 1 and 4 from
Fig. 4 are considered.

Selecting the highest priority tasks to schedule dominates
the per-slot time complexity of this phase, and hence, it is
the same as that of EPDF,i.e., O(M log N).

3.2 Distribution Phase of I-EPDF

(R1)–(R5) can be expressed as linear constraints and the
problem solved using integer or mixed integer program-
ming. (Floors and ceilings in the expressions can easily be
eliminated.) However, as we now show, a solution in linear

time is possible. Fig. 7 presents the detailed pseudo-code
for the distribution phase. In describing this code, we refer
to Classj as ani-borrower if Classj borrows processing
capacity from Classi. The computation here proceeds in
three steps. Thefor loop in lines 0–0 comprises the first
step, which is responsible for ensuring that (R3) holds, and
together with the third step (see below), that (28) is satis-
fied. In this step, Classi, wherei ≥ 3, is set to borrow its
entire fractional utilization off i from Class1, if f i ≤ 1/2,
or from Class2, if 1/2 < f i ≤ 2/3. This is done by setting
wi = M i−bM ic = f i in line 0, followed by the addition of
a donor taskDi of appropriate weight to Class1 or Class2.
Every class that is made a 1- or a2-borrower at the end
of Step 1, is consideredfinished, and does not participate
in future distribution steps. This is marked by setting the
boolean variabledonei to TRUE. Such a class is assigned
bM ic processors, which are not shared with other classes.
For example, consider Fig. 4. The total utilization ofτ4 is
3 1

5 , with a fractional partf4 = 1/5 < 1/2. Therefore, at
the end of the step just described, a donor taskD4 of weight
w4 = 1/5 is added to Class1, three processors are assigned
to Class4, and it is marked finished.

Lines 8–12 comprise the next step, which ensures (27).
In this step, Class2 is made a1-borrower by letting it bor-
row a processing capacity ofw2 = (M2+

∑
T∈λ2 wt(T))−

b(M2 +
∑

T∈λ2 wt(T))c from Class1. It is then marked
finished. In the example in Fig. 4, the fractional part of the
utilization of no class is between1/2 and2/3. Therefore,
no donor tasks are added to Class2 in the previous step.
Thus,w2 = 4/5, a donor taskD2 of weight4/5 is added to
Class1, and Class2 is marked finished.

The while loop in lines 14–40 constitutes the third step
in the distribution phase. This step is responsible for en-
suring (24), (26) and (28). In this step, every class that is
not yet finished is considered in increasing index order. The
goal of theith iteration is to determine at most two higher-
indexed classes with which Classi can share its spare ca-
pacity (given bysparei = dM̂ i − wie − (M̂ i − wi)). (To
ensure the tardiness bound of the borrowing class, it is nec-
essary to ensure that it does not borrow from a class with
a larger bound.) Classi is also marked finished at the end
of the ith iteration. Thus, at the beginning of iterationi,
every class with a lower index thani is already finished.
Note that for Class3 and higher,M̂ i = M i holds at the
beginning of the iteration in which it is considered. This is
because these classes are not augmented with donor tasks
prior to this point. Line 19 identifies Classl with the low-
est index greater thani that is not finished that can be made
an i-borrower. To ensure (R1), iff l ≤ sparei holds, then
Classl is made to borrow a processing capacity off l from
Classi and is marked finished in theif block in lines 21–27.
Line 27 identifies and setsl to the next higher-indexed class
that is not yet finished.

Irrespective of whether the test in line 21 succeeded, at

7

PROCEDUREADDDONORTASK(i, w, sup)

1 Di := donor task of weightw;
2 Supi := sup;
3 τ̂sup, λsup := τ̂sup ∪ {Di}, λsup ∪ {Di};
4 M̂sup := M̂sup + wi;
5 return

ALGORITHM I-EPDF(τ)

P1, . . . , Pq : integer;
w1, . . . , wq : rational ;
D1, . . . , Dq : GIS tasks;
τ1, . . . , τq : GIS task sets;
τ̂1, . . . , τ̂q : GIS task sets;
λ1, . . . , λq : GIS task sets initially∅; /* Set of all

donor tasks added to a class */
Sup1, . . . ,Supq : integer initially 0 ;
spare1, . . . , spareq : rational initially 0 ;
done1, . . . , doneq+1: boolean initially FALSE

Classification Phase
/* Group tasks into at mostq tardiness classes. Task sets
τ i, where1 ≤ i ≤ q are known at the end of this phase. */

Distribution Phase
1 for i := 3 to q do
2 if M i − bM ic ≤ 2/3 then
3 wi := M i − bM ic;
4 if wi > 0 then
5 if wi ≤ 1/2 then Supi := 1 elseSupi := 2 fi
6 ADDDONORTASK(i, wi,Supi)

fi;
7 Pi, donei := bM ic, TRUE

fi
od;

8 w2 := M̂2 − bM̂2c;
9 if w2 > 0 then ADDDONORTASK(2, w2, 1) fi;

10 P2, done2 := bM̂2c, TRUE;

11 if dM̂1e = M̂1 then
12 P1, done1 := M̂1, TRUE

fi;
13 i := 1;
14 while i ≤ q do

/* doneq+1 handles the boundary condition */
15 while donei do i := i + 1 od;
16 if i ≤ q then
17 avail := sparei := dM̂ i − wie − (M̂ i − wi);
18 l := i + 1;
19 while donel do l := l + 1 od;
20 if l ≤ q then
21 if avail > 0 ∧ (M l − bM lc) ≤ avail then
22 wl := M l − bM lc;
23 ADDDONORTASK(l, wl, i);
24 Pl, donel := bM lc, TRUE;
25 avail := avail − wl;
26 l := l + 1;
27 while donel do l := l + 1 od

fi;
28 if avail > 0 /* ∧ l ≤ q */ then
29 wl := avail;
30 ADDDONORTASK(l, wl, i);
31 d, j := l, i;
32 while wd < wj do
33 τ̂j , λj := τ̂j − {Dd}, λj − {Dd};
34 wj , M̂j := wj − wd, M̂j − wd;

35 τ̂Supj
:= τ̂Supj ∪ {Dd};

36 λSupj
:= λSupj ∪ {Dd};

37 if wj < wd then d := j fi;
38 j := Supj

od
fi;

39 Pi, donei := bM̂ ic, TRUE;
fi

40 i := l
fi

od

Figure 7. Algorithm I-EPDF—detailed pseudo-code for the distribution phase.

line 28,f l > avail holds. This is clearly the case if the test
in line 21 failed. On the other hand, if this test succeeded,
then becausef l > 2/3 holds for every class of index three
or higher that is not finished by Step 2,wl > 2/3 holds at
line 25. Becausesparei, as computed in line 17, is less than
one,avail < 1/3 holds at the end of line 25. Hence, for
the same reason thatf l > 2/3 holds for every class of index
exceeding three that is not finished by Step 2,f l > avail
holds at line 28. Because the amount of processing capacity
that Classl borrows is set tomin(avail, f l), Classi can
have at most two donor tasks added to it in theith iteration.
l is the unfinished class with the lowest index at line 40.
Therefore,i is updated tol so that Classl is considered for
the addition of donor tasks in the next iteration.

Using our example (Fig. 4),spare1 at the beginning of
the first iteration of thewhile loop in lines 14–40 isdM̂1e−
M̂1 = 5−4 2

5 = 3
5 . (BecauseD4 of weightw4 = 1

5 andD2

of weightw2 = 4
5 were added to Class1 in Steps 1 and 2,

respectively,M̂1 = M1+w4+w2 = 3 2
5 + 1

5 + 4
5 = 4 2

5 , and
hence,dM̂1e = 5, at the end of Step 2.) In this iteration, the
first unfinished class with a higher index than one, which is
Class3, is made a1-borrower (lines 28–30). Thus,l = 3 in
this case. Hence, at the end of the first iteration,w3 is set
to 3/5 (line 29) and a donor taskD3 of weightw3 is added
to Class1 (line 30). Class1 is then marked finished (line
39). The unfulfilled utilization of Class3 is now4 7

10 −
3
5 =

4 1
10 . Therefore, Class3 has a spare capacityspare3 = 9

10 .
Because Class 3 is the next unfinished class, classes with
which its spare capacity is shared are identified in the next
iteration.

One final adjustment is performed in lines 32–38. If the
weight of the donor taskwl that is added to Classi is less
thanwi, i.e., the processing capacity that Classi borrows
in turn from its supplierj = Supi, then Classj is made

8

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

A
dd

iti
on

al
 P

ro
ce

ss
in

g
C

ap
ac

ity
(%

)

Total Utilization

Additional Processing Capacity by Total Utilization

Average
Worst Case

(a)

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

A
dd

iti
on

al
 P

ro
ce

ss
in

g
C

ap
ac

ity
(%

)

No. of Classes

Additional Processing Capacity by No. of Classes

Average
Worst Case

(b)

Figure 8. Empirical determination of additional processing capacity, expressed as a percentage of total utilization, that may be
required if I-EPDF is not used to schedule soft real-time task sets comprised of multiple classes.(a) Additional capacity vs. Total
utilization. (b) Additional capacity vs. Number of classes.

Classl’s supplier, too. This is done by movingDl to Classj
from Classi. wi is appropriately reduced so that the total
capacity that Classj supplies remains the same. As a result
of this adjustment, Classj will now have two donor tasks
Di and Dl in place ofDi (it is possible that Classj has
some other donor tasks, whose weights are not altered in
this iteration), and it is possible for one of them to be lighter
thanDj . If this is the case, then thewhile loop in lines 32–
38 moves the lighter of the two donor tasks,Di andDl, up
the supplier chain, to ensure (R4).

In our example, as described earlier,spare3 = 9
10 at the

end of the iteration for Class1. This holds at the beginning
of the iteration for Class3, wheni = 3. Recall that Class4
is already finished, and hence, Class5 is the next unfinished
class. Becausef5 = 17

20 , which is less thanspare3, the code
in lines 21–27 makes Class5 borrow the entire fractional
part of its utilization from Class3, and reducesavail to 9

10−
17
20 = 1

20 (in line 25). The next unfinished class is identified
to be 6 in line 27. Hence,l = 6 at line 28, and the code
in lines 28–30 makes Class6 borrow a capacity of120 from
Class3. Thus, at the end of line 30, donor tasksD5 andD6,
of weightsw5 = 17

20 andw6 = 1
20 , respectively, are added

to Class3. Recall that Class3 already borrows a processing
capacity of35 from Class1. Therefore,w3 = 3

5 , and hence,
w6 < w3. As a result,D6 is moved to Class1, the supplier
of Class3, and the weight ofD3 (w3) is reduced byw6 to
11
20 . In other words, at the end of the iteration for Class3,
Class3 borrows only11

20 from Class1 and is augmented with
only one donor task,D5. Fig. 4 shows the final distribution

and sharing of processors among classes.
It can be shown that the complexity of the above algo-

rithm isΘ(q). A proof that it ensures (R1)–(R5) is presented
in Appendix B.

4 Experimental Evaluation

In this section, we report results of our empirical evalu-
ation of the additional processing capacity that may be re-
quired, when classes do not share processors. The evalu-
ation procedure was as follows. 1,000,000 task sets were
generated at random, with total utilizationM in the range
5..64. The tasks in each task set were divided intoq tar-
diness classes based on their weights. The total number
of processorsP required to schedule the task set was then
computed, assuming that each tardiness class has exclusive
access to the processors that it requires. The difference
E = P − M , which represents the additional processing
capacity required, was then determined. The average value
of E (expressed as a percentage ofM) with respect to total
utilization (M) and the number of classes (q) is plotted in
Fig. 8. 99% confidence intervals are also shown on these
plots. The figure also depicts the worst-case observed val-
ues ofE, for each value ofM andq. The graphs show that
the average percentage of loss is quite high (over 30%), for
small values ofM andq, and decreases with increasingM
andq. The reason for this is as follows. In Fig. 8(a), the
value of q for a givenM is the average over all task sets
with that value ofM , and in Fig. 8(b), the value ofM for a
givenq is the average over all task sets with that value ofq.

9

As mentioned in the introduction,E is at mostq − 1. Also,
because a class can span multiple processors,q increases at
a lower rate thanM . Therefore,E, expressed as a percent-
age ofM , decreases with increasingq andM . (However,
for smallq, q may increase at a higher rate thanM because
the minimum value ofM is 5, while that ofq is 2. This ex-
plains the initial rise in Fig. 8(b).) Even thoughE decreases
asM andq increase, the loss is still more than 5% for large
M andq, which suggests significant waste.

5 Conclusion

We have presented a new algorithm for integrating soft
real-time tardiness classes on a multiprocessor. Our al-
gorithm provides temporal isolation among classes, allows
available processing capacity to be fully utilized, and does
not require that previously established per-task weight re-
strictions for a given tardiness threshold be lowered. Our
experiments indicate that the proposed algorithm allows a
substantial amount of processing capacity to be reclaimed.

The algorithm presented could be extended to allow hard
tasks, in addition to soft tasks. In that case, an optimal al-
gorithm (with tie breaks) is used for scheduling hard tasks,
while a separate instantiation of EPDF is used for each soft
class. However, it may be required to promote a few soft
tasks to the hard category.

As discussed in Sec. 1, one motivation for using EPDF is
the ability to reweight tasks efficiently in dynamic systems.
However, reweighting a task may alter the tardiness bound
that can be guaranteed to it, and hence, may require that the
task be migrated to a different tardiness class. Redistributing
processors to the redefined classes can be done in constant
time. It only remains to be proved that the tardiness bounds
of individual tasks can still be guaranteed. We are currently
working on this problem.

Acknowledgements: We are grateful to Phil Holman for
his suggestions on improving the presentation of this paper
and for his comments on earlier drafts.

References

[1] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair schedul-
ing of asynchronous periodic tasks.Journal of Computer and
System Sciences. To appear.

[2] J. Anderson and A. Srinivasan. Early-release fair scheduling.
In Proceedings of the 12th Euromicro Conference on Real-
Time Systems, pages 35–43, June 2000.

[3] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond pe-
riodic task systems. InProceedings of the 7th International
Conference on Real-Time Computing Systems and Applica-
tions, pages 297–306, Dec. 2000.

[4] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Propor-
tionate progress: A notion of fairness in resource allocation.
Algorithmica, 15:600–625, 1996.

[5] U. Devi and J. Anderson. Improved conditions for bounded
tardiness under EPDF fair multiprocessor scheduling. In Sub-
mission, November 2003.

[6] J.W.S. Liu.Real-Time Systems. Prentice Hall, 2000.

[7] A. Srinivasan.Efficient and Flexible Fair Scheduling of Real-
time Tasks on Multiprocessors. PhD thesis, University of
North Carolina at Chapel Hill, December 2003.

[8] A. Srinivasan and J. Anderson. Optimal rate-based scheduling
on multiprocessors. InProceedings of the 34th ACM Sympo-
sium on Theory of Computing, pages 189–198, May 2002.

[9] A. Srinivasan and J. Anderson. Efficient scheduling of soft
real-time applications on multiprocessors. InProceedings of
the 15th Euromicro Conference on Real-time Systems, pages
51–59, July 2003.

A Pfair Scheduling – Additional Properties

In this appendix we state additional properties of pfair
scheduling that is needed for the correctness proof of I-
EPDF presented in Appendix C.

The first three lemmas concern lengths of windows of
subtasks.

Lemma 1 [1] The length of each window of a taskT is ei-
ther d 1

wt(T)e or d 1
wt(T)e+ 1.

Lemma 2 [1] The following properties hold for any taskT .

(a) If (i− 1) is a multiple ofT.e, then|w(Ti)| =
⌈

1
wt(T)

⌉
.

(b) If b(Ti) = 0, then|w(Ti)| = |w(Ti+1)|.

(c) If b(Ti) = 0, thenw(Ti) is a minimal window ofT .

(d) If T is heavy andb(Ti) = 0, then|w(Ti)| = 2.

Lemma 3 If the length of the window of a subtaskTi of T
is k, thenwt(T) ≥ 1/k.

Proof: By Lemma 1,|w(Ti)| =
⌈

1
wt(T)

⌉
or |w(Ti)| =⌈

1
wt(T)

⌉
+ 1. Therefore,

⌈
1

wt(T)

⌉
= k or

⌈
1

wt(T)

⌉
+ 1 = k.

If the former holds, thenwt(T) ≥ 1
k , while if the latter

holds, thenwt(T) ≥ 1
k−1 , which implies thatwt(T) ≥ 1

k .
2

The next lemma summarizes some general properties of
thef2 values of (8).

Lemma 4 [7] Let f be as defined by(8). Then, the follow-
ing hold.

(a) In any time slotu ≥ 0, at most two consecutive subtasks
of a task may have positive values forf .

2Thef value of a subtask is also referred to as the flow that the subtask
receives in an ideal fluid schedule.

10

(b) If f(Ti, r(Ti)) < wt(T), thenb(Ti−1) = 1.

(c) If f(Ti, d(Ti)− 1) < wt(T), thenb(Ti) = 1.

(d) If b(Ti−1) = 1 andTi exists, thenf((Ti−1, d(Ti−1)))+
f(Ti, r(Ti)) = wt(T).

B Correctness Proof for the Distribution
Phase

In this appendix, we state and prove lemmas concerning
properties that hold at the end of the distribution phase of
Algorithm I-EPDF. For conciseness, by I-EPDF, we refer to
its distribution phase in this section.

All references to line numbers are with respect to the
pseudo-code in Fig. 7.

Lemma 5 Donor tasks are not added to Classc, wherec ≥
3, before the iteration of thewhile loop in lines14–40, in
whichi = c.

Proof: Inspection of code in lines 1–12 shows that donor
tasks are not added to Classc in that part. Thewhile loop
in lines 14–40 considers classes in increasing index order.
(The value ofi for the next iteration of the loop is updated
to l in line 40, and it can be verified thatl > i.) In the
ith iteration, new donor tasks are added only to Classi in
lines 23 and 30. Thewhile loop in lines 32–38 moves donor
tasks across classes, but only across those classes that are
already augmented with such tasks. Therefore, donor tasks
are not added to a class with an index greater thani. 2

Lemma 6 If donor taskDc is created, thendonec = FALSE

holds prior to its creation.

Proof: Donor tasks are created in lines 6, 9, 23, and 30. We
consider each case.

Thefor loop in lines 1–7 considers Class3 and higher in
increasing index order exactly once. Because thedone array
is initialized to FALSE, and is not altered for Classc until
after Dc is created (which is done at most once)donec =
FALSE holds before the creation ofDc.

In line 9, D2 is created. It can easily be verified that
done2 = FALSE at this time.

In lines 23 and 30, donor tasksDl are created, wherel
is determined in lines 19 and 27 such thatdonel = FALSE

holds. 2

Lemma 7 If i = c, wherec ≤ q, holds for an iteration of
thewhile loop in lines14–40, thendonec = true holds at
the end of the iteration.

Proof: Within thewhile loop, the value ofi is modified in
lines 15 and 40 only. If modified in line 15, thendonec =
TRUE already holds. Beforei is updated in line 40 for the

next iteration,donec is updated toTRUE in the previous line
(line 39). Note that 39 is always executed ifc ≤ q. 2

Lemma 8 Dc, wherec ≥ 1, is created at most once.

Proof: By Lemma 6, donor taskDc is created only if
donec = FALSE holds prior to its creation. Therefore, it
suffices to show thatdonec is updated toTRUE either imme-
diately after the creation ofDc, or before an attempt can be
made to create it again.

Donor tasks are created in lines 6, 9, 23, and 30. If cre-
ated in line 6, 9, or 23,donec is updated toTRUE in the
subsequent line. If created in line 30, thenl = c holds in
that line. It can be verified thati is updated tol, i.e., c in
line 40 for the next iteration of thewhile loop.By Lemma 7,
donec = TRUE will hold at the end of the next iteration.
It can also be verified that in an iteration of thewhile loop
referred to,Di is not created. Therefore,Dc will not be
created for a second time in the future. 2

Lemma 9 Dc is created and added to a lower-indexed class
before donor tasks are added to Classc, wherec ≥ 3.

Proof: Follows from Lemmas 5, 6, and 7, and the fact that
Dc is not created in that iteration of thewhile loop in lines
14–40, for whichi = c holds. 2

Lemma 10 If Dc is created in line23 or 30, thenc ≥ 3 and
fc > 2/3.

Proof: D1 is never created (or does not exist),D2 is created
in line 9, and ifc ≥ 3 ∧ fc ≤ 2/3, thenDc is created in
line 6. By Lemma 8, a donor task is created exactly once.
The lemma follows from these facts. 2

Lemma 11 Letwc = fc, wherec ≥ 3. Then, Classc is not
augmented with donor tasks.

Proof: Dc, wherec ≥ 3, may be created in lines 6, 23, or
30. We consider two cases.

Case 1:Dc is created in line 6 or 23.In this case,wc = fc,
anddonec = TRUE holds immediately after. By Lemma 9,
Classc is not augmented with donor tasks beforeDc is cre-
ated, and by Lemma 5, the augmentation occurs only in the
iteration of thewhile loop in lines 14–40, for whichi = c
holds. However, becausedonec = TRUE holds, by line 15,
Classc is skipped from consideration in thewhile loop, and
hence, is not augmented with donor tasks.

Case 2: Dc is created in line 30. For this case, we first
show thatwc < fc holds at the time of creation ofDc. Con-
sider the iteration of thewhile loop in whichDc is created
in line 30. Prior to the creation ofDc, a different donor task
Dd may have been created in line 23in the same iteration.
We consider both possibilities. If no other donor task was

11

created, then the test in line 21should have failed. Because
Dc is created in line 30, the test in line 28should have suc-
ceeded, which implies thatM l−bM lc = f l > avail holds.
Becausewl is set toavail in line 29beforeDl is created, by
c = l, it implies thatfc > wc holds. On the other hand, if
Dd was created in line 23prior to the creation ofDc in line
30we reason as follows. The value ofavail as computed
in line 17is at most one. By Lemma 10,fd ≥ 2/3, and be-
causewd is set tofd in line 22andavail is reduced bywd in
line 25,avail < 1/3 holds at line 29. Again, by Lemma 10,
fc ≥ 2/3, whereaswc is set toavail, which is less than
1/3. It can be verified that the only piece of code that may
alter the weights of the donor tasks is thewhile loop in lines
32–38, and that the weights are only decreased. Therefore,
wc can never equalfc. 2

Lemma 12 0 ≤ wc ≤ fc, wherec ≥ 1.

Proof: wc is initialized to zero, modified whenDc is cre-
ated, and may later be modified in thewhile loop in 32–38.
By Lemma 8,Dc is created exactly once. Inspection of the
code shows thatDc is created in lines 6, 9, 23, or 30. If
created in lines 6, 9, or 23,wc = fc. Therefore, it remains
to be shown thatwc ≤ fc holds, ifDc is created in line 30.

By Lemma 10, ifDc is created in line 30, then

c ≥ 3 ∧ fc > 2/3. (30)

We consider execution from the beginning of the iteration
of thewhile loop in lines 32–38 in whichDc is created. It
is easy to see thatavail = sparei ≤ 1 holds at the end
of line 17. If the test in line 21 succeeded, then another
donor taskDd, whered < c is created in line 23 beforeDc

in the same iteration. By Lemma 10,fd > 2/3. Because
wd = fd holds by the assignment in line 22andavail is
updated toavail − wd is line 25,avail < 1/3 holds at line
28. Therefore, by (30),fc > avail holds at line 28. If the
test in line 21 failed, while that in line 28 succeeded, then
it is easy to see thefc > avail holds. wc is set toavail,
which by the argument just concluded is less thanfc, before
Dc is created in line 30.

Once set to a non-zero value, the value ofwc is modified
only in thewhile loop in lines 32–38. However, the value
is never increased, and if decreased, the reduction is by an
amount that is strictly less than its present value. Therefore,
if set to a non-zero value,0 < wc ≤ fc holds. If never set,
thenwc = 0 holds. 2

Lemma 13 Let Classc, wherec ≥ 3, be augmented with
donor tasks. Then, the value ofsparec, as computed in line
17, is equal to1− fc + wc, which is greater thanwc.

Proof: sparec as computed in line 17 is given by
dM̂ c − wce − (M̂ c − wc). If c ≥ 3, then by Lemma 5,
Classc is not augmented with donor tasks until the iteration

of thewhile loop in lines 14–40. Therefore, by (16), at line
17, wheni = c, M̂ c = M c. Therefore,sparec is given by

dM c − wce − (M c − wc)
= dbM cc+ fc − wce − (bM cc+ fc − wc) (from (14))

= bM cc+ dfc − wce − bM cc − fc + wc

= dfc − wce − fc + wc

= 1− fc + wc.

The final step is by Lemmas 11 and 12. Ifsparec is less than
or equal towc, then it would imply thatwc ≥ 1− fc + wc,
or thatfc ≥ 1, which is a contradiction to (14). 2

Lemma 14 The sum of the weights of the donor tasks added
to Classc in that iteration of thewhile loop in lines14– 40
for which i = c is exactly equal tosparec, as computed in
line 17 either at the end of line27 or line 30.

Proof: The proof follows from the fact thatM is integral.
2

Lemma 15 w1 = 0.

Proof: Straightforward. 2

Lemma 16 If the sum of the weights of the donor tasks
added to Classj equals1 − f j + wj prior to the execu-
tion of an iteration of thewhile loop in lines32–38, then the
same relation holds at the end of the iteration.

Proof: At the beginning of the iteration, we have∑
{k:Supk=j} wk = 1−f j +wj . Within thewhile loop, one

donor taskDd is moved from Classj to ClassSupj . There-
fore,

∑
{k:Supk=j} wk = 1−f j +wj−wd, at the end of the

iteration. However,wj is reduced bywd to wj − wd in the
same iteration. Therefore,

∑
{k:Supk=j} wk = 1− f j +wj ,

still holds at the end of the iteration. 2

Lemma 17 The values ofbM̂ jc andM̂Supj

at the end the
execution of an iteration of thewhile loop in lines32–38 are
the same as their values at the beginning of that iteration.

Proof: By Lemmas 15 and 12, and the test in line 32, we
havej 6= 1. It can also be easily shown thatj 6= 2, and
hence,j ≥ 3 holds. Therefore, by Lemmas 14, 13, and 16,
we have ∑

{k:Supk=j}

wk = 1− f j + wj . (31)

We first show thatbM̂ jc is not altered.bM̂ jc at the be-
ginning of an iteration of the loop is given by

bM̂ jc = bM j +
∑

{k:Supk=j wk}c
= bM j + 1− f j + wjc (from (31)) (32)

= bbM jc+ 1 + wjc (from (14)) (33)

= bM jc+ 1. (34)

12

Within the while loop, Dd is moved from Classj to
ClassSupj . Therefore, by (31), the sum of the weights of
the donor tasks present in Classj at the end of the iteration
is given by

∑
{k:Supk=j} wk = 1− f j + wj − wd. Hence,

bM̂ jc at the end of the iteration is given by

bM̂ jc = bM j +
∑

{k:Supk=j wk}c

= bM j + 1− f j + wj − wdc (35)

= bbM jc+ 1 + wj − wdc (from (14)) (36)

= bM jc+ 1 + bwj − wdc (37)

= bM jc+ 1. (becausewj > wd) (38)

(34) and (38) imply that the value ofbM̂ jc is not altered by
the execution of thewhile loop.

To see that the value of̂MSupj is not altered, note that
Dd with weightwd is moved toSupj , while the weight of
an existing donor task,Dj , is reduced bywd. Therefore,
the sum of the weights of the donor tasks present inSupj is
not altered at the end of the iteration, and therefore, by (16),
M̂Supj is not altered. 2

Lemma 18 P1 = M̂1.

Proof: The value ofP1 is set in line 12 or 39. If assigned
in line 12, P1 takes a value ofM̂1, and the lemma holds.
Therefore, in the rest of the proof we assume thatP1 is set
in line 39. By Lemma 15,w1 = 0 holds. Therefore,spare1,
as computed in line 17, in the iteration of thewhile loop
in lines 14–40 for whichi = 1 equalsbM̂1c − M̂1. By
Lemma 14, the sum of the weights of the donor tasks added
to Class1 in thewhile loop’s iteration wheni = 1 is exactly
equal tospare1 = bM̂1c − M̂1. Therefore, at line 39,̂M1

equalsM̂1 as of line 17, plusspare1, i.e., bM̂1c as of line
17. Thus,M̂1 is integral at line 39, and hence,bM̂1c = M̂1,
and the assignment in line 39 ensures thatP1 = M̂1.

Inspection of the code in lines 14–40 shows thati = 1
holds only for one iteration of thewhile loop in those lines.
Therefore,P1 is assigned exactly once. After the assign-
ment, P1 = M̂1 can fail to hold only if donor tasks are
added or removed after the assignment. Again, no newly
created donor tasks can be added to Class 1 after the first
iteration of thewhile loop. However, existing donor tasks
may be moved from some other class to Class 1 in thewhile
loop in lines 32–38. By Lemmas 15 and 12, and the test in
line 32, we havej 6= 1 for thewhile loop, and by Lemma 17,
M̂Supj is not altered by the execution in thewhile loop. In-
spection of the code in thewhile loop shows that only the
composition of Classesj andSupj may be altered. There-

fore, the value ofM̂1 is not altered afterP1 is set. 2

Lemma 19 Pc = bM̂ cc, for c ≥ 2.

Proof: Similar to the proof of Lemma 18. 2

Lemma 20 The sum of the weights of the donor tasks added
to Classc, wherec ≥ 3 is given by1− fc + wc.

Proof: Follows from Lemmas 5, 13, 14, and 16. 2

Lemma 21 The sum of the weights of the donor tasks added
to Classc, wherec ≥ 3, is greater thanwc and is at most
one.

Proof: By Lemma 20, the sum of the weights of the donor
tasks added to Classc is given by1 − fc + wc, where by
Lemmas 12 and 11,1 − fc + wc < 1. By Lemma 13, this
value is greater thanwc. 2

Lemma 22 If Classc, wherec ≥ 3 is augmented with a
donor taskDd with weightwd ≥ 5/6, thenwc > 1/2.

By (L3), fc > 2/3, and by Lemma 20, the sum of the
weights of the donor tasks added to Classc equals1− fc +
wc. Becausewd ≥ 5/6 and fc > 2/3, it implies that
1− fc + wc ≥ 5/6, or thatwc > 1/2. 2

Lemma 23 If Classc, wherec ≥ 3, is augmented with a
donor taskDd, thenwd > wc.

Proof Sketch: We have the following from Lemmas 5, 13,
and 14, and inspection of code in thewhile loop beginning
at line 14. Classc is augmented with donor tasks for the first
time in that iteration of thewhile loop of line 14, in which
i = c; the augmentation is in line 23 or 30 or both. The sum
of the weights of the donor tasks added is exactly equal to
sparec, as computed at the beginning of the iteration in line
17, and lines 23 and 30 are executed at most once. If only
one donor task is added, then the lemma follows directly
from Lemma 21. Hence, the lemma may be falsified only
if two donor tasks are added, one each in lines 23 and 30.
We show that if a donor taskDd with wd < wc is added to
Classc in an iteration of thewhile loop of line 14, then the
inner nestedwhile loop in lines 32–38ensures thatwd > wc

holds before the end of the iteration of the outerwhile loop,
without causing any other class to have donor tasks with
weights less than the weight of the donor task for that class.
(In the rest of this proof, references to thewhile loop are to
the inner loop.)

We consider the situation just after two donor tasks,Du

andDv, are added (at lines 23 and 30) to Classc and before
the execution of thewhile loop commences. We assume
that Classc is the only task with a donor task whose weight
is less thanwc. Therefore, the following holds.

(∀i : i ≥ 3 ∧ i 6= c :: (∀Dj ∈ λi :: wj > wi)) (39)

To show thatwd > wc holds at the end of thewhile loop,
we show that the following is an invariant of the loop. In the

13

rest of this proof, the values ofj andd are as dictated by the
code in lines 28–38.

(∀k : k ≥ 3 ∧ k 6= j :: (∀Dm ∈ λk :: wm > wk)) (40)

Initialization: Before the first iteration of thewhile loop,
j = c. Therefore, the invariant follows from (39).
Maintenance: We consider the following cases.

Case 1:j = c. j = c for the first iteration of thewhile loop.
BecauseDu andDv are the only donor tasks in Classc, by
Lemma 21,

wu + wv > wc. (41)

BecauseDu is added in line 23,wu = fu holds, where
fu > 2/3. (Otherwise,Du is added to Class1 or Class2 in
lines 1–7.) Becauseavail = sparec ≤ 1 (line 17), andwv

is assigned the value ofavail updated toavail−wu, which
is less than1/3 in line 25,wv < wu holds at line 30. Thus,
we havewv < wu.

d is assigned a value that is equal to the index of the sec-
ond donor task added to Classc in line 31. Therefore,d = v
holds, and within thewhile loop, Dv, which is lighter of
the two tasksDu andDv, is removed from Classc and is
added to ClassSupc, while wc is decreased bywv. Thus,
Classc now contains only one donor task,Du. By (41),
wu > wc − wv, wherewc − wv is the new value ofwc.
Therefore, at the end of the first iteration, Classc contains a
single donor taskDu with wu > wc. However, becauseDv

is moved to ClassSupc, wv > wSupc may not hold. But
thenj is updated toSupj in line 38, and becausej = c held
before the update, the loop invariant can be seen to hold at
the end of Iteration 1.

Case 2: j 6= c. Classj, wherej 6= c may have a donor
task with weight less thanwj only if during the previous it-
eration of the loop, a donor task, sayDr, were moved to to
Classj, and the weight of an existing donor task, sayDs,
(whose identity wasj in that iteration) were reduced bywr.
Because no other donor task, other thanDs, had its weight
altered, andDr is the only new donor task moved to Classj,
because (39) held prior to the execution of thewhile loop,
Dr andDs could be the only donor tasks in Classj with
their weights less thanwj . The lighter of these two donor
tasks, sayDr, is determined in line 37 during the previous
iteration, which in turn is moved toSupj during this itera-
tion. The weight ofDj is also appropriately reduced. It can
now be shown easily that the weight of the other donor task,
Ds, is greater thanwj . Therefore, at the end of this itera-
tion, Classj would not contain any donor task whose weight
is less thanwj . However, the class from which Classj bor-
rows, Supj , may now have donor tasks with weights less

thanwSupj . Becausej = Supj for the next iteration (by
the assignment in line 38), the loop invariant is maintained.

Termination: When the loop terminates,wd > wj , which

by the arguments for the two cases above implies that
Classj does not contain any donor task with weight less
thanwj . This fact, together with the loop invariant implies
that

(∀i : i ≥ 3 :: (∀Dj ∈ λi :: wj > wi))

2

Lemma 24 LetDm be a heavy donor task added to Classc,
wherec ≥ 3. Then,Dm is the only donor task inλc.

Proof: Let Dn be a second donor task added to Classc.
Then, by Lemma 21,wn > wc. By Lemma 20, the sum
of the weights of the donor tasks added to Classc equals
1− fc +wc. Therefore,1− fc +wc ≥ wm +wn. Because
wm ≥ 1/2 andwn > wc, we have1−fc +wc > 1/2+wc,
or fc < 1/2, which contradicts (L3). Therefore,Dm is the
only donor task added to Classc. 2

Lemma 25 wc = M̂ c − bM̂ cc.
Proof: We consider the following cases.

Case 1: c = 1. By Lemma 15,w1 = 0. By Lemma 18,
P1 = M̂1, which implies thatM̂1 is integral. Therefore,
M̂1 = bM̂1c, i.e., M̂1 − bM̂1c = 0, and hence, the lemma
holds for this case.

Case 2: c = 2. After the assignment in line 8,wc =
M̂ c−bM̂ cc holds. It can be shown that donor tasks are nei-
ther added to Class2 nor are their weights altered after this
assignment. (Because the classes to which Class2 supplies
do not have donor tasks added to them,j will never equal
the indices of those classes, and hence, 2, in thewhile loop
in lines 32–38, where donor tasks are moved across classes
or their weights are modified.)

Case 3:c ≥ 3 ∧wc = fc. In this case, by Lemma 11, donor
tasks are not added to Classc. Therefore,M̂ c = M c, and
hence,M̂ c−bM̂ cc = M c−bM cc, whereM c−bM cc = fc,
by (14).

Case 4:c ≥ 3 ∧wc 6= fc. By Lemma 12, we havewc < fc.
By Lemma 20, the sum of the weights of the donor tasks
added to Classc is given by1 − fc + wc. Therefore, by
(16),

M̂ c = M c + 1− fc + wc, (42)

which implies thatbM̂ cc = bM c + 1− fc + wcc, which
equalsbbM cc+ 1 + wcc by (14). Becausewc < fc and
fc < 1, we havebbM cc+ 1 + wcc = bM cc + 1. In other
words,

bM̂ cc = bM cc+ 1. (43)

From (42), we havewc = M̂ c − (M c + 1− fc), which by
(14) equalsM̂ c − (bM cc+ 1). Thatwc equalsM̂ c −bM̂ cc
then follows from (43). 2

Rules (R1)–(R5) can easily be seen to follow from the
lemmas in this subsection.

14

C Correctness Proof for the Scheduling
Phase

In this section, a complete correctness proof for the
scheduling phase of Algorithm I-EPDF is presented. For
brevity, we use “I-EPDF” to refer to its scheduling phase in
this section. Proving that I-EPDF is correct consists of prov-
ing that tasks inτ c are guaranteed a tardiness ofc. We do
this by showing that I-EPDF guarantees a tardiness ofc for
tasks inτ̂ c.

Based on the donor tasks they are augmented with, the
tardiness classes that result at the end of the distribution
phase may be classified as follows.

Type 1 Classc is of Type 1 iffwc = 0.

Type 2 Classc is of Type 2 iffwc > 0, and for allDd ∈ λc,
wd ≤ c

c+1 . In other words, Classc is of Type 2, iff the
weight of every donor task added to it is at most the
maximum weight permissible for a tardiness ofc.

Type 3 Includes every class that is not of Type 1 or Type 2.

Our proof obligation is to show that I-EPDF is correct for all
the three types of classes. For notational simplicity, we show
that I-EPDF correctly schedules the class with the lowest
index possible in each type. The resulting arguments can
easily be generalized to apply to classes with higher indices.

It can easily be verified that Class1, if non-empty, is of
Type 1. From (L2), we can conclude that Class2, if non-
empty, is of Type 1 or 2. Class3 and higher can be of any of
the three types. Therefore, we assume that Class1, Class2,
and Class3 are non-empty, are of Types 1, 2, and 3, respec-
tively, and prove that I-EPDF guarantees a tardiness of one,
two, and three, respectively, to these classes.

The total lagLAG of a task system, as discussed in
Sec. 2, if positive, is a measure of the extra demand on the
system in the future, over what it is equipped to handle.
Hence, ifLAG is high and work arrives at the prescribed
rate in the future, then the tardiness bounds may be violated.
Therefore, the proof for all the three classes primarily con-
sists of showing thatLAG does not increase to an amount
that is necessary for a violation.

C.1 Tardiness Bounds forτ̂1

The total utilizationM̂1 of τ̂1 (or a class of Type 1) is in-
tegral and the class is provided witĥM1 processors. Hence,
the proof of Theorem 1 in [9], which states that if the sum
of the M − 1 largest task weights is at mostM+1

2 , then a
tardiness of at most one can be guaranteed, can be applied
directly. Note that this implies a per-task weight restriction
of M+1

2M−2 , which converges to12 , for largeM . It can easily
be shown that if the weights of at most two tasks exceed1

2 ,

as is the case witĥτ1, by (L1), then the sum of theM − 1
largest task weights is at mostM+1

2 . In the proof in [9],
LAG is bounded by bounding the lags of individual tasks.
τ̂1 differs from the task systems considered there only in
the nature of the subtasks of its donor tasks due to the re-
set rule. However, this rule neither violates the feasibility
condition in (6) nor leads to an increased lag bound forDm,
and hence, correctness for Class1 follows directly from the
result in [9].

C.2 Tardiness Bounds forτ̂2

By Lemma 25,w2 = M̂2 − bM̂2c, and by Lemma 19,
P2 = bM̂2c. Thus, tasks in̂τ2 are assuredbM̂2c processors
at all times. By our assumption,w2 is non-zero, and because
D2 is added to Class1, tasks inτ̂2 will be provided with an
additional processor assigned to Class1, wheneverD2 is
scheduled in̂τ1. As mentioned earlier, a slott is callednon-
tight or tight based on whetherD2 is scheduled int or not.
Thus, in a non-tight slot,dM̂2e processors are available for
scheduling tasks in̂τ2, and in a tight slot,bM̂2c processors
are available. Our assumption thatw2 > 0 also implies that
dM̂2e 6= bM̂2c.

At time t, I-EPDF postpones the release time of the
next eligible subtask of a donor task tot + 1 in line 12, if
the class that the donor task serves cannot utilize an extra
processor att. This results in tight slott resembling a
non-tight slot to the served class. We distinguish such slots
by calling thempseudo-tight. Fig. 9 illustrates this. The
following is a formal definition of pseudo-tight slots.

Definition 1: A tight slot t is a pseudo-tight slotfor τ̂ c

if the release time of the next eligible subtask ofDc is
postponed tot + 1, and thus made ineligible, att.

There are a few other details that need explanation. First,
the next eligible subtask ofDc, Dc

i , is postponed att, only
if its deadline is later thant + 1. Next, if prior to the post-
ponement, the release time ofDc

i were earlier thant, then it
is replaced byDc

1.
Before considering pseudo-tight slots further, we de-

scribe the notion of an active task as introduced in [8], which
is used in later lemmas that concern such slots. The share
that a GIS task receives in the ideal system may be zero dur-
ing certain time slots, if subtasks are absent or are released
late. Tasks with and without subtasks at timet can be dis-
tinguished using the following definition of anactivetask.

Definition 2:[8] A taskU is activeat timet if it has a subtask
Uj such thate(Uj) ≤ t < d(Uj).

The next three lemmas are concerned with pseudo-tight
slots.

Lemma 26 Let a donor taskDc be inactive over time slots
[t1, t2], and active att2 + 1. Then,t2 is a pseudo-tight slot
for τ̂ c.

15

Class 1: M 1 = 7

9
7Class 1: M 1 = 7

9
7

2 4 6 8 10 12 14 16 18 20 22 24 2710 3 5 7 9 11 13 15 17 19 21 23 25 26
2 4 6 8 10 12 14 16 18 20 22 24 2710 3 5 7 9 11 13 15 17 19 21 23 25 26

=

9

2 4 2

Task D
X

=

9

2 4 2

Task D
X

X

X

X

X

X

Class 2: M Class 2: M

X

X

X
X

D 1

D

D

D

D

D

3

4

5

6

D

D 2

D

D
D

1

2

3

4

(a)
(b)

2

2
2

2

2

2

2
2 2

2 2

2

2
1

X − Non−tight Slots for Class 2.

Figure 9. Partial schedule of a soft real-time system with two classes, Class1 and Class2, whereM1 = 7 7
9

andM2 = 4 2
9
,

and hence,wt(D2) = w2 = 2
9
. (a) The windows of the first six subtasks ofD2 are depicted. No subtask ofD2 is postponed.

D2 is scheduled in time slots 2, 4, 12, 15, 22, and 26, which are marked by an ‘X’. Therefore, 5 processors are available for
scheduling tasks of Class2 in these slots, which are thus “non-tight” for Class2. The remaining slots are “tight.”(b) The release
times of subtasksD2

2 andD2
3 , are postponed at times 4 and 10, respectively. The release time of subtaskD2

5 is postponed at time
21. Becauser(D2

5) is originally 20, which is less than 21, the time of postponement, the index of the next subtask ofD2 is reset
to 1. 4, 10, and 21 are therefore pseudo-tight slots for Class2. Time slots marked by an ‘X’ are non-tight and the remaining slots
are tight.

Proof: For Dc to be inactive att2 and active att2 + 1, its
next eligible subtask att2 must have had its eligibility and
release times postponed tot2+1. Hence,t2 is a pseudo-tight
slot for τ̂ c. 2

Lemma 27 Let t be a pseudo-tight slot in a scheduleSc,
and let Dc be active int. Then,0 < share(Dc, t) <
wt(Dc) andlag(Dc, t) = −share(Dc, t).

Proof Sketch: Let Dc
j be the next eligible subtask ofDc

at t, andDc
i its predecessor. We consider the release times

and deadlines ofDc
j andDc

i beforeDc
j is postponed. Be-

causet is a pseudo-tight slot, by Def. 1,r(Dc
j) ≤ t. Be-

cause windows of successive subtasks can overlap by at
most one slot, this implies thatd(Dc

i) ≤ t + 1, and that
if d(Dc

i) = t + 1, then i = j − 1. After the postpone-
ment,e(Dc

j) = r(Dc
j) > t. Therefore, forDc to be active

in t, there should exist some other subtask satisfying Def. 2,
which by the previous discussion implies thatd(Dc

i) = t+1
andi = j − 1. The alignment of the windows ofDc

j−1 and
Dc

j must be as shown in Fig. 10(e). From the figure,Dc’s
share in slott equalsshare(Dc

j−1, t), which by (8) is less
thanwt(Dc).

We next show thatlag(Dc, t) = −share(Dc, t). Be-
causet is a pseudo-tight slot,Dc is not scheduled att. Be-
cause at a pseudo-tight slott, the release time of the next
eligible subtask ofDc is postponed, every preceding sub-
task ofDc has been scheduled. From Fig. 10(e), this im-
plies that, at timet, Dc is ahead of the ideal system by
an amount equal toDc’s share in slott. It follows that
lag(Dc, t) = −share(Dc, t). 2

Lemma 28 Let 0 < share(Dc, t) < wc. Thent = r(Dc
i)

or t = d(Dc
i)− 1, for somei > 0. In the former case,Dc

i is

released late, while in the latter case,Dc
i+1 is either absent

or is released late.

Proof: Becauseshare(Dc, t) =
∑

i f(Dc
i , t), and (8) im-

plies thatf(Dc
i , t) = wc if t 6= r(Dc

i) andt 6= d(Dc
i) − 1,

we havet = r(Dc
i) or t = d(Dc

i) − 1. Parts (b) and (c) of
Lemma 4 imply that in the former caseb(Dc

i−1) = 1. There-
fore, if Dc

i is not released late, thent = d(Dc
i−1)−1, which

by Lemma 4(d) implies thatshare(Dc, t) = wc, which is a
contradiction. A similar contradiction can be arrived at for
the latter case also, ifDc

i+1 is present and is not released
late. 2

Lemma 29 Let share(Dc, t) < wc and let t = r(Dc
i),

for somei > 0. Then Dc
i ’s predecessor isDc

i−1 and
share(Dc, d(Dc

i−1)−1) = wc−share(Dc, t). Also, every
slot in [d(Dc

i−1)− 1, t− 1] is pseudo-tight.

Proof Sketch: By Lemma 28,Dc
i is definitely released late.

It can be verified from lines 5–13 of Fig. 5 that I-EPDF in-
terrupts the periodic nature ofDc in one of the following
ways only. It postpones the release of the next eligible sub-
task, or makesDc

1 the next subtask, releasable at the next
time instant. In the latter case, it can be verified from (8)
thatf(Dc

1, r(D
c
1)) andshare(Dc, r(Dc

1)) equalwc. There-
fore, by the statement of the lemma, it should be the case
thati 6= 1. It can also be verified from the pseudo-code that
the indices of the subtasks ofDc occur in sequence, unless
reset to one. Therefore, the predecessor ofDc

i should be
Dc

i−1. Becauseshare(Dc, r(Dc
i)) < wc, from (9) and (8)

we have

f(Dc
i , r(D

c
i)) = share(Dc, r(Dc

i)) < wc, (44)

which by Lemma 4(b) implies that

b(Ti−1) = 1. (45)

16

t−1 t t+1t−1 t t+1

2
5

2
5

2
5

2
5

1
5

1
5

2
5

2
5

2
5

2
5

1
5

2
5

2
5

1
5

2
5

2
5

2
5

2
5

2
5

2
5

1
5

1
5

1
5

2
5

2
5

1
5

D i+1
c

D i+1
c

D i
c

D i
c

D i+1
c

Dj−1
c

D
i+1
c

D
i−1
c

D i
c

D 1
c

D i
c

Dj
c

D
i
c

(c)

pseudo−tight
slots

is inactive in t.D

tight

(d)

pseudo−tight
slot

not pseudo

t+2 tt−1

and prior subtasks complete
executing by t.

(f)

t t+1

(e)

(a)

(b)

pseudo−tight
slot

Dc is inactive in t.

, t)<1+f(D c , t−1)i+1

c

lag(D c

Figure 10. Two consecutive subtasksDc
i andDc

i+1 of Dc with weight 2/5. Flows are shown in each slot.(a) There is no IS
separation betweenDc

i andDc
i+1. The share ofDc equals its weight in all slots shown.(b) The release time ofDc

i+1 is postponed
at t− 1; hence, the share ofDc is less than its weight in botht− 1 andt, andt− 1 is a pseudo-tight slot.(c) The release time of
Dc

i+1 is postponed at botht− 1 andt; hence,Dc is inactive att, and its share is less than its weight int− 1 andt + 1. Botht− 1
andt are pseudo-tight.(d) The release time ofDc

i+1 is postponed att, but not att − 1; hence,Dc is inactive att, and its share is
less than its weight only int− 1. In this case, onlyt is pseudo-tight.(e)Lemmas 27 and 30.(f) Lemma 33.

Therefore, by Lemma 4(d),f(Dc
i−1, d(Dc

i−1) − 1) +
f(Dc

i , r(D
c
i)) = wc, or by (44),f(Dc

i−1, d(Dc
i−1) − 1) =

wc − share(Dc, r(Dc
i)). Because no subtask other than

Dc
i can overlap with the last slot ofDc

i−1 and Dc
i is re-

leased late, the share ofDc in that slot in the ideal system
is given by the flow received byDc

i−1. Therefore, we have
share(Dc, d(Dc

i−1)) = wc−share(Dc, r(Dc
i)). This com-

pletes the proof for the first part of the lemma. This is also
illustrated in Figs. 10(b) and (c).

To see that every slot in[d(Dc
i−1) − 1, t − 1] is pseudo-

tight first observe thatt − 1 is necessarily pseudo-tight. If
d(Dc

i−1) = t, then the proof is complete. Therefore, as-
sumed(Dc

i−1) < t. Next, consider the latest slott′ < t− 1
in the interval specified, that is not pseudo-tight. Because
b(Dc

i−1) = 1 (by (45)), if Dc
i is not postponed, then

r(Dc
i) = d(Dc

i−1) − 1. Also, I-EPDF postpones the re-
lease times of the subtasks ofDc by at most one slot (i.e., at
time t, it postpones the release time tot+1). Therefore, the
release time ofDc

i could not have been postponed tot′ + 1
or later, prior tot′. Therefore, becauset′ is not pseudo-
tight but t′ + 1 is, it implies thatr(Dc

i) as of timet′ + 1
should have been at or beforet′. If that were the case, then
I-EPDF would have replacedDc

i by Dc
1 (refer lines 9–12 of

Fig. 5), and hence, our assumption thatt′ is not pseudo-tight
is incorrect. Therefore, every slot in the interval specified is
pseudo-tight. 2

Lemma 30 If t is a pseudo-tight slot, thenlag(Dc, t+1) =
0.

Proof: If t is a pseudo-tight slot, then the release time of the
next releasable subtask ofDc is postponed att, as illustrated

in Fig. 10(d). Becauset is pseudo-tight, where the release
time of Dc

j is postponed,Dc
j−1 must have been scheduled

prior to t. Thus, by timet + 1, both the ideal and the ac-
tual systems have scheduled all ofDc’s subtasks up through
Dc

j−1 prior to t + 1. This implies thatlag(Dc, t + 1) = 0.
2

We prove that under I-EPDF the tardiness ofτ̂2 is at most
two, by contradiction. If not, thentd, τ , andτ̂2 defined as
follows exist. (In these definitions, it is assumed that for
the task systemsτ andσ mentioned, Classes 1 and 2 are
nonempty.)

Definition 3: td is the earliest subtask deadline for which
there is a violation under I-EPDF,i.e., there exists some task
systemτ with a subtask in̂τ2 with a deadline attd and a
tardiness of three, and there does not exist any other task
systemσ with a subtask in̂σ2 with a deadline prior totd
and a tardiness of three.

Definition 4: τ is a feasible task system with the follow-
ing properties.
(T1) td is the earliest deadline of a subtask inτ̂2 with a
tardiness of three under I-EPDF.

(T2) No other feasible task systemσ satisfying (T1)
contains fewer subtasks of tasks inσ̂2 thanτ .
(T3) No feasible task systemσ satisfying (T1) and (T2) has
a larger rank thanτ , where therank of a task systemτ at t
is defined as

∑
T∈τ̂2

∑
{Ti|d(Ti)≤td} e(Ti).

By (T1) and (T2), exactly one subtask in̂τ2 has a tardi-
ness of three: if several such subtasks exist, then all but one

17

can be removed and the remaining subtask will still have
a tardiness of three, contradicting (T2). Additionally, the
following assertions follow from the above properties and
definitions.

(A1) (∃Ti ∈ τ̂2 : d(Ti) = td ∧ tardiness(Ti) = 3)
(A2) (∀Ti ∈ τ̂2 : d(Ti) < td ⇒ tardiness(Ti) ≤ 2)
In the rest of this paper, we useS to denote an I-EPDF
schedule forτ andSc to denote that part ofS that corre-
sponds to the schedule forτ̂ c.

It is easy to see that the tardiness ofTi is not affected
by subtasks with deadlines greater thantd. Note that any
such subtask is scheduled beforetd only if no subtask with
a deadline at mosttd is eligible at that slot. Thus, by (T2),
we can assume that no subtask inτ̂2 has a deadline greater
thantd. In other words, the following holds.

(A3) (∀Ti ∈ τ̂2 : d(Ti) ≤ td).
We next determine the number of subtasks ofτ̂2 that should
miss their deadlines attd for τ̂2 to have a tardiness of three
(at td). Unless otherwise specified, all remaining lemmas
are assumed to apply tôτ2.

Lemma 31 The number of subtasks that have their dead-
lines at or prior totd and are not scheduled bytd is at least
2 · bM̂2c + k + 1, where1 ≤ k ≤ 2, is the number of
non-tight slots in the next two slots,td andtd + 1.

Proof: We prove the lemma fork = 1; the other cases
are similar. By (A1), some subtaskTi with a deadline at
td has a tardiness of three. It follows that this subtask is
scheduled in slottd + 2. Because bothtd and td + 1 are
tight, bM̂2c processors are available to the tasks inτ̂2 in
each of these slots. By (A3), it suffices to show thatbM̂2c
subtasks from̂τ2 are scheduled in each of these slots. First,
suppose that fewer thanbM̂2c such subtasks are scheduled
in slot td + 1. Then, becauseTi could not be scheduled
there, its predecessor must have been scheduled attd + 1.
But then,Ti’s predecessor would have a tardiness of at least
3, contradicting the fact that onlyTi has a tardiness of three
(and no subtask has greater tardiness). Having shown that
bM̂2c subtasks from̂τ2 are scheduled attd + 1, it follows
that the same is true oftd. Otherwise, one of the subtasks
scheduled attd+1 would have been eligible attd and hence,
would have been scheduled there. 2

From the above lemma, we have the following.

Lemma 32 LAG(τ̂2, td) is at least2 · bM̂2c+k+1, where
1 ≤ k ≤ 2 is the number of non-tight slots in the next two
slots,td andtd+1.

Proof: Again, we consider only whenk = 1. The ideal sys-
tem (by definition) completes the execution of every subtask
in τ̂2 (each of which, by (A3), has a deadline at or beforetd)
by timetd. By Lemma 31, Algorithm I-EPDF fails to sched-
ule at least2 · bM̂2c+ 1 of these subtasks by timetd. Thus,
LAG(τ̂2, td) ≥ 2 · bM̂2c+ 1. 2

The next three lemmas are concerned with the lag ofD2,
the donor task of̂τ1.

Lemma 33 −1 < lag(D2, t) < 1 + w2, for all t.

Proof: This lemma follows easily from the fact that a tardi-
ness of one is guaranteed for Class1. If a taskT may miss
its deadline by only at most one quantum, then its lag must
always be strictly less than1 + wt(T). The−1 lag bound
in the lemma holds because each subtask ofD2 has equal
eligibility and release times,i.e., the IS and PF windows for
such subtasks are always the same. 2

Lemma 34 If lag(D2, t) ≥ 1, and the next releasable sub-
task ofD2 is not postponed att, thent is non-tight.

Proof: If lag(D2, t) ≥ 1, then by (11),lag(D2, t+1) ≥ 1+
share(D2, t)−S(D2, t). If there are no IS separations, then
share(D2, t) = wt(D2) = w2. Therefore, ifD2 were not
scheduled att, thenlag(D2, t + 1) ≥ 1 + w2, contradicting
Lemma 33. Therefore,D2 is scheduled att, and thust is
non-tight. 2

Lemma 35 If lag(D2, t) ≥ k − w2, where1 ≤ k ≤ 2, and
the next releasable subtask ofD2 is not postponed att and
t + 1, then at leastk of slotst andt + 1 are non-tight.

Proof: We prove the lemma fork = 1. The proof fork = 2
is similar. If t is non-tight, the proof is complete. Therefore,
assumet is tight. If lag(D2, t) ≥ 1 − w2, then by (11),
lag(D2, t+1) ≥ 1−w2+share(D2, t)−S(D2, t). If there
are no IS separations, thenshare(D2, t) = w2. Therefore,
lag(D2, t + 1) ≥ 1, which by Lemma 34 implies thatt + 1
is non-tight. 2

In what follows, we obtain the desired contradiction by
showing thatLAG(τ̂2, td) is (i) less than2 · bM̂2c+ 1 if td
andtd + 1 are both tight,(ii) less than2 · bM̂2c + 2 if at
most one oftd andtd+1 is not non-tight, and(iii) less than
2 · bM̂2c + 3 if td and td + 1 are both non-tight, thereby
contradicting Lemma 32. We do this by establishing the
following.

LAG(τ̂2, td) ≤ 2 · bM̂2c+ lag(D2, td) + w2 (46)

It can be verified that if (46) holds, then Lemmas 33–35
imply that LAG(τ̂2, td) is always less than2 · bM̂2c + 3,
and is less than2 · bM̂2c+k+1, if at most2−k of the next
two slots are not non-tight.

To establish (46), a few more definitions are needed.
Some definitions and lemmas that follow apply to a generic
class, Classc, and are indicated as such. The remaining are
specific to Class2.

18

Holes [8]. Sometimes, the tasks in̂τ c may not be able to
fully utilize the processors allocated to them. Ifh processors
are idle at some timet, then we say that there areh holes
(with respect tôτ c) in t. Thus, a tight (or pseudo-tight) slot
has holes if fewer thanbM̂ cc tasks of̂τ c are scheduled there,
and a non-tight slot has holes if fewer thandM̂ ce tasks are
scheduled there.

Task classification[8]. Tasks within clasŝτ c may be clas-
sified as follows, based on whether they are active att.3

A(t): Set of all tasks that are active and scheduled att.

B(t): Set of all tasks that are active, but not scheduled att.

I(t): Set of all tasks that are inactive att.

A(t), B(t), andI(t) form a partition ofτ̂ c, i.e.,

A(t) ∪B(t) ∪ I(t) = τ̂ c ∧
A(t) ∩B(t) = B(t) ∩ I(t) = I(t) ∩A(t) = ∅. (47)

The following lemma concerns setB(t).

Lemma 36 If t is a pseudo-tight slot andLAG(τ̂ c, t+1) ≥
LAG(τ̂ c, t), thenB(t) is not empty.

Proof: Let h ≥ 0 be the number of holes int. Then, be-
causet is a pseudo-tight slot, the number of tasks sched-
uled at t is bM̂ cc − h. By (12), LAG(τ̂ c, t + 1) =
LAG(τ̂ c, t)+

∑
T∈τ̂ c share(T, t)− (bM̂ cc−h), which by

(47) equalsLAG(τ̂ c, t)+
∑

T∈A(t)∪B(t)∪I(t) share(T, t)−
(bM̂ cc − h). Becauseshare(T, t) = 0 for T ∈
I(t), it follows that LAG(τ̂ c, t + 1) = LAG(τ̂ c, t) +∑

T∈A(t)∪B(t) share(T, t) − (bM̂ cc − h). Because
LAG(τ̂ c, t + 1) ≥ LAG(τ̂ c, t) by the statement of the
lemma, we have

∑
T∈A(t)∪B(t) share(T, t) ≥ bM̂ cc −

h. By (10), share(T, t) ≤ wt(T), for all T . Hence,∑
T∈A(t)∪B(t) wt(T) ≥ bM̂ cc − h. Because|A(t)| =

bM̂ cc − h and wt(T) < 1 for all T , we have∑
T∈A(t) wt(T) < bM̂ cc − h. This, in turn, implies that∑
T∈B(t) wt(T) > 0, and thatB(t) is not empty. 2

The definition that follows identifies the last-released
subtask att of any taskU .

Definition 5: SubtaskUj is thecritical subtask ofU at t
iff e(Uj) ≤ t < d(Uj) and no other subtaskUk of U , where
k > j, satisfiese(Uk) ≤ t < d(Uk).

Lemma 37 If t is a pseudo-tight slot andB(t) is not empty,
then the critical subtask of every task inB(t) is scheduled
beforet.

3For brevity, we let the task system̂τc to be implicit in these definitions.

Proof: Let U be any task inB(t). BecauseU is active at
t, t lies within the eligibility interval of some subtask ofU .
Let Uk be any subtask satisfyinge(Uk) ≤ t < d(Uk) such
thatUk is scheduled aftert and its predecessor (if it exists)
is scheduled beforet. (BecauseU ∈ B(t), no subtask of
U is scheduled att.) Becauset is a pseudo-tight slot no
tasks other than those scheduled att are eligible att and the
number of such tasks is at mostbM̂ cc. Hence, ifUk were
eligible att, in addition to thebM̂ cc subtasks scheduled at
t, thent would not be a pseudo-tight slot, which is a contra-
diction. Thus, for all subtasksUk with e(Uk) ≤ t < d(Uk),
Uk is scheduled beforet, and in particular, this is true ofU ’s
critical subtask att. 2

Pseudo-tight slots are similar to non-tight slots with holes
in the following sense: in a pseudo-tight slot, up todM̂ ce
processors arepotentiallyavailable to the tasks in̂τ c but at
mostbM̂ cc such tasks are eligible; in a non-tight slot with
holes,dM̂ ce are (definitely) available to the tasks in̂τ c but
at mostbM̂ cc such tasks are eligible. Due to this similarity,
the following lemma, which was originally proved in [5]
concerning slots with holes, is valid.

Lemma 38 [5] Let t be a slot with holes or a pseudo-tight
slot, and letB(t) be non-empty. Lettb be the latest time
that a task inB(t) is scheduled beforet. Then, there exists
a subtaskWl scheduled att with e(Wl) ≤ tb, d(Wl) = t+1,
andS(W, t′) = 0, for all t′ ∈ [tb, t− 1]. Also, there are no
holes in[tb, t− 1].

The next four lemmas give estimates of lags of tasks in
A(t), B(t), andI(t) of τ̂2 at timet+1, wheret is a pseudo-
tight slot, or a slot with holes. The first two of these are
proved in [9], and apply to anŷτ c. The third can be proved
similarly.

Lemma 39 [9] Let t be a slot with holes or a pseudo-tight
slot in the scheduleSc for τ̂ c, and letW ∈ I(t). Then
lag(W, t + 1) = 0.

Lemma 40 [9] Let t be a slot with holes or a pseudo-tight
slot in the scheduleSc for τ̂ c, and letW ∈ B(t). Then
lag(W, t + 1) ≤ 0.

Lemma 41 Let t < td be a slot with holes or a pseudo-
tight in the scheduleS2 for τ̂2, slot and letW ∈ A(t). Then
lag(W, t + 1) < 3 · wt(W).

Lemma 42 Lett < td be a slot with holes or a pseudo-tight
slot in the scheduleSc for τ̂ c, and letB(t) be non-empty.
Then, there exists a taskW ∈ A(t) such thatlag(W, t +
1) < wt(W).

Proof: By Lemma 38, a subtaskWl is scheduled att with
d(Wl) = t + 1. Let Wk denoteWl’s successor. (If no
successor exists, the reasoning is as in Case 1 below.) We

19

2
5

2
5

1
5

2
5

D i
2

1
5

2
5

2
5

D i+1
2

D i+1
2

1
5

2
5

2
5

2
5

w2=

1
5

2
5

t’ t’’

iD 2

(a)

(b)

t

pseudo−tight

slots
pseudo−tight

tight

Figure 11. Lemma 44.

consider two cases depending on the value ofr(Wk).
Case 1: r(Wk) ≥ t + 1. In this case, both the actual and
ideal systems completely execute all subtasks ofW through
Wl by time t + 1 and no later subtasks ofW . Therefore,
lag(W, t + 1) = 0.

Case 2:r(Wk) ≥ t. Note that, in this case, the windows of
Wl andWk overlap by one slot, and hence by the definition
of a GIS system,k = l+1. By (3)–(4), we haver(Wl+2) ≥
t + 1. Therefore, any additional share thatW may receive
by time t in the ideal system is due to the flow received by
Wl+1 in the first slot of its window,i.e., f(Wl+1, t). Using
(10), it can be shown thatf(Wl+1, t) < wt(W). Hence,
lag(W, t + 1) < wt(W). 2

Lemma 43 td − 1 is not pseudo-tight.

Proof: The proof is by contradiction. By Lemma 31, at least
2 · bM̂2c + k, where1 ≤ k ≤ 3, is the number of subtasks
of τ̂2 with deadlines at or prior totd that are not sched-
uled bytd, and at mostk − 1 of the next two slots,td and
td + 1 are non-tight. Becausek ≥ 1, at least2 · bM̂2c + 1
subtasks miss their deadlines attd, and becausetd − 1 is
pseudo-tight, the number of tasks scheduled attd − 1 is at
mostbM̂2c. Thattd − 1 is pseudo-tight implies that at most
bM̂2c tasks are eligible attd − 1, and that all the subtasks
missing their deadlines attd have their predecessors sched-
uled attd − 1. That would imply that at least one task has
three of its subtasks missing their deadlines attd, which by
(3) implies that the tardiness of at least one subtask with a
deadline earlier thantd−1 and scheduled attd−1 is at least
three, contradicting (A2). 2

The three lemmas that follow will be used to show that
(46) is true.

Lemma 44 Let t < td be a pseudo-tight slot,t′′ > t,
the earliest time slot aftert that D2 is active, andt′ <
t′′, the latest time at or beforet that D2 was active. If

share(D2, t′′) < w2 and LAG(τ̂2, t′) ≤ 2 · bM̂2c +
lag(D2, t′) + w2, then LAG(τ̂2, t + 1) ≤ 2 · bM̂2c −
share(D2, t′) + w2. Else,LAG(τ̂2, t + 1) < 2 · bM̂2c,
which is less than2 · bM̂2c+ lag(D2, t + 1) + w2.

Proof Sketch: The conditions of the lemma are illustrated
in Fig. 11. We first show thatLAG(τ̂2, t + 1) < 2 · bM̂2c,
regardless ofD2’s share int′′. By (47),LAG(τ̂2, t + 1) =∑

T∈A(t)∪B(t)∪I(t) lag(T, t + 1), which by Lemmas 39–
41 implies thatLAG(τ̂2, t + 1) <

∑
T∈A(t) 3 · wt(T).

Becauset is pseudo-tight,|A(t)| ≤ bM̂2c, which by
(L2) yields LAG(τ̂2, t + 1) < 2 · bM̂2c. By Lemma 30,
lag(D2, t + 1) is zero, and hence,LAG(τ̂2, t + 1) is less
than2 · bM̂2c+ lag(D2, t + 1) + w2.

Next, consider the case that the share ofD2 in t′′ in the
ideal system is strictly less than its weight. This is illustrated
in Fig. 11(b). LetD2

i+1 beD2’s subtask that is released at
t′′. If t′ is the latest time slot at or beforet that D2 was
active, thent′ + 1 should be the deadline of the predecessor
of D2

i+1. By Lemma 29,D2
i+1’s predecessor isD2

i , and
hencet′ = d(D2

i) − 1. Therefore, by Lemma 29, we also
have

(∀t : t ∈ [t′, t′′ − 1] :: t is pseudo-tight). (48)

We next show that the bound stated in this lemma
(2 · bM̂2c − share(D2, t′) + w2) holds at everyt in L =
[t′, t′′], by induction ont. For the base case, lett = t′. Be-
causet′ is pseudo-tight by (48) andD2 is active int′, by
Lemma 27,

lag(D2, t′) = −share(D2, t′). (49)

From the statement of the lemma,LAG(τ̂2, t′) ≤
2 · bM̂2c+ lag(D2, t′) + w2, which by the above equation
implies thatLAG(τ̂2, t′) ≤ 2 · bM̂2c−share(D2, t′)+w2.
This establishes the base case.

Next, assuming thatLAG is at most 2 · bM̂2c −
share(D2, t′) + w2, att′ throught, wheret < t′′, we show
that the same bound applies att + 1. We consider two cases
depending on whetherB(t) is empty or not.

Case 1: B(t) = ∅. By (12) and (47),LAG(τ̂2, t + 1) =
LAG(τ̂2, t) +

∑
T∈A(t) share(T, t) −

∑
T∈A(t) S(T, t).

Because the share of every task is at most its weight, which
is strictly less than one, and the number of tasks sched-
uled att equalsA(t), the last equation above implies that
LAG(τ̂2, t + 1) < LAG(τ̂2, t). Therefore, by our induc-
tion hypothesis, we haveLAG(τ̂2, t + 1) < 2 · bM̂2c −
share(D2, t′) + w2.

Case 2:B(t) 6= ∅. For this case, by (47) and Lemmas 39–
41, we haveLAG(τ̂2, t + 1) ≤

∑
T∈A(t) lag(T, t + 1). By

Lemmas 41 and 42, the lag of at least one taskW in A(t)
is less than its weight, and the lag of the remaining tasks,
less than thrice their weights. Therefore,LAG(τ̂2, t + 1) is

20

less thanwt(W) +
∑

T∈A(t)−{W} 3 · wt(T). t is pseudo-

tight by (48), and hence,|A(t)| ≤ bM̂2c. This, together
with (L2), implies thatLAG(τ̂2, t + 1) < 2 · bM̂2c − 1,
which is less than2 · bM̂2c − share(D2, t′) + w2 (because
share(D2, t′) < 1). 2

Lemma 45 Let t < td be a tight slot and letLAG(τ̂2, t) ≤
2 · bM̂2c+lag(D2, t)+w2. Then, there exists at′, such that
t < t′ ≤ td andLAG(τ̂2, t′) ≤ 2 · bM̂2c + lag(D2, t′) +
w2.

Proof: Based on whether there are holes int or not, we con-
sider the following two cases.

Case 1: t contains one or more holes.Let h > 0 be the
number of holes int. Then,|A(t)| = bM̂2c − h. By (47),
LAG(τ̂2, t + 1) =

∑
T∈A(t)∪B(t)∪I(t) lag(T, t + 1), which

is then at most2 · bM̂2c − 2h, by Lemmas 39–41 and (L2).
Becauseh ≥ 1, 2 · bM̂2c − 2h ≤ 2 · bM̂2c − 2, which is
less than2 · bM̂2c + lag(D2, t + 1) + w2, by Lemma 33.
Thus,t′ = t + 1 for this case.

Case 2: There are no holes int. Becauset is tight,
S(D2, t) = 0. Therefore, by (11),

lag(D2, t + 1) = lag(D2, t) + share(D2, t). (50)

Because there are no holes int,
∑

T∈τ̂2 S(T, t) = bM̂2c.
Therefore, by (12),

LAG(τ̂2, t + 1) ≤ LAG(τ̂2, t) + M̂2 − bM̂2c
= LAG(τ̂2, t) + w2 (by Lemma 25) (51)

≤ 2 · bM̂2c+ lag(D2, t) + 2 · w2. (52)

(By the statement of the lemma.)

We consider two subcases, based on the share thatD2 re-
ceives in the ideal system.

Subcase 2(a):share(D2, t) = w2. For this case, by (50),
lag(D2, t+1) = lag(D2, t)+w2, which can be substituted
in (52) to yieldLAG(τ̂2, t + 1) ≤ 2 · bM̂2c+ lag(D2, t +
1) + w2. Thus,t′ = t + 1 for this subcase, too.

Subcase 2(b):0 < share(D2, t) < w2. By Lemma 28, the
condition of this subcase implies that eithert = r(D2

i) or
t = d(D2

i)− 1. We consider both possibilities.
If t = r(D2

i), then by Lemma 28,D2
i is released late.

From line 12 of I-EPDF, the postponement of release time
is by at most one time unit. Therefore,D2

i ’s release should
have been postponed att− 1, i.e.,

t− 1 is pseudo-tight. (53)

Hence, by Lemma 44,LAG(τ̂2, t) ≤ 2 · bM̂2c −
share(D2, t′) + w2, wheret′ is the latest time slot before
t thatD2 was active. Therefore,t′ + 1 should be the dead-
line of D2i’s predecessor. With the help of Lemma 29, it

can be concluded thatD2
i−1 is D2

i ’s predecessor inS1, t′ =
d(D2

i−1)− 1, andshare(D2, t′) = 1− share(D2, t). Sub-
stituting this value in the previous expression forLAG at t,
we haveLAG(τ̂2, t) ≤ 2 · bM̂2c− 1+ share(D2, t)+w2,
which on substitution in (51) gives

LAG(τ̂2, t + 1)
≤ 2 · bM̂2c − 1 + share(D2, t) + 2 · w2

= 2 · bM̂2c − 1 + lag(D2, t + 1)− lag(D2, t) + 2 · w2

(from 50)

= 2 · bM̂2c − 1 + lag(D2, t + 1) + 2 · w2

(By (53) and Lemma 30,lag(D2, t) = 0)

< 2 · bM̂2c+ lag(D2, t + 1) + w2. (by (L2))

On the other hand, ift = d(D2
i)− 1, then by Lemma 28,

D2
i+1 is released late. Lett′ be its eventual time of re-

lease. Thent′ − 1 is pseudo-tight, and hence by Lemma 44,
LAG(τ̂2, t′) is less than2 · bM̂2c + w2. Becauset′ − 1 is
pseudo-tight,lag(D2, t′) = 0, by Lemma 30. Therefore,
LAG(τ̂2, t′) < 2 · bM̂2c+w2 ≤ 2 · bM̂2c+ lag(D2, t′)+
w2. By Lemma 43,td − 1 is not pseudo-tight. Therefore,
t′ ≤ td − 1. 2

Lemma 46 Let t < td be a non-tight slot and let
LAG(τ̂2, t) ≤ 2 · bM̂2c + lag(D2, t) + w2. Then, either
LAG(τ̂2, t + 1) ≤ 2 · bM̂2c + lag(D2, t + 1) + w2 or
LAG(τ̂2, td) < 2 · bM̂2c+ 1 holds.

Proof: As with Lemma 45, we broadly consider two cases
depending on whether there are holes int or not.

Case 1: t contains one or more holes.By (47) and Lem-
mas 39–40,LAG(τ̂2, t+1) <

∑
T∈A(t) 3 ·wt(T). Because

t contains holes,|A(t)| ≤ bM̂2c, which together with (L2)
implies that

LAG(τ̂2, t + 1) < 2 · bM̂2c. (54)

Becauset is non-tight, it can contain a hole only under the
conditions in either of the two subcases that follow.

Subcase 1(a):t = d(D2
i) − 1 or t = d(D2

i), for some
i, andD2

i is scheduled att in S1. That it is possible fort
to contain a hole can be verified from lines 5–13 in Fig. 5.
Becauset + 1 ≥ d(D2

i) andS1 does not execute any other
subtask released later thanD2

i beforet + 1, it follows that

lag(D2, t + 1) ≥ 0. (55)

On the other hand, by (54), we haveLAG(τ̂2, t + 1) <
2 · bM̂2c, where, by (55), 2 · bM̂2c < 2 · bM̂2c +
lag(D2, t + 1) + w2. This completes the proof for this sub-
case.

Subcase 1(b):r(D2
i) ≤ t < d(D2

i) − 1, D2
i is scheduled

at t in S1, the number of subtasks ofτ̂2 that are eligible and

21

Ui

Dj
c

t

X

X

Non−tight slot
with a hole

[

timetime

t dt

Class 2

Class 1

Dj
2 X

Ui
X

Non−tight slot
with a hole

t d

Class

Class

c

d

(b)(a)

[]

d<c

c>2

()

()

Figure 12. Lemma 46(a) Subcase 1(b)-i.wt(U) ≥ 1/2. Becaused(Ui) > td, Ui is not present inS2. Therefore,t is a non-tight
slot with holes for̂τ2. (b) Subcase 1(b)-ii.wt(U) < 1/2.

scheduled att is bM̂2c+ 1− n, wheren ≥ 1, and there ex-
ists a set of subtasksτ ′, such that|τ ′| ≥ n and the following
holds.

(∀Ti ∈ τ ′ :: r(Ti) ≤ t ∧ d(Ti) > td ∧ all subtasks

of T precedingTi are scheduled inS2 beforet)(56)

Then, the tasks that are eligible att consist of the tasks of
subtasks of̂τ2 that are scheduled att and the tasks of sub-
tasks inτ ′. Therefore,E2, as determined att in line 13 of
Fig. 5 is at leastbM̂2c + 1 (or P2 + 1). Therefore, the
test in line 8 fails, and the release time ofD2

i is not post-
poned. However, the subtasks inτ ′ are not inτ̂2, by (A3)
and (56). Thus, the removal of then subtasks ofτ ′ from the
actual schedule to yieldS2, results in one or more holes
in t in S2. This is illustrated in Fig. 12. We show that
LAG(τ̂2, td) < 2 · bM̂2c + 1 as follows. Without loss of
generality, we assume thatt is the latest slot with a hole
and that there is no pseudo-tight slot aftert. (Otherwise, it
suffices to consider a later slot with a hole or a later pseudo-
tight slot.)

Let U be the task of some subtask inτ ′. Then, by (L2),
the weight ofU is greater than1/2. However, ifc > 2 and
Classc is of Type 3, then it is possible thatwt(U) < 1/2.
Therefore, we consider the two subcases that follow.

Subcase 1(b)-i:c = 2 and wt(U) ≥ 1/2. Fig. 12(a)
illustrates this subcase. LetUi be a subtask inτ ′. Be-
causewt(U) ≥ 1/2, by Lemma 1,Ui spans at most three
slots, i.e. d(Ui) − r(Ui) ≤ 3, which by (56) implies that
td ≤ t + 2. If td = t + 1, then (54) establishes the lemma.
On the other hand, iftd = t + 2, then as explained ear-
lier, t + 1 neither contains holes nor is it a pseudo-tight
slot. Therefore, ift + 1 is a non-tight slot, then by (12),

LAG(τ̂2, t + 2) = LAG(τ̂2, t + 1) + M̂2 − (bM̂2c + 1),
which is less than2 · bM̂2c, by (54), and ift + 1 is a tight
slot, thenLAG(τ̂2, t+2) = LAG(τ̂2, t+1)+M̂2−bM̂2c,
which by (54) and Lemma 25 is less than2 · bM̂2c + w2,
which is less than2 · bM̂2c+ 1.

Subcase 1(b)-ii: c > 2 and wt(U) < 1/2. As ex-
plained in the next subsection, (46) can be generalized to
LAG(τ̂ c, td) ≤ c·bM̂ cc+lag(Dc, td)+wc for Classc. Be-
causewt(U) < 1/2 for some task in̂τ c, wherec > 2, (W)
implies thatU is a donor task, sayDm, added to Classc.
Therefore, by Lemma 23, we have

wt(U) > wc. (57)

Let Ui be the subtask ofU that is scheduled att in the
non-truncated schedule for Classc and letDc

j be the sub-
task of Dc that is scheduled att in Sd, the schedule for
Classd, whered < c is the class that Classc borrows
from. This is illustrated in Fig. 12(b). Then, by (57) and

Lemma 1, |w(Ui)| ≤
⌈

1
wc

⌉
+ 1. BecauseUi ∈ τ ′,

by (56) we haved(Ui) > td, r(Ui) ≤ t, and hence,
|w(Ui)| = d(Ui) − r(Ui) ≥ td + 1 − t, which implies

thattd − (t + 1) ≤ |w(Ui)| − 2 ≤
⌈

1
wc

⌉
− 1. Generalizing

(54), we haveLAG(τ̂ c, t + 1) < c · bM̂ cc. Because there
are no slots with holes or pseudo-tight slots aftert, it can be
easily shown that the totalLAG of τ̂ c increases by at most
wc across any slot in[t + 1, td]. Therefore,LAG(τ̂ c, td) ≤
LAG(τ̂ c, t + 1) + (

⌈
1

wc

⌉
− 1) · wc < c · bM̂ cc+ 1.

Case 2: There are no holes int. This case can be proved
in a manner that is exactly similar to the proof for Case 2 of
Lemma 45. 2

22

BecauseLAG(τ̂2, 0) = 0 andlag(D2, 0) = 0, we have
LAG(τ̂2, 0) < 2 · bM̂2c+ lag(D2, 0) + w2. Therefore, by
Lemmas 44–46 above, either (46) is true, orLAG(τ̂2, td) <
2 · bM̂2c+ 1, which contradict Lemma 32. Therefore, (A3)
is false, or the tardiness ofτ̂2 under I-EPDF is at most two.

C.3 Tardiness Bounds forτ̂3

Finally, we are left with showing that the tardiness
bounds of classes of Type 3 are met under I-EPDF.

We begin by considering the following difference of in-
terest between a Type 2 class and a Type 3 class, and its
impact on the proof presented for a Type 2 class.

The weight of the donor tasks added to a Type 3
class may exceed the weight restrictions of the
class,i.e., the weight of a donor taskDm added
to Classc may be greater thanc

c+1 . However, by
Lemma 24 and (W), the number of such tasks is
at most one.

In this subsection, we consider in detail the implications
of this difference — the scheduling rule that it necessitates
and the changes to the proof presented in the previous sec-
tion that it entails.

The principal hurdle imposed when the weight of a donor
task (or any task for that matter) of a class exceeds the max-
imum permissible for that class is the following. The proof
strategy of the previous section consists of bounding the lag
of a task system at the end of a pseudo-tight slot or a slot
with holes by the sum of the lags of the tasks scheduled
in that slot. Because the lags of individual tasks are de-
termined by their weights, the existence of tasks that violate
the weight restrictions results in the bound determined using
this approach to exceed the value that needs be established
for (46) to hold. We overcome this hurdle as follows.

We first observe that because the donor task of Class3
(D3) is added to Class1, tardiness(D3) = 1, which is
two less than the tardiness that needs to be ensured for tasks
in Class3. As proved later, this property can be exploited
to weaken the right-hand side in the counterpart of (46) for
Class3 to 3 · bM̂3c + lag(D3, td) + 2 · w3. Note that the
difference is in the last term. By Lemma 22, if the weight of
the donor taskDm added to Class3 is at least5/6, thenD3

is heavy. This implies that2 · w3 ≥ 1, which is sufficient to
counter the increase in the total lag due to the presence of an
extra-heavy donor task. On the other hand, ifc

c+1 < wm ≤
5/6, we show that the tardiness bounds of any Classc are
not violated, even if the tardiness ofDc is as high asc − 1.
(For Class3 it would mean thattardiness(D3) can be up
to two.)

However, the difference between the tardiness that needs
to be ensured for a Type 3 class, say Classc, and the tardi-
ness of its donor taskDc may not be two, ifDc is not added
to Class1. To ensure this difference for all classes higher

than three, we introduce the following scheduling rule.

(R): Break ties involving the heavy donor task, if any, of
Class3 and higher, in favor of the donor task.

As shown later, (R) ensures a tardiness of at mostk − 1 for
the heavy donor task of Classk, if (46) is slightly strength-
ened. (If Class3 or above is of Type 1, then it can easily be
shown that no donor task added to the class is heavy. Hence,
(R) will not be applicable to that class, and therefore, the ar-
gument given for Type 1 classes is not impacted.)

The rest of this section contains a formal proof of the
informal summary given above.

Our goal now is to show the following.
(G1) I-EPDF ensures a tardiness of at mostc for Classc
that is of type 3 and is augmented with a donor taskDm

with weightwm exceeding c
c+1 .

(G2) I-EPDF (specifically, (R) of I-EPDF) ensures a tardi-
ness of at mostc−1 for a heavy donor task added to a Type 3
class,c.
Proof of (G1) is exactly similar to that of a Type 2 class
presented in Sec. C.2, if (G2) is known to hold. The justifi-
cation is as follows. Generalizing the arguments of Sec. C.2,
our goal would be to show thatLAG(τ̂ c, t) < c · bM̂ cc+k,
wherek ranges between one andc + 1, depending on the
tightness of thec slots starting att. If (G2) holds, then by
Lemma 53, the lag ofDm at the end of a slot with holes is
at mostc. By the same lemma, it can easily be shown that
the lag of a task inτ c at the end of such slots is also at most
c. Therefore,Dm does not cause the total lag ofτ̂ c to be
more than what it would be ifDm were like any other class
of τ̂ c, i.e., wc ≤ c

c+1 and tardiness ofDm is c. Hence, the
proof steps of the previous subsection can be used to show
that tardiness for Classc is at mostc. Therefore, it suffices
to show that (G2) holds.

We prove (G2) for two distinct cases.

Case A: 5/6 ≤ wm < 1.

Case B: 1/2 ≤ wm < 5/6.

C.3.1 Case A:5/6 ≤ wm < 1

As mentioned earlier, for simplicity, we prove this case for
Class 3,i.e., c = 3, and as before, the proof is by contradic-
tion.

If (G2) does not hold, thentd, τ , andτ̂3 defined as fol-
lows exist.

Definition 6: td is the earliest of the deadlines of the sub-
tasks ofDm with a tardiness of three under I-EPDF,i.e.,
there exists some task systemτ with a subtaskDm

l of Dm

in τ̂3 with a deadline attd and a tardiness of three, and there
does not exist any other task systemσ with a heavy donor
taskDk in σ̂3 with a subtask with a deadline prior totd and
a tardiness of three. Further, the tardiness of all other tasks
in τ̂3 is at most three attd.

23

Definition 7: τ is a feasible task system with the follow-
ing properties.
(T1) td is the earliest deadline of a subtask ofDm in τ̂3

with a tardiness of three under I-EPDF. The tardiness of all
other tasks of̂τ3 is at most three attd.

(T2) No other feasible task systemσ satisfying (T1)
contains fewer subtasks of tasks inσ̂3 thanτ .
(T3) No feasible task systemσ satisfying (T1) and (T2) has
a larger rank thanτ , where therank of a task systemτ at t
is defined as

∑
T∈τ̂3

∑
{Ti|d(Ti)≤td} e(Ti).

By (T1) and (T2), the deadline of every subtask inτ̂3

other thanDm
l is at mosttd − 1. SinceDm has a higher

priority over other tasks if there are ties, the presence of a
subtask with a deadline at or aftertd cannot affect where
Dm

l is scheduled, and hence can be removed. Additionally,
the following assertions follow from the above properties
and definitions.

(B1) ∃Dm
l ∈ τ̂3 : d(Dm

l) = td ∧ tardiness(Dm
l) = 3

(B2) (∀Ti ∈ τ̂3 : ((T 6= Dm ⇒ d(Ti) <
td ∧ tardiness(Ti) ≤ 3) ∧ ((T = Dm ∧ d(Ti) <
td) ⇒ tardiness(Ti) ≤ 2)))

We first show that the number of subtasks ofτ̂3 that miss
their deadlines attd − 1 is at least3 · bM̂3c.

Lemma 47 The number of subtasks that have their dead-
lines at or prior totd − 1 and are not scheduled bytd − 1
is at least3 · bM̂3c + k, wherek is the number of slots in
[td − 1, td + 1] that are non-tight.

Proof: We prove the lemma fork = 0; the other cases are
similar. By (B1),Dm

l is scheduled attd + 2. Because all of
td − 1, td, andtd + 1 are tight, onlybM̂3c processors are
available to the tasks in̂τ3 in each of these slots. By (B2), it
suffices to show thatbM̂3c subtasks from̂τ3 are scheduled
in each of these slots. First, suppose that fewer thanbM̂3c
such subtasks are scheduled in slottd + 1. Then, because
Dm

l could not be scheduled there, its predecessor must have
been scheduled attd+1. But then,Dm

l ’s predecessor would
have a tardiness of at least 3, contradicting the fact thatDm

l

is the only subtask ofDm with a tardiness of three. Having
shown thatbM̂3c subtasks from̂τ3 are scheduled attd + 1,
it follows that the same is true oftd andtd − 1. Otherwise,
one of the subtasks scheduled attd +1 (td) would have been
eligible attd (td−1) and hence, would have been scheduled
there. 2

From the above lemma, we have the following.

Lemma 48 LAG(τ̂3, td−1) is at least3 · bM̂3c+k, where
k is the number of slots in[td − 1, td +1] that are non-tight.

Proof: Similar to the proof of Lemma 32. 2

We next present lemmas concerning lag ofD3 att, which
will be used to derive an expression for the total lag ofτ̂3.
BecauseD3 is in τ̂1, the proofs of the first two lemmas are
the same as the proofs of Lemmas 33 and 34, respectively.

Lemma 49 −1 < lag(D3, t) < 1 + w3, for all t.

Lemma 50 If lag(D3, t) ≥ 1, and the next releasable sub-
task ofD3 is not postponed att, thent is non-tight.

The lemma that follows is the counterpart of Lemma 35
for D3.

Lemma 51 If lag(D3, t) ≥ k − 2 · w3, where1 ≤ k ≤ 3,
and the next releasable subtask ofD3 is not postponed att,
t + 1, andt + 2, then at leastk of the three slots in[t, t + 2]
are non-tight.

Proof: We prove the lemma fork = 1. If t or t + 1
is non-tight, then the proof is complete. Therefore, as-
sume otherwise. Iflag(D3, t) ≥ 1 − 2 · w3, then by (11),
lag(D2, t + 2) ≥ 1, because there are no IS separations and
D3 is not scheduled att andt + 1. The required result then
follows from Lemma 50. 2

In what follows, we obtain a contradiction to Lemma 48
by showing thatLAG(τ̂3, td − 1) is less than3 · bM̂3c+ k,
wherek of the three slots starting attd−1 are non-tight. We
do this by showing that

LAG(τ̂3, td−1) < 3 · bM̂3c−1+lag(D3, td−1)+2 · w3,
(58)

and appealing to Lemmas 49–51 to imply the contradiction.
As mentioned in the previous subsection, several lemmas

proved in that subsection apply to any generic class Classc,
and hence to Class3. We borrow them where needed.

Lemma 52 Let t < td − 1 be a slot with holes or a pseudo-
tight slot in scheduleS3 for τ̂3, and letW ∈ A(t). Then
lag(W, t + 1) < 4 · wt(W).

Proof: Similar to the proof of Lemmas 39–41 of the previ-
ous section.

Lemma 53 Let t be a slot with holes or a pseudo-tight slot
in scheduleSc for τ̂ c, and letW ∈ A(t). If the tardiness of
the subtask ofW scheduled att is k ≥ 0, thenlag(W, t +
1) < (k + 1) · wt(W).

Proof: Similar to the proof of Lemma 41.

Lemma 54 Let t < td − 1 be a slot with holes or a pseudo-
tight slot in scheduleS3 for τ̂3, and letW ∈ A(t). Then
lag(W, t + 1) < 3.

Proof: If W 6= Dm, then by (W),4·wt(W) = 3. Therefore,
by Lemma 52,lag(W, t+1) < 3. On the other hand, ifW =
Dm, thentardiness(W) = 2. Therefore, by Lemma 25
and (14),3 ·wm < 3, and by Lemma 53,lag(W, t+1) < 3.

2

24

Lemma 55 Lett < td−1 be a pseudo-tight slot,t′′ > t, the
earliest time slot aftert that D3 is active, andt′, the latest
time at or beforet that D3 was active. Ifshare(D3, t′′) <
w3 andLAG(τ̂3, t′) ≤ 3 · bM̂3c−1+ lag(D3, t′)+2 · w3,
thenLAG(τ̂3, t + 1) ≤ 3 · bM̂3c − 1 − share(D3, t′) +
2 · w3. Else,LAG(τ̂3, t + 1) < 3 · bM̂3c, which is less
than3 · bM̂3c − 1 + lag(D3, t + 1) + 2 · w3.

Proof Sketch: The conditions of the lemma are illustrated
in Fig. 11 (SubstituteD3, for D2, though). The proof of
this lemma follows that of Lemma 44 closely. The differ-
ences are in the constants in the expression forLAG, and
the bound on the lag ofD3. The proof for the first part
is exactly similar to the proof of the corresponding part in
Lemma 44, and hence it is omitted.

We next show thatLAG(τ̂3, t + 1) < 3 · bM̂3c, re-
gardless ofD3’s share int′′. By (47), LAG(τ̂3, t + 1) =∑

T∈A(t)∪B(t)∪I(t) lag(T, t + 1). By Lemmas 40, 39, and
54, LAG(τ̂3, t + 1) <

∑
T∈A(t) 3. Becauset is pseudo-

tight, |A(t)| ≤ bM̂3c, and hence,LAG(τ̂3, t + 1) <
3 · bM̂3c. Finally, we show that3 · bM̂3c < 3 · bM̂3c −
1 + lag(D3, t + 1) + 2 · w3. Becauset is pseudo-tight, by
Lemma 30,lag(D3, t + 1) = 0, and by the assumption for
this case thatw3 ≥ 5/6 and Lemma 22,w3 > 1/2. There-
fore, the required result follows. 2

Lemma 56 td−2 is neither pseudo-tight nor does it contain
holes.

Proof: Similar to the proof of Lemma 43. 2

Lemma 57 Let t < td − 1 be a tight slot and let
LAG(τ̂3, t) < 3 · bM̂3c − 1 + lag(D3, t) + 2 · w3. Then,
there exists at′, such that t < t′ ≤ td − 1 and
LAG(τ̂3, t′) < 3 · bM̂3c − 1 + lag(D3, t′) + 2 · w3.

Proof: The proof is exactly similar to that of Lemma 45,
and is hence, omitted. 2

Lemma 58 Let t be a non-tight slot and letLAG(τ̂3, t) <
3 · bM̂3c− 1+ lag(D3, t)+2 · w3. Then,(i) LAG(τ̂3, t+
1) < 3 · bM̂3c − 1 + lag(D3, t + 1) + 2 · w3, or (ii) ei-
ther LAG(τ̂3, td − 1) < 3 · bM̂3c, or LAG(τ̂3, td − 1) <
3 · bM̂3c+ 1 and one of the slots in[td − 1, td + 1] is non-
tight.

Proof: We broadly consider two cases depending on
whether there are holes int or not.

Case 1: t contains one or more holes.By (47) and Lem-
mas 39, 40, and 54,LAG(τ̂3, t+1) <

∑
T∈A(t) 3. Because

t contains holes,|A(t)| ≤ bM̂3c, which implies that

LAG(τ̂3, t + 1) < 3 · bM̂3c. (59)

Becauset is non-tight, it can contain a hole only under
the conditions in either of the two subcases that follow.

Subcase 1(a):t = d(D3
i) − 1 or t = d(D3

i), for somei,
andD3

i is scheduled att in S1. The proof for this subcase is
similar to that of its counterpart in Lemma 46.
Subcase 1(b):r(D3

i) ≤ t < d(D3
i) − 1, D3

i is scheduled
at t in S1, the number of subtasks of̂τ3 that are eligible
and scheduled att is bM̂3c + 1 − n, wheren ≥ 1, and
there exists a set of subtasksτ ′, such that|τ ′| ≥ n and the
following holds.

(∀Ti ∈ τ ′ :: r(Ti) ≤ t ∧ d(Ti) > td − 1 ∧ all subtasks

of T precedingTi are scheduled inS2 beforet)(60)

Then, the tasks that are eligible att consist of the tasks of
subtasks of̂τ3 that are scheduled att in S3 and the tasks of
subtasks inτ ′. Therefore,E3, as determined att in line 13
of Fig. 5 is at leastbM̂3c+1 (or P3 +1). Therefore, the test
in line 8 fails, and the release time ofD3

i is not postponed.
However, the subtasks inτ ′ are not inτ̂3, by (B2) and (60).
Thus, the removal of then subtasks ofτ ′ from the actual
schedule to yieldS3, results in one or more holes int in S3.
We show that in this case expression (ii) in the statement of
the lemma holds.

By (W), the assumption for this case thatw3 ≥ 5/6, and
Lemma 24, the weight of every task in̂τ3 is greater than
1/2. Let Ui be a subtask inτ ′. Then, becausewt(U) >
1/2, by Lemma 1,Ui spans at most three slots,i.e.d(Ui)−
r(Ui) ≤ 3, which by (60) implies thattd − 1 ≤ t + 2. If
td − 1 = t + 1, then (54) establishes the lemma. Therefore,
assuming thattd − 1 = t + 2, we first derive an expression
for the total lag att + 2.

Let Vk be a subtask inτ ′, Vj its predecessor, andVl, a
later subtask. Then, by (60) and (3),

d(Vj) ≤ t + 1 ∧ d(Vl) > td − 1. (61)

Because no subtask ofτ ′ is in τ̂3, Vk 6∈ τ̂3 and by (61) and
(B2), no subtasks that are later thanVk are inτ̂3. Thus, there
does not exist any subtask ofV , whose window overlaps slot
t + 1, and hence,V is inactive in slott + 1. Therefore, the
share ofV in t + 1 is zero in the ideal system, and hence,
the total share of the remaining tasks ofτ̂3 in t + 1 is given
by ∑

T∈τ̂3−{V }

share(T, t + 1)

≤
∑

T∈τ̂3−{V }

wt(T) (by (10))

=
∑

T∈τ̂3

wt(T)− wt(V)

= M̂3 − wt(V) (by (16))

25

≤ M̂3 − 2/3. (by (W), w3 ≥ 5/6, and Lemma 24)(62)

By (12), the total lag of̂τ3 at t + 2 is given by

LAG(τ̂3, t + 2) ≤ LAG(τ̂3, t + 1)+∑
T∈τ̂3−{V }

share(T, t + 1)−
∑

T∈τ̂3

S(T, t + 1). (63)

Becauset + 2 = td − 1, we havet + 1 = td − 2, and
hence, by Lemma 56, there are no holes int + 1. Therefore,
the second summation in the last expression above isbM̂3c
or bM̂3c + 1, depending on whethert + 1 is tight or non-
tight. (It is not pseudo-tight by Lemma 56.) Ift + 1 is non-
tight, then by (59) and (63),LAG(τ̂3, t + 2) < 3 · bM̂3c+
M̂3− 2/3−bM̂3c− 1, which by Lemmas 25 and 12 yields
LAG(τ̂3, t + 2) < 3 · bM̂3c, and completes the proof for
this subcase. Therefore, in what follows, we assume the
following.

t + 1 is tight. (64)

Hence, by (59) and (63), we haveLAG(τ̂3, t + 2) <
3 · bM̂3c+M̂3−2/3−bM̂3c, which by Lemma 25 implies
that

LAG(τ̂3, t + 2) < 3 · bM̂3c+ w3 − 2/3. (65)

We consider two subcases depending onw3.

Subcase 1(b)-(i):td − 1 = t + 2 ∧ w3 ≤ 2/3. For this
subcase,LAG(τ̂3, t + 2) < 3 · bM̂3c, from (65) and the
assumption thatw3 ≤ 2/3.

Subcase 1(b)-(ii):td − 1 = t + 2 ∧ w3 > 2/3. For this
subcase, we first observe that by (65) and becausew3 < 1,
LAG(τ̂3, t + 2) < 3 · bM̂3c + 1. We next show that one
of the slots in[t + 2, t + 4] is non-tight. If either oft + 2
andt + 3 is non-tight, the proof for the subcase is complete.
Therefore, assume that they are both tight. By Lemma 49,
lag(D3, t + 1) > −1. Therefore, by (11), (64), and our
assumtion thatt + 2 andt + 3 are tight,lag(D3, t + 4) >
−1 + 3 · w3, which by the assumption of this subcase that
w3 > 2/3 implies thatlag(D3, t + 4) > 1. Therefore, by
Lemma 50,t + 4 is non-tight. Becausetd − 1 = t + 2, we
havet + 4 = td + 1, and thus,td + 1 is non-tight.

Case 2: There are no holes int. This case can be proved
in a manner that is exactly similar to the proof for Case 2 of
Lemma 45. 2

By LAG(τ̂3, 0) = 0 andlag(D3, 0) = 0, Lemmas 55–
58 above can be seen to contradict Lemma 48. Therefore,
(B1) is false, or the tardiness ofDm under I-EPDF is at most
two.

Thus, we have established that I-EPDF ensures a tardi-
ness of at most three for tasks inτ3 and a tardiness of at
most two for the donor tasks with weights at least5/6, and
added to Class3. As mentioned earlier, the same proof can

be generalized to apply to Classc, wherec > 3.

C.3.2 Case B:1/2 ≤ wm < 5/6

If 1/2 ≤ wm < 5/6, in order to ensure that the tardiness
bound of Classm is met if the weight of the donor task
added to Classm exceeds5/6, a tardiness of at most two
needs to be ensured forDm. However, the assumption that
wc > 1/2 and hence, that the tardiness ofDc is at mostc−2
will not hold. In the case of Class3, while the tardiness of
D3 is at most one, it cannot be assumed that2 ·w3 is at least
one, and hence, the proof presented above does not hold for
all cases. Hence, in this subsection, we briefly show that I-
EPDF ensures a tardiness ofc to tasks inτ c and a tardiness
of c− 1 to Dm in this case also.

We prove this case for Class3, and for simplicity of no-
tation, only for Class4, among higher classes. Definitions 6
and 7, (B1), and (B2) of the previous case hold for this case
also. However, because the difference between the tardiness
of Classc and that of its dummy taskDc may not be greater
than one, we establish the inequality

LAG(τ̂3, td − 1) < 3 · bM̂3c − 1 + lag(D3, td − 1) + w3,
(66)

which is slightly stronger than (58). However, there are cer-
tain cases where we distinguish Class 3 from other higher-
indexed classes, where we establish (58) for Class 3 and (66)
for higher-indexed classes (by establishing it for Class 4).
(Recall that it is sufficient to establish (58) for Class 3 be-
cause the difference in the tardiness bounds ofτ̂3 andD3 is
guaranteed to be two regardless of the weight of the donor
tasks added to Class 3.)

If (66) does not hold, then it should be the case that
LAG(τ̂3, t) ≥ 3 · bM̂3c − 1 + lag(D3, t) + w3, for some
t ≤ td − 1. As illustrated earlier, the inequality can cease
to hold only at the end of a pseudo-tight slot or a non-
tight slot, t with holes. Because0 ≤ lag(D3, t + 1) < 1
for such t, we will only show thatLAG(τ̂3, t + 1) <
3 · bM̂3c − 1 + lag(D3, t) + w3, as opposed to giving a
full proof.

For the rest of the proof, the following hold.

(D) 1/2 ≤ wm < 5/6.
(E) w3 < 1/2.

Lemma 59 Let t < td − 1 be a psudo-tight slot or a slot
with holes, and letDm ∈ A(t). Then,LAG(τ̂3, t + 1) <
3 · bM̂3c − 1 + w3.

Proof Sketch: By techniques used earlier, it can be easily
shown that the total lag of̂τ3 at t + 1 is given by

LAG(τ̂3, t + 1) < 3 · bM̂3c − 3 + 3 · wm. (67)

We next show thatw3 > wm − 1/3.

Claim 1 w3 ≥ wm − 1/3.

26

By Lemma 20, the sum of the weights of the donor
tasks added to Class3 and higher is equal to1 −
fc+wc. BecauseDm is added to Class3, we have
wm ≤ 1 − f3 + w3, which implies thatw3 ≥
wm − 1 + f3. By (L3), f3 > 2/3, and hence,
w3 > wm − 1/3. 2

Therefore, if the lemma is false, then (67) would imply
that3 · bM̂3c − 3 + 3 ·wm ≥ 3 · bM̂3c − 1 + w3, which by
Claim 1 would imply that−3 + 3 ·wm > −1 + wm − 1/3,
or that2 · wm > 2 − 1/3, which implies thatwm > 5/6,
which is a contradiction to (D). 2

Lemma 60 Let t < td − 1 be a pseudo-tight slot or a slot
with holes, and letB(t) 6= ∅. Then,LAG(τ̂3, t + 1) <
3 · bM̂3c − 1 + lag(D3, t + 1) + w3.

Proof: By (47), LAG(τ̂3, t + 1) =∑
T∈A(t)∪B(t)∪I(t) lag(T, t + 1), which by Lemmas 39

and 40 givesLAG(τ̂3, t + 1) ≤
∑

T∈A(t) lag(T, t + 1).
BecauseB(t) is not empty, by Lemma 42, there exists
a taskW in A(t) such thatlag(W, t + 1) < wt(W).
By Lemma ??, the lag of the remaining tasks is at
most three. Becauset is either pseudo-tight or con-
tains holes, |A(t)| ≤ bM̂3c. Therefore, by (W),
LAG(τ̂3, t + 1) < 3 · bM̂3c − 3 + 3/4 = 3 · bM̂3c − 9/4,
which is less than3 · bM̂3c − 1 + lag(D3, t) + w3.

2

Lemma 61 Let t < td − 1 be a pseudo-tight slot or a slot
with holes, and letDm 6∈ A(t). Let the total number of
tasks inτ3 (tasks in Class3 excluding the donor tasks) be
greater thanbM̂3c, and letLAG(τ̂3, t) < 3 · bM̂3c − 1 +
lag(D3, t) + w3. Then,LAG(τ̂3, t + 1) < 3 · bM̂3c − 1 +
lag(D3, t + 1) + w3.

Proof: If B(t) 6= ∅, the required result follows from
Lemma 60. Therefore, assumeB(t) = ∅ for the rest of
the proof. We consider the following two cases.
Case 1:|A(t)| < bM̂3c. In this case, by (47),LAG(τ̂3, t+
1) =

∑
T∈A(t)∪B(t)∪I(t) lag(T, t + 1), which by Lem-

mas 39 and 40 givesLAG(τ̂3, t+1) ≤
∑

T∈A(t) lag(T, t+
1). By Lemma 53,lag(T, t + 1) < 3, for T ∈ A(t), which
by the assumption for this case yieldsLAG(τ̂3, t + 1) <
3 · bM̂3c−3, which is less than3 · bM̂3c−1− lag(D3, t+
1) + w3 (becauselag(D3, t + 1) > −1).
Case 2: |A(t)| = bM̂3c. By (12), LAG(τ̂3, t + 1) =
LAG(τ̂3, t) +

∑
T∈τ̂3(share(T, t) − S(T, t)). Because

the share of tasks inI(t) is zero, and the number of sub-
tasks scheduled att is bM̂3c, by (47),LAG(τ̂3, t + 1) =
LAG(τ̂3, t) +

∑
T∈A(t)∪B(t) share(T, t) − bM̂3c, which

by (10) and (47) gives

LAG(τ̂3, t+1) ≤ LAG(τ̂3, t)+
∑

T∈τ̂3−I(t)

wt(T)−bM̂3c.

(68)
By the statement of the lemma,|τ3| ≥ bM̂3c + 1, which
by (15) and becauseDm ∈ λ3, gives |τ̂3| ≥ bM̂3c + 2.
Because|A(t)| = bM̂3c, and by the assumption for this
case,|B(t)| = 0, by (47), |I(t)| ≥ 2, and hence, by (W)
and (D),

∑
T∈I(t) wt(T) > 1, which when substituted in

(68) givesLAG(τ̂3, t+1) ≤ LAG(τ̂3, t)+M̂3−1−bM̂3c,
which equalsLAG(τ̂3, t) + w3 − 1, by Lemma 25. It can
be shown thatlag(D3, t+1) ≥ lag(D3, t)−1+w3 (as has
been done earlier), irrespective of the nature oft, and hence,
thatLAG(τ̂3, t+1) ≤ 3 · bM̂3c−1+ lag(D3, t+1)+w3.

2

Unless otherwise stated, we assume the following for the
lemmas that follow.

(C) |τ c| = bM̂ cc, c ≥ 3.

Lemma 62 Let t < td − 1 be a tight slot with holes. Then
LAG(τ̂3, t + 1) < 3 · bM̂3c − 3.

Proof: Follows from the fact thatA(t) ≤ bM̂3c − 1, tardi-
ness of every task inτ3 is at most three, (W), and Lemma 53.

2

Lemma 63 Let t be a pseudo-tight slot or a non-tight slot
with holes. Ift is non-tight, then letd(D3

i) ≤ t, whereD3
i

is the subtask ofD3 scheduled att in S1. Thenlag(D3, t +
1) ≥ 0.

Proof: Straightforward. 2

The two lemmas that follow can be used to infer about
the tardiness of the subtask ofDm that was scheduled at the
latest time beforet, if Dm is inactive att.

Lemma 64 Let Dm
i be a subtask ofDm whose release is

postponed. Then, the tardiness of the predecessor ofDm
i is

zero.

Proof: Assume not. LetDm
h be the predecessor ofDm

i .
Let t′ be the slot in whichDm

h is scheduled. Then, by our
assumption,d(Dm

h) ≤ t′. If there are no IS separations,
then by (2),r(Dm

h+1) ≤ t′, and becausewm > 1/2, using
Lemma 2, it can be easily shown that

d(Dm
h+1) ≤ t′ + 2. (69)

((69) holds because it can be shown that the length of the
window ofDm

h+1, |w(Dm
h+1)|, is two if b(Dm

h) = 0 and is at
most three ifb(Dm

h) = 1.) BecauseDm
h is scheduled int′,

the release time ofDm
h+1 cannot be postponed att′. Because

27

(69) holds, the rules of I-EPDF prohibit its postponement
at t′ + 1 or later. (Refer line 9 in Fig. 5.) Therefore, the
assumption that the tardiness ofDm

h is greater than zero is
false. 2

Lemma 65 Let t be a slot with holes or a pseudo-tight slot,
and let Dm ∈ I(t). Let Dm

i be the last subtask ofDm

scheduled beforet. Thentardiness(Dm
i) = 0.

Proof: Becauset is a pseudo-tight slot, the release time
of the next schedulable subtask is postponed att. By
Lemma 64, the tardiness of its predecessorDm

i is at most
zero. 2

Lemma 66 Lett be a tight slot in scheduleSc for τ̂ c, where
c = 3 or c = 4, and letDm ∈ A(t). Let the tardiness of the
subtask ofDm scheduled att bek. If t + 1 is non-tight or
Dm 6∈ A(t + 1), thenLAG(τ c, t + 2) < c · bM̂ cc − c +
(k + 2) c

c+1 .

Proof: By (C), τ c = bM̂ cc. Therefore, becauset is tight
andDm is scheduled att, there is at least one taskT in τ c

that is not scheduled att. This implies that the deadline of
the next eligible subtaskTi of T is not less than the deadline
of any other subtask that is scheduled att, specifically, that
of subtaskDm

j of Dm scheduled att. The conditions speci-
fied in the lemma imply that, if eligible,Ti can be scheduled
att+1. By the previous argument, the tardiness ofT att+2
will at most bek + 2. The tardiness of all other tasks is at
mostc resulting in the bound stated in the lemma. 2

Lemma 67 Let t be a pseudo-tight slot in scheduleSc for
τ̂ c, wherec = 3 or c = 4. and letDm ∈ A(t). If t+1 is non-
tight orDm 6∈ A(t+1), thenLAG(τ c, t+2) < c·bM̂ cc−c.

Proof: The reasoning is similar to that of Lemma 66. Be-
causet is pseudo-tight,|τ c| = bM̂ cc, andDm is sched-
uled at t, there is at least one taskT that is ineligible at
t. It is easy to see thatlag(T, t + 1) ≤ 0. Because
Dm is not scheduled att + 1 or t + 1 is non-tight, T
can be scheduled att + 1, if eligible. Therefore, by (11)
lag(T, t + 2) = lag(T, t + 1) − 1 + wt(T) < 0. The tar-
diness of the remaining tasks inτ c is at mostc at t + 2, and
therefore, their lags are at mostc, which gives the bound
stated in the lemma. 2

Lemma 68 LetDm
i be a subtask ofDm scheduled at some

time t. Let tardiness(Dm
i) = k and letDm

h be the prede-
cessor ofDm

i . Then,tardiness(Dm
h) ≤ k + 1.

Proof: If tardiness(Dm
h) = 0, then the proof is com-

plete. Therefore, assume thattardiness(Dm
h) > 0, which

by Lemma 64 implies that there are no IS or GIS separations

betweenDm
h andDm

i . By the statement of the lemma, sub-
taskDm

i is scheduled att with a tardiness ofk. Therefore,

d(Dm
i) = t + 1− k. (70)

We consider two cases based on the length of the window of
Dm

i .
Case 1:|w(Dm

i)| = 2. By (70), we haver(Dm
i) = t−k−1.

Because there are no IS separations betweenDm
h andDm

i ,
by (2), we haved(Dm

h) = t − k − 1 or d(Dm
h) = t − k.

Becauset− 1 is the latest time thatDm
h is scheduled, if the

former holds, thentardiness(Dm
h) ≤ t−(t−k−1) = k+1,

and if the latter holds, thentardiness(Dm
h) ≤ t−(t−k) =

k.
Case 2: |w(Dm

i)| = 3. In this case, we haver(Dm
i) =

d(Dm
i)−3 = t−k−2, and by parts (d) and (b) of Lemma 2,

that d(Dm
h) = t − k − 1. Therefore, becauseDm

h can be
scheduled no later thant − 1, we havetardiness(Dm

h) ≤
k + 1. 2

Lemma 69 Let t < td − 1 be a pseudo-tight slot or a non-
tight slot with holes, and letDm ∈ I(t). Let t′ < t be the
latest slot in whichDm is scheduled beforet, and lett′ be
tight or pseudo-tight. Then,LAG(τ̂3, t + 1) < 3 · bM̂3c −
1 + lag(D3, t + 1) + w3.

Proof: Let τ ′ denote the set of all tasks that are inτ3 and
scheduled att′. Then,

τ ′ = {T |T ∈ τ3 ∧ T ∈ A(t′)}. (71)

Then, by (47),

LAG(τ̂3, t + 1) = lag(Dm, t + 1) +
∑

T∈τ3−τ ′
lag(T, t + 1)

+
∑

T∈τ ′
lag(T, t + 1). (72)

We consider two cases depending on whethert′ is tight or
pseudo-tight.

Case 1: t′ is pseudo-tight. Becauset′ is pseudo-tight,
|A(t′)| ≤ bM̂3c. Therefore, becauseDm is scheduled at
t′, by (C),

|τ ′| ≤ bM̂3c − 1. (73)

BecauseDm is not scheduled aftert′, by (C), if eligible,
every task inτ3, can be scheduled at each slot. Because
every task inτ3−τ ′ is either inI(t′), or its critical subtask at
t′ has a tardiness of zero, tardiness is zero for every subtask
of a task inτ3 − τ ′ that is scheduled aftert′. BecauseDm

is inactive att, lag(Dm, t + 1) = 0, which by (72), (W),
and Lemmas 39, 40, 52, and 53 yieldsLAG(τ̂3, t + 1) <
3 · bM̂3c−9/4, which is less than3 · bM̂3c−1+lag(D3, t+
1) + w3.

Case 2: t′ is tight. Let Dm
i be the subtask ofDm that is

28

scheduled att′. Then, by Lemma 65,tardiness(Dm
i) = 0,

which implies thatd(Dm
i) ≥ t′+1. By the conditions of the

lemma and this subcase,k = |τ ′| ≤ bM̂3c − 1. Let W be
a task inτ3 − τ ′, and letWj be the next eligible subtask of
W . BecauseDm

i is scheduled att′, and has its deadline at
or aftert′ + 1, we haved(Wj) ≥ t′ + 1. BecauseDm is not
scheduled aftert′, by (C), every task ofτ3, if eligible, can
be scheduled at every slot followingt′. Therefore, tardiness
is at most one for every subtask of a task inτ3 − τ ′ that is
scheduled aftert′. BecauseDm is inactive att, lag(Dm, t+
1) = 0, which by (72), (W) and Lemmas 39, 40, 52, and
53 yieldsLAG(τ̂3, t + 1) < 3 · bM̂3c − 3/2, which by
Lemma 63 is less than3 · bM̂3c− 1+ lag(D3, t+1)+w3.

2

In the three lemmas that follow, we assume that ift is
non-tight, thend(Dc

i) ≤ t + 1, whereDc
i is the subtask of

Dc scheduled att in SSupc , wherec = 3 or c = 4, as the
case may be. The proof for whend(Dc

i) > t+1 is the same
as the proof for Subcase 1(b) of Lemma 58.

Lemma 70 Let t < td − 1 be a pseudo-tight slot or a non-
tight slot with holes, and letDm ∈ I(t). Let the slot in
which the last subtask ofDm is scheduled beforet be non-
tight. Then,LAG(τ̂3, t + 1) < 3 · bM̂3c − 1 + 2 · w3.

Proof: We prove this lemma by considering the earliest slot
t′ beforet where the following hold. (i) SubtaskDm

i of
Dm is scheduled att′ and tardiness(Dm

i) = 0. (ii) t′

is non-tight. (iii) Every slot where a subtaskDm
j of Dm

that is released later thanDm
i is scheduled is non-tight, and

tardiness(Dm
j) = 0. Thatt′ exists can be verified from the

statement of the lemma.
Let Dm

h be the predecessor ofDm
i . (Dm

h exists. Other-
wise, every task inτ3 is schedulable (if eligible) in every
slot in [0, t] and will have a tardiness of zero att+1.) Then,
by (i)–(iii), Dm

h is either scheduled in a slot that is not non-
tight or tardiness(Dm

h) > 0 or both hold. By Lemmas 64
and 68,tardiness(Dm

h) ≤ 1. Let Dm
h be scheduled att1.

Then,t1 ≤ t′ − 1. We consider the following cases based
on the nature oft1.

Case 1: t1 is tight or pseudo-tight. In this case, by Lem-
mas 66 and 67,LAG(τ3, t1 + 1) < 3 · bM̂3c − 3/4 (sub-
stituting c = 3 andk = 1). BecauseDm is only sched-
uled in a non-tight slot aftert1, by (C), every task inτ3, if
eligible, can be scheduled at every instant aftert1. There-
fore,LAG(τ3, t+1) and hence,LAG(τ̂3, t+1) is less than
3 · bM̂3c− 3/4, which is less than3 · bM̂3c− 1 + 2 ·w3 <
3 · bM̂3c − 2/3. (By Lemma 14,w3 ≥ 1/6.)

Case 2:t1 is non-tight.
We now consider the latest timêt beforet1, thatDm is

scheduled in a tight slot with a tardiness of two. (Again,
such ât exists. Otherwise, every task inτ3 is schedulable in
every slot in[0, t].) Therefore,̂t ≤ t′ − 2. Because,Dm is

only scheduled in a non-tight slot aftert̂, by (C), every task
in τ3 is scheduled in every slot if eligible. We consider two
cases depending on whether all tasks inτ3 are scheduled in
every slot in[t̂ + 1, t]. If some task inτ3 is not scheduled in
a slot, then its tardiness is zero, att, and henceLAG(τ̂3, t+
1) < 3 · bM̂3c − 2. On the other hand, if every task is
scheduled in every slot thenLAG(τ3, t+1) = LAG(τ3, t̂+
2) +

∑t

u=t̂+2

∑
T∈τ3(share(T, u) − S(T, u)). Because

every task inτ3 is scheduled in everyu,
∑

T∈τ3 S(T, u) =

bM̂3c. By (10) and (13),
∑

T∈τ3 share(T, u) ≤ M3, for
every u. Therefore, the summation in the expression for
LAG just above isM3 − bM̂3c. FromM̂3 = M3 + wm

andM̂3−bM̂3c = w3, it easily follows thatM3−bM̂3c =
w3 − wm. Becauset > t̂ + 2, we havet − t̂ − 1 ≥ 2, and
henceLAG(τ3, t + 1) < LAG(τ3, t̂ + 2) + 2 · (w3 −wm).
It can easily be shown thatLAG(τ3, t̂ + 2) < 3 · bM̂3c.
If 3 · bM̂3c − 2 · (wm − w3) > 3 · bM̂3c − 1 + 2 · w3,
then it implies that−2 · (wm − w3) > −1 + 2 · w3, or
2 · (wm −w3) < 1− 2 ·w3, which implies thatwm < 1/2,
which is a contradiction to (D). 2

Finally, we prove the above lemma for Class4. (A sepa-
rate proof for Class4 is necessary because we need to show
thatLAG(τ̂4, t+1) < 4 · bM̂4c−1+w4.) Based on earlier
discussion, we have the following assumptions.

(D) 1/2 ≤ wm < 5/6. (E) w4 < 1/2.
We begin by proving a slightly stronger tardiness bound

for τ̂4, when the number of tasks inτ4 is one,i.e., bM̂4c =
1. In other words, we show that whenbM̂4c = 1, I-EPDF
ensures a tardiness of at most three forτ̂4. By arguments
similar to what have been used several times until now, to
show that I-EPDF ensures a tardiness of at most three toτ̂4

(i.e., to the lone task inτ4 andDm), it suffices to show that
LAG(τ̂4, t̂) ≤ 3 · bM̂4c + lag(D4, t̂), i.e., LAG(τ̂4, t̂) ≤
3 + lag(D4, t̂), for all t̂. For brevity, we only show that
this lag bound is maintained across pseudo-tight slots and
non-tight slots with holes.

Lemma 71 Let t < td − 1 be a pseudo-tight slot or a non-
tight slot with holes. IfbM̂4c = 1 andLAG(τ̂4, t) ≤ 3 ·
bM̂4c+ lag(D4, t), thenLAG(τ̂4, t + 1) ≤ 3 · bM̂4c.

Proof: Let T be the only task inτ4. Then, by (D) and
Lemma 24, there are only two tasks inτ̂4, T andDm, and
by Lemma 25 and (16), the following holds.

1 + w4 = wt(T) + wm

⇒ wm = 1 + w4 − wt(T)
⇒ wm < 1 + 1/2− 3/4 (from (E) and (W))

⇒ wm ≤ 3/4. (74)

Becauset is a pseudo-tight slot or a non-tight slot with
holes, at most one task is scheduled int. We consider two
cases depending on whetherDm is scheduled int.

29

Case 1:Dm is scheduled int. For this case, by Lemma 53
and (74),lag(Dm, t+1) < 4 ·wm = 3, and by Lemmas 39
and 40,lag(T, t + 1) ≤ 0. Therefore,LAG(τ̂4, t + 1) < 3,
which proves the lemma.

Case 2:Dm is not scheduled int. For this case, we con-
sider two subcases depending on the nature of the slot in
which the last subtask ofDm is scheduled beforet.
Subcase 2(a): Dm was last scheduled in a tight or
pseudo-tight slot beforet. As it was shown in Lemma 69,
it can be shown that the tardiness of the subtask ofT sched-
uled att is at most one, and hence, thatLAG(τ̂4, t + 1) <
8/5.
Subcase 2(b):Dm was last scheduled in a non-tight slot
before t. For this case, we consider the earliest slott′

beforet in which the following hold. (i) SubtaskDm
i of

Dm is scheduled att′ and tardiness(Dm
i) = 0. (ii) t′

is non-tight. (iii) Every slot where a subtaskDm
j of Dm

that is released later thanDm
i is scheduled is non-tight and

tardiness(Dm
j) = 0. From the statement of the lemma it is

easy to see that such at′ exists.
Let Dm

h be the predecessor ofDm
i . Then, by (i)–(iii),

Dm
h is either scheduled in a slot that is not non-tight or

tardiness(Dm
h) > 0 or both hold. By Lemmas 64 and 68,

tardiness(Dm
h) ≤ 1. Let Dm

h be scheduled att1. Then,
t1 ≤ t′ − 1. We consider the following subcases based on
the nature oft1.

Subcase 2(b)-i:t1 is tight or pseudo-tight. In this case, by
Lemma 53,lag(T, t1 + 1) < 3 · (4/5) = 12/5. By (i)–(iii)
andbM̂4c = 1, T can be scheduled in every slot aftert1.
Therefore, it can be shown thatlag(T, t + 1), and hence,
LAG(τ̂4, t + 1) < 3.

Subcase 2(b)-ii: t1 is non-tight. For this case, we con-
sider the predecessorDm

g of Dm
h . By Lemmas 64 and 68,

tardiness(Dm
g) ≤ 2. If tardiness(Dm

g) ≤ 1, then the
lemma can be shown to hold using the arguments used for
Case 1. Therefore, for the rest of this case, asume that
tardiness(Dm

g) = 2. BecauseDm
h is scheduled att1,

Dm
g cannot be scheduled later thant1 − 1, i.e., t′ − 2.

Therefore, the tardiness of the subtask ofT scheduled at
t1 can be as high as three, and hence, by Lemma 53 and
(W), lag(T, t1 + 1) < 4 · (4/5). Again, by (i)–(iii) and
bM̂4c = 1, T can be scheduled at every slot later thant1.
Therefore, because there are at least two slots in the interval
[t1 + 1, t], lag(T, t + 1) ≤ lag(T, t1) − 2(1 − wt(T)) <
16/5− 2 · (1/5) = 14/5 < 3. 2

We next prove the counterpart of Lemma 70 for Class4
whenbM̂4c > 1.

Lemma 72 Let t < td − 1 be a pseudo-tight slot or a slot
with holes, and letDm ∈ I(t). Let bM̂4c > 1 and the
slot in which the last subtask ofDm is scheduled beforet be
non-tight. IfLAG(τ̂4, t) < 4 · bM̂4c−1+ lag(D4, t)+w4,
thenLAG(τ̂4, t + 1) < 4 · bM̂4c − 1 + w4.

Proof:
As with Lemma 70, we prove this lemma by consid-

ering the earliest slott′ before t in which the following
hold. (P1) SubtaskDm

i of Dm is scheduled att′ and
tardiness(Dm

i) = 0. (P2) t′ is non-tight. (P3) Every slot
where a subtaskDm

j of Dm that is released later thanDm
i

is scheduled is non-tight andtardiness(Dm
j) = 0. By our

assumptions, we have

t′ ≤ t− 1. (75)

We first establish the following claim.

Claim 2 Let D4
i be the subtask ofD4 scheduled

at t′ in τ̂3. Then,d(D4
i) ≤ t′ + 1.

Proof: Assume to the contrary thatd(D4
i) >

t′+1. Then, it is easy to see thatlag(D4
i , t′+1) <

0. Therefore, by (75) and the statement of the
lemma,LAG(τ̂4, t′ + 1) < 4 · bM̂4c − 1 + w4.
By (C), (P2) and (P3), every task inτ4, if eli-
gible, can be scheduled att′, and in every slot
following t′ until t, i.e., in every slot in the in-
terval [t′, t]. If some task inτ4 is not scheduled
in some slot in[t′, t], then it should be the case
that the task is either inactive or is ineligible at
that slot, using which it can be concluded that its
tardiness att + 1 is zero. Hence, it would eas-
ily follow that LAG(τ̂4, t + 1) < 4 · bM̂4c − 3.
On the other hand, if every task inτ4 is sched-
uled in every slot in[t′, t], then the lag of each
task att + 1 is less than its lag att′ + 1, i.e.,
LAG(τ̂4, t + 1) < 4 · bM̂4c − 1 + w4. 2

Let Dm
h be the predecessor ofDm

i . Then, by (P1)–(P3),
Dm

h is either scheduled in a slot that is not non-tight or
tardiness(Dm

h) > 0 or both hold. By Lemmas 64 and 68,
tardiness(Dm

h) ≤ 1. Let Dm
h be scheduled att1. Then,

t1 ≤ t′ − 1. We consider the following cases based on the
nature oft1.

Case 1: t1 is tight or pseudo-tight. In this case, by Lem-
mas 66 and 67, and becausetardiness(Dm

h) ≤ 1, we have
LAG(τ4, t1 + 1) < 4 · bM̂4c − 8/5. By (C), every task in
τ4 can be scheduled in every slot followingt1 . Therefore,
it can be shown thatLAG(τ̂4, t + 1) < 4 · bM̂4c − 8/5.

Case 2: t1 is non-tight. For this case, we consider
the predecessorDm

g of Dm
h . By Lemmas 64 and 68,

tardiness(Dm
g) ≤ 2. If tardiness(Dm

g) ≤ 1, then the
lemma can be shown to hold using the arguments used for
Case 1. Therefore, for the rest of this case, assume that
tardiness(Dm

g) = 2. BecauseDm
h is scheduled att1, Dm

g

cannot be scheduled later thant1−1, i.e., t′−2. We consider
two subcases based on the nature oft2, the slot in whichDm

g

30

is scheduled. By the discussion above, we have

t2 ≤ t′ − 2. (76)

Subcase 2(a):t2 is tight or pseudo-tight. By Lemmas 64
and 68,LAG(τ4, t2 + 2) < 4 · bM̂4c − 4/5 (because it
can be shown that the tardiness of the subtask of taskT not
scheduled att2 is at most three). Again, by (C), every task
in τ4 can be scheduled at every slot that followst2. By (75)
and (76), we have at least two slots in the interval[t2 +
2, t]. Therefore,LAG(τ4, t + 1) ≤ LAG(τ4, t2 + 2) −
2(bM̂4c − M4). BecausebM̂4c − M4 can be shown to
be equal towm − w4, it follows that LAG(τ4, t + 1) ≤
LAG(τ4, t2 + 2) − 2(wm − w4). If LAG(τ4, t + 1) is
greater than or equal to4 · bM̂4c − 1 + w4, then it implies
that−4/5−2(wm−w4) > −1+w4, orwm < 1/5+w4/2,
which by (E) implies thatwm < 9/20, which contradicts
(D).

Subcase 2(b):t2 is non-tight. For this subcase, we consider
the latest timet3 beforet2, thatDm is scheduled in a tight
slot with a tardiness of three. Becauset2 ≤ t′ − 2, we have

t3 ≤ t′ − 3. (77)

We consider two more subcases based ont3.
Subcase 2(b)-i: t3 < t′ − 3. By (B2), the tardiness of
every subtask that is scheduled att3 + 1 is at most four.
Becauset3 < t′ − 3 andt′ < t, there are at least five slots
in the interval[t3 + 1, t + 1]. Because every task inτ4 can
be scheduled in every slot that followst3, and by (W), the
weight of every task inτ4 is at most4/5, it can be shown
that the tardiness of the subtask of every task scheduled at
t is at most three. By Lemma 53, this would imply that
LAG(τ4, t + 1) < 16 · bM̂4c/5. If LAG(τ4, t + 1) >
4 · bM̂4c− 1 + w4, then it would imply that16 · bM̂4c/5 >
4 · bM̂4c − 1 + w4, i.e., w4 < 1 − 4 · bM̂4c/5. Because
bM̂4c > 1, this would imply thatw4 < −3/5, which is
false.
Subcase 2(b)-ii:t3 = t′ − 3. If t3 = t′ − 3, then it would
imply that t2 = t′ − 2 andt1 = t′ − 1. Therefore, by the
conditions of this subcase, we havet′, t′ − 1, andt′ − 2 to
be non-tight. We first establish the following claim.

Claim 3 w4 ≥ 1/3.
Proof: Assume to the contrary thatw4 < 1/3.
Let D4

i be the subtask ofD4 that is scheduled
at t′. Then, by Claim 2,d(D4

i) ≤ t′ + 1. We
prove the claim ford(D4

i) = t′ + 1. The proof
for d(D4

i) < t′ + 1 is similar. If r(D4
i) ≥ t′ − 2,

thenw(D4
i) ≤ 3, which by Lemma 3 contradicts

the assumption thatw4 < 1/3. Therefore, as-
sumer(D4

i) ≤ t′ − 3. Let D4
h be the predecessor

of D4
i . Then, by (3) and (4),d(D4

h) ≤ t′ − 2.
If r(D4

h) ≥ t′ − 5, then w(D4
h) ≤ 3, which

would contradict our assumption and satisfy the

claim. On the other hand, ifr(D4
h) ≤ t′ − 6,

then by (3) and (4),d(D4
g) ≤ t′ − 5, whereD4

g

is the predecessor ofD4
h. BecauseD4 ∈ τ̂3,

tardiness(D4) ≤ 3, which implies that the lat-
est time thatD4

g may be scheduled ist′ − 3. This
would imply thatD4 is not scheduled in at least
on slot in[t′ − 2, t′], i.e., at least one of[t′ − 2, t′]
is not non-tight, which contradicts the conditions
for this subcase. Therefore, the assumption that
w4 < 1/3 is false. 2

By (C), there is at most one taskT in τ4 that is not
scheduled int3. Every task inτ4 − T , if eligible, can
be scheduled in every slot in[t3, t]. We next show that
tardiness(U, t+1) ≤ 3 for at least one taskU in τ4−T . If
tardiness(U, t3 +1) = 3, then becauseU can be scheduled
in every slot in[t3, t], if eligible, its tardiness att + 1 is at
most its tardiness att3 + 1, i.e., tardiness(U, t + 1) ≤ 3.
On the other hand, iftardiness(U, t3 + 1) = 4, then we ar-
gue as follows. Becauset3 = t′ − 3 ≤ t− 4, the number of
slots spanning the interval[t3, t+1] is at least five. Because
wt(U) ≤ 4/5, it can be easily shown that at most four sub-
tasks ofU have their deadlines in consecutive slots. This in
turn implies that if the subtaskUi of U scheduled att3 has a
tardiness of four, andU is scheduled in every slot following
t3 up tot, then at most three subtasks that followUi can have
a tardiness of four. In other words,tardiness(U, t+1) ≤ 3.
Therefore,LAG(τ̂4, t + 1) < 4 · bM̂4c− 1 + 1/5, which is
less than4 · bM̂4c − 1 + 1/3.

2

31

