
Real-Time Scheduling on Multicore Platforms (Full Version) ∗

James H. Anderson, John M. Calandrino, and UmaMaheswari C. Devi

Department of Computer Science

The University of North Carolina at Chapel Hill

October 2005

Abstract

Multicore architectures, which have multiple processing units on a single chip, are widely viewed as a way to achieve higher pro-

cessor performance, given that thermal and power problems impose limits on the performance of single-core designs. Accordingly,

several chip manufacturers have already released, or will soon release, chips with dual cores, and it is predicted that chips with up to

32 cores will be available within a decade. To effectively use the available processing resources on multicore platforms, software

designs should avoid co-executing applications or threads that can worsen the performance of shared caches, if not thrash them.

While cache-aware scheduling techniques for such platforms have been proposed for throughput-oriented applications, to the best of

our knowledge, no such work has targeted real-time applications. In this paper, we propose and evaluate a cache-aware Pfair-based

scheduling scheme for real-time tasks on multicore platforms.

Keywords: Multicore architectures, multiprocessors, real-time scheduling.

∗Work supported by NSF grants CCR 0309825 and CNS 0408996. The third author was also supported by an IBM Ph.D. fellowship.

1 Introduction

Thermal and power problems limit the performance that single-processor chips can deliver. Multicore architectures, or chip multi-

processors, which include several processors on a single chip, are being widely touted as a solution to this problem. Several chip

makers have released, or will soon release, dual-core chips. Such chips include Intel’s Pentium D and Pentium Extreme Edition,

IBM’s PowerPC, AMD’s Opteron, and Sun’s UltraSPARC IV. A few designs with more than two cores have also been announced.

For instance, Sun expects to ship its eight-core Niagara chip by early 2006, while Intel is expected to release four-, eight-, 16-, and

perhaps even 32-core chips within a decade [20].

Core 1

L1

L2

L1

Core M

Figure 1: Multicore architecture.

In many proposed multicore platforms, different cores share either on- or off-chip caches.

To effectively exploit the available parallelism on these platforms, shared caches must not be-

come performance bottlenecks. In this paper, we consider this issue in the context of real-time

applications. To reasonably constrain the discussion, we henceforth limit attention to the mul-

ticore architecture shown in Fig. 1, wherein all cores are symmetric and share a chip-wide L2

cache. This general architecture has been widely studied. Of greatest relevance to this paper

is prior work by Fedorova et al. [12] pertaining to throughput-oriented systems. They noted that L2 misses affect performance to

a much greater extent than L1 misses. This is because the cost of an L2 miss can be as high as 100-300 cycles, while the penalty

of an L1 miss that can be serviced by the L2 cache is just a few cycles. Based on this fact, Fedorova et al. proposed an approach

for improving throughput by reducing L2 contention. In this approach, threads that generate significant memory-to-L2 traffic are

discouraged from being co-scheduled.

The problem. The problem addressed herein is motivated by the work of Fedorova et al.—we wish to know whether, in real-time

systems, tasks that generate significant memory-to-L2 traffic can be discouraged from being co-scheduled while ensuring real-time

constraints. Our focus on such constraints (instead of throughput) distinguishes our work from Fedorova et al.’s. In addition, for

simplicity, we assume that each core supports one hardware thread, while they considered multithreaded systems.

Other related work. The only other related paper on multicore systems known to us is one by Kim et al. [15], which is also

directed at throughput-oriented applications. In this paper, a cache-partitioning scheme is presented that uniformly distributes the

impact of cache contention among co-scheduled threads.

In work on (non-multicore) systems that support simultaneous multithreading (SMT), prior work on symbiotic scheduling is

of relevance to our work [14, 18, 21]. In symbiotic scheduling, the goal is to maximize the overall “symbiosis factor,” which is a

measure that indicates how well various thread groupings perform when co-scheduled. To the best of our knowledge, no analytical

results concerning real-time constraints have been obtained in work on symbiotic scheduling.

Proposed approach. The need to discourage certain tasks from being co-scheduled fundamentally distinguishes the problem at

hand from other real-time multiprocessor scheduling problems considered previously [8]. Our approach for doing this is a two-step

process: (i) combine tasks that may induce significant memory-to-L2 traffic into groups; (ii) at runtime, use a scheduling policy that

reduces concurrency within groups.

1

The group-cognizant scheduling policy we propose is a hierarchical scheduling approach based on the concept of a megatask. A

megatask represents a task group and is treated as a single schedulable entity. A top-level scheduler allocates one or more processors

to a megatask, which in turn allocates them to its component tasks. Let γ be a megatask comprised of component tasks with total

utilization I + f , where I is integral and 0 < f < 1. (If f = 0, then component-task scheduling is straightforward.) Then, the

component tasks of γ require between I and I + 1 processors for their deadlines to be met. This means that it is impossible to

guarantee that fewer than I of the tasks in γ execute at any time. If co-scheduling this many tasks in γ can thrash the L2 cache,

then the system simply must be re-designed. In this paper, we propose a scheme that ensures that at most I + 1 tasks in γ are ever

co-scheduled, which is the best that can be hoped for.

Example. Consider the following four-core example in which the objective is to ensure that the combined working-set size [11]

of the tasks that are co-scheduled does not exceed the capacity of the L2 cache. Let the task set τ be comprised of three tasks each

of weight (i.e., utilization) 0.6 and working-set size 200 KB (Group A), and four tasks each of weight 0.3 and working-set size 50

KB (Group B). (The weights of the tasks are assumed to be in the absence of heavy L2 contention.) Let the capacity of the L2 cache

be 512 KB. The total weight of τ is 3, so co-scheduling at least three of its tasks is unavoidable. However, since the combined

working-set size of the tasks in Group A exceeds the L2 capacity, it is desirable that the three co-scheduled tasks not all be from this

group. Because the total utilization of Group A is 1.8, by combining the tasks in Group A into a single megatask, it can be ensured

that at most two tasks from it are ever co-scheduled.

Contributions. Our contributions in this paper are four-fold. First, we propose a scheme for incorporating megatasks into a Pfair-

scheduled system. Our choice of Pfair scheduling is due to the fact that it is the only known way of optimally scheduling recurrent

real-time tasks on multiprocessors [5, 22]. This optimality is achieved at the expense of potentially frequent task migrations.

However, multicore architectures tend to mitigate this weakness, as long as L2 miss rates are kept low. This is because, in the

absence of L2 misses, migrations merely result in L1 misses, which do not constitute a significant expense. Second, we show that

if a megatask is scheduled using its ideal weight (i.e., the cumulative weight of its component tasks), then its component tasks

may miss their deadlines, but such misses can be avoided by slightly inflating the megatask’s weight. Third, we show that if a

megatask’s weight is not increased, then component-task deadlines are missed by a bounded amount only, which may be sufficient

for soft real-time systems. Finally, through extensive experiments on a multicore simulator, we evaluate the improvement in L2

cache behavior that our scheme achieves in comparison to both a cache-oblivious Pfair scheduler and a partitioning-based scheme.

In these experiments, the use of megatasks resulted in significant L2 miss-rate reductions (a reduction from 90% to 2% occurred in

one case—see Table 2 in Sec. 4). Indeed, megatask-based Pfair scheduling proved to be the superior scheme from a performance

standpoint, and its use was much more likely to result in a schedulable system in comparison to partitioning.

In the rest of the paper, we present an overview of Pfair scheduling (Sec. 2), discuss megatasks and their properties (Sec. 3),

present our experimental evaluation (Sec. 4), and discuss avenues for further work (Sec. 5).

2

2 Background on Pfair Scheduling

Pfair scheduling [5, 22] can be used to schedule a periodic, intra-sporadic (IS), or generalized-intra-sporadic (GIS) (see below)

task system τ on M ≥ 1 processors. Each task T of τ is assigned a rational weight wt(T) ∈ (0, 1] that denotes the processor share

it requires. For a periodic task T , wt(T) = T.e/T.p, where T.e and T.p are the (integral) execution cost and period of T . A task is

light if its weight is less than 1/2, and heavy, otherwise.

Pfair algorithms allocate processor time in discrete quanta; the time interval [t, t + 1), where t ∈ N (the set of nonnegative

integers), is called slot t. (Hence, time t refers to the beginning of slot t.) All references to time are non-negative integers. Hence,

the interval [t1, t2) is comprised of slots t1 through t2 − 1. A task may be allocated time on different processors, but not in the

same slot (i.e., interprocessor migration is allowed but parallelism is not). A Pfair schedule is formally defined by a function

S : τ × N 7→ {0, 1}, where
∑

T∈τ S(T, t) ≤ M holds for all t. S(T, t) = 1 iff T is scheduled in slot t.

Periodic and IS task models. In Pfair scheduling, each task T is divided into an infinite sequence of quantum-length subtasks,

T1, T2, · · ·. Each subtask Ti has an associated release r(Ti) and deadline d(Ti), defined as follows.

r(Ti) = θ(Ti) +

⌊

i − 1

wt(T)

⌋

∧ d(Ti) = θ(Ti) +

⌈

i

wt(T)

⌉

(1)

In (1), θ(Ti) denotes the offset of Ti. The offsets of T ’s various subtasks are nonnegative and satisfy the following:

k > i ⇒ θ(Tk) ≥ θ(Ti). (2)

T3

T1

0 1 2 3 4 5 76 8

T3

T2

T1

0 1 2 3 4 5 76 80 1 2 3 4 5 76

T3

T2

T1

(a) (b) (c)

Figure 2: (a) Windows of the first three subtasks of a periodic
task T with weight 3/7. (b) Windows of an IS task. Subtask T2

is released one time unit late. (c) Windows of a GIS task. T2 is
absent and T3 is released one time unit late.

T is periodic if θ(Ti) = c holds for all i (and is synchronous also if

c = 0), and is IS, otherwise. Examples are given in insets (a) and

(b) of Fig. 2. The restriction on offsets implies that the separation

between any pair of subtask releases is at least the separation between

those releases if the task were periodic. The interval [r(Ti), d(Ti))

is termed the window of Ti. The lemma below concerning window

lengths follows from (1).

Lemma 1 (from [4]) The length of any window of a task T is either
⌈

1
wt(T)

⌉

or
⌈

1
wt(T)

⌉

+ 1.

GIS task model. A GIS task system is obtained by removing subtasks from a corresponding IS (or GIS) task system. Specifically,

in a GIS task system, a task T , after releasing subtask Ti, may release subtask Tk, where k > i + 1, instead of Ti+1, with the

following restriction: r(Tk) − r(Ti) is at least
⌊

k−1
wt(T)

⌋

−
⌊

i−1
wt(T)

⌋

. In other words, r(Tk) is not smaller than what it would have

been if Ti+1, Ti+2, . . . ,Tk−1 were present and released as early as possible. For the special case where Tk is the first subtask released

by T , r(Tk) must be at least
⌊

k−1
wt(T)

⌋

. Fig. 2(c) shows an example. Note that a periodic task system is an IS task system, which in

turn is a GIS task system, so any property established for the GIS task model applies to the other models, as well.

3

Pfair scheduling algorithms. Pfair scheduling algorithms schedule tasks by choosing at most M eligible subtasks at the beginning

of every time slot. At present, three optimal Pfair scheduling algorithms —PF [5], PD [6], and PD2 [4, 22]—and one suboptimal

algorithm—earliest pseudo-deadline first (EPDF) [4]—are known. An optimal algorithm correctly schedules any GIS task system τ

for which
∑

T∈τ wt(T) ≤ M holds. In all of these algorithms, a subtask with an earlier deadline has a higher priority than one with

a later deadline. The optimal algorithms use additional rules to resolve ties among subtasks with the same deadline. In fact, the three

optimal algorithms differ only in their tie-breaking rules; PD2 is the most efficient of the three and its tie-breaking rules subsume

those of the other two algorithms. The suboptimal EPDF algorithm uses no tie-breaking rules, but resolves all ties arbitrarily.

3 Megatasks

C
o
m
p
o
n
e
n
t

T
a
s
k
s

o
f

M
e
g
a
t
a
s
k

deadline
miss

−
−2
8

−
−5
8

−
−7
8

−
−4
8

−
−1
8

−
−3
8

−6
8

1−2
8

0 −2
8

−4
8

0

−
−2
8

−
−5
8

−
−7
8

−
−4
8

−
−1
8

−
−3
8

−1
8

−4
8

−2
8

0
−
−5
8

−
−2
8

0

X
X

X

X

X

X
X

X

X

X
X

X

X

X

X
X

X
X

X

X

F (3/8)

1/3

1/8

11/12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

LAG (γ, t)

lag (F,t)

Figure 3: PD2 schedule for the component (GIS) tasks of a
megatask γ with Wsum = 1 + 3

8
. F represents the fictitious

task associated with γ. γ is scheduled using its ideal weight
by a top-level PD2 scheduler. The slot in which a subtask
is scheduled is indicated using an “X.” γ is allocated two
processors in slots where F is scheduled and one processor
in the remaining slots. In this schedule, one of the processors
allocated to γ at time 8 is idled and a deadline is missed at
time 12.

A megatask is simply a set of component tasks to be treated as a single

schedulable entity. The notion of a megatask extends that of a supertask,

which was proposed in previous work [17]. In particular, the cumula-

tive weight of a megatask’s component tasks may exceed one, while a

supertask may have a total weight of at most one. For simplicity, we will

henceforth call such a task grouping a megatask only if its cumulative

weight exceeds one; otherwise, we will call it a supertask. A task sys-

tem τ may consist of g ≥ 0 megatasks, with the jth megatask denoted

γj . Tasks in τ are independent and each task may be included in at most

one megatask. A task that is not included in any megatask is said to be

free. (Some of these free tasks may in fact be supertasks, but this is not

a concern for us.) The cumulative weight of the component tasks of γj ,

denoted Wsum(γj), can be expressed as Ij + fj , where Ij is a positive

integer and 0 ≤ fj < 1. Wsum(γj) is also referred to as the ideal weight

of γj . We let Wmax(γ
j) denote the maximum weight of any component

task of γj . (To reduce clutter, we often omit both the j superscripts and subscripts and also the megatask γ j in Wsum and Wmax.)

The megatask-based scheduling scheme we propose is a two-level hierarchical approach. The root-level scheduler is PD2,

which schedules all megatasks and free tasks of τ . Pfair scheduling with megatasks is a straightforward extension to ordinary Pfair

scheduling wherein a dummy or fictitious, synchronous, periodic task F j of weight fj is associated with megatask γj , Ij processors

are statically assigned to γj in every slot, and M −
∑g

`=1 I` processors are allocated at runtime to the fictitious tasks and free tasks

by the root-level PD2 scheduler. Whenever task F j is scheduled, an additional processor is allocated to γj .

Unfortunately, even with the optimal PD2 algorithm as the second-level scheduler, component-task deadlines may be missed.

Fig. 3 shows a simple example. Hence, the principal question that we address in this paper is the following: With two-level

hierarchical scheduling as described above, what weight should be assigned to a megatask to ensure that its component-task

4

deadlines are met? We refer to this inflated weight of a megatask as its scheduling weight, denoted Wsch. Holman and Anderson

answered this question for supertasks [13]. However, megatasks require different reasoning. In particular, uniprocessor analysis

techniques are sufficient for supertasks (since they have total weight at most one), but not megatasks. In addition, unlike a supertask,

the fractional part (f) of a megatask’s ideal weight may be less than Wmax. Hence, there is not much semblance between the

approach used in this paper and that in [13].

Other applications of megatasks. Megatasks may also be used in systems wherein disjoint subsets of tasks are constrained to be

scheduled on different subsets of processors. The existence of a Pfair schedule for a task system with such constraints is proved

in [16]. However, no optimal or suboptimal online Pfair scheduling algorithm has been proposed so far for this problem.

In addition, megatasks can be used to schedule tasks that access common resources as a group. Because megatasks restrict con-

currency, their use may enable the use of less expensive synchronization techniques and result in less pessimism when determining

synchronization overheads (e.g., blocking times).

Megatasks might also prove useful in providing an open-systems [10] infrastructure that temporally isolates independently-

developed applications running on a common platform. In work on open systems, a two-level scheduling hierarchy is usually used,

where each node at the second level corresponds to a different application. All prior work on open systems has focused only on

uniprocessor platforms or applications that require the processing capacity of at most one processor. A megatask can be viewed as a

multiprocessor server and is an obvious building block for extending the open-systems architecture to encompass applications that

exceed the capacity of a single processor.

Comparison of megatasks and supertasks for cache-aware scheduling. Before proceeding further, we address the question of

whether a megatask can be replaced by a group of supertasks for the cache-contention problem, and compare the overheads in terms

of weight inflation that the two approaches entail. First, we show that there exist problem instances that cannot be solved using

supertasking, but by megatasking. For this, consider the following example involving six tasks with weights 5
6 , 5

6 , 1
5 , 1

5 , 4
15 , and

11
30 , at most three of which can be scheduled at a time. It can be verified that this task set cannot be partitioned into less than four

subsets of cumulative weight at most one. Hence, with supertasking, four supertasks will be required and up to that many tasks may

be co-scheduled. On the other hand, since the cumulative weight of the entire task set is only 2 7
10 , at most three tasks would be

co-scheduled if the tasks are packed into a single megatask. It is easy to see that any megatask γ would have to be decomposed into

at least dWsume supertasks, and hence, if a problem instance that restricts the number of tasks that can be co-scheduled is feasible

using supertasking, then it is feasible using megatasking, as well.

We next show that for feasible problem instances, megatasking and supertasking are incomparable, i.e., there are problem

instances for which the weight inflation required is lower with megatasking than with supertasking, and vice versa. For this, first

consider three tasks with weights 3
8 , 1

3 , and 1
3 . The cumulative weight of these three tasks is 1 1

24 . If these tasks are packed into

a megatask, then, using the rules in the next subsection, it is sufficient to increase the scheduling weight of the megatask by 1
24 to

1 1
12 . On the other hand, if we were to use supertasking, then at least two supertasks will be required. Even with the better of the

two possible packings, wherein the first supertask contains the first two component tasks, and the second contains just the third task,

5

using the rules of [13], the weight of the first supertask will have to be increased by 7
24 , which is 1

4 higher than 1
24 . Thus, in this

case supertasking entails more overhead. For an example in which megatasking is costlier than supertasking, consider the task set

in Fig. 3. The scheduling weight of the megatask here will have to be increased to 1 9
11 , which is 39

88 higher than its ideal weight,

whereas, if the tasks are packed into two supertasks, with the task with weight 11
12 in a supertask of its own, and the remaining two

tasks in a second supertask, then only the second supertask’s weight would have to be increased to 2
3 . Thus, weight inflation required

is greater with the megatask approach by 31
132 . Though in general the two approaches are incomparable, we can expect megatasking

to perform better on an average. This is because, if the cumulative weight of all component tasks exceeds two, then at least three

supertasks would be required to pack them, and more than one supertask may require a weight inflation, and we can expect the sum

of multiple weight inflations to be higher than a single weight inflation required for a megatask. Apart from lower weight inflations,

conceptually megatasking is simpler and is a more suitable abstraction for the problem under consideration than supertasking.

Reweighting a megatask. We now present reweighting rules that can be used to compute a megatask scheduling weight that

is sufficient to avoid deadline misses by its component tasks when PD2 is used as both the top- and second-level scheduler. Let

Wsum, Wmax, and ωmax be defined as follows. (ωmax denotes the smaller of the at most two window lengths of a task with weight

Wmax—refer to Lemma 1.)

Wsum =
∑

T∈γ wt(T) = I + f (3)

Wmax = max
T∈γ

wt(T) (4)

ωmax = d1/Wmaxe (5)

Let the rank of a component task of γ be its position in a non-increasing ordering of the component tasks by weight. Let ω be as

follows. (In this paper, Wmax = 1
k

is used to denote that Wmax can be expressed as the reciprocal of an arbitrary positive integer.)

ω=

{

min(smallest window length of task of rank (ωmax · I + 1), 2ωmax), if Wmax = 1
k

, k ∈ N
+

min(smallest window length of task of rank ((ωmax − 1) · I + 1), 2ωmax − 1), otherwise
(6)

Then, a scheduling weight Wsch for γ may be computed using (7), where ∆f is given by (8).

Wsch = Wsum + ∆f (7)

∆f =























(

Wmax−f
1+f−Wmax

)

× f, if Wmax ≥ f + 1/2

min(1 − f, max(
(

Wmax−f
1+f−Wmax

)

× f, min(f, 1
ω−1))), if f + 1/2 > Wmax > f

min(1 − f, 1
ω
), if Wmax ≤ f

0, if f = 0

(8)

Reweighting example. Let γ be a megatask with two component tasks of weight 2
5 each, and three more tasks of weight 1

4 each.

Hence, Wmax = 2
5 and Wsum = I + f = 1 11

20 , so, I = 1, f = 11
20 . Since Wmax < f , by (8), ∆f = min(1− f, 1

ω
). We determine ω

as follows. By (5), ωmax = 3. Since Wmax 6= 1
k

, ω = min(smallest window length of task of rank ((ωmax−1) · I +1), 2ωmax−1).

6

(ωmax − 1) · I + 1 = 3, and the weight of the task of rank 3 is 1
4 . By Lemma 1, the smallest window length of a task with weight 1

4

is 4. Hence, ω = min(4, 5) = 4, and ∆f = min(9
20 , 1

4) = 1
4 . Thus, Wsch = Wsum + ∆f = 1 16

20 . �

Correctness proof. In an appendix, we prove that Wsch, given by (7), is a sufficient scheduling weight for γ to ensure that all of

its component-task deadlines are met. The proof is by contradiction: we assume that some time td exists that is the earliest time

at which a deadline is missed. We then determine a bound on the allocations to the megatask up to time td and show that, with its

weight as defined by (7), the megatask receives sufficient processing time to avoid the miss. This setup is similar to that used by

Srinivasan and Anderson in the optimality proof of PD2 [22]. However, a new twist here is the fact that the number of processors

allocated to the megatask is not constant (it is allocated an “extra” processor in some slots). To deal with this issue, some new

machinery for the proof had to be devised. From this proof, the theorem below follows.

Theorem 1 Under the proposed two-level PD2 scheduling scheme, if the scheduling weight of a megatask γ is determined by (7),

then no component tasks of γ miss deadlines.

Why does reweighting work? In the absence of reweighting, missed component-task deadlines are not the result of the megatask

being allocated too little processor time. After all, the megatask’s total weight in this case matches the combined weight of its

component tasks. Instead, such misses result because of mismatches with respect to the times at which allocations to the megatask

occur. More specifically, misses happen when the allocations to the fictitious task F are “wasted,” as seen in Fig. 3.

Reweighting works because, by increasing F ’s weight, the allocations of the extra processor can be made to align sufficiently

with the processor needs of the component tasks so that misses are avoided. In order to minimize the number of wasted processor

allocations, it is desirable to make the reweighting term as small as possible. The trivial solution of setting the reweighting term to

1 − f (essentially providing an extra processor in all slots), while simple, is incredibly wasteful. The various cases in (8) follow

from systematically examining (in the proof) all possible alignments of component-task windows and windows of F .

Tardiness bounds without reweighting. It is possible to show that if a megatask is not reweighted, then its component tasks may

miss their deadlines by only a bounded amount. (Note that, when a subtask of a task misses its deadline, the release of its next

subtask is not delayed. Thus, if deadline tardiness is bounded, then each task receives its required processor share in the long term.)

Due to space constraints, it is not feasible to give a proof of this fact here, so we merely summarize the result. For Wmax ≤ f (resp.,

Wmax > f), if Wmax ≤ I+q−1
I+q

(resp., Wmax ≤ I+q−2
I+q−1) holds, then no deadline is missed by more than q quanta, for all I ≥ 1

(resp., I ≥ 2). For I = 1 and Wmax > f , no deadline is missed by more than q quanta, if the weight of every component task is at

most q−1
q+1 . Note that as I increases, the restriction on Wmax for a given tardiness bound becomes more liberal.

Aside: determining execution costs. In the periodic task model, task weights depend on per-job execution costs, which depend

on cache behavior. In soft real-time systems, profiling tools used in work on throughput-oriented applications [1, 7] might prove

useful in determining such behavior. In test applications considered by Fedorova et al. [12], these tools proved to be quite accurate,

typically producing miss-rate predictions within a few percent of observed values. In hard real-time systems, determining execution

7

costs is a difficult timing analysis problem. This problem is made no harder by the use of megatasks—indeed, cache behavior

will depend on co-scheduling choices, and with megatasks, more definitive statements regarding such choices can be made. Since

multicore systems are likely to become the “standard” platform in many settings, these timing analysis issues are important for the

research community to address (and are well beyond the scope of this paper).

4 Experimental Results

To assess the efficacy of megatasking in reducing cache contention, we conducted experiments using the SESC Simulator [19],

which is capable of simulating a variety of multicore architectures. We chose to use a simulator so that we could experiment with

systems with more cores than commonly available today. The simulated architecture we considered consists of a variable number

of cores, each with dedicated 16K L1 data and instruction caches (4- and 2-way set associative, respectively) with random and LRU

replacement policies, respectively, and a shared 8-way set associative 512K on-chip L2 cache with an LRU replacement policy.

Each cache has a 64-byte line size. Each scheduled task was assigned a utilization and memory block with a given working-set size

(WSS). A task accesses its memory block sequentially, looping back to the beginning of the block when the end is reached. We note

that all scheduling, preemption, and migration costs were accounted for in these simulations.

The following subsections describe two sets of experiments, one involving hand-crafted example task sets, and a second involv-

ing randomly generated task sets. In both sets, Pfair scheduling with megatasks was compared to both partitioned EDF and ordinary

Pfair scheduling (without megatasks).

4.1 Hand-Crafted Task Sets

The hand-crafted task sets we created are listed in Table 1. Each was run on either a four- or eight-core machine, as specified,

for the indicated number of quanta (assuming a 1-ms quantum length). Table 2 shows for each case the L2 cache-miss rates that

were observed (first line of each entry) and the minimum, average, and maximum number of per-task memory accesses completed

(second line). In obtaining these results, megatasks were not reweighted because we were more concerned here with cache behavior

than timing properties. Reweighting impact was assessed in the experiments described in Sec. 4.2. We begin our discussion by

considering the miss-rate results for each task set.

No. No. No.
Name Tasks Task Properties Cores Quanta
BASIC 3 Wt. 3/5, WSS 250K 4 100
SMALL BASIC 5 Wt. 7/20, WSS 250K 4 60
ONE MEGA 5 Wt. 7/10, WSS 120K 8 50
TWO MEGA 6 3 with Wt. 3/5, WSS 190K 8 50

3 with Wt. 3/5, WSS 60K

Table 1: Properties of example task sets.

BASIC consists of three heavy-weight tasks. Running any

two of these tasks concurrently will not thrash the L2 cache, but

running all three will. The total utilization of all three tasks is

less than two, but the number of cores is four. Both Pfair and par-

titioning use more than two cores, causing thrashing. By com-

bining all three tasks into one megatask, thrashing is eliminated. In fact, the difference here is quite dramatic. SMALL BASIC is a

variant of BASIC with tasks of smaller utilization. The results here are similar, but not quite as dramatic.

8

Name Partitioning Pfair Megatasks
BASIC 89.12% 90.35% 2.20%

(1.73, 1.73, 1.73) (1.71, 1.72, 1.72) (10.9, 11.1, 11.3)
SMALL BASIC 17.24% 28.84% 2.89%

(0.61, 2.01, 4.12) (0.48, 1.21, 4.14) (3.72, 3.74, 3.77)
ONE MEGA (1 megatask) 11.07% 11.36% 0.82%

(1.40, 4.89, 7.27) (1.35, 4.83, 7.26) (7.06, 7.10, 7.15)
ONE MEGA (2 megatasks, 11.07% 11.36% 1.79%
Wt. 2.1 and 1.4) (1.40, 4.89, 7.27) (1.35, 4.83, 7.26) (6.36, 6.84, 7.20)
TWO MEGA (1 megatask, 10.94% 10.97% 5.67%
all task incl.) (0.85, 3.58, 6.32) (0.86, 3.59, 6.32) (2.55, 4.98, 6.25)
TWO MEGA (1 megatask, 10.94% 10.97% 5.52%
only 190K WSS tasks) (0.85, 3.58, 6.32) (0.86, 3.59, 6.32) (2.56, 5.07, 6.22)
TWO MEGA (2 megatasks, 10.94% 10.97% 1.02%
one each for 190K and (0.85, 3.58, 6.32) (0.86, 3.59, 6.32) (5.43, 5.85, 6.20)
60K tasks)

Table 2: L2 cache miss ratios per task set and (Min., Avg., Max.) per-task
memory accesses completed, in millions, for example task sets.

ONE MEGA and TWO MEGA give cases where one

megatask is better than two and vice versa. In the first

case, one megatask is better because using two megatasks

of weight 2.1 and 1.4 allows an extra task to run in some

quanta. In the second case, using two megatasks ensures

that at most two of the 190K-WSS tasks and two of the

60K-WSS tasks run concurrently, thus guaranteeing that

their combined WSS is under 512K. Packing all tasks into

one megatask ensures that at most four of the tasks run

concurrently. However, it does not allow us to specify which four. Thus, all three tasks with a 190K WSS could be scheduled

concurrently, which is undesirable. Interestingly, placing just these three tasks into a single megatask results in little improvement.

The average memory-access figures given in Table 2 show that megatasking results in substantially better performance. This is

particularly interesting in comparing against partitioning, because the better comparable performance of megatasking results despite

higher scheduling, preemption, and migration costs. Under partitioning and Pfair, substantial differences were often observed for

different tasks in the same task set, even though these tasks have the same weight, and for four of the sets, the same WSS. For

example, the number of memory accesses (in millions) for the tasks in SMALL BASIC was {0.614, 4.123, 0.613, 4.103, 0.613}

under partitioning, but {3.755, 3.765, 3.743, 3.717, 3.723} for megatasking. Such nonuniform results led to partitioning having

higher maximum memory-access values in some cases.

4.2 Randomly-Generated Task Sets

We begin our discussion of the second set of experiments by describing our methodology for generating task sets.

Task-set generation methodology. In generating task sets at random, we limited attention to a four-core system, and considered

total WSSs of 768K, 896K, and 1024K, which correspond to 1.5, 1.75, and 2.0 times the size of the L2 cache. These values were

selected after examining a number of test cases. In particular, we noted the potential for significant thrashing at the 1.5 point. We

further chose the 1.75 and 2.0 points (somewhat arbitrarily) to get a sense of how all schemes would perform with an even greater

potential for thrashing.

The WSS distribution we used was bimodal in that large WSSs (at least 128K) were assigned to those tasks with the largest

utilizations, and the remaining tasks were assigned a WSS (of at least 1K) from what remained of the combined WSS. We believe

that this is a reasonable distribution, as tasks that use more processor time tend to access a larger region of memory. Per-task WSSs

were capped at 256K so that at least two tasks could run on the system at any given time. Otherwise, it is unlikely any approach

could reduce cache thrashing for these task sets (unless all large-WSS tasks had a combined weight of at most one).

Total system utilizations were allowed to range between 2.0 and 3.5. Total utilizations higher than 3.5 were excluded to give par-

titioning a better chance of finding a feasible partitioning. Utilizations as low as 2.0 were included to demonstrate the effectiveness

9

of megatasking on a lightly-loaded system. Task utilizations were generated uniformly over a range from some specified minimum

to one, exclusive. The minimum task utilization was varied from 1/10 (which makes finding a feasible partitioning easier) to 1/2

(which makes partitioning harder). We generated and ran the same number of task sets for each {task utilization, system utilization}

combination as plotted in Fig. 4, which we discuss later.

In total, 552 task sets were generated. Unfortunately, this does not yield enough samples to obtain meaningful confidence

intervals. We were unable to generate more samples because of the length of time it took the simulations to run. The SESC

simulator is very accurate, but this comes at the expense of being quite slow. We were only able to generate data for approximately

20 task sets per day running the simulator on one machine. For this reason, longer and more detailed simulations also were not

possible.

Justification. Our working set sizes are comparable to those considered by Fedorova et al. [12] in their experiments, and our L2

cache size is actually larger than any considered by them. While it is true that proposed systems will have shared caches larger

than 512K (e.g. the Sun Niagra system mentioned earlier will have at least 3MB), we were somewhat constrained by the slowness

of SESC to simulate platforms of moderate size. In addition, it is worth pointing out that WSSs for real-time tasks also have the

potential to be much larger. For example, the authors of [9] claim that the WSS for a high-resolution MPEG decoding task, such

as that used for HDTV, is about 4.1MB. As another example, statistics presented in [24] show that substantial memory usage is

necessary in some video-on-demand applications.

We justify our range of task utilizations, specifically the choice to include heavy tasks, by observing that for a task to access a

large region of memory, it typically needs a large amount of processor time. The MPEG decoding application mentioned above is

a good example: it requires much more processor time than low-resolution MPEG video decoders. Additionally, our range of task

utilizations is similar to that used in other comparable papers [14, 23], wherein tasks with utilizations well-spread among the entire

(0, 1) range were considered.

Algorithm No. Disq. % Disq.
Partitioning 91 16.49
Pfair 0 0.00
Pfair with Megatasks 9 1.63

Table 3: Disqualified task sets for each
approach (out of 552 task sets in total).

Packing strategies. For partitioning, two attempts to partition tasks among cores were

made. First, we placed tasks onto cores in decreasing order of WSS using a first-fit approach.

Such a packing, if successful, minimizes the largest possible combined WSS of all tasks

running concurrently. If this packing failed, then a second attempt was made by assigning

tasks to cores in decreasing order of utilization, again using a first-fit approach. If this failed, then the task set was “disqualified.”

Such disqualified task sets were not included in the results shown later, but are shown in Table 3.

Tasks were packed into megatasks in order of decreasing WSSs. One megatask was created at a time. If the current task could be

added to the current megatask without pushing the megatask’s weight beyond the next integer boundary, then this was done, because

if the megatask could prevent thrashing among its component tasks before, then it could do so afterwards. Otherwise, a check was

made to determine whether creating a new megatask would be better than adding to the current one. While this is an easy packing

strategy, it is not necessarily the most efficient. For example, a better packing might be possible by allowing a new task to be added

to a megatask generated prior to the current one. For this reason, we believe that the packing strategies we used treat partitioning

10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

L2
 C

ac
he

 M
is

s
R

at
e

System Util

L2 Cache Miss Rate vs. System Util (768K WSS)

Partitioning
Pfair

Megatasks

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

L2
 C

ac
he

 M
is

s
R

at
e

System Util

L2 Cache Miss Rate vs. System Util (896K WSS)

Partitioning
Pfair

Megatasks

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

L2
 C

ac
he

 M
is

s
R

at
e

System Util

L2 Cache Miss Rate vs. System Util (1024K WSS)

Partitioning
Pfair

Megatasks

(a) (c) (e)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

L2
 C

ac
he

 M
is

s
R

at
e

Min Task Util Allowed During Task Set Generation

L2 Cache Miss Rate vs. Min Task Util (768K WSS)

Partitioning
Pfair

Megatasks

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

L2
 C

ac
he

 M
is

s
R

at
e

Min Task Util Allowed During Task Set Generation

L2 Cache Miss Rate vs. Min Task Util (896K WSS)

Partitioning
Pfair

Megatasks

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

L2
 C

ac
he

 M
is

s
R

at
e

Min Task Util Allowed During Task Set Generation

L2 Cache Miss Rate vs. Min Task Util (1024K WSS)

Partitioning
Pfair

Megatasks

(b) (d) (f)

Figure 4: L2 cache miss rate versus both total system utilization (top) and minimum task utilization (bottom). The different columns correspond
(left to right) to total WSSs of 1.5, 1.75, and 2.0 times the L2 cache capacity, respectively.

more fairly than megatasking.

After creating the megatasks, each was reweighted. If this caused the total utilization to exceed the number of cores, then

that task set was “disqualified” as with partitioning. As Table 3 shows, the number of megatask disqualifications was an order of

magnitude less than partitioning, even though our task-generation process was designed to make feasible partitionings more likely,

and we were using a rather simple megatask packing approach.

 0

 20

 40

 60

 80

 100

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

C
yc

le
s

pe
r

M
em

 R
ef

Min Task Util Allowed During Task Set Generation

Cycles per Mem Ref vs. Min Task Util (768K WSS)

Partitioning
Pfair

Megatasks

Figure 5: Cycles-per-memory-reference for the
data shown in Fig. 4(b).

Results. Under each tested scheme, each non-disqualified task set was executed

for 20 quanta and its L2 miss rates were recorded. Fig. 4 shows the recorded

miss rates as a function of the total system utilization (top) and minimum per-

task utilization (bottom). The three columns correspond to the three total WSSs

tested, i.e., 1.5, 1.75, and 2.0 times the L2 cache size. Each point is an average

obtained from between 19 and 48 task sets. (This variation is due to discarded

task sets, primarily in the partitioning case, and the way the data is organized.) In

interpreting this data, note that, because an L2 miss incurs a time penalty roughly

two orders of magnitude greater than a hit, even when miss rates are relatively

low, a miss-rate difference can correspond to a significant difference in performance. For example, see Fig. 5, which gives the

number of cycles-per-memory-reference for the data shown in Fig. 4(b). Although the speed of the SESC simulator severely

constrained the number and length of our simulations, we also ran a small subset of our task sets for 100 quanta (as opposed to 20)

and saw approximately the same results. This further justifies 20 quanta as a reasonable “stopping point.”

As seen in the bottom-row plots, the L2 miss rate increases with increasing task utilizations. This is because the heaviest tasks

11

have the largest WSSs and thus are harder to place onto a small number of cores. The top-row plots show a similar trend as the total

system utilization increases from 2.0 to 2.5. Beyond this point, however, miss rates level off or decrease. One explanation for this

may be that our task-generation process may leave little room to improve miss rates at total utilizations beyond 2.5. The fact that the

three schemes approximately converge beyond this point supports this conclusion. With respect to total WSS, at 1.5 times the L2

cache size (left column), megatasking is the clear winner. At 1.75 times (middle column) and 2.0 times (right column), megatasking

is still the winner in most cases, but less substantially, because all schemes are less able to improve L2 cache performance. This is

particularly noticeable in the 2.0-times case.

Two anomalies are worth noting. First, in inset (e), Pfair slightly outperforms megatasking at the 3.5 system-utilization point.

This may be due to miss-rate differences in the scheduling code itself. Second, at the right end point of each plot (3.5 system

utilization or 0.5 task utilization), partitioning sometimes wins over the other two schemes, and sometimes loses. These plots,

however, are misleading in that, at high utilizations, many of the task sets were disqualified under partitioning. Thus, the data at

these points is somewhat skewed. With only non-disqualified task sets plotted (not shown), all three schemes have similar curves,

with megatasking always winning.

In addition to the data shown, we also performed similar experiments in which per-task utilizations were capped. We found

that, as these caps are lowered, the gap between megatasking and partioning narrows, with megatasking always either winning or,

at worst, performing nearly identically to partitioning.

Algorithm No. Instr. No. Mem. Acc.
Partitioning (177.36, 467.83, 647.64) (51.51, 131.50, 182.20)
Pfair (229.87, 452.41, 613.77) (65.96, 124.21, 178.04)
Pfair with Megatasks (232.23, 495.47, 666.62) (66.16, 137.62, 182.41)

Table 4: (Min., Avg., Max.) instructions and memory accesses
completed over all non-disqualified task sets for each scheduling
policy, in millions. From Table 3, every (almost every) task set in-
cluded in the paritioning counts is included in the Pfair (megatask-
ing) counts.

As before, we tabulated memory-access statistics, but this time

on a per-task-set rather than per-task basis. (For each scheme, only

non-disqualified task sets under it were considered.) These results,

as well as instruction counts, are given in Table 4. These statistics

exclude the scheduling code itself. Thus, these results should give

a reasonable indication of how the different migration, preemption,

and scheduling costs of the three schemes impact the amount of “useful work” that is completed. As seen, megatasking is the clear

winner by 5-6% on average and by as much as 30% in the worst case (as seen by the minimum values).

These experiments should certainly not be considered definitive. Indeed, devising a meaningful random task-set generation

process is not easy, and this is an issue worthy of further study. Nonetheless, for the task sets we generated, megatasking is clearly

the best scheme. Its use is much more likely to result in a schedulable system, in comparison to partitioning, and also in lower L2

miss rates (and as seen in Sec. 4.1, for some specific task sets, miss rates may be dramatically less).

5 Concluding Remarks

We have proposed the concept of a megatask as a way to reduce miss rates in shared caches on multicore platforms. We have shown

that deadline misses by a megatask’s component tasks can be avoided by slightly inflating its weight and by using Pfair scheduling

algorithms to schedule all tasks. We have also given deadline tardiness thresholds that apply in the absence of reweighting. Finally,

12

we have assessed the benefits of megatasks through an extensive experimental investigation. While the theoretical superiority

of Pfair-related schemes over other approaches is well known, these experiments are the first (known to us) that show a clear

performance advantage of such schemes over the most common multiprocessor scheduling approach, partitioning.

Our results suggest a number of avenues for further research. First, more work is needed to determine if the deadline tardiness

bounds given in Sec. 3 are tight. Second, we would like to extend our results for SMT systems that support multiple hardware thread

contexts per core, as well as asymmetric multicore designs. Third, as noted earlier, timing analysis on multicore systems is a subject

that deserves serious attention. Fourth, we have only considered static, independent tasks in this paper. Dynamic task systems and

tasks with dependencies warrant attention as well. Fifth, in some systems, it may be useful to actually encourage some tasks to be

co-scheduled, as in symbiotic scheduling [14, 18, 21]. Thus, it would be interesting to incorporate symbiotic scheduling techniques

within megatasking. Finally, a task’s weight may actually depend on how tasks are grouped, because its execution rate will depend

on cache behavior. This gives rise to an interesting synthesis problem: as task groupings are determined, weight estimates will likely

reduce, due to better cache behavior, and this may enable better groupings. Thus, the overall system design process may be iterative

in nature.

References
[1] A. Agarwal, M. Horowitz, and J. Hennessy. An analytical cache model. ACM Trans. on Comp. Sys., 7(2):184–215, 1989.
[2] J. Anderson and A. Srinivasan. Early-release fair scheduling. Proc. of the 12th Euromicro Conf. on Real-Time Sys., pp. 35–43, 2000.
[3] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond periodic task systems. Proc. of the 7th Int’l Conf. on Real-Time Comp. Sys. and

Applications, pp. 297–306, 2000.
[4] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous periodic tasks. Journal of Comp. and Sys. Sciences,

68(1):157–204, 2004.
[5] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in resource allocation. Algorithmica,

15:600–625, 1996.
[6] S. Baruah, J. Gehrke, and C. Plaxton. Fast scheduling of periodic tasks on multiple resources. Proc. of the 9th International Parallel

Processing Symposium, pp. 280–288, Apr. 1995.
[7] E. Berg and E. Hagersten. Statcache: A probabilistic approach to efficient and accurate data locality analysis. Proc. of the 2004 IEEE Int’l

Symp. on Perf. Anal. of Sys. and Software, 2004.
[8] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah. A categorization of real-time multiprocessor scheduling

problems and algorithms. In Joseph Y. Leung, editor, Handbook on Scheduling Algorithms, Methods, and Models, pp. 30.1–30.19. Chapman
Hall/CRC, Boca Raton, Florida, 2004.

[9] H. Chen, K. Li, and B. Wei. Memory performance optimizations for real-time software HDTV decoding. Journal of VLSI Signal Processing,
pp. 193–207, 2005.

[10] Z. Deng, J.W.S. Liu, L. Zhang, M. Seri, and A. Frei. An open environment for real-time applications. Real-Time Sys. Journal, 16(2/3):155–
186, 1999.

[11] P. Denning. Thrashing: Its causes and prevention. Proc. of the AFIPS 1968 Fall Joint Comp. Conf., Vol. 33, pp. 915–922, 1968.
[12] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance of multithreaded chip multiprocessors and implications for operating

system design. Proc. of the USENIX 2005 Annual Technical Conf., 2005. (See also Technical Report TR-17-04, Div. of Engineering and
Applied Sciences, Harvard Univ. Aug., 2004.)

[13] P. Holman and J. Anderson. Guaranteeing Pfair supertasks by reweighting. Proc. of the 22nd Real-Time Sys. Symp., pp. 203–212, 2001.
[14] R. Jain, C. Hughs, and S Adve. Soft real-time scheduling on simultaneous multithreaded processors. Proc. of the 23rd Real-Time Sys. Symp.,

pp. 134–145, 2002.
[15] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning on a chip multiprocessor architecture. Proc. of the Parallel

Architecture and Compilation Techniques, 2004.

13

[16] D. Liu and Y. Lee. Pfair scheduling of periodic tasks with allocation constraints on multiple processors. Proc. of the 12th Int’l Workshop on
Parallel and Distributed Real-Time Sys., 2004.

[17] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and migrating periodic tasks on multiple resources. Proc. of the 20th Real-Time Sys.
Symp., pp. 294–303, 1999.

[18] S. Parekh, S. Eggers, H. Levy, and J. Lo. Thread-sensitive scheduling for SMT processors. http://www.cs.washington.edu/research/smt/.
[19] J. Renau. SESC website. http://sesc.sourceforge.net.
[20] S. Shankland and M. Kanellos. Intel to elaborate on new multicore processor. http://news.zdnet.co.uk/hardware/chips/

0,39020354,39116043,00.htm, 2003.
[21] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic job scheduling with priorities for a simultaneous multithreading processor. Proc. of ACM

SIGMETRICS 2002, 2002.
[22] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multiprocessors. Proc. of the 34th ACM Symp. on Theory of Comp., pp.

189–198, 2002.
[23] X. Vera, B. Lisper, and J. Xue. Data caches in multitasking hard real-time systems. Proc. of the 24th Real-Time Sys. Symp., 2003.
[24] S. Viswanathan and T. Imielinski. Metropolitan area video-on-demand service using pyramid broadcasting. IEEE Multimedia Systems, pp.

197–208, 1996.

Appendix: Detailed Proofs

In this appendix, detailed proofs are given. We begin by providing further technical background on Pfair scheduling [2, 3, 4, 5, 22].

−1
7

−2
7

−2
7

−2
7

−2
7

−2
7

−2
7

−1
7

−2
7

−2
7

−2
7

−1
7

−2
7

−2
7

−2
7

−1
7

T2

T1

1 2 3 4 5 6 0 71 2 3 4 5 6 0 7 8 9

(a) (b)

T1

T2

Figure 6: Allocation in an ideal fluid schedule for the first two sub-
tasks of a task T of weight 2/7. The share of each subtask in each slot
of its window (f(Ti, u)) is marked. In (a), no subtask is released late;
in (b), T2 is released late. share(T, 3) is either 2/7 or 1/7 depending
on when subtask T2 is released.

Ideal fluid schedule. Of central importance in Pfair schedul-

ing is the notion of an ideal fluid schedule, which is defined be-

low and depicted in Fig. 6. Let ideal (T, t1, t2) denote the proces-

sor share (or allocation) that T receives in an ideal fluid schedule

in [t1, t2). ideal (T, t1, t2) is defined in terms of share(T, u),

which is the share (or fraction) of slot u assigned to task T .

share(T, u) is defined in terms of a similar per-subtask function

f :

f(Ti, u) =



































(
⌊

i−1
wt(T)

⌋

+ 1) × wt(T) − (i − 1), u = r(Ti)

i − (
⌈

i
wt(T)

⌉

− 1) × wt(T), u = d(Ti) − 1

wt(T), r(Ti) < u < d(Ti) − 1

0, otherwise.

(9)

Using (9), it follows that f(Ti, u) is at most wt(T). Given f , share(T, u) can be defined as

share(T, u) =
∑

i f(Ti, u), (10)

and then ideal (T, t1, t2) as
∑t2−1

u=t1
share(T, u). The following is proved in [22] (see Fig. 6).

(∀u ≥ 0 :: share(T, u) ≤ wt(T)) (11)

14

Lag in an actual schedule. The difference between the total processor allocation that a task receives in the fluid schedule and in

an actual schedule S is formally captured by the concept of lag. Let actual(T, t1, t2,S) denote the total actual allocation that T

receives in [t1, t2) in S. Then, the lag of task T at time t is

lag(T, t,S) = ideal(T, 0, t)− actual(T, 0, t,S)

=
∑t−1

u=0 share(T, u) −
∑t−1

u=0 S(T, u). (12)

(For conciseness, when unambiguous, we leave the schedule implicit and use lag(T, t) instead of lag(T, t,S).) A schedule for

a GIS task system is said to be Pfair iff

(∀t, T ∈ τ :: −1 < lag(T, t) < 1). (13)

Informally, each task’s allocation error must always be less than one quantum. The release times and deadlines in (1) are assigned

such that scheduling each subtask in its window is sufficient to ensure (13). Letting 0 ≤ t′ ≤ t, from (12), we have

lag(T, t + 1) = lag(T, t) + share(T, t) − S(T, t), (14)

lag(T, t + 1) = lag(T, t′) + ideal(T, t′, t + 1) − actual(T, t′, t + 1). (15)

Another useful definition, the total lag for a task system τ in a schedule S at time t, LAG(τ, t), is given by

LAG(τ, t) =
∑

T∈τ lag(T, t). (16)

Letting 0 ≤ t′ ≤ t, from (14)–(16), we have

LAG(τ, t + 1) = LAG(τ, t) +
∑

T∈τ (share(T, t) − S(T, t)), (17)

LAG(τ, t + 1) = LAG(τ, t′) + ideal(τ, t′, t + 1) − actual(τ, t′, t + 1). (18)

Active tasks. It is possible for a GIS (or IS) task to have no eligible subtasks and a share of zero during certain time slots, if

subtasks are absent or released late. Tasks with and without subtasks at time t are distinguished using the following definition of an

active task.

Definition 1: A GIS task U is active at time t if it has a subtask Uj such that r(Uj) ≤ t < d(Uj).

Task classification. Tasks in τ may be classified as follows with respect to a schedule S and time t.∗

A(t): Set of all tasks that are scheduled at t.

B(t): Set of all tasks that are not scheduled, but are active at t.

I(t): Set of all tasks that are neither active nor are scheduled at t.

∗For brevity, we let the task system τ and schedule S be implicit in these definitions.

15

A(t), B(t), and I(t) form a partition of τ , i.e.,

(A(t) ∪ B(t) ∪ I(t) = τ) ∧ (A(t) ∩ B(t) = B(t) ∩ I(t) = I(t) ∩ A(t) = ∅). (19)

in B(t)

in I(t)

in A(t)X

X

X

X

X X

t

i

Uk

U

Vm Vn

k+1

T

Ti+1

Figure 7: Task classification at time t. Windows
of two consecutive subtasks of three GIS tasks T ,
U , and V are depicted. The slot in which each sub-
task is scheduled is indicated by an “X.” Because
subtask Ti+1 is scheduled at t, T ∈ A(t). No sub-
task of U is scheduled at t. However, because the
window of Uk overlaps slot t, U is active at t, and
hence, U ∈ B(t). Task V is neither scheduled at
t, nor is it active at t. Thus, V ∈ I(t).

This classification of tasks is illustrated in Fig. 7. From Def. 1, (9), and (10) we

have the following.

(∀T : T ∈ I(t) :: share(T, t) = 0) (20)

Subtask boundary bit. Each subtask Ti is associated with a bit, denoted b(Ti),

defined by (21). From (1), it can be verified that if θ(Ti) = θ(Ti+1), then b(Ti) =

d(Ti) − r(Ti+1). Therefore, b(Ti) determines if the PF-window of Ti can overlap

that of Ti+1. In Fig. ??, b(T2) = 1, while b(T3) = 0. Therefore, the PF-window

of T2 overlaps T3’s when θ(T3) = θ(T2) as in insets (a), (b), and (d).

b(Ti) =

⌈

i

wt(T)

⌉

−

⌊

i

wt(T)

⌋

. (21)

T2

T1

T3

T4

T5

T7

T6

T8

T1

T2

T3

T4

T5

T7

T6

T8

1 2 3 4 5 60 7 1098

time

12 1311

G G

G

G

1 2 3 4 5 60 7 10 1198

G

G

G

(a) (b)

Figure 8: (a) Group deadlines of subtasks of a periodic task T with weight
8/11. Slots that correspond to group deadlines are marked with a “G.” The group
deadlines of T1 and T2 are at time 4, and those of T3 – T5 and T6 – T8 are at
times 8 and 11, respectively. (b) Group deadlines of subtasks of an IS task T .
In this example, T2 and T6 are released late. Nevertheless, the group deadline of
T1 is still 4. However, the group deadline of T2 is at time 5. Similarly, though
T6 is released one time unit late, the group deadlines of T3 – T5 are at time 9
(computed under the assumption that T6 would be released in time). The group
deadlines of T6 – T8 are at time 13.

Tie-break parameters of PD2. PD2 uses two tie-

break parameters to resolve ties among subtasks with

the same deadline. The b-bit given by (21) is the first

tie-break parameter. The second tie-break parameter

called the “group deadline,” is needed in systems with

heavy tasks. It is easy to show that all the windows of

a heavy task with weight in the range [1/2, 1) are of

length two or three. For such tasks, the group deadline

marks the end of a sequence of windows of length two.

Consider a sequence Ti · · · Tj of subtasks of a heavy

periodic task T such that b(Tk) = 1, |w(Tk+1)| = 2 for

all i ≤ k < j. Then, scheduling Ti in its last slot forces

the other subtasks in this sequence to be scheduled in their last slots, as well. For example, in Fig. 8(a), scheduling T3 in slot 4 forces

T4 and T5 to be scheduled in slots 5 and 6, respectively. A group deadline corresponds to a time by which any such “cascade” of

scheduling decisions must end. Formally, it is a time t such that either (t = d(Ti) ∧ b(Ti) = 0) or (t + 1 = d(Ti) ∧ |w(Ti)| = 3)

for some subtask Ti. The task in Fig. 8(a) has group deadlines at times 4, 8, and 11.

We let D(Ti) denote the group deadline of subtask Ti. If T is heavy, then D(Ti) = (min u : u ≥ d(Ti) ∧ u is a group deadline

of T). In Fig. 8(a), D(T1) = 4 and D(T6) = 11. If T is light, then D(Ti) = d(Ti) + b(Ti). If T is an IS task, then Ti’s group

16

deadline is computed assuming that all future subtasks are released as early as possible, regardless of how the subtasks are actually

released. Fig. 8(b) shows an example with adequate explanation.

PD2 priority definition. If Ti is ready, then the priority of Ti at time t is given by (d(Ti), b(Ti), D(Ti)). Priorities are ordered by

the following relation.

(d, b, D) � (d′, b′, D′) ≡ (d > d′) ∨ ((d = d′) ∧ (b > b′)) ∨ ((d = d′) ∧ (b = b′) ∧ (D ≥ D′)) (22)

If Ti and Uj are both ready at time t, then the priority of Ti is at least that of Uj , denoted Ti � Uj , if (d(Ti), b(Ti), D(Ti)) �

(d(Uj), b(Uj), D(Uj)) holds. If (d(Uj), b(Uj), D(Uj)) 6� (d(Ti), b(Ti), D(Ti)) holds in addition, then the priority of Ti is strictly

greater than that of Uj , denoted Ti ≺ Uj .

The next definition identifies the last-released subtask at t of any task U .

X

X

X

X

X

i

Vk

V

Wm

Yn

XU is removedi

t t+1 t+2 t+3 t+4 t+5 t+6 t+7

U

Ui+1

k+1

Figure 9: Illustration of displacements. If Uj , scheduled at
time t, is removed from the task system, then some subtask
that is eligible at t, but scheduled later, can be scheduled at
t. In this example, it is subtask Vk (scheduled at t + 3).
This displacement of Vk results in two more displacements,
those of Vk+1 and Ui+1, as shown. Thus, there are three
displacements in all: ∆1 = (Ui, t, Vk, t+3), ∆2 = (Vk, t+

3, Vk+1, t + 4), and ∆3 = (Vk+1, t + 4, Ui+1, t + 5).

Definition 2: Subtask Uj is the critical subtask of U at t iff e(Uj) ≤

t < d(Uj) holds, and no other subtask Uk of U , where k > j, satisfies

e(Uk) ≤ t < d(Uk). For example, in Fig. 7, Ti+1 is the critical subtask

of T at both t − 1 and t, and Uk+1 is that of U at t + 1.

Lemma 2 Let Ti be a subtask of a GIS task T such that b(Ti) = 1 and

let Tk be the successor of Ti. If d(Ti) ≤ u < D(Ti) and u ≤ r(Tk), then

share(T, d(Ti) − 1) + share(T, u) ≤ wt(T).

Displacements. In our proof, we consider task systems obtained by re-

moving subtasks. If S is a schedule for a GIS task system τ , then re-

moving a subtask from τ results in another GIS system τ ′, and may cause

other subtasks to shift earlier in S, resulting in a schedule S ′ that is valid

for τ ′. Such a shift is called a displacement and is denoted by a 4-tuple 〈X (1), t1, X
(2), t2〉, where X(1) and X(2) represent sub-

tasks. This is equivalent to saying that subtask X (2) originally scheduled at t2 in S displaces subtask X (1) scheduled at t1 in S.

A displacement 〈X(1), t1, X
(2), t2〉 is valid iff e(X(2)) ≤ t1. Because there can be a cascade of shifts, we may have a chain of

displacements. This chain is represented by a sequence of 4-tuples. For an example of a displacement chain, refer to Fig. 9.

The next lemma concerns displacements and is proved in [22]. It states the priority of every subtask that gets displaced from

where it is originally scheduled when some subtask Ti is removed is at most that of Ti.

Lemma 3 (from [22]) Let X(1) be a subtask that is removed from τ , and let the resulting chain of displacements in a PD2 schedule

for τ be ∆1, ∆2, . . . , ∆k, where ∆i = 〈X(i), ti, X
(i+1), ti+1〉. Then (d(X(1)), b(X(1)), D(X(1))) � (d(X(i)), b(X(i)), D(X(i)))

for all i ∈ [1, k].

17

Proof of Theorem 1

We now prove that Wsch, given by (7), is a sufficient scheduling weight for γ to ensure that all component-task deadlines are met.

It can be verified that
(

Wmax−f
1+f−Wmax

)

× f is at most 1− f . Therefore, ∆f is at most 1− f , and hence Wsch = I + f +∆f is at most

I + 1. If Wsch is I + 1, then γ will be allocated exactly I + 1 processors in every slot, and hence, correctness for component tasks

follows from the optimality of PD2 [22]. Similarly, no component task deadlines will be missed when f = 0. Therefore, we only

need to consider the case

f > 0 ∧ ∆f < 1 − f. (23)

Let F denote the fictitious synchronous, periodic task F of weight f + ∆f associated with γ. If S denotes the root-level schedule,

then because PD2 is optimal, by (13), the following holds. (We assume that the total number of processors available at the root is at

least the total weight of all the megatasks after inflation and any free tasks.)

(∀t :: −1 < lag(F, t,S) < 1) (24)

Our proof is by contradiction. Therefore, we assume that td and γ defined as follows exist.

Definition 3: td is the earliest time that the component task system of any megatask misses a deadline under PD2, i.e., the

component task system of some megatask misses a deadline at td and there does not exist a megatask whose component task system

misses a deadline prior to td, when the megatask itself is scheduled by the root-level PD2 scheduler according to its scheduling

weight.

Definition 4: γ is a megatask with the following properties.

(T1) td is the earliest time that a component-task deadline is missed in Sγ , a PD2 schedule for the component tasks of γ.

(T2) The component task system of no megatask satisfying (T1) releases fewer subtasks in [0, td) than that of γ.

Our setup here is similar to that used by Srinivasan and Anderson in the optimality proof of PD2 [22]. The only difference

is in the number of processors available for scheduling the task systems under consideration. Whereas the number of processors

available to the system is the same in every slot and is at least equal to the total system utilization in their case, this number is not

uniform across slots and can be either the floor or the ceiling of the total weight of the component tasks in our case.

Because of the similarity in the setup, some of the properties proved in [22] concerning a task system assumed to be missing

a deadline under PD2 also hold for the component task system of γ. We therefore borrow the properties that are relevant to us

and provide some intuitive explanation. In what follows, S denotes the root-level schedule for the task system to which γ belongs.

The total system LAG of the component task system of γ with respect to Sγ (which, as mentioned above, is the PD2 schedule for

the component tasks of γ in which a deadline is missed at td) is denoted LAG(γ, t,Sγ) and is given by the sum of the lags of its

component tasks, i.e.,

LAG(γ, t,Sγ) =
∑

T∈γ lag(T, t,Sγ). (25)

18

By (11), the total processor share allocated to tasks in γ in an ideal schedule is given by

share(γ, t,Sγ) =
∑

T∈γ share(T, t,Sγ) ≤
∑

T∈γ wt(T) = I + f. (26)

Because γ is scheduled with a weight of Wsch (refer to (7)), the corresponding fictitious task F is assigned a weight of f + ∆f by

the top-level scheduler, and hence, receives an allocation of f + ∆f in each slot in an ideal schedule. Before beginning the proof,

we introduce some terms.

Tight and non-tight slots. A time slot in which I (resp., I + 1) processors are allocated to γ is said to be a tight (resp., non-tight)

slot for γ. Equivalently, if t is a non-tight (tight) slot for γ, then F is allocated (not allocated) in S . In Fig. 3, slots 0 and 2 are

non-tight, whereas slot 1 is tight.

Holes. If less than I (resp., I + 1) tasks are scheduled in a tight (resp., non-tight) slot t in Sγ , then one or more processors are idle

at t. If k processors assigned to γ are idle at t, then there are k holes in Sγ at t.

Definition 5: A time slot in which every processor allocated to γ (in that slot) is idled is called a fully-idle slot for γ. A time

slot in which every processor is busy (i.e., a slot without holes), is called a busy slot, and one that is neither fully-idle nor busy is

called a partially-idle slot. An interval [t1, t2) in which every slot is fully-idle (resp., partially-idle, busy) is called a fully-idle (resp.,

partially-idle, busy) interval.

Lemma 4 (from [22]) The following properties hold for γ and Sγ .

(a) For all Ti in γ, d(Ti) ≤ td.

(b) Exactly one subtask of γ misses its deadline at td.

(c) LAG(γ, td,Sγ) = 1.

(d) There are no holes in slot td − 1.

Parts (a) and (b) follow from (T2). Part (c) follows from part (b). Part (d) holds because it can be shown that the subtask missing its

deadline can otherwise be scheduled at td − 1. By Lemma 4(c) and (24), we have the following.

LAG(γ, td,Sγ) > lag(F, td,S) (27)

Overview of the proof. Because LAG(γ, 0,Sγ) = lag(F, 0,S) = 0, (27) implies the following. (Informally, it states that there

exists a slot across which the LAG of the tasks in γ becomes larger than the lag of F .)

(∃u : u < td :: LAG(γ, u) ≤ lag(F, u)† ∧ LAG(γ, u + 1) > lag(F, u + 1)) (28)

In the schedule in Fig. 3, td = 12 and LAG(γ, 12) = 1 > 1/2 = lag(F, 12). Also, LAG(γ, t) = lag(F, t), for 0 ≤ t ≤ 8, and

LAG(γ, t) > lag(F, t), for 9 ≤ t ≤ 12, i.e., the lag inequality between γ and F is violated across slot 8. However, it should be

noted that the deadline miss of Fig. 3 is due to the use of the ideal weight Wsum in scheduling γ. Because our goal is to show that

no deadlines can be missed if γ is scheduled using Wsch, we show that for every u as defined in (28), (unlike in Fig. 3) there exists

†In the rest of this paper, LAG within γ and the lag of F should be taken to be with respect to Sγ and S, respectively.

19

a time u′, where u + 1 < u′ ≤ td such that LAG(γ, u′) ≤ lag(F, u′) (i.e., we show that the lag inequality is restored by td), and

thereby derive a contradiction to Lemma 4(c), and hence, to our assumption that γ misses a deadline at td.

The next lemma identifies the presence of holes in slot t as a necessary condition for the lag inequality LAG(γ, t) ≤ lag(F, t)

to be violated across t. An example can be found in Fig. 3. Here, the LAG of the tasks in γ is higher than the lag of F for the first

time at time 9, and though slot 8 is non-tight, only one task of γ is scheduled there. Hence, there is a hole in slot 8. Informally, the

lemma holds because if there is no hole in slot t, then the difference between the allocations in the ideal and actual schedules for γ

would be at most that for F , and hence, the increase in LAG cannot be higher than the increase in lag . This lemma is analogous to

one that is heavily used in other work on Pfair scheduling. It should also be noted that, in the case of megatasks, the LAG of the

tasks in γ can increase across a tight slot even if there are no holes (e.g., in Fig. 3, LAG(γ, 6) > LAG(γ, 5), but there is no hole in

slot 5), but it is guaranteed not to exceed the lag of F .

Lemma 5 If LAG(γ, t) ≤ lag(F, t) and LAG(γ, t + 1) > lag(F, t + 1), then there is at least one hole in slot t.

Proof: We prove the lemma by proving the contrapositive, i.e., we show that if there are no holes in slot t and

LAG(γ, t) ≤ lag(F, t) (29)

holds, then LAG(γ, t + 1) ≤ lag(F, t + 1) follows. We consider the following two cases.

Case 1: t is a tight slot. Because there are no holes in t, we have
∑

T∈γ Sγ(T, t) = I . Hence, by (18) and (26), LAG(γ, t + 1) =

LAG(γ, t) + share(γ, t) −
∑

T∈γ Sγ(T, t) = LAG(γ, t) + f holds, which by (29), implies that LAG(γ, t + 1) ≤ lag(F, t) + f

holds. Also, because t is a tight slot, F is not scheduled in t. Hence, by (14), we have, lag(F, t + 1) = lag(F, t) + f + ∆f . Thus,

LAG(γ, t + 1) ≤ lag(F, t + 1) − ∆f ≤ lag(F, t + 1) follows.

Case 2: t is a non-tight slot. For this case, we have
∑

T∈γ Sγ(T, t) = I + 1, and hence, by (18) and (26), LAG(γ, t + 1) ≤

LAG(γ, t) + f − 1 holds. Because t is non-tight, F is scheduled at t, and hence, by (14), lag(F, t + 1) = lag(F, t) + f + ∆f − 1

holds, which by (29) and the previous expression for LAG(γ, t + 1) implies LAG(γ, t + 1) ≤ lag(F, t + 1). �

We next state three lemmas that we borrow from [22].

Lemma 6 (from [22]) Let t < td − 1 be a slot with at least a hole in Sγ , let U be any task in B(t), and let Uj be a subtask of U

that is scheduled before t. If Uj is the critical subtask of U at t, then, d(Uj) = t + 1 and b(Uj) = 1. Else, d(Uj) < t.

Lemma 7 (from [22]) Let t < td − 1 be a slot with at least a hole in Sγ , let U be any task in B(t), and Uj its critical subtask at t.

Then, there is a slot with no holes in [t + 1, min(D(Uj), td)).

Lemma 8 (from [22]) Let t < td − 1 be a slot with at least a hole in Sγ , let T be any task in A(t), and Ti its subtask scheduled at

t. Then, d(Ti) = t + 1 and b(Ti) = 1.

The next lemma bounds the total ideal allocation in the interval [t, u + 1), where there is at least one hole in every slot in [t, u),

and u is a busy slot. For an informal proof of this lemma, refer to Fig. 10. As shown in this figure, if task T is in B(t) (as defined

in Sec. 2), then no subtask of T with release time prior to t can have its deadline later than t + 1. Otherwise, because there is a

20

Ti

Tj
Tk

Vl Vm

Any task scheduled in [t+1,u)
is in A(t).
For t < v < u, only tasks in A(v)
are active in v.

ut t+1 t+ω+1ωmax

ωmax

ωmaxTj is scheduled at or before t+

ωmax −1)I(+1U = task with rank

T = task with the highest rank

Uk

Uk

Tj

slots with holes

X

busy slot

X

V is in B(t)

V is inactive in [t+1,u)

share(V,t)+share(V,u) = wt(V)

t t+1
(a) (b)

t+

X

X

X

XTi

k is scheduled at t+ Either U
OR

(1)

(2)

If there is a hole in [t+1,t+ ω),
then, no subtask can shift to

 slot
fully−idle

no holes

or Tj is removed.
 the left of t+ even if ω,

Figure 10: The slot in which a subtask is scheduled is indicated with an “X.” (a) Lemma 9. If T is in B(t), subtasks like Ti or Tj cannot exist.
Also, a task in B(t) is inactive in [t + 1, u). (b) Lemma 11. A subtask like Uk or Tj exists. For simplicity, both these subtasks are depicted with
equal deadlines. The value of ω may differ for the two cases.

hole in every slot in [t + 1, u), removing such a subtask would not result in any subtask scheduled at or after u to shift to the left,

and hence, the deadline miss at td would not be eliminated, contradicting (T2). Similarly, no subtask of T can have its release time

in [t + 1, u), and thus, no subtask in B(t) is active in [t + 1, u). Furthermore, it can be shown that the total ideal allocation to T

in slots t and u is at most wt(T), using which, it can be shown that the total ideal allocation to γ in slots t and u is at most I + f

(because this bounds from above the total weight of tasks in B(t) ∪ A(t)) plus the cumulative weights of tasks scheduled in t (i.e.,

tasks in A(t)), which is at most |A(t)|Wmax. Finally, it can be shown that the ideal allocation to γ in a slot s in [t + 1, u) is at most

|A(s)|Wmax. Adding all of these values, we get the value indicated in the lemma.

Lemma 9 Let t < td − 1 be a fully- or partially-idle slot in Sγ and let u < td be the earliest busy slot after t (i.e., t + 1 ≤ u < td)

in Sγ . Then, ideal (γ, t, u + 1) =
∑u

s=t

∑

T∈γ share(T, s) ≤ I + f +
∑u−1

s=t |A(s)|Wmax.

Proof: We make use of the above three lemmas to prove this lemma. From the statement of the lemma we have the following.

(H) There is at least a hole in every slot in [t, u).

We first make Claims 1 and 2 below.

Claim 1 Only tasks in A(t) are active in [t + 1, u).

Proof: To prove this claim, we first show that the following holds.

(C) Only tasks in A(t) are scheduled in [t + 1, u).

Assume that (C) does not hold. Hence, there exists a T 6∈ A(t) such that t′, where t + 1 ≤ t′ < u is the earliest slot in

[t+1, u) in which T is scheduled. Let Ti be T ’s subtask scheduled at t′. Because (H) holds, by Lemma 8, d(Ti) = t′+1

and b(Ti) = 1 hold. Hence, by (21), wt(T) 6= 1. Therefore, by (1) and (2), r(Ti) ≤ d(Ti) − 2 = t′ − 1, and hence,

by (??), e(Ti) ≤ t′ − 1 ≤ t. However, by the definition of t′ and (H), there is a hole in t′ − 1. By our assumption, T

21

is not scheduled in [t + 1, t′), and because T 6∈ A(t), it is not scheduled in t either. Thus, T is not scheduled in t′ − 1.

Hence, because e(Ti) ≤ t′ − 1 holds, Ti should be scheduled in t′ − 1, which is a contradiction. Thus, only tasks that

are scheduled at t could be scheduled in [t + 1, u).

We next show that only tasks in A(t) are active in [t + 1, u). Assume to the contrary and let U be a task that is active

in [t + 1, u) but is not in A(t), which by (C), implies that U is not scheduled in any slot in [t, u). Hence, if U is active

in t′, where t + 1 ≤ t′ < u, then by Def. 1, there exists a subtask Uj such that e(Uj) ≤ t′ < d(Uj). Also, because U

is not scheduled anywhere in [t, u) and (H) holds, Uj should have been scheduled before t, and hence, e(Uj) ≤ t − 1

holds. That is, we have the following.

e(Uj) ≤ t − 1 d(Uj) ≥ t′ + 1 > t + 1 (30)

By Def. 1, the definition of I(t), and (30), U cannot be in I(t). By our assumption, U is not in A(t), and hence, should

be in B(t). But then, because Uj is scheduled before t and there is a hole in t, by Lemma 6, d(Uj) ≤ t + 1, which

contradicts (30). Therefore, our assumption that U is not in A(t) is incorrect. 2

Claim 2 (∀t′ : t + 1 ≤ t′ < u :: B(t′) = ∅).

Proof: Assume that the claim does not hold and let t + 1 ≤ t′ < u be a slot such that B(t′) 6= ∅. Let U be any task in

B(t′). Thus, U is active at t′and let Uj be the critical subtask of U at t′. Because U is not scheduled in t′, Uj should

have been scheduled before t′, say at t̂ < t′. Hence, by Lemma 6,

d(Uj) = t′ + 1 > t + 1 (31)

holds. Because d(Uj) = t′ + 1 > t̂ + 1 holds, by the contrapositive of Lemma 8, there is no hole in slot t̂, which by

(H) implies that t̂ < t. However, then by (H), Lemma 6 implies that d(Uj) ≤ t + 1, which contradicts (31). The claim

follows. 2

We next show the following.

(D) (∀U ∈ B(t) :: share(U, t) + share(U, u) ≤ wt(U)).

Let U be any task in B(t) and let Uj be its critical subtask at t. Then, by Lemma 6, d(Uj) = t + 1 and b(Uj) = 1. By Lemma 7,

there is a slot without a hole in [t+1, min(td, D(Uj))). Hence, u ≤ min(td − 1, D(Uj)− 1) holds. Also, by Claim 1, U is inactive

over [t + 1, u). Therefore, by Def. 1, r(Uk) ≥ u holds for Uj’s successor Uk. Also, u ≥ t + 1 = d(Uj) holds. Hence, by Lemma 2,

share(U, d(Uj) − 1) + share(U, u), i.e., share(U, t) + share(U, u) is at most wt(U).

We are now ready to prove the lemma.

u
∑

s=t

∑

T∈γ

share(T, s) =

u
∑

s=t





∑

T∈A(t)

share(T, s) +
∑

T∈B(t)

share(T, s) +
∑

T∈I(t)

share(T, s)



 {by (19)}

22

=
u

∑

s=t

∑

T∈A(t)

share(T, s) +
∑

T∈B(t)

share(T, t) +
∑

T∈B(t)∪T∈I(t)

share(T, u)

{Because only tasks in A(t) are active in [t + 1, u) by Claim 1.

By (20), share(T, s) = 0 for all T ∈ I(s), for all s.}

=
u−1
∑

s=t

∑

T∈A(t)

share(T, s) +
∑

T∈B(t)

share(T, t) +
∑

T∈A(t)∪B(t)∪I(t)

share(T, u)

=
∑

T∈A(t)

share(T, t) +

u−1
∑

s=t+1





∑

T∈A(s)

share(T, s) +
∑

T∈A(t)\A(s)

share(T, s)



 +
∑

T∈B(t)

share(T, t) +
∑

T∈γ

share(T, u)

{By Claim 1, A(s) ⊆ A(t), for t + 1 ≤ s < u.}

=
u−1
∑

s=t

∑

T∈A(s)

share(T, s) +
∑

T∈B(t)

share(T, t) +
∑

T∈γ

share(T, u)

{By Claim 2, B(s) = ∅, for t + 1 ≤ s < u, and hence, every T ∈ A(t) \ A(s) is in I(s).}

=
u−1
∑

s=t

∑

T∈A(s)

share(T, s) +
∑

T∈B(t)

(share(T, t) + share(T, u)) +
∑

T∈γ\B(t)

share(T, u)

≤
u−1
∑

s=t

∑

T∈A(s)

wt(T) +
∑

T∈B(t)

(share(T, t) + share(T, u)) +
∑

T∈γ\B(t)

wt(T) {by (11)}

≤
u−1
∑

s=t

∑

T∈A(s)

wt(T) +
∑

T∈B(t)

wt(T) +
∑

T∈γ\B(t)

wt(T) {by Lemma 2}

≤
u−1
∑

s=t

∑

T∈A(s)

Wmax + Wsum(γ) {by (4) and (3)}

=

u−1
∑

s=t

|A(s)|Wmax + I + f

�

The following two lemmas concern fully-idle slots.

Lemma 10 Let t < td be a fully-idle slot in Sγ . Then all slots in [0, t + 1) are fully idle in Sγ .

Proof: Suppose, to the contrary, that some subtask Ti is scheduled before t. Then, removing Ti from Sγ will not cause any subtask

scheduled after t to shift to the left to t or earlier. (If such a displacement to the left occurs, then the displacing subtask should have

been scheduled at t even when Ti is included.) Hence, even if every subtask scheduled before t is removed, the deadline miss at td

cannot be eliminated. This contradicts (T2). �

The second lemma concerning fully-idle slots says that there is a minimum number of busy slots following the last fully-idle

slot in Sγ . Informally, the lemma holds because it can be shown that one of the two cases in Fig. 10(b) holds, and hence, if there

is a hole in [t + 1, t + ω), then a subtask (like Uk or Tj) with a deadline at or after t + 1 + ω but scheduled before t + ω can be

removed without causing any subtask scheduled later (at or after t + ω) to shift earlier. Hence, the deadline miss at td would not be

eliminated, contradicting (T2).

23

Lemma 11 Let t < td − 1 be the last fully-idle slot in Sγ and let ω be as defined in (6). Then, every slot in [t + 1, t + ω) is busy.

Also, td ≥ t + 1 + ω.

Proof: By Lemma 10, every slot in [0, t + 1) is fully idle. Hence, r(Ti) ≥ e(Ti) ≥ t + 1 holds for every subtask Ti in Sγ . By

(1), d(Ti) − r(Ti) ≥ 1
wt(T) holds, and because r(Ti) and d(Ti) are integral, d(Ti) − r(Ti) ≥

⌈

1
wt(T)

⌉

≥
⌈

1
Wmax

⌉

holds. So, by

(5), we have d(Ti) ≥ r(Ti) +
⌈

1
wt(T)

⌉

≥ r(Ti) + ωmax for every subtask Ti in Sγ . If Wmax = 1
k

, where k is an integer greater

than zero, then
⌈

j
Wmax

⌉

=
⌊

j
Wmax

⌋

= j
Wmax

holds for all j ∈ N, and hence, by (21), b(Uj) = 0 holds for all subtasks Uj of

a task U with weight Wmax. Therefore, if Wmax = 1
k

and wt(T) < Wmax, then
⌈

1
wt(T)

⌉

>
⌈

1
Wmax

⌉

holds, and hence, either

d(Ti) > r(Ti) + ωmax or (d(Ti) = r(Ti) + ωmax ∧ b(Ti) = 0) holds for every subtask Ti in Sγ . Thus, we have the following.

(∀Ti ∈ Sγ :: r(Ti) ≥ t + 1) (32)

(∀Ti ∈ Sγ :: Wmax 6=
1

k
⇒ d(Ti) ≥ r(Ti) +

⌈

1
wt(T)

⌉

≥ r(Ti) + ωmax) (33)

(∀Ti ∈ Sγ :: Wmax =
1

k
⇒ (d(Ti) = r(Ti) + ωmax ∧ b(Ti) = 0) ∨ d(Ti) ≥ r(Ti) +

⌈

1
wt(T)

⌉

> r(Ti) + ωmax) (34)

(32) – (34) above imply (35) and (36) below.

(∀Ti ∈ Sγ :: Wmax 6=
1

k
⇒ t + ωmax ≤ d(Ti) − 1) (35)

(∀Ti ∈ Sγ :: Wmax =
1

k
⇒ ((t + ωmax = d(Ti) − 1 ∧ b(Ti) = 0) ∨ t + ωmax < d(Ti) − 1)) (36)

Let t′ be a slot in [t + 1, t + ωmax). By the statement of this lemma and Lemma 10, t′ is not fully idle, and let Uj be a subtask

scheduled in t′. Then, by (35)–(36), d(Uj) ≥ t + 1 + ωmax holds, and hence, by Lemma 8, there cannot a hole in t′. Further, if

Wmax = 1
k

and d(Uj) = t + 1 + ωmax, then by (36), b(Uj) = 0, and hence, by Lemma 8 again, there cannot be a hole in t + ωmax,

either. Define te as follows.

te =

{

t + 1 + ωmax, Wmax = 1
k

t + ωmax, Wmax 6= 1
k

(37)

Then, by the above discussion, we have the following.

(L) There are no holes in [t + 1, te).

To establish the lemma, we need to prove that there are no holes in [te, t + ω) and show that td ≥ t + ω + 1. For this, we make

Claims 3–6 below.

Claim 3 Let Uk be a subtask in Sγ and let Uk’s predecessor be also present in Sγ . Then, d(Uk) ≥ t + 2ωmax.

Proof: Let Uj be Uk’s predecessor in Sγ . By (32)–(34), d(Uj) ≥ t + 1 + ωmax holds. Hence, by (2) and (1),

r(Uk) ≥ t + ωmax and by (33) and (34), d(Uk) ≥ t + 2 · ωmax holds. 2

Claim 4 There are at least I ·ωmax + 1 component tasks in γ if Wmax = 1
k

, and at least I · (ωmax − 1) + 1 otherwise.

Proof: By (3),
∑

T∈γ wt(T) = I +f , and hence,by (4),
∑

T∈γ Wmax ≥ I +f . Let n denote the number of component

tasks in γ. Then, n× Wmax ≥ I + f holds. Thus, n ≥ I+f
Wmax

. If Wmax = 1
k

, then
⌈

1
Wmax

⌉

= 1
Wmax

is an integer, and

24

because n is an integer and f > 0, n ≥ I
Wmax

+ 1 = ωmax · I + 1 follows from (5). If Wmax 6= 1
k

, then n ≥ I+f
Wmax

≥

(
⌈

1
Wmax

⌉

− 1)I + f
Wmax

, which by the integral nature of n implies n ≥ (
⌈

1
Wmax

⌉

− 1)I +1 = (ωmax − 1) · I +1. 2

Claim 5 If there exists a task that is scheduled more than once in [t + 1, te), then there are no holes in [te, ω̄) and

td ≥ t + 1 + ω̄, where ω̄ =

{

2ωmax − 1, Wmax 6= 1
k

2ωmax, Wmax = 1
k

.

Proof: Let V be a task that is scheduled more than once in [t + 1, te). Let Vk, scheduled at t′, be the latest subtask of

V scheduled before te. We consider the following two cases.

Case 1: Wmax 6= 1

k
. Because V is scheduled more than once in [t + 1, te), by Claim 3, d(Vk) ≥ t + 2 · ωmax holds.

We next show the following.

(J) There exists a subtask Xm scheduled after t′ such that e(Xm) ≤ t′, d(Xm) ≥ t + 2 · ωmax, and the predecessor

of Xm, if one exists, is scheduled before t′.

If the removal of Vk from Sγ does not result in any other subtask of γ shifting left to t′, then Vk can be removed without

eliminating the deadline miss at td. This would contradict (T2), and hence, there exists a subtask Xm, scheduled after

t′, that can shift left to t′. By Lemma 3, d(Xm) ≥ d(Vk) ≥ t + 2 · ωmax holds for Xm. Furthermore, because Xm

can shift into t′, e(Xm) ≤ t′ holds, and its predecessor, if one exists, should have completed executing by t′. Thus, (J)

holds.

Let subtask Xm, as defined above, be scheduled at t̂ > t′. Then, by (J), there is no hole in [t′, t̂). Thus, if t̂ ≥ t+2·ωmax,

then it implies that there is no hole in [t′, t + 2 · ωmax − 1). If t̂ < t + 2 · ωmax, then by Lemma 6, there is no hole in

[t̂, t+2 ·ωmax−1). Thus, there are no holes in any slot in [t′, t+2 ·ωmax−1), i.e., in [t′, t+ ω̄). That td ≥ t+2 ·ωmax

follows from Lemma 4(a) and the fact that d(Vk) ≥ t + 2 · ωmax.

Case 2: Wmax = 1

k
. Similar to the proof for Case 1. 2

Claim 6 If no task is scheduled more than once in [t + 1, te), then there are no holes in [te, t + ω̂) and td ≥ t + 1 + ω̂,

where ω̂ =

{

smallest window length of task of rank (ωmax − 1) · I + 1, Wmax 6= 1
k

smallest window length of task of rank ωmax · I + 1, Wmax = 1
k

.

Proof: Let no task be scheduled more than once in [t + 1, te). Then by (L), at least (te − t− 1) · I tasks are scheduled

before te. We prove the claim for Wmax 6= 1
k

. The proof for the other case is similar. Let Uj be a subtask that is

scheduled at te. Because task U is scheduled for the first time in te, subtasks of at least (te − t− 1) · I + 1 = (ωmax −

1) ·I +1 tasks are scheduled in [t+1, te +1). By Claim 4, there are at least these many tasks in γ. Hence, there exists a

subtask Xm scheduled in [t+1, te+1), such that the rank of X is at least (ωmax−1)·I+1. (This is because every subtask

in Sγ is released at or after t + 1, and the relative priorities among subtasks released at t + 1 will depend on the task

weights.) Therefore, by (32), (33), and Lemma 1, the deadline of Xm is at least d = t+1+ω̂, where ω̂ ≥ ωmax (because

wt(X) ≤ Wmax), and so, by Lemma 8, there can be no hole in te, and by Lemma 6, no hole in [te + 1, d − 1). Thus,

there is no hole in[t + ωmax, t + (smallest window length of component task with rank (ωmax − 1) · I + 1)). Also, by

Lemma 4(a), the presence of Xm implies that td ≥ t + 1 + ω̂. 2

25

~~ ~~ ~~ ~~~~ ~~

Partially−idle
slots

Partially−idle
slots

B1H1 Hn BnH0 B0

1I
2I .. In −1

nI0I

tH 0

e tB 0

s tH 0

e tH 1

s tH 1

e tB 1

s tB 1

e tH 2

s tB n−1

e tH n

s tH n

e tB n

stH 0

s tB n

e

~~

F X
X

X
X

X
X

X

... ...
...

... ...
time

...
Fully−idle slots

...
Busy slots Busy slots Busy slots

γ

= = = = = =

t tdv

0, < 0> 0,lag (F)

0 0 0

0 t+h0+b0t+h

(γ)LAG

Figure 11: Subintervals of the interval I = [t, td) as explained in Lemma 12. Sample windows and allocations for the fictitious task correspond-
ing to γ (after reweighting) are shown below the time line.

By Claims 5 and 6, td ≥ t + 1 + ω and there is no hole in [te, t + ω). Hence by (L), there is no hole in [t + 1, t + ω). �

We are now ready to prove the main lemma, which shows that the lag inequality, if violated, is restored by td.

Lemma 12 Let v < td be a slot such that LAG(γ, v) ≤ lag(F, v), but LAG(γ, v + 1) > lag(F, v + 1). Then, there exists a time

u, where v + 1 < u ≤ td, such that LAG(γ, u) ≤ lag(F, u).

Proof: Let ∆LAG(γ, t1, t2), where t1 < t2, denote LAG(γ, t2) − LAG(γ, t1), i.e., the difference between the LAG of the tasks

in γ at t2 and t1, and let ∆lag(F, t1, t2) be analogously defined. To prove this lemma, it is sufficient to show that ∆LAG(γ, v, u) ≤

∆lag(F, v, u), where u is as defined in the statement of the lemma. However, when v is fully-idle it is simpler to show that

∆LAG(γ, t, u) ≤ ∆lag(F, t, u), where t ≤ v and lag(F, t) = LAG(γ, t) hold, and hence, we define t as follows. (As shown in

Fig. 11, LAG(γ, t + 1) may not exceed lag(F, t + 1), and it is immaterial.)

t =

{

v, v is not fully-idle
max(t′ : 0 ≤ t′ ≤ v :: LAG(γ, t′) = lag(F, t′)), v is fully-idle (38)

Note that because LAG(γ, 0) = lag(F, 0) = 0, t is well defined. If v is fully-idle, then by Lemma 10, every slot in [0, v + 1) is

fully-idle, and hence, by (38), t either (i) is fully-idle, or (ii) equals v, and so, by the statement of this lemma and Lemma 5, has at

least one hole. Thus, in either case there is at least one hole in t. Hence, by Lemma 4(d), t < td − 1 holds. Let I denote the interval

[t, td). We first partition I into disjoint subintervals as shown in Fig. 11, where each subinterval is of one of the following three

types as defined in Def. 5: (i) fully-idle, (ii) partially-idle, and (iii) busy. Each subinterval is maximal in that it cannot be extended

to the right or left without either extending past the interval I or violating the property that all slots in the subinterval are of the

same type.

Because there is at least one hole in t (as discussed above), the first subinterval is either fully-idle or partially-idle. Similarly,

because there is no hole in td − 1, the last subinterval is busy. By Lemma 10, a non fully-idle slot cannot be followed by a fully-idle

slot. From (6), it can be verified that ω ≥ 2 holds, and hence, by Lemma 11, there is at least one busy slot following the last

26

fully-idle slot in I. Thus, the intermediate subintervals of I alternate between busy and partially-idle types, in that order. This is

illustrated in Fig. 11.

A fully-idle first subinterval, if present, is denoted H0 and the busy subinterval following it is denoted B0. The alternating

partially-idle and busy subintervals following B0 are denoted Hk and Bk, respectively, where 1 ≤ k ≤ n, and n is the number of

such alternating pairs of subintervals. The combined interval Hk, . . . , Bk is denoted Ik. If v is not fully idle, then H0 and B0, and

hence, I0 will be empty. This is expressed formally below.

v is not fully-idle ⇔ I0 is empty (39)

Hk
def
= [ts

Hk
, te

Hk
) (40)

Bk
def
= [ts

Bk
, te

Bk
) (41)

t
def
=

8

>

<

>

:

ts
H0

, v is not fully-idle

ts
H1

, v is fully-idle

td
def
= te

Bn

te
Hk

def
= ts

Bk
, 0 ≤ k ≤ n

te
Bk

def
= ts

Hk+1
, 0 ≤ k ≤ n − 1

hk
def
= te

Hk
− ts

Hk
, 0 ≤ k ≤ n

bk
def
= te

Bk
− ts

Bk
, 0 ≤ k ≤ n

hT
k (bT

k)
def
= no. of tight slots in Hk (Bk)

hN
k (bN

k)
def
= no. of non-tight slots in Hk (Bk)

L
def
=

PN

k=1
(hk + bk) (42)

L0
def
= h0 + b0 (43)

LT def
=

PN

k=1
(hT

k + bT
k) (44)

LN def
=

PN

k=1
(hN

k + bN
k) (45)

LT
0

def
= hT

0 + bT
0 (46)

LN
0

def
= hN

0 + bN
0 (47)

Pk
def
=

Pk

i=0
(hi + bi) (48)

P−1
def
= 0 (49)

Figure 12: Notation for Lemma 12.

Before proceeding further, we introduce some more nota-

tion. tsHk
(resp., tsBk

) and teHk
(resp., teBk

) denote the starting

and ending times, respectively, of subinterval Hk (resp., Bk).

hk and bk denote the lengths of the subintervals Hk and Bk,

respectively. L denotes the cumulative length of I1 through In

and L0 denotes the length of I0. hT
k (resp., hN

k) denotes the

number of tight (resp., non-tight) slots in Hk. bT
k and bN

k de-

note corresponding values for Bk. (T and N stand for “tight”

and “non-tight,” respectively, and are not to be confused with

task identifiers.) The cumulative number of tight and non-tight

slots in I1, . . . , In is denoted LT and LN , respectively. Finally,

Pk denotes the cumulative lengths of subintervals I0 through

Ik. This notation is summarized in Fig. 12.

Recall that our goal is to show that there exists a u, where

t + 1 < u ≤ td, such that ∆LAG(γ, t, u) ≤ ∆lag(F, t, u).

Towards that end, we compute the ideal and actual allocations

to γ and F in I. By Lemma 9, the total allocation to γ in

Hk and the first slot of Bk in the ideal schedule is given by

ideal(γ, tsHk
, tsBk

+1) ≤
∑hk

i=1 |A(t+Pk−1 +i−1)| ·Wmax+

I + f . By (26), γ is allocated at most Wsum = I + f in each

slot in the ideal schedule. Hence, the total ideal allocation in

subinterval Ik , which is comprised of Hk and Bk, is given by

ideal(γ, tsHk
, teBk

) ≤
∑hk

i=1 |A(t+Pk−1+i−1)|·Wmax+(I+f)+(bk−1)·(I+f) =
∑hk

i=1 |A(t+Pk−1+i−1)|·Wmax+bk ·(I+f).

Thus, the total ideal allocation in I is given by

ideal(γ, t, td) ≤
∑n

k=0

((

∑hk

i=1(|A(t + Pk−1 + i − 1)| · Wmax)
)

+ bk · (I + f)
)

. (50)

We now determine the number of processors executing tasks of γ in Sγ in I, i.e., the actual allocation to γ in Sγ in I. This

27

number is equal to |A(t′)| for a slot t′ with a hole, and is equal to I (resp., I + 1) for a busy tight (resp., non-tight) slot. Hence, the

actual allocation to γ in Sγ can be expressed as follows.

actual(γ, t, td) =
∑n

k=0

((

∑hk

i=1 |A(t + Pk−1 + i − 1)|
)

+ I · bT
k + (I + 1) · (bk − bT

k)
)

(51)

By (50) and (51), we have

∆LAG(γ, t, td) = LAG(γ, td) − LAG(γ, t)

= ideal(γ, t, td) − actual(γ, t, td) {by (18)}

≤
∑n

k=0

((

∑hk

i=1(|A(t + Pk−1 + i − 1)| · (Wmax − 1))
)

+ bT
k · f + (bk − bT

k)(f − 1)
)

(52)

≤ (b0 − bT
0)(f − 1) + bT

0 · f +
∑n

k=1

((

∑hk

i=1(Wmax − 1)
)

+ bT
k · f + (bk − bT

k)(f − 1)
)

{Wmax ≤ 1, and hence, (52) is decreases with increasing |A(t + Pk−1 + i − 1)|. However, by (I),
H1, . . . , Hn are partially-idle, and hence, |A(t + Pk−1 + i − 1)| ≥ 1, for 1 ≤ k ≤ n.}

= bN
0 (f − 1) + bT

0 · f +
∑n

k=1(hk(Wmax − 1) + bT
k · f + (bk − bT

k)(f − 1))

= b0 · f − bN
0 +

∑n
k=1(hk(Wmax − 1) + bk · f − bk + bT

k)

= b0 · f − bN
0 +

∑n
k=1(hk · ((Wmax − f − 1) + f) + bk · f − bk + bT

k)

= b0 · f − bN
0 +

∑n
k=1((hk + bk) · f + hk · (Wmax − f − 1) − bN

k) {bk = bT
k + bN

k }

= b0 · f − bN
0 + L · f +

∑n
k=1(hk · (Wmax − f − 1) − bN

k)

= b0 · f − bN
0 + L · f +

∑n
k=1(h

T
k · (Wmax − f − 1) + hN

k · (Wmax − f − 1) − bN
k)

{hk = hT
k + hN

k }

≤ b0 · f − bN
0 + L · f +

∑n
k=1(h

N
k · (Wmax − f − 1) − bN

k) {because Wmax ≤ 1}

= b0 · f − bN
0 + L · f − LN +

∑n
k=1 hN

k · (Wmax − f) {by (45)}

≤

{

(b0 + L) · f − bN
0 + LN(Wmax − f − 1), Wmax > f

(b0 + L) · f − bN
0 − LN , Wmax ≤ f.

(53)

Having determined the change in LAG for the tasks in γ across I, we now determine the change in lag for the fictitious task F

across the same interval. F receives an allocation of f + ∆f in every slot in an ideal system. Hence, by (42) and (43),

ideal(F, t, td) =
∑n

k=0(hk + bk)(f + ∆f) = (L + L0)(f + ∆f) (54)

In schedule S , F is allocated in every non-tight slot in I. Hence, by (45) and (47), actual(F, t, td) is given by

actual(F, t, td) =
∑n

k=0(h
N
k + bN

k) = LN + LN
0 . (55)

So, by (15), the change in lag of F across I is given by

∆lag(F, t, td) = lag(F, td) − lag(F, t) = ideal(F, t, td) − actual(F, t, td) = (L + L0)(f + ∆f) − LN − LN
0 . (56)

We next consider two cases based on whether I0 is empty. When I0 is empty, we show that ∆LAG(γ, t, td) ≤ ∆lag(F, t, td).

For the other case, we consider four subcases, and for each subcase, show that either ∆LAG(γ, t, td) ≤ ∆lag(F, t, td) or

∆LAG(γ, t, t + h0 + b0) ≤ ∆lag(F, t, t + h0 + b0) holds. If ∆LAG(γ, t, td) ≤ ∆lag(F, t, td) is shown to hold, then the

lemma would be established for u = td. Otherwise, as shown in Fig. 11, no slot after H0 is fully-idle. Hence, if I0 is non-empty,

and hence, v is fully-idle, then v < t + h0 holds, and because B0 is non-empty, b0 ≥ 1, and hence, t + h0 + b0 > v + 1 holds.

Therefore, if ∆LAG(γ, t, t + h0 + b0) ≤ ∆lag(F, t, t + h0 + b0) is shown to hold when I0 is non-empty, the lemma would be

established for u = t + h0 + b0.

28

Case 1: I0 is empty. Because I0 is empty, b0 = 0 and L0 = LN
0 = 0. If Wmax ≤ f holds, then from (53) and (56), and

∆f > 0, ∆LAG(γ, t, td) < ∆lag(F, t, td) follows. Hence, in the rest of the proof, we assume Wmax > f . Therefore, by (53),

∆LAG(γ, t, td) ≤ L · f + LN · (Wmax − f − 1), and by (56), ∆lag(F, t, td) = L(f + ∆f) − LN . By Lemma 4(c),

LAG(γ, td) = 1 ⇒ ∆LAG(γ, t, td) + LAG(γ, t) = 1 ⇒ L · f + LN · (Wmax − f − 1) + LAG(γ, t) ≥ 1

⇒ L · f + LN · (Wmax − f − 1) + 1 > 1 {from the statement of the lemma, 38), and (24), LAG(γ, t) < 1}

⇒ L >
LN (1 + f − Wmax)

f
(57)

Because Wmax > f , by (8) and (23), ∆f ≥ (Wmax−f

1+f−Wmax
) ·f holds. Hence, by (57), L ·∆f > LN(Wmax−f) holds. Therefore,

using expressions derived above (for ∆LAG and ∆lag), ∆LAG(γ, t, td)−∆lag(F, t, td) ≤ LN (Wmax−f)−L ·∆f < 0 follows,

establishing the lemma.

Case 2: I0 is nonempty. To prove the lemma for this case, we first show (59) and (60) below. To show (59), we show that

lag(F, t + h0) = h0(f + ∆f) − hN
0 . Because I0 is nonempty, by (39) and (38), we have the following.

(V) v is fully-idle, t ≤ v, and lag(F, t) = LAG(γ, t).

Since v is a fully-idle slot, by Lemma 10, every slot in [0, v + 1) is fully-idle. Therefore, no task in γ is active in [0, v + 1), and

hence, ideal(γ, 0, t′) = 0, for all t′ ≤ v + 1, and we have the following.

(∀t′ : 0 ≤ t′ ≤ v + 1 :: LAG(γ, t′) = 0) (58)

(V) and (58) imply lag(F, t) = 0. Hence, by (15), lag(F, t + h0) = lag(F, t) + ideal(F, t, t + h0) − actual(F, t, t + h0) =

ideal(F, t, t + h0) − actual(F, t, t + h0). Because F is allocated f + ∆f time in every slot in an ideal schedule, and is allocated

in every non-tight slot only in an actual schedule, lag(F, t + h0) = h0(f + ∆f) − hN
0 . By (24), lag(F, t + h0) > −1, and hence,

we have

hN
0 − h0(f + ∆f) < 1. (59)

By Lemma 4(c), LAG(γ, td) = 1 and hence, by(53), we have ∆LAG(γ, t, td) = (b0 + L)f + LN(Wmax − f − 1) = 1, which

implies

b0 + L =
1 − LN (Wmax − f − 1)

f
. (60)

By (53) and (56), if Wmax > f , we have

∆LAG(γ, t, td) − ∆lag(F, t, td) ≤ (b0 + L)f − bN
0 + LN (Wmax − f − 1) − (L + h0 + b0)(f + ∆f) + LN + bN

0 + hN
0

{after substituting L0 = h0 + b0 and LN
0 = hN

0 + bN
0 }

= LN(Wmax − f) − (L + b0)∆f − h0(f + ∆f) + hN
0

< LN(Wmax − f) − (L + b0)∆f + 1 {by (59)}

≤ LN(Wmax − f) −

(

1 − LN(Wmax − f − 1)

f

)

∆f + 1 {by (60)}. (61)

Similarly, if Wmax ≤ f , by (53) and (56), we have

∆LAG(γ, t, td) − ∆lag(F, t, td) < −(L + b0)∆f + 1 (62)

29

≤ −

(

1 − LN(Wmax − f − 1)

f

)

∆f + 1 {by (60)}.

We now consider the following subcases.

Subcase 2(a): Wmax ≥ f + 1/2. For this subcase, by (8), ∆f = Wmax−f
1+f−Wmax

× f . Therefore, by (61),

∆LAG(γ, t, td) − ∆lag(F, t, td) < LN (Wmax − f) −

(

1 − LN (Wmax − f − 1)

f

) (

Wmax − f

1 + f − Wmax

)

f + 1

= 1 −
Wmax − f

1 + f − Wmax
≤ 1 −

f + 1/2− f

1 + f − f − 1/2
= 0.

Subcase 2(b): f < Wmax < f + 1/2 and min(f, 1

ω−1
) = f . For this case, by (8) and (23), we have ∆f ≥ f and so, by

(61), ∆LAG(γ, t, td) − ∆lag(F, t, td) < LN(Wmax − f) −
(

1−LN (Wmax−f−1)
f

)

f + 1 = LN(Wmax − f) − (1 − LN (Wmax −

f − 1)) + 1 = LN(Wmax − f) + LN (Wmax − f − 1) = 2LN(Wmax − f) − LN holds, which by Wmax < f + 1/2, implies that

∆LAG(γ, t, td) − ∆lag(F, t, td) < 0.

Subcase 2(c): Wmax ≤ f . For this case, by (8) and (23), we have ∆f = 1
ω

. Also, t + h0 − 1 is the last fully-idle slot in Sγ .

Hence, by Lemma 11, td ≥ t + h0 + ω, i.e., td − (t + h0) = b0 + L ≥ ω holds. So, by (62), ∆LAG(γ, t, td) − ∆lag(F, t, td) <

−ω(1/ω) + 1 = 0.

Subcase 2(d): f < Wmax < f + 1/2 and min(f, 1

ω−1
) = 1

ω−1
. By (8) and (23), we now have ∆f = 1

ω−1 . Because

t + h0 − 1 is the last fully-idle slot in Sγ , by Lemma 11, there are no holes in [t + h0, t + h0 + ω), hence b0 ≥ ω − 1 holds.

By (18), LAG(γ, t + h0 + b0) = LAG(γ, t) + ideal(γ, t, t + h0 + b0) − actual(γ, t, t + h0 + b0). Because H0 is fully idle,

no task of γ is active there. Hence, ideal(γ, t, t + h0 + b0) ≤ b0 · (I + f). Because B0 is busy, I (resp., I + 1) tasks are

scheduled in every tight (resp., non-tight) slot. Hence, by (58), LAG(γ, t + h0 + b0) ≤ b0 · (I + f) − b0 · I − bN
0 = b0 · f − bN

0 .

Similarly, lag(F, t + h0 + b0) = lag(F, t) + ideal(F, t, t + h0 + b0) − actual(F, t, t + h0 + b0). Because lag(F, t) = 0, we have

lag(F, t + h0 + b0) = (b0 + h0) · (f + ∆f) − bN
0 − hN

0 , which by (59) implies lag(F, t + h0 + b0) ≥ −1 + b0 · (f + ∆f) − bN
0 .

Because ∆f ≥ 1
ω−1 and b0 ≥ ω − 1,we have lag(F, t + h0 + b0) ≥ −1 + (ω − 1) · (f + 1

ω−1) − bN
0 ≥ b0 · f − bN

0 . Thus,

LAG(γ, t + h0 + b0) ≤ lag(γ, t + h0 + b0). �

By (28), there exists a u, where 0 ≤ u < td, such that LAG(τ, u) ≤ lag(F, u) and LAG(τ, u+1) > lag(F, u+1). Let t be the

largest such u. Then, by Lemma 12, there exists a t′ ≤ td such that LAG(τ, t′) ≤ lag(F, t′). If t′ = td, then (27) is contradicted,

and if t′ < td, then (27) contradicts the maximality of t. Thus, our assumptions in Defs. 3 and 4 are incorrect and ∆f given by

(8) is a sufficient inflation factor to avoid deadline misses. Theorem 1 follows. (This result can be extended to apply when “early”

subtask releases are allowed, as defined in [4], at the expense of a slightly more complicated proof.)

30

