
Soft Real-Time Scheduling on Performance Asymmetric Multicore
Platforms ∗

John M. Calandrino2, Dan Baumberger1, Tong Li1, Scott Hahn1, and James H. Anderson2

1Intel Corporation, Hillsboro, OR
2Department of Computer Science, The University of North Carolina at Chapel Hill

Abstract

This paper discusses an approach for supporting soft real-
time periodic tasks in Linux on performance asymmetric
multicore platforms (AMPs). Such architectures consist
of a large number of processing units on one or several
chips, where each processing unit is capable of executing
the same instruction set at a different performance level.
We discuss deficiencies of Linux in supporting periodic
real-time tasks, particularly when cores are asymmetric, and
how such deficiencies were overcome. We also investigate
how to provide good performance for non-real-time tasks
in the presence of a real-time workload. We show that
this can be done by using deferrable servers to explicitly
reserve a share of each core for non-real-time tasks. This
allows non-real-time tasks to have priority over real-time
tasks when doing so will not cause timing requirements to
be violated, thus improving non-real-time response times.
Experiments show that even small deferrable servers can
have a dramatic impact on non-real-time task performance.

1 Introduction
In this paper, we discuss an approach for supporting soft
real-time periodic tasks in Linux on performance asymmetric
multicore platforms, or AMPs. Such architectures consist of
a large number of processing cores on one or several chips,
all capable of executing the same instruction set; however,
each core may exhibit substantially different levels of perfor-
mance. Performance asymmetry is in contrast to functional
asymmetry, where each core has a different set of “capabil-
ities” and tasks must be matched with cores possessing the
capabilities they need.

AMPs may ease the transition for software devel-
opers from single-core platforms and multi-core plat-
forms containing a few large, powerful cores to plat-
forms containing tens or hundreds of smaller, sim-
pler cores where exploiting parallelism will be required

∗Work supported by a grant from Intel Corp., by NSF grants CNS
0408996, CCF 0541056, and CNS 0615197 and by ARO grant W911NF-
06-1-0425. This research was conducted while the first author was at Intel
for a summer internship.

Slow Core

Slow Core

Slow Core

Slow Core

Slow Core

Slow Core

Fast Core Fast Core

Figure 1: An AMP architecture, con-
sisting of two larger “fast” cores and six
smaller “slow” cores.

in order to achieve
performance im-
provements. An
example of such
an architecture is
shown in Fig. 1.
Applications that
are highly paral-
lelizable would
benefit from using
a large number of
the slower cores, while applications that are not easily paral-
lelized can use the faster cores. The same level of flexibility
cannot be found in a symmetric platform, assuming the
same chip area for both platforms. A highly parallelizable
application might perform poorly on a platform with only a
few fast cores, whereas an application that cannot be easily
parallelized would perform poorly on a platform with a
large number of slower cores. Further arguments in favor of
AMPs are given in [13], where such an architecture is called
a single-ISA heterogeneous multicore architecture.

There are many cases where it may be beneficial to pro-
vide periodic soft real-time task support in a general-purpose
operating system such as Linux. Such support allows the
share of the system received by a given task to be controlled,
which enables more predictable system and application per-
formance. Note that, while we are mainly interested in guar-
anteeing a lower bound on processor shares, this support also
provides an upper bound on shares, which may be useful as
a form of rate control for tasks. For example, we could use
this support to limit a long-running, processor-intensive task
to a certain share of the machine in a more predictable way
than using Linux nice values or priority levels.

Providing periodic soft real-time task support could be
particularly beneficial to multimedia applications, as such
applications often suffer substantial performance degrada-
tion under heavy system workloads in many general-purpose
operating systems. Real-time guarantees for multimedia ap-
plications will become more important as both systems and
workloads increase in complexity. This is likely to happen.
Indeed, one envisioned application of multicore platforms is
as multi-purpose home appliances, with one machine serving



many of the computing needs of a home. These may include:
• Multimedia applications, e.g., streaming from multiple

live and stored video sources, recording video for play-
back later, holding videoconferencing sessions, etc.

• Monitoring other systems in the house, such as heat-
ing/cooling, and reacting appropriately.

• Providing processing capability for one or more user
terminals, each emulating the functionality of a desk-
top system.

Additionally, note that some multimedia applications can
be very processor-intensive, e.g., streaming from an HDTV
video source. Such applications would require tasks with
higher utilizations than are typically considered “normal” for
real-time tasks. We want to provide support for real-time
workloads that include such tasks.

In such an environment, support for recurrent (e.g., peri-
odic) real-time tasks is needed to guarantee the performance
of real-time and non-real-time workloads. Less explicit ap-
proaches, such as giving real-time tasks very high static pri-
ority, are unacceptable, as they may prevent all tasks from
effectively utilizing the system. We chose to provide real-
time task support in Linux over other operating systems as
Linux is free, open-source software that is easy to obtain and
modify, and is widely accepted by both developers and end
users.

Contributions. Our contributions are as follows.
• We present an approach for scheduling periodic soft

real-time tasks on an AMP. This approach allows real-
time tasks to enter and leave the system dynamically,
and attempts to provide good performance for non-real-
time applications.

• We identify deficiencies in periodic soft real-time task
support in the Linux kernel and provide ways for alle-
viating these deficiencies.

• We experimentally determine the impact of heavy real-
time workloads on non-real-time tasks in Linux, and
how effectively we can minimize that impact through
the use of deferrable servers (DSs) [21] of various sizes
(i.e., core utilizations) and background scheduling.

We implemented and evaluated our approach in both sched-
sim, a Linux scheduler simulator (discussed further in [6]),
and the Linux kernel.

Note that converting Linux into a real-time operating sys-
tem (RTOS) is not one of our goals. We provide real-time
support in Linux for an end user that either prefers Linux or
does not want to purchase and run a separate operating sys-
tem for real-time applications. We focus on soft real-time
support since the timing constraints in multimedia applica-
tions are usually soft. Furthermore, Linux is ill-suited for
providing hard real-time support, as it is a monolithic oper-
ating system where tasks are subject to execution delays due

to interrupt handling, critical sections, and system overhead.
Even if the length of these delays are bounded, supporting
hard real-time tasks is problematic.

We seek to maintain the major features of the Linux sched-
uler so that non-real-time task performance conforms as
much to standard Linux as possible. To this end, we deter-
mined what deficiencies exist regarding real-time task sup-
port in Linux, and propose a minimal set of modifications
required to correct these deficiencies. Our approach for cor-
recting these deficiencies relies on the partitioned, static-
priority model that is already partially supported by existing
scheduling code in the Linux kernel. As a result, it requires
minimal modification to the existing kernel code, and thus is
more likely to result in a system that is reasonably robust and
predictable for all types of tasks. Since non-real-time task
performance, specifically throughput and response times, is
more important to us than the size of the real-time workload
that Linux can support (as the real-time workload will often
be small relative to the non-real-time workload), we chose
this approach rather than a global or dynamic-priority real-
time scheduling approach; however, we plan to explore such
approaches in future work.

To further minimize the impact of a real-time workload on
the performance of non-real-time tasks, we implemented a
DS on each core (we assume a single hardware thread per
core) with higher priority than any real-time task. A DS
has a budget that is replenished every period, and has a cer-
tain share of a core. When the budget is positive, non-real-
time tasks are prioritized above real-time tasks, which may
improve non-real-time task performance. The budget is de-
creased when non-real-time tasks run until it becomes zero,
at which time real-time tasks are prioritized above non-real-
time tasks so that real-time deadlines are met.

We evaluated the effectiveness of DSs of various sizes. We
found that a DS share of up to 50% on each core provided
an increasingly substantial performance benefit for non-real-
time tasks while resulting in only a small decrease in the size
of the real-time workload that the system can support. The
partitioned approach we take for real-time task scheduling
requires “bin-packing” tasks onto cores, and it is unlikely
that tasks can be packed onto cores tightly enough to fully
utilize every core. A small DS can often fit into the re-
maining (otherwise unused) share on each core. While other
types of servers exist, we have chosen the DS due to its re-
sponsiveness to non-real-time tasks, its suitability to a static-
priority, partitioned approach, and its overall conceptual sim-
plicity as compared with other servers. A downside of using
a DS in hard real-time systems is the double-hit effect—a DS
could prevent any real-time task from executing until it has
exhausted its budget twice, and this must be factored into
schedulability analysis. For soft real-time systems, we can
instead treat the DS as a regular real-time task and account
for the double-hit effect by allowing tasks to miss their dead-
lines by a bounded amount (see Sec. 4.2). Therefore, the



use of a more complicated server is overkill. In fact, in our
experiments, by not accounting for the double hit, we were
able to admit up to 30% more real-time tasks in some system
configurations. To our knowledge, we are the first to note
this aspect of using a DS in a system with only soft real-time
tasks.

The rest of this paper is organized as follows. Sec. 2 dis-
cusses related work. Sec. 3 outlines deficiencies in Linux for
supporting periodic real-time tasks on an AMP. Sec. 4 dis-
cusses how these deficiencies were corrected. Sec. 5 presents
an experimental evaluation of our method, both in sched-
sim and the Linux kernel. Finally, Sec. 6 concludes and dis-
cusses several areas of future work.

2 Related Work
A substantial amount of prior work has been done on both
RTOSs and the scheduling of real-time tasks on performance
asymmetric platforms (though not necessarily multicore plat-
forms). Such platforms are better known in the real-time
community as uniform multiprocessors. (The previously-
mentioned notion of a functionally asymmetric platform
would be synonymous with a heterogeneous multiproces-
sor or unrelated parallel machine.) This section provides
an overview of related work in both areas.

2.1 Real-Time Operating Systems

Most prior work on RTOSs has focused on either uniproces-
sor systems or multiprocessor systems using a partitioned ap-
proach, which is the approach we take in this paper. A recent
survey of this work can be found in [18]. To our knowledge,
no prior work on RTOSs has addressed the issue of schedul-
ing on asymmetric or heterogeneous platforms. There are,
however, several RTOS projects that use Linux as their foun-
dation, and thus consider implicitly, if not directly, the pos-
sibility of a non-real-time workload on the same system.

One such effort is RTLinux [22], where real-time tasks
run in a thin real-time kernel, with Linux itself running on
top of this kernel as a low-priority background task. This
strategy prevents the Linux kernel from disrupting real-time
tasks (specifically due to interrupts and non-preemptable ker-
nel code), but at the same time both restricts the ability of
real-time tasks to invoke Linux kernel services (making it
harder to deploy a soft real-time multimedia application, for
example), and may severely impact the performance of non-
real-time tasks by forcing them to be scheduled at the lowest
priority at all times.

To our knowledge, multiprocessor-based RTOSs were first
considered as part of work on the Spring kernel [19]. The
scope of Spring extended beyond stand-alone multiprocessor
systems and encompassed distributed systems comprised of
several multiprocessing nodes and tasks with synchroniza-
tion requirements; however, asymmetry on the same node

was not considered.
In other recent work that directly targets multiprocessors,

Stohr et al. [20] presented the RECOMS software architec-
ture, which is a framework for running a general-purpose OS
and an RTOS on the same multiprocessor machine. This
framework partitions the system by placing the general-
purpose OS on its own processor and preventing I/O accesses
from interfering with the RTOS. RECOMS was designed as
an extension to RTAI [9], which is closely related to RT-
Linux. The static partitioning of the system may allow non-
real-time tasks to perform better with the RECOMS archi-
tecture than RTLinux, especially if the non-real-time tasks
are given the fastest cores (assuming the general-purpose OS
could be allocated more than one core), but is less flexible
than what we propose. Additionally, the work in [20] will
still suffer from the problem that real-time tasks cannot in-
voke Linux kernel services.

Finally, LITMUSRT [8] is a real-time, Linux-based
testbed, which was developed for empirically evaluating
multiprocessor real-time scheduling algorithms. This work
was limited to symmetric architectures, and considered nei-
ther asymmetry nor non-real-time task performance; how-
ever, both global and dynamic-priority approaches to real-
time scheduling were implemented and evaluated in this
work—we directly consider neither approach here.

2.2 Scheduling on Uniform Multiprocessors

The work in [16, 17] concerns the scheduling of non-real-
time tasks on a uniform multiprocessor. These papers define
a model for uniform multiprocessors that remains mostly in-
tact in later work. More recently, uniform multiprocessors
have become a topic of interest in the real-time community.
Of all prior work on real-time scheduling on asymmetric
platforms, [5] is the most relevant to our work, as it dis-
cusses a static-priority approach to scheduling on uniform
multiprocessors and derives a sufficient utilization bound for
that approach. (Other similar work [4, 12, 10, 11] assumes
the use of a dynamic-priority, earliest-deadline-first schedul-
ing algorithm.) As with other prior work, to our knowledge,
neither the ability of tasks to enter and leave the system dy-
namically, nor the performance of any co-present non-real-
time workload, are considered. Additionally, none of these
algorithms have been implemented within the scheduler of a
general-purpose operating system, where problems such as
those discussed in Sec. 3 may arise.

3 Linux Real-Time Deficiencies
In this section, we discuss several reasons why the current
Linux real-time task support is inadequate for supporting soft
real-time periodic tasks. These deficiencies were noted after
studying several references on the Linux kernel scheduler [3,
7] and the kernel source code itself (version 2.6.16).



3.1 No Support for Periodic Tasks

The standard Linux kernel provides approximately 100 static
priority levels for real-time tasks. A real-time task can pre-
empt both non-real-time tasks and lower-priority real-time
tasks. There is no notion of task period, execution require-
ment, or deadline. As a result, there are no mechanisms
to ensure that real-time deadlines are met, to prevent tasks
from exceeding their specified execution requirement, or to
“re-release” tasks that have new jobs to schedule. There is
also no method of admission control—we cannot perform
schedulability analysis to determine whether a task can be
safely added to a particular core. By safely, we mean that
all tasks on that core, including the added task, will meet
their deadlines, or miss their deadlines by some bounded
amount. As platforms become more complicated, such an
explicit form of admission control becomes increasingly im-
portant, as it will be very difficult to make real-time guaran-
tees manually.

3.2 Real-Time vs. Non-Real-Time Priorities

The standard Linux kernel always prioritizes real-time tasks
over non-real-time tasks. Statically setting priorities in this
manner is overkill and can negatively impact non-real-time
task performance. As is usually the case with real-time jobs,
we assume that as long as a real-time job completes by its
deadline, there is no additional benefit to improving the re-
sponse time of that job. Therefore, a non-real-time task
should be allowed to preempt real-time tasks in order to im-
prove its response time, as long as doing so does not cause
reasonable deadline-miss bounds to be exceeded. While this
is a well-known concept in the real-time community, no no-
tion of it exists in the real-time support provided in Linux.

3.3 Real-Time Task Migrations

Linux does not modify the priority of real-time tasks accord-
ing to their level of CPU usage or other statistics, such as
sleep time or level of interactivity, as it does with non-real-
time tasks. This behavior is correct, as real-time tasks are al-
located a static share of the system that is independent of how
the share is used. However, Linux does allow real-time tasks
to be migrated during load balancing. The load-balancing
algorithm is run periodically in Linux in order to keep the
run queues on each core at approximately the same length.
On asymmetric platforms, this algorithm can be modified to
maintain run-queue lengths that are proportional to the pro-
cessing power of each core (e.g., if core A is twice as fast
as core B, then its queue should be twice as long). In ei-
ther case, while this algorithm is suitable for and beneficial
to non-real-time tasks, it is inappropriate for real-time tasks.
This is because load is balanced on each core with respect to
the number of tasks per core rather than the amount by which
each task utilizes that core. A real-time task specifies its sys-

tem utilization requirements up front, and (in the partitioned
approach) should be placed onto a core where these require-
ments can be satisfied for its lifetime. Migrating such a task
can affect both its execution requirement (as migrations are
not free) and result in unbounded tardiness since the task is
no longer on the core where its required share of the system
was guaranteed. (We could perform admission control dur-
ing load-balancing, but this could be costly and contrary to
our rules for placing real-time tasks onto cores, stated later.)
On the other hand, it is perfectly acceptable, and perhaps
even preferable, to “count” real-time tasks in the task queues
when performing load-balancing for non-real-time tasks, so
long as real-time tasks are not migrated.

3.4 Low Timer Frequency
The default timer frequency for version 2.6.16 of the Linux
kernel is 250 ticks per second. This is equivalent to a four
millisecond jiffy, or the time between timer ticks, which rep-
resents the smallest quantum size allowable. This jiffy is too
long; a jiffy of one millisecond, or 1,000 ticks per second,
would provide improved timing granularity. Fortunately, the
developers of Linux recognized this, and allowed the fre-
quency of timer interrupts to be raised to 1,000 ticks per sec-
ond via a configuration option when kernel responsiveness
is crucially important (as is the case with real-time tasks).
Thus, as a solution already exists for this issue, we sim-
ply incorporate it into our kernel, and do not discuss it fur-
ther in this paper. We do note, however, that Linux does
not officially support timer frequencies higher than 1,000—
attempting to increase the timer frequency above 1,000 has
the potential to adversely affect both non-real-time task per-
formance (due to excessive interrupt processing overhead)
and system robustness, and can “break” parts of the kernel.
To safely increase the timer frequency above 1,000 ticks per
second, a thorough study of what would need to change in
order to support higher frequencies would be required.

3.5 Interrupts and Critical Sections
There are also timing issues related to interrupt handling and
non-preemptable critical sections (due to the possession of a
lock or entry into certain pieces of kernel code), particularly
when an interrupt handler or critical section is long. For a
soft real-time system, we would like to limit the impact of
these issues on system timing so that deadline misses can be
bounded. These issues have been widely noted (for the first
time, to our knowledge, in [22]), and we believe that ade-
quate solutions now exist for soft real-time systems, which
do not require the “dual-kernel” approach used in [22], by
effectively using one or more patches such as those cited
in [1, 2]. Kernel spinlocks pose an additional problem, since
the order in which waiting threads claim a spinlock is unpre-
dictable, and therefore it is impossible to make timing pre-
dictions for threads using these locks; however, this problem



can be easily fixed by using queue locks. Thus, at least par-
tial solutions to these issues already exist, and as a result, we
do not discuss them further in this paper.

4 Correcting Deficiencies
We now discuss how we changed the Linux kernel to correct
the remaining deficiencies outlined in Sec. 3.

4.1 Adding Periodic Task Support
The modifications described in this section are the most sub-
stantial and important changes we made, as they embody the
foundation of the real-time support we added. These changes
included the following.
• We modified scheduling structures to include the nec-

essary periodic task support. For example, we added
variables to the task structure to specify a task’s execu-
tion requirement, period, and deadline.

• We modified and added a number of scheduling func-
tions. The tick-handling function, scheduler tick, was
the most modified, followed by schedule, the function
that decides which task to run on a core.

• We provided several new system calls: one to promote
a non-real-time Linux task∗ to a periodic real-time task
with a specified execution requirement and period, one
to demote such a task back to non-real-time status, and
one to change the size of the DS on a core (discussed
further in Sec. 4.2).

Note that these changes allow real-time tasks to enter and
leave the system dynamically, i.e., the set of real-time tasks
does not have to be static. This is an important feature in a
general-purpose operating system, especially when support-
ing multimedia workloads that may start and end at any time.

Our unit of time for specifying task periods and execution
requirements is jiffies, as defined in Sec. 3.4. The execution
requirement of a task is specified as its worst-case execution
time on the slowest core—its execution time will be shorter
on faster cores. For example, if the slowest core performs
one unit of work per tick, then a core with twice that speed
will perform two units of work per tick, completing a given
job in half the time. (This model is very similar to that in
much of the related work cited in Sec. 2.2.) We assume that
all real-time tasks are independent, and therefore we do not
consider issues such as data sharing between two tasks run-
ning on cores of different speeds.

A real-time task is placed in the active queue while it is
waiting to run. This queue contains tasks that are ready for
execution, and is part of the Linux runqueue, a complex per-
CPU Linux data structure that maintains scheduling informa-
tion for a logical CPU, such as the tasks currently assigned

∗Note that a Linux task may represent either a process or thread, depend-
ing on whether it shares a common address space with another task.

to it. (Recall that there is only one hardware thread per core,
so each core maps to a single logical CPU in Linux.) Once
the task is selected to execute, it runs its current job to com-
pletion or until it exceeds its execution requirement. In both
cases, the task is then placed into a real-time wait queue until
its next job release (i.e., the start of its next period), at which
time the task is removed from the real-time wait queue and
placed back into the active queue. Real-time tasks are sched-
uled on each core using rate-monotonic scheduling [15].

Admission control. During task promotion, a task is
placed onto the slowest core that can satisfy its real-time re-
quirements. We use time-demand analysis for static-priority
tasks [14], assuming rate-monotonic scheduling for periodic
(non-DS) tasks, to determine whether a task can be safely
added to a core, traversing the cores from slowest to fastest
until a suitable core is found. If a suitable core is found,
the task is added to that core; otherwise, the task cannot be
promoted. (However, it may continue to run as a non-real-
time task.) While not a particularly efficient algorithm in
terms of speed, its cost is incurred only once during the life-
time of a periodic real-time task, and it is incurred “up front”
before such a task becomes part of the real-time workload.
Time-demand analysis is a good sufficient test for the asyn-
chronous periodic task model when using static-priority, par-
titioned scheduling approaches. (In the synchronous model,
the test is also necessary, but since jobs can enter and leave
the system dynamically, our model is by definition asyn-
chronous.) While partitioning approaches often do not ef-
ficiently utilize the system, we are willing to accept this in
exchange for the relative simplicity of our implementation,
which results in increased kernel robustness and predictabil-
ity, and good performance for non-real-time tasks.

4.2 Modifying Non-Real-Time Task Priorities

We allow non-real-time tasks to have priority over real-time
tasks when appropriate through the use of DSs, as discussed
in Sec. 1. Note that the DS always has higher priority than
any real-time task regardless of its period. This modification
can improve the response times of non-real-time tasks in the
average case. We added variables representing DS periods,
budgets, and other attributes to the Linux runqueue structure.
As this is a per-CPU data structure, the budget and period of
the DS can be different on every core, which may either en-
courage or discourage tasks to run on certain cores. As with
real-time tasks, we specify the DS period in jiffies, and spec-
ify its budget with respect to the slowest core in the system.
We modified the schedule function, which typically searches
for real-time tasks to execute before searching for non-real-
time tasks, to first search for non-real-time tasks to execute
when the DS budget is positive, thus giving such tasks higher
priority at that time. As mentioned in Sec. 4.1, we also added
a system call that allows the size of the DS to be changed, al-
lowing the system to better react to fluctuating workloads.



0 1 2 3 4 5 6 7 8 9

deadline miss

(a)

DS (5, 1)

T

T (6, 2)

(5, 2)

DS

T

(5, 1)

(5, 2)

(6, 2)

0 1 2 3 4 5

job removed

(b)

T 1

2

1

2

Figure 2: A DS (a) with an extra job due to the double hit; and (b)
with the extra job removed. Removing the extra job allows all tasks
to meet their deadlines.

Admission control with a DS. A DS, like a real-time task,
must be accounted for during admission control. We treat a
DS as a real-time task with priority higher than any “real”
real-time task (regardless of the DS period) and an execution
requirement equal to its budget. Note that we avoid account-
ing for the double-hit effect (discussed in Sec. 1) during ad-
mission control by allowing tasks to miss their deadlines by
a bounded amount. Since deadlines may be missed, we al-
low the specification of a tardiness bound during admission
control when adding a task—a suitable core must be able
to guarantee the specified bound for all tasks, calculated as
explained in Theorem 1 below. In this theorem, es and ps

denote, respectively, the budget and period of the DS, and ei

and pi the execution requirement and period of a task Ti.

Theorem 1 Consider a task system τ consisting of a DS and
n tasks T1, . . . , Tn in order of increasing periods, where the
DS is given the highest priority, and the remaining tasks are
prioritized against each other in rate-monotonic order. If
τ is schedulable with the DS treated like an ordinary real-
time task (i.e., ignoring the double-hit effect), then task Ti’s
tardiness is at most max (0, (min t : t ≥ d t

ps

e · es +
∑i−1

k=1
d t

pk

e · ek + (ei + es)) − pi).

Proof: Because τ is schedulable when the DS is treated like
an ordinary task, any tardiness is due to the double-hit ef-
fect. Consider any job J of task Ti and let td be its deadline.
Because of the double-hit effect, up to es time units of work
due to jobs of Ti released prior to td may remain unfinished
at td. However, no more than es time units of such work can
remain unfinished; otherwise, J would miss its deadline in
the absence of the double-hit effect, which is a contradiction.
To see this, suppose that we remove the extra job of the DS
in the double-hit scenario, as illustrated in Fig. 2, and allow
commensurate portions of jobs of T1, . . . , Ti to shift forward.
If more than es time units of work of Ti were pending at td,
then after shifting, some of the computation for J would still
be scheduled after td. This argument can be generalized to
show that, at any time, the total amount of unfinished work
due to jobs that have missed their deadlines is at most es.

It follows that we can determine an upper bound on the
response time of any job J of Ti by using ordinary time-
demand analysis, adjusted to account for up to es time units
of additional demand, which is due to the DS or earlier jobs

that have missed their deadlines. This additional demand can
be accounted for by treating J as if its execution cost were
(ei+es) instead of ei. In this case, J’s response time is (min

t : t ≥ d t
ps
e · es +

∑i−1

k=1
d t

pk

e · ek +(ei + es)). If this value
exceeds pi, then subtracting pi from it gives an upper bound
on tardiness. �

If we required hard real-time guarantees, we would have
no choice but to consider the double-hit effect during admis-
sion control. Since we only require soft real-time guarantees,
bounded deadline misses are tolerable, and the use of a more
complicated server would be overkill. It would be interesting
to investigate how other servers compare to the DS for soft
real-time systems as future work.

Background scheduling. As in standard Linux, we also
allow non-real-time tasks to be background scheduled when-
ever there is no demand from the real-time workload, even if
the DS budget is not positive. Since real-time tasks are added
to the slowest core that allows their timing requirements to
be met, this should leave many of the faster cores either par-
tially or fully available for non-real-time tasks, thus further
improving non-real-time performance.

4.3 Preventing Real-Time Task Migrations
When a task is promoted (using a system call) and assigned
to a core, we modify the processor affinity of that task so
that it may only run on that core. This is accomplished by
modifying the cpus allowed bit mask of the task. This pre-
vents such tasks from missing deadlines or being otherwise
severely disrupted by being migrated unexpectedly by the
load-balancing algorithm. The old bit mask, indicating the
processor affinity of the task before promotion, is saved—it
is used to reset the affinity of the task when the task is de-
moted (to non-real-time status). Note that we do not modify
the processor affinity of non-real-time tasks in any way, and
the load-balancing algorithm behaves as usual for such tasks.

5 Evaluation
In this section, we first present results from experiments in
the schedsim scheduler simulator, and then provide results
from experiments where we implement our approach in the
Linux kernel itself.

5.1 Evaluation in schedsim
We created the schedsim simulator and used it to both im-
plement and evaluate our algorithm. In schedsim, a slightly
modified version of the Linux scheduling code can be simu-
lated on some number of cores, each running at some spec-
ified speed. Tasks are allowed to enter and leave the system
dynamically. This simulator allowed us to test scheduling
policies in the Linux kernel on a variety of AMPs, most no-
tably large-scale platforms that would be difficult to emulate
using a real machine (as such large platforms do not exist



yet). Additionally, schedsim allowed us to determine the ef-
fectiveness of our approach under “ideal” conditions, and to
more easily obtain certain types of measurements, such as
those related to deadline misses. Finally, by using schedsim,
we were able to develop our algorithm considerably faster
than if we had used Linux from the start.

Task properties. In our first set of experiments, we added
100 random real-time and non-real-time tasks (each) over
time to different AMPs in schedsim, given a variety of differ-
ent DS utilizations ranging from zero to full core utilization.
The amount of time between adding new tasks was a random
number of timer ticks between one and 50, resulting in an av-
erage simulation run time of about 5,000 timer ticks, or five
(simulated) seconds. Real-time tasks were randomly gener-
ated such that periods varied from two to 80 timer ticks, and
execution requirements varied from one timer tick to twice
the task period (which required the task to be placed on a
core at least twice as powerful as the slowest core in order to
ensure that the task met its deadlines). We allowed tardiness
to be arbitrarily large during admission control. Real-time
tasks that were admitted into the system ran for the entire
simulation lifetime. Note that attempting to add such a large
number of real-time tasks to a system resulted in many re-
jected tasks—the goal was to stress the system to determine
the upper limit on the real-time workload that could be ac-
commodated.

For each non-real-time task, both a lifetime and run-ratio
were specified. The lifetime of a task is the number of ticks
that it runs until it completes and exits the system. The run-
ratio of a task specifies the percentage of time that the task
should be running as opposed to “blocking” (i.e., waiting for
I/O, etc.). At the end of each timer tick in the simulator, a
random number x between zero and one was generated for
each currently running (non-real-time) task. If x was less
than the run-ratio of the running task, the task continued to
contend for processing time; otherwise, the task “blocked.”
We simulated “blocking” by suspending the execution of the
current task and removing it from the Linux runqueue. We
then used the same random check during successive ticks to
determine when to return the task to the active queue. In
this way, the run-ratio specified the approximate processing
demand placed by the task on the system. These run-ratios
ranged between 1% and 100% for each non-real-time task,
with a greater proportion of the tasks assigned lower run-
ratios.

Simulated platforms. All simulated platforms were uni-
form memory architectures (UMAs). The fast cores in such
platforms had a 3.0 GHz clock speed and the slow cores ran
at 1.5 GHz, though what is more important is the ratio be-
tween the speeds of the fast and slow cores. In all experi-
ments, we assumed that clock speed was the sole indicator of
the processing power of a core (rather than a combination of
clock speed, processor design, memory system performance,

and other system characteristics). Thus, a fast core was ex-
actly twice as powerful as a slow core, even if in reality this
would not be the case.

We considered four system configurations, three of which
had a ratio of three slow cores to one fast core (a ratio we
have found provides the best overall system performance).
The SMALL configuration consisted of eight cores (6 slow,
2 fast). The MEDIUM and LARGE configurations consisted
of 16 (12 slow, 4 fast) and 32 (24 slow, 8 fast) cores, re-
spectively. Finally, the EXTREME configuration consisted
of eight cores, which ran at speeds 8, 8, 7, 6, 5, 3, 2, and
1 times the slow core speed (1.5 GHz), respectively. This
configuration resulted in unrealistic clock speeds (i.e., over
10 GHz). However, as mentioned earlier, only the perfor-
mance ratio between cores was important in the simulation.
This configuration represented “extreme” cases where asym-
metry of this sort might be encountered. Some examples in-
clude cores that independently lower their frequencies due
to inactivity or overheating, or a badly manufactured chip
where all cores cannot run at the maximum clock speed, but
could still be used at lower clock speeds.

Experimental results. We measured both the percentage
of real-time tasks that were admitted into the system (and
therefore only missed deadlines in the simulator due to the
DS double-hit effect) and the percentage of non-real-time
task run time (%NRT-RT). If run time is the amount of
time that a task ran, and ready time is the amount of time
that the task was ready to run, but not actually running
(i.e., waiting to run), then %NRT-RT would be calculated
as run time

run time+ready time
· 100. Time spent “blocking” is not

included in the calculation as a task does not need a core dur-
ing that time. A higher percentage of time spent running as
opposed to waiting to run implies increased task throughput
and better response times. Results for all configurations are
shown in Fig. 3, where each data point represents an average
of 500 experimental runs. The DS size is specified in terms
of the percentage utilization of the slowest core—the budget
is calculated for a core of a given speed assuming a period
of 10. In the “MAX” case, the budget is specified to fully
utilize each core.

The addition of a DS substantially improves the per-
centage of time that non-real-time tasks run (versus wait-
ing to run), thus implying improved responsiveness. In
the SMALL and MEDIUM configurations, the improvement
is most dramatic—%NRT-RT increases substantially with
each 10% increase in DS utilization, while the real-time
workload supported by the system decreases by only 1-2%
each time. As the size of the DS continues to increase, the
non-real-time performance benefit levels off.

The performance benefit decreases as the number of cores
increases. This is because there is less of a need for a DS
to prevent the system from being monopolized by real-time
tasks since the relative system workload is smaller (the work-



0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

DS Size

P
er

ce
nt

Results: SMALL Configuration

Admitted RT Tasks
Non−RT Task Run Time

 MAX 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

DS Size

P
er

ce
nt

Results: MEDIUM Configuration

Admitted RT Tasks
Non−RT Task Run Time

 MAX

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Results: LARGE Configuration

DS Size

P
er

ce
nt

Admitted RT Tasks
Non−RT Task Run Time

 MAX 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Results: EXTREME Configuration

DS Size

P
er

ce
nt

Admitted RT Tasks
Non−RT Task Run Time

 MAX

Figure 3: Percentage of admitted real-time tasks and %NRT-RT, for each configuration. Note that, for both metrics, higher numbers
indicate better performance.

load is the same size for every configuration). Though a
greater number of real-time tasks are also admitted onto sys-
tems with more cores, these cores are unlikely to be fully
utilized, resulting in an increase in unused processing capac-
ity and improved non-real-time performance. The impact on
real-time tasks also becomes more prominent, as we are re-
ducing the effective utilization of more cores when adding
DSs. Regardless, a substantial performance benefit still ex-
ists for all system configurations when using our method.

In the EXTREME configuration, we see a benefit from
adding a small DS; however, we see very little improvement
from increasing its size, suggesting that as the asymmetry
of the platform increases, the benefits of using a DS may
decrease. This may be due to the fact that the DS size is
specified with respect to the slowest core, and therefore may
remain quite small relative to the faster cores in the system.
Even in this system configuration, however, we still see a
performance benefit.

One explanation for the benefit we see relates to the “bin-
packing” of tasks onto cores required by the partitioned ap-
proach to scheduling real-time tasks. It is quite unlikely that
each core can be fully utilized by the real-time workload,
especially when using static-priority scheduling. The unuti-
lized portion of a core can easily reach 20% or more of its
utilization—in some cases, we may only be able to utilize

roughly half of a core. As a result, it is often the case that
a DS can fit on a core without needing to reduce the real-
time workload on that core. Of course, the probability of this
occurring is less likely as the size of the DS increases.

Note also that avoiding accounting for the double-hit ef-
fect during admission control allows a larger real-time work-
load to be placed on each core. To demonstrate this, we
measured the average percentage of real-time tasks that were
admitted onto each system when we re-ran the above experi-
ments, this time accounting for the double hit during admis-
sion control. By not accounting for the double hit, we were
able to admit up to 30% more real-time tasks for the largest
DSs and system configurations.

System Avg. Max.
SMALL 1.28 9
MEDIUM 1.26 12
LARGE 1.22 6
EXTREME 2.22 36

Table 1: Amounts by
which tasks missed their
deadlines (in timer ticks).

We next determined by how
much tasks missed their dead-
lines in these simulations as a
result of the double-hit effect.
Table 1 shows these amounts.
Note that when tasks miss their
deadlines, it is often by much
less than the worst-case upper
bound—in fact, the median amount by which a task missed
a deadline was one tick for all configurations.

Results with lower task utilizations. Finally, we re-ran
the same experiments with a maximum per-task execution



0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

DS Size

P
er

ce
nt

Results: SMALL Configuration

Admitted RT Tasks
Non−RT Task Run Time

MAX

Figure 4: Results with lower task utilizations.

requirement of one half of the task period (meaning that
the task would require half of the utilization of the slowest
core). Results are shown in Fig. 4 for the SMALL config-
uration only, due to space constraints. Note that decreasing
task utilizations results in a slightly steeper drop in the real-
time workload that we can support as the DS size increases;
however, there is still a clear benefit.

5.2 Evaluation in the Linux Kernel
We now discuss the results of experiments performed in
the Linux 2.6.16 kernel. We modified the kernel to pro-
vide both soft real-time and non-real-time task support for
AMPs. Non-real-time task support included load-balancing
such that run-queue lengths were maintained that were pro-
portional to the processing power of each core, and pushing
tasks from slow cores to faster cores when possible. When
DSs were used, one was placed on each core with a budget of
one and a period of four, resulting in 25% of each core being
reserved for non-real-time tasks, regardless of core speed.
(This is different from the schedsim evaluation, where the
size of the DS was not scaled by the core speed.)

All experiments were performed on an Intel Harwich ma-
chine consisting of an UMA with four dual-core Intel Xeon
processors running at 2.6 GHz. Each core has a 1024K pri-
vate L2 cache. Hyperthreading (HT) for each core was dis-
abled. The machine has 8 GB of main memory. The AMPs
of interest to us were emulated by modulating the clock
speed of each processor, which we used to create three differ-
ent system configurations. The SYMMETRIC configuration
consisted of eight full-speed (2.6 GHz) cores. The SMALL
configuration consisted of two full-speed cores and six cores
modulated to 50% of their full speed. Finally, the EX-
TREME configuration consisted of two full-speed cores and
six cores modulated to 87.5%, 75%, 62.5%, 37.5%, 25%,
and 12.5% of their full speed. Note that the SMALL and
EXTREME configurations are highly similar to their coun-
terparts in the schedsim evaluation.

We measured the response times of non-real-time tasks
that execute busy-sleep loops. The pseudo-code of a busy-
sleep loop thread is shown in Fig. 5. During each iteration,

BUSYSLEEP ()
1 i := 0;
2 while i < 20000 do
3 sleep ms := RANDOM(5, 25);
4 start time := GETTIME();
5 SLEEP(sleep ms);
6 end time := GETTIME();
7 response time(i) := end time − start time − sleep ms;
8 i := i + 1

od

Figure 5: Pseudo-code of a busy-sleep loop thread.

each thread reads the current time, then sleeps for a random
amount of time between 5 and 25 ms, and then reads the time
again as soon as possible after awakening. The time that is
read after awakening indicates the first time that the thread is
able to run. The difference between the pre- and post-sleep
times read, minus the sleep time itself, indicates the response
time, or the time that the thread had to wait after awakening
before it was executed. Eight threads, or one per core, run-
ning 20,000 iterations of this loop executed concurrently in
the presence of a real-time workload. Response times for
each iteration were measured for all system configurations,
both with and without DSs.

The real-time workload consisted of eight tasks, one run-
ning on each core. Such tasks were designed to use 75%
of the processing capacity of the core on which they ran. It
was observed that all real-time tasks received approximately
the expected percentage of CPU time, with very few unex-
pected deadline misses, both with and without DSs. Addi-
tionally, such tasks maintained the correct CPU shares when
left running for several days or more. Most deadline misses
occurred almost immediately after task promotion, probably
due to the time required to migrate promoted tasks to the ap-
propriate cores and make new scheduling decisions based on
task priority changes. These misses may possibly be avoided
by extending the deadline of the first job of each promoted
task, in order to grant the system more time to stabilize be-
fore real-time constraints must be ensured. (Note that tasks
may still miss deadlines, due both to ignoring the double-
hit effect of the DS and sources of latency in Linux during
admission control.)

Table 2 shows the results of these experiments for each
system configuration. Response times were improved with
DSs for all system configurations. In particular, both maxi-
mum response times (especially for the EXTREME config-
uration) and average response times decreased. The SYM-
METRIC configuration demonstrated some of the most con-
sistent improvements, with the average and median response
times dropping significantly, and the variation in response
times substantially reduced (note the reduction in standard
deviation). Note that large variations in response times could
be just as frustrating to a user of an interactive application
as large response times. The improvements overall were
less consistent, but still significant, in the SMALL and EX-
TREME configurations.



With DSs
Configuration Min. Avg. Med. Std. Dev. Max.
SMALL 6 1681 1084 1906 20899
SYMMETRIC 6 654 526 600 17044
EXTREME 6 11374 12058 8059 25059

Without DSs
Configuration Min. Avg. Med. Std. Dev. Max.
SMALL 6 1819 1078 2193 25035
SYMMETRIC 6 1554 674 2218 22017
EXTREME 8 14831 15378 8204 57894

Table 2: Response times, in µs, of busy-sleep loop iterations run-
ning alongside a heavy real-time workload, for each configuration.

6 Conclusion
We have presented an approach for supporting soft real-time
periodic tasks in Linux on AMPs. We outlined the deficien-
cies that currently exist in Linux with respect to supporting
periodic real-time tasks on such platforms and how they were
alleviated. We then implemented our new method in both
the schedsim scheduler simulator and the Linux kernel. Our
evaluation showed the effectiveness of our system in both
supporting real-time workloads and providing reasonable re-
sponse times for non-real-time tasks.

Many future research directions were uncovered through
this work. First, we would like to explore the use of global
and dynamic-priority approaches to real-time scheduling on
asymmetric platforms, as such algorithms might increase the
size of the real-time workload that we can support. Second,
we want to explore other server types besides the DS, es-
pecially in light of our claim that more complicated server
types might be overkill for soft real-time systems. Third,
we want to explore the possibility of a server that dynami-
cally adjusts its size based on the current real-time workload
(as opposed to allowing manual adjustment of the server size
with a system call), so that non-real-time tasks always get the
best response times possible. Fourth, we would like to inves-
tigate the potential for supporting timer frequencies above
1,000. Fifth, we would like to explore issues related to si-
multaneous multithreading (i.e., hyperthreading). Sixth, we
would like to explore support for soft real-time workloads on
functionally asymmetric multicore platforms, and platforms
with other types of asymmetry, e.g., cache layout asymmetry.
Finally, it would be interesting to consider synchronization
issues. For example, when real-time tasks share data, admit-
ting such tasks onto the slowest core that can satisfy their
requirements may not be the most beneficial strategy—other
task assignment strategies, such as assigning tasks that share
data to same-speed cores, may exhibit better performance.

References

[1] Realtime and interrupt latency. http://lwn.net/Articles/
139784/, 2005.

[2] Linux Real Time Patch Review - Vanilla vs. RT patch compar-
ison. http://www.captain.at/howto-linux-real-time-patch.php,
2006.

[3] J. Aas. Understanding the Linux 2.6.8.1 CPU scheduler. Sili-
con Graphics, Inc., 2005.

[4] S. Baruah. Scheduling periodic tasks on uniform multiproces-
sors. Information Processing Letters, 80(2):97–104, 2001.

[5] S. Baruah and J. Goossens. Rate-monotonic scheduling on
uniform multiprocessors. IEEE Transactions on Computers,
52(7):966–970, 2003.

[6] D. Baumberger, T. Li, J. Young, S. Hahn, and J. Calandrino.
schedsim: The many-core scheduler simulator. In submission.

[7] D. Bovet and M. Cesati. Understanding the Linux Kernel, 3rd
edition. O’Reilly Publishers, 2005.

[8] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson. LITMUSRT: A testbed for empirically comparing
real-time multiprocessor schedulers. Proc. of the 27th IEEE
Real-Time Systems Symposium, 2006.

[9] DIAPM, Dipartimento di Ingegneria Aerospaziale Politecnico
di Milano. A hard real time support for Linux. 2002.

[10] S. Funk and S. Baruah. Characteristics of EDF schedulability
on uniform multiprocessors. Proc. of the EuroMicro Confer-
ence on Real-Time Systems, 2003.

[11] S. Funk and S. Baruah. Task assignment on uniform hetero-
geneous multiprocessors. Proc. of the EuroMicro Conference
on Real-Time Systems, 2005.

[12] S. Funk, J. Goossens, and S. Baruah. On-line scheduling on
uniform multiprocessors. Proc. of the 22nd IEEE Real-time
Systems Symposium, 2001.

[13] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and
K. Farkas. Single-ISA heterogeneous multi-core architectures
for multithreaded workload performance. Proc. of the 31st
International Symposium on Computer Architecture (ISCA),
2004.

[14] J. Lehoczky, L. Sha, J. Strosnider, and H. Tokuda. Fixed prior-
ity scheduling theory for hard real-time systems. Foundations
of Real-Time Computing, Scheduling, and Resource Manage-
ment, 1991.

[15] C.L. Liu and J.W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the
Association for Computing Machinery, 20(1):46–61, 1973.

[16] J. Liu and C. Liu. Bounds on scheduling algorithms for het-
erogeneous computing platforms. Proc. of the IFIP Congress,
30:483–485, 1974.

[17] J. Liu and T. Yang. Optimal scheduling of independent tasks
on heterogeneous computing systems. Proc. of the ACM Na-
tional Conference, 1:38–45, 1974.

[18] J. Stankovic and R. Rajkumar. Real-time operating systems.
Real-Time Systems, 28(2-3):237–253, 2004.

[19] J. Stankovic and K. Ramamritham. The Spring kernel: A new
paradigm for real-time systems. IEEE Computer, 8(3):62–72,
1991.

[20] J. Stohr, A. von Bulow, and G. Farber. Using state of the art
multiprocessor systems as real-time systems—the RECOMS
software architecture. Work-in-progress proceedings of the
16th Euromicro Conference on Real-Time Systems, 2004.

[21] J. Strosnider, J. Lehoczky, and L. Sha. The deferrable
server algorithm for enhanced aperiodic responsiveness in
hard real-time environments. IEEE Transactions on Comput-
ers, 44(1):73–91, 1995.

[22] V. Yodaiken and M. Barabanov. A real-time Linux. Proc. of
the Linux Applications Development and Deployment Confer-
ence (USELINUX), 1997.


