An Adaptive Scheme for Overload Handling Iin
Active Data Warehouses

Hennadiy Leontyey, Theodore Johnsérand James H. Andersbn
*University of North Carolina at Chapel Hill
{leontyev, andersgr@cs.unc.edu
TAT&T Labs — Research
johnsont@research.att.com

Network accessible disk

Abstract—This paper presents a novel adaptive approach for

scheduling updates in a data warehouse that processes “near UZZZZC;ZM Database tables i

real-time” data streams. Data is pushed to the warehouse fro a 8 D, | =g A i 1 T

variety of external sources with a wide range of inter-arrival times “3 D,—{ 0@ '?;90 1'52_1 =

(e.g., once a minute to once a day). Due to network conditions 8% e T @ —

the volume of incoming data can widely vary and data streams _{10:42

can experience intermittent outages. Maintaining data frehness

in the presence of outages and load variations can be challgimg. T, _,®(. .

In prior work, ad hoc heuristic algorithms have been proposel for —_’® Server(s) running
d R A . update tasks

doing this. In this paper, a systematic approach based uponigbal @

multiprocessor real-time scheduling theory is considered The

proposed approach can handle overload and recovery situains

and maintain guarantees on data freshness for warehouse t&s Fig. 1. Data warehouse architecture.

that are not impacted by outages. Simulation experiments ar

presented that show the effectiveness of the proposed apmch. .) .) .
receivedata filesat regular intervals. These files are written

onto disk and are accessible by update tasks. Each suclstask i
. INTRODUCTION associated with a particular table aappendsecords to that
. tahle by reading data files that come from data feeds or other
Data stream warehouses (or, active data warehouses [](§ urce) tables. Each server has a scheduler that manages th

are used in critical dbgsmess da_lppllcano(rjls where niqﬁﬂn:ial Iupdate tasks assigned to it. Because the data transformatio
access to streamed data and Integrated access to histimeal . 4 loading process is time- and memory-consuming, only a

are reguired [2], [9]. The DataDepot warehou_se designed update tasks can run simultaneously [12], [16]. The sup-
AT&T is one example [9]. DataD_epot was designed t.o allo orted tables are of two typelasetables, which are sourced
networ_k performance and potential attacks K_) be mo”'tF’Wd irectly from data streams, arderived tables (materialized
collecting system logs, IP packet traces, traffic summaeies views), which are sourced from (i.e., defined as the result of

AS exp!ained below, the query-gener_ated Wo_rkload 'Th SQL guery over) one or more base or other derived tables.
systems like DataDepot can be both highly variable andy 1 gepicts several update tasks and their corresponding

computationally-intensive, neces&tatmg the use of ipnat tables:V, Vs, and Vi are base tables sourced from data feeds
cessor platforms. Thus, when deploying such a system, OB€ D, andDs, respectively, and/, is a derived table.
is faced with a complex multiprocessor real-time schedulin

problem where adaptivity arises. In current warehousegdssi The problem. Maintaining high data freshnesgwhich re-
this scheduling problem is solved by using ad hoc methodguires that the timestamp of the mostly-recently loaded Hat
In this paper, we examine whether recent research on re@lose” to the current time) is particularly challengingdéata
time multiprocessor scheduling can be leveraged to solfeeds experience intermittent outages. Outages may oceur d
this problem in a more systematic way that lends itself t@ equipment and network failures or when data schemes are
formal analysis. Such analysis is important because itlesabchanged, which may necessitate temporarily disablingacert
principled system design and optimization, which is verfeeds. During an outage, new data files can become backed up
important to database designers. at the data-feed source and hence be unavailable for predong
This paper was specifically motivated by issues faced imtervals of time. When this occurs, the affected base $able
deployments of DataDepot, the architecture of which issilluand their derived tables do not reflect the most recent infor-
trated in Fig. 1. DataDepot consists of a network-accessilshation available in unprocessed data files. In this casdy auc
disk storage, on which a hierarchy of database tables isdtortable is said to béate. In order to restore the freshness of late
and one or more servers that run user queries and warehadades, their respective update tasks have to be given arlarg
maintenance programs calleghdate tasksNew information share of the computing resources. However, since only few
comes into the warehouse from a number of data feeds thatate tasks can run simultaneously, such share increages m

excessively delay updates for non-late tables, and heneg, trithm typically monitors the number of deadline misses of
freshness could also be compromised (see examples in Segobk and adjusts their priorities in order to achieve satigfry

for details). In this paper, we develop a scheduling alparit performance [1], [15]. Our approach can be seen as an example
called theAdaptive Update Schedul¢AUS) that is capable of a such an algorithm where a very simple controller is used.
of recovering tables after feed outages while maintainir@

guaranteen data freshness and minimizing interference Onontnbuno_ns. _The AUS algorithm mentioned ea_rher Is the
tables that are not affected by outages. main contribution of this paper. It has been designed by ex-

ploiting the fact that certain global multiprocessor saliets

Our approach. Under AUS, each update task can execute igan ensure bounded maximum job response times even if
either normal or recoverymode as characterized by normatasks dynamically change their timing requirements, ag lon
and recoveryperiods respectively; such periods represerds the processing platform is not over-utilized (utilieati

the minimum time between consecutive task invocationsonstraints beyond this are not required) [4], [5]. We shioat,t
Invocations of an update task, callgobs of that task, are given such response-time bounds, bounds on data staleness
assigneddeadlinesaccording to the task’s current period and¢an be derived (staleness is the inverse of freshness)r Afte
are scheduled using the global earliest-deadline-f@&F) deriving such bounds, we discuss the results of experinients
algorithm. A task’s normal period is defined so that it jusivhich AUS is compared to the state-of-the-art heuristic-based
keeps up with arriving data when its table is healthy (i.e‘proportional” (PRP) scheduler [8] under overload conditions.
not impacted by outages). Its recovery period is defined o this evaluation, a synthetic task set was run on a pragsiet
be shorter so that it can process backlogged work due towarehouse simulator designed at AT&T. In these experiments
outage at a higher rate. Using prior work, it can be shown thatUS exhibited more predictable performance tiRP. Note
AUS limits the total processing capacity consumed by taskisat, while staleness bounds can be computedAfd, this

in recovery mode [4], [5]. Additionally, as we show, it allew is virtually impossible forPRP, given its heuristic nature.

table freshness to be bounded for healthy tables. In the rest of the paper, we formally define our system model

Prior work. The append-only nature of real-time data ward>€¢- II), describe thaUS algorithm (Sec. 1ll), analyze it by
houses is a significant difference in comparison to more cadyjesenting per-job response time bounds (Sec: IV) and data
ventional real-time databases (RTDBs), which performst{anStaleness bounds (Sec. V), present our experimental sesult
actions on timed data [11], [17], [18]. Still, some simitas (Sec. Vi), and conclude (Sec. VIll).

exist. In a data warehouse, the goal is to collect a history of

events so that the leading edge of the event history is als fres Il. SYSTEM MODEL

as possible. The notion of freshness is similar to the car@ep Ag mentioned earlier, we study a relational data warehouse,
“temporal consistency” as applied to data objects. An A§eC hichy is similar to that considered in prior work [8]. We
absolutely consisteriftthe difference between the current time;go \me that relationships among source and derived tables
and the object’s timestamp does not exceed some pre-defi a directed acyclic graph and do not change over time.
validity threshold [18]. In prior work, these validity t/8B0IdS \yis genote the set of tables &%,,...,V,). For a derived
have been generally used for determining priorities anthm tableV;, the set of its source tablés isvdenomdd(vk). For
constraints of transactions. In contrast, due to the appeihd , | o0 tabld’;, pred(Vi,) = 0. Each tableV; is characterized

nature of data streams in our setting, stored data is always, nominal update periog;, that specifies the desired update
valid, so validity thresholds are effectively infinite. Ftallows frequency for this table

some leeway in scheduling. Additionally, to our knowledge,
global scheduling algorithms have not been consideredeef®ata stream model. Our data stream model is captured by
in work on RTDBs. the following definitions.

The issue of overload has been partially considered in priB
work on data-warehouse scheduling [3], [6], [8], [9]. Howev

to our knowledge, all existing schedulers use heuristica 'nwherej > 1. Each element of the sequence describeia

way that does no_t_ allow performange to be predicied. file that needs to be ingested into the base table. A data file
A number of utility-based scheduling approaches have be. ny logical unit of work.arr(Dy,) is the arrival time of

proposed for dealing with overloads in non-database [o ith ' N S
! j'" data file andts(Dy, ;) is its timestamp which is the
[14] and database settings [10]. Though such approactpﬁgximum timestamp of a record in that file. A data file's

can gracefully hgndle performance degrada'uon_, I mlgh.t. l.;’jl?rival time is the time instant when it becomes available
problematic (or impossible) to determine meaningful il on the disk. The timestamp of a record in the file denotes

functions in a warehouse setting. For e>_<amp|e_, while leiit the physical time when that record was created. We assume
are often defined to decay rapidly (or immediately) beyor{Ha{, for each base tablg,, (1) below holds, and for each

a job’s deadline, warehouse updates are considered to be. af 3 < _ 3 < _

utility well beyond their deadlines. ﬁs(—Dl',)t 2(?:&% = ar)r(Dk”)’ 2(Dks) < arf(Dicsa). and
In work on dynamically-changing workloads, feedback-" "7/ = SCARTe

control-based algorithms have proved useful. Such an algo- ts(Dg1) >0 (1)

Efinition 1. For base tabld/;, a unique sourcelata feed
Dy, exists.Dy, is a sequencéDy, ; = (arr(Dy ;),ts(Dx ;))}

In order to establish guarantees on the quality of data, we Diig B0y 103y D1’2%.|3D1'3 °
assume that data filBy, ;1 only contains records with times- 14
tamps within(ts(Dy_;), ts(Dx, j+1)] (note thatDy , contains D,e
records within (0,ts(Dy,1)]). Additionally, we assume that T T T T T T T T T T T T
data files are processed in order of their arrival. 012 3456789101112 time

Definition 2. We call a data feed), healthyat time ¢, if Fig. 2. Data file arrivals in Example 1.
there existsDy ; such thatarr(Dy ;) € [t — pr — Ji,] and

arr(Dy ;) € [ox +pr- (5 — 1) — Ji, 0 +pr - (j — 1)], and [] consistent data O trailing edge of V,
ts(Dy, ;) € [arr(Dg,;) — Kk, arr(Dg,)], wheregy, > 0 is Dy’s

phaseij € [O,p;j is its arrival }itter, andk;, > 0 is its v v Vi v v Vi
timestamp jitter A data feed that is not healthy is called
unhealthy

D,

D 250

2,20 D

2,30 24@

s~

\I‘O\U- -

Intuitively, in a healthy data feed, data files arrive with
some regularity and there is not much discrepancy between th
arrival time and the maximum record timestamp in the file. In 9 | L]
contrast, if a feed breaks and then is later restored afteeso
noticeable time, then many data files will have the samealrriv (a) (b)
time and the discrepancy between record timestamps and ”E?g, 3. State of tables at time@) 12 and(b) 14 in Example 2.
arrival time can be large. We say that feBg experiences an
outageduring an intervalt, t;) if o —t > pr +Ji and N0 Aq jystrated by the two examples below, the discrepancy
new data files arrive duringt:, ts). betweenTE(V;,t) andF(V;, t) indicates that tabl@;, needs

Definition 3. We call a data filependingat timet if it has to be updated. The following predicate indicates that tahle
arrived but has not been uploaded into a base table by tifigélects the most recent consistent information.

t. The set of pending data files for base tableat timet is A

called thebacklogof V}, and is denote®L (V},t). We assume FRESH(VA, 1) = (TE(Vi,) < F(Vk. 1)) 2)

that data files irBL(V, t) are sorted by increasing timestampEach tablel/, is updated by an external program referred to as
taskTy. For base tables, the data is loaded from pending data
files, and for derived tables, data from other tables is used.

e u-‘.b -

OO\\I\O\\UI\A -

OO\\]\O’\\UI\-& -
[OO\\I\O\\LJ- -

Table freshness and data consistencyVe next define table
freshness (which reflects the quality of stored data) antlids Example 1. Suppose that the base tablés and Vs in
the notion of data consistency adopted in this paper. Fig. 1 are sourced from data feed3, and D, and, for
data feedD,, data filesD, ; have timestamps and arrival

Definition 4. [8] Thefreshnes®f tableV}, at timet, denoted *
timesarr(Dy ;) = ts(Dy;) = 1+3-(j —1) for j > 1.

F(Vk,t), is the maximum timestamp of a record storedVin)

by time ¢. We defineF(V;,0) = 0. S_uppose that, for data fedd), data filesD; 1, ..., D1 10 have
timestampsts(D; ;) = 1+3-(j —1) for j = 1,...,10

Definition 5. [8] Thestalenes®f tableV}, at timet is defined and arrival timesarr(D; 1) = 1 and arr(D; ;) = 10 for

asS(Vi,t) =t — F(Vi,). j > 2, respectively. This is illustrated in Fig. 2, where data

Staleness indicates the extent to which the most recéillﬁ arrivals are denoted with black circles. For those dd¢s fi
timestamp stored in a table lags behind the current time. THEN timestamps that do not coincide with file’s arrival time
state of derived tables must be consistent with the stateedf t their imestamps are shown using empty circles. This exampl

source tables at some time instant in the past. In this papcé??_nar_'o could occur D, andDQ are required to SUPP'V data
we follow the definition of “trailing edge consistency” [8]. perlodlcally every3 time units butDl_goes down.durlng the
interval [4,10) so that several data files are available at once

Definition 6. We define therailing edgeof table V}, at time at time 10. At time 1, D, arrives, and hence, by Def. 6,
t as TE(V&, 1) = tS(Dl,l) =1. Slmllarly,TE(Vg, 1) = tS(DQ,l) =
1. By Def. 3,BL(V4,10) = { D12, D1 3, D14}, and hence, by

TE t
(Ve 1) Def. 6, TE(V1,10) =ts(D14) = 1 +3- (4 — 1) = 10.
max{ts(Dy) | arr(Dy,) <t} if Vi is base,
- min {F(V;,t)} otherwise. Example 2. Suppose that at timé2 the derived tableV,
Viepred(Vi) in Fig. 1 contains data records up to tifieand its source

Intuitively, for base tablé/, the trailing edge at timedefines tablesV, and V3 have freshness8 and 9, respectively, as
a time instant such that all data with timestamps at or befeshown in Fig. 3(a). Tabld/, is consistent with respect to
time ¢t has arrived from its data feed. W, is derived, then the the state of its sources as of tinfe When task7, com-
trailing edge at time indicates that each of its source tablemences execution at timE2 it needs to add new records to
contains records with timestamps up to tifE(Vy, t). V. to reflect the changes in its source tables. At tiirke

both source tables have all required information up to time fiob release | job deadiine
D

TE(V4,12) = miny,epreaqvy) {F(Vi,12)} = min{8,9} = 8. Dy arrives K+ _arrives
Therefore, taskl’, reads all data with timestamps within the —‘\ Mijet m

range(F(Vy,12), TE(V,, 12)] = (5, 8] from the source tables | © 1 p 110

Ty

and appends the corresponding recordsVio If task 7,
finishes at timel4, then the state ol is consistent with M, o Ay Mej W fg
respect to the state of, and V3 as of time8 as shown (a) (b)

in Fig. 3(b). Dy arrives %%es“
rk,j+1

by several parameters as specified in duaptable sporadic : Ll ol EEEE e ¥ .TT'j. RN
task modelproposed by Block et. al [5]. We present this model fi; dy ki dg fy
below, and introduce some additional constraints imposed b (© (@)

the specifics of the update scheduling problem.

Changes inTE(V4,t) trigger task invocations; each such
invocation is called §ob. The;*" job of T}, is denoted’;, ; and Example 3. Fig. 4 illustrates (4) wher}, is a base table.
is characterized by itselease timery, ;, which is the earliest In this and subsequent schedules, down-arrows denote job
time T} ; can start its execution, and absolute deadline deadlines and up-arrows denote job releases. (Coinciding u
drj > k5. \We letsg ; > ry ; denote the earliest time whenand down-arrows appear appear as a double arrow.) Insets (a)
job T}, ; is scheduled. The completion time 6f ; is denoted and (b) illustrate the first case of (4). In inset (a), job;
fr,j. We definery o = dyo = fro = 0 for eachT). The completes before its deadliag ; (i.€., fx ; < d. ;). However,
worst-case execution timef 7};’s jobs is denoted. since data fileDy, ;1 is not processed by timé; ;, table V

Due to the nature of the underlying database update procdssjot fresh at timel,, ;, and hencery, ;11 = di ;. Inset (b)
each job has to be executed non-preemptively and sequgntias similar except thatl}, ; finishes after its deadline. Insets
i.e., no two jobs of the same task can be scheduled () and (d) illustrate the second case of (4). In inset{§);
parallel. In this paper, we assume that for base tables, eacmpletes by timel,, ; and data fileDy, ;1 arrives after time
job processes exactly one data file. However, all presentéd;. Thus, tableV}, is fresh at timed;, ;, and hence, the next
results are applicable if jobs are allowed to process nialtiprelease is set to bey ;11 = arr(Dy ;+1), (i.e., the earliest
data files provided that, < p, holds for each tasi}.. time when the table is not fresh). Inset (d) is similar, excep

that 7}, ; completes after its deadline.

= I AR | I U U /A S I N
| LI O B I I B A I B I | LI LI L N B B A B N N

Fig. 4. lllustration of (4) in Example 3.

Definition 7. Job T}, ; is readyat timet if ¢ > r; ; and its

predecessoff}, ;_; (if it exists) completes by time. Only As seen, (4) ensures some minimum separa_tion between
ready jobs can be scheduled. consecutive job releases if the current task period does not

change. In Sec. Ill, we discuss how release times are cédclila
To adapt to changes in the incoming workload, tasks cé#nask periods change.

independently change their reservations for processipgaa

ity. For taskT}, these reservations are expressed in terms of¥@mple 4. Consider the system in Example.z 1. As before,
task period, p(Ti,t) > ey, which defines the minimum time taPleésV1 andV; are updated by tasks, andTs; we assume

between consecutive job invocations. In Sec. IlI, we defifere that they are scheduled on one processor so that tlease
task periods such that, under normal conditions, jobi&; afre jobs of T, are scheduled first. Insets (a) and (b) of Fig. 5 show

invoked at the frequency correspondind/f¢s nominal update s_chedules in whictp(71,¢) = 1 andp(T},) = 1.5, respec-
period. Task periods are used to calculate job deadlines 4ygly- In both scheduleg (T3,) = 3. In these schedules, the

subsequent release times as follows. Wheriljpbis released, NUmbers above the arrows indical (v, ?)|. Each job is
its absolute deadline is denoted by its index, which is also the index of the data file

being processed.
dii =7k +P(Thy Tk j)- (3 As shown in Example 1TE(V;,1) = ts(Dy;) = 1.
o . Moreover, becausd; is not scheduled prior to timd,
Jobs are released so that some minimum separation betwgapl’ 1) = 0, which, by (2), impliesFRESH(V4, 1) = false

consecutive job releases is maintained. In the absenceriolepe-l-hiS by the second case of (4), triggers the releas@af
changes, forj > 0, release times are defined according to th{‘ﬁoté thatd, o = fio = 0) SO t’hatrl = min{t | ¢ S

following equation. max(ds o, f1,0)A\-FRESH(V4,t)}) = 1. Assuming periods as
defined in Flg 5, by (3)@[171 = 7‘171+p(T1, 7‘1,1) =141=2.
dij if “FRESH(Vi, max(dy;, fr.;)), Similarly,ry; =1 anddy; =721+ p(T2,7m2,1) =1+3 =4.
Tkj+l = min{t | thax(dkw f}g,j)/\ﬁFRESH(V}€7 t)}
otherwise Update jobs cause table freshness (and hence, staleness)

(4) to change. When an update jdfj, ; of table V, starts to

always defined. For base tables, jBh; processes the earliest
y . EWCHWNWCY . By . By . B . data file pending at time;, ;, and data files that arrive during
A f} WA CRERE AR S U Ty.;'s execution are processed By ;'s successors.

PO

T 1] Intuitively, for base tables, the next update job is reldase
(a) only if the trailing edge differs from the table’s freshneasd

hence, there are pending data files. In contrast to the atigin
definition in [8], we limit the update length for derived tabl
by Ti's period in Def. 8 (see the second case) in order to
achieve a predictable worst-case execution timeZioy. For
base tables, update lengths are not limited because data file
are indivisible units of work.

TableV},’s freshness is updated according to the rules below.
Note that these rules apply for both base and derived tables.

Rule 1: At time zero,F(V},0) = 0.
Rule 2: At time t, F(Vi,t) = F(Vi, fi.n), WhereTy, 5, is
the latest completed job df; by timet. (If no such job

01 5 10 © 15 20 25 exists, therF(V;,t) = F(Vi, fr0) =0.)
Rule 3: At the completion of jobT}, ; the freshness of
Fig. 5. Schedule with(a) p(71,t) = 1 and (b) p(T1,t) = 1.5 Vi is set toF(V;, fr,;) = F(Vi, sk;) + Lk ;.

in Examples 4 and 5. (Note that each schedule is compressed i .
the interval[5, 10) to fit the column.)(c) Table staleness fov in WWe next illustrate the rules presented above for the case of

Example 6. a base table.

Example 6. Fig. 5(c) showsS(V4,), for the schedules shown
execute at timet, it loads records with timestamps within;, insets (a) and (b) of the figure. At time ze®(Vs, 0) = 0.
the range(F(Vy,¢),NF] into Vi, where NF < TE(Vi,#) 1o see that staleness changes as in inset (), consider first
is the new freshness value that will be set. (Records Wifhe interval [0,3). Since no job ofy completes within this
timestamps up té(V;,t) would have been loaded i ;'s interval, by Rule 2,F(Va,t) = 0, and hence, by Def. 5,
predecessors.) Therefore, the freshnessijofat time fi; gy, ¢) increases linearly. As shown in Fig. 5(a,b), the first
becomesF(Vk, fr,;) = NF. update job offy, T 1, released at time, ; = 1, is scheduled
Example 5. Consider again the system illustrated in Fig. 5. A@t time so; = 2 and completes at timg; = 3. By Def. 6,
time 2, job Ty 1 uploadsD; ; and setsF(V;,2) = ts(Dy,1) = TE(V2,821) = 1. By Rule 2,F(V3,55.1) = 0. Thus, by Def. 8,
1. Now consider time 1 in schedule (a), when job - finishes the update length of ; is Lo, = 1. Therefore,T;, loads
uploading data fileD; , and updates the freshnesslaf. At all data with timestamps from to 1 into V5, and hence, by
this time, F(V1,11) = ts(D;2) = 4, where the last equality Rule 3,F(V2, f21) = F(V2,821) + Loy =0+ 1 = 1. We
holds becauses(D; ;) = 143-(j—1) for all j in Example 1. thus haveS(V3, f>1) = 3 —1 = 2. Consider now the interval
Since the latest data file that has arrived at tirhés D, 4, by [10,15) in schedule (a). By Rule 2, for eache [10,15),
Def. 6, TE(V1, 11) = ts(Dy4) = 1+3-(4—1) = 10. Thus, by F(Va,) = F(Va, fos) 0 % F(Vh, s05) + Loy 209
(2), FRESH(V1, 11) = falseand hence, by (4);1,3 = d12 = ts(Dy3) = 7. By Def. 5,S(V,t) = max(0,t — F(Va,t)) =
r1,2 +p(T1,71,2) = 10+ 1 = 11. In contrast, in schedule (b),t-7, so staleness increases linearly durin@ 15). In contrast,
ri3=di2=r12+p(T1,m,2) =10+ 1.5 =11.5. in schedule (b), jobTs 4, released at times, = 10 in

As seen in the above example, table freshness chang\i%oonse to the arrival db, 4, completes at timé2 and sets

incrementally. The magnitude of each incremental change'i V2,12) = 10, so that staleness B(12,12) = 2.

characterized by the following definition. .
Response time and overload managemenihe response

Definition 8. Let time of job T} ; is the delay between its release time and
min{BL(Vi, 55} — F(Vi, 1.5 if V. is base, completion, f, ; — ;. Task T}'s maximum response time

kg =9 . TE(V, '_) R).pk) otherwise is max;(fx; — r%,;)- In Sec. V, we show that if data feeds
min(ko 5k ko Sk.j) Pk : supply new data at a steady rate, then it is possible to ésttabl

where min{BL(V},sr;)} = min{ts(Dx,) | Dy, € analytical bounds on maximum table staleness provided that
BL(Vi, sk;)}. Ly, is called theupdate lengthof T} ; and jobs are scheduled using a real-time scheduling algorittan t

is the amount by which table freshness increases wifign ensures that inequality (5) below holds for each Jol;.

finishes. By the first case of the above equality, the update } }

length for the base table is the difference between theesarli Trg S Thg + Ok ®)
unprocessed data file and current table freshness. It canliéb), ©y is an upper bound ofi;,'s maximum response time.
shown thatBL(Vy, sk, ;) # @ and hence update lengths are In practice, new data can arrive unevenly due to feed

5

network conditions. Additionally, job execution times may GEDF
vary due to increases in data volumes being pushed or due to No
hardware issues. Such scenarios can cause overloadsitati
in which the difference between the trailing edge and table
freshness temporarily (or permanently) increases cordpargefinition 10. In normal mode, taskl},’'s period iSp(Tk,tP =
to an overload-free execution. A scheduler must handle sugh ang, in recoverymode, its period isp(T},t) = pg c
overloads as gracefully as possible. Its objectives cawtiide (¢, ;1 We assume thai(T},0) = py.

minimizing recovery time for critical tables, preservingtd

quality for tables that do not experience feed outages, etc. N normal mode, task;’s period equals tabl&,’s nominal
update period. If tablel}, is not fresh continuously over

Example 7. In the schedule shown in Fig. 5(a), the schedulgyy interval, then, in the absence of mode changes, by (4),
attempts to recovel; as quickly as possible at the pricey, . .\ = r, ;i + p(Th,74;) < 74, + pr. i€, Ti's jobs are

of delaying updates to tablé, and drastically increasing released at least evepy, time units within that interval.

its staleness (see Fig. 5(c)). In contrast, in the schedule) _

shown in Fig. 5(b), the maximum staleness 1af does not Example 8. Consider the system in Example 4 but assume

grow compared to intervals where new data files arrive reg-alt the arrival times of data files @2 are the same as in
ularly. However, it takes longer to process the late dats fild’1- V1 andVz are updated by two identical tass and 75
D; 5, Dy 5. Also, in the case of arbitrarily long outages, iywt_h the execution time for all jobs bemg _exactly one time
is not possible to establish an upper bound on the respolédl- By Def. 10, the normal task period js = p» = 3.
time of Ty's jobs under the first scheduler. For the secorfd9d- 7 illustrates the execution of these two tasks in normal

scheduler, however, response-time bounds can be fourlg ea@'d recovery modes in separate rows. (No job executes within
(see Sec. V). the interval[5, 10), so the schedule is compressed to fit the

column.) In the schedule shown in Fig. 7, jobs; andT5 ;

In the next section, we present our algorithm for handlinggye release times ; = r,; = 1 and at timel, tasksT} and
overload situations. This algorithm is based upon the smpf;, yse their normal periods(T1,1) = p(Ts,1) =p, = po =
idea that, if there are too many pending updates for a table, Thus, by R)di1=do1 =711 +p(Ti,r1)=1+3=4.
then the respective update task needs to be given a largegata feeds did not break, then jobs @f and 75 would
processor share. Similar behavior has been illustratedkin Eontinue to be released every three time units. (The resteof t
ample 5. schedule is considered later.)

Yes

outages (as illustrated in Example 1) or due to changing l Need mode change?
Opt R/W

Fig. 6. High-level organization oAUS.

[1l. ADAPTIVE UPDATE SCHEDULER In contrast to the original definition of the adaptable

. sporadic task model [5], unde&kUS, mode changes cannot

-The operation 0fAUS can b.e summarized as shown i ccur arbitrarily. (Additionally, the original model alsdlows
Fig. 6. Each task operates in either normal or recovery mo sk execution costs to be changed.) Ta&ks transitions

Update jobs are released as de;crlbed in Sec. Il with dmhﬂetween operational modes are governed by the following
and release times calculated using (3) and (4), respectikel two rules

mostm ready jobs, wheren is the number of processors, are

selected for execution using non-preemptive gloBBIF so RN: If TE = h . .
. . . . oo : N —) = Ty ; b,
that jobs with smaller deadlines have higher priority. Whep_ | task]g,:/ﬁvsfikr'ij)recof/‘g;)’/fs%zj)de ?mV\rln;;ieatgljylsp;g;nteﬁ,:(j,

new data files arrive or jobs complete, the scheduler m(mit%e T, transitions to_ormal mode at timenax(fy.;, dy.;)
the state of each table and decides whether the operatio Tkk L is set acco?ding to the second case 0?"@’1)’”
g+ .

mode for one or more tasks needs to be changed. If one or

more _tasks need to changg th_eir operational modes, then,\ﬁ;g: At time t, task T}, is eligible to transition from armal
optimizer component (OPT in Fig. 6) calculates new task—peEb recovery mode ifT}, is in normal mode immediat_ely prior

;)ds n tw<|) stegs. I;:rs_t, i sc_)rr:je task; tranS|t|odn ;rom rec’DV(?[tot andTE(V, t) — F(Vi,t) > AF(V4). The actual transition
0 normal mode, their periods are increased hence crea lﬂ%)ends on other tasks’ modes. pgtandpy denote the set of

spare pracessing capacity (be_cause the_ir jobs are rEItﬂﬁ.Edtasks in recovery and normal modes, respectively, immelgiat
frequently). After that processing capacity becomes abidl, dprior to t. Let pyg and pry denote the set of tasks that

the periods of tasks that enter recovery mode are decrende #ansition between the respective modes at timeThese
the release times of subsequent jobs are re-calculated aSir{ransitions can take place iff

set of reweighting rules (R/W in Fig. 6). In the rest of the

section, we describAUS more formally. w; - Py Wi - Py
Yy ZUHLZ z‘pz_’_z wi — i " Di
L _ I [r] [r]
Definition 9. Let u; = er/pr be theutilization of task Ty Ticpn Ticpr Pi T; € pru p;
andUsum =) 1., ur be the total utilization of all tasks. We i - pi
require thatu, < 1 andU,,,,,, < m for otherwise maximum + Z <% - u1> <m. (6)
job response times can be unbounded. T; €pnR i

}job release iJ’Ob deadline Because at least one data file is pending ¥&r within
[10,17), by (4), jobs ofT; are released.5 time units apart

as shown in Fig. 7. Tabld/ recovers because after the
initial burst at time 10 only one new data file arrives every
three time units but two data files are processed. Jobis; of
are released time units apart within the intervgll0, 17.5)
becauseT,'s mode did not change at tim&0. Note that

T, receives minimum processing capacity so that its backlog
remains steady.

“recovery mode on ¥ recovery mode off

As the example above illustrates, only a limited number
of tasks may be able to switch to recovery mode. These tasks
can be selected using an arbitration policy. In our expemis)e
01 5 10 20 time described in Sec. VII, we selected eligible tasks in order of
Fig. 7. Adaptive scheduling of the task system in Examples 8-1 |f1creasm.g£_—ﬁ - Y])]

Tasks in recovery mode for which there is no pending work
change their mode using RuRN.

By Rule RN above, we would like to decreadg’s share
to a minimum “steady-state” valug, to allow other tables to Example 10. Consider the system from Example 8 again. At
catch up. In RUlNR, AF(V},) is therecovery thresholdThis time f; ¢ = 17, there are no pending data files for taBk
rule attempts to increase the processor share of each tasBynRule RN, 7} changes its mode at tim§ ¢ = 17.5. Thus,

Ti, € pnr to =45 if there is an excessive amount of pendin@t time 17.5, pr = {71}, pn = {T2}, and prn = {T}}. By
work for such tasks. However, these increases can only Bele NR, taskT: enters recovery mode at time.5 because
performed if the resulting total processor share does rzterk (6) holds if pnge = {72}. By Rule RN, the next job of7,
m. T, 7, is released at time; 7 = min{¢ | t > max(di 6, f1,6) A

In Rule RN, we have shown how the release times arePRESH(V1,7)} = min{t | ¢ > 17.5 A -FRESH(V4, 1)} =
calculated when a task transitions from recovery to norm@lf(D1,7) = 19. Job T34 executes at time. = 17.5[]and
mode. The rules for czlgullating rglease times folr tZe r&wﬁr@4 > t.. Thus, by RuleNR and (ii), 725 = fo4- (1 — 1%;) +
transition are presented below and are more involved. We hav [l r
tailored the re\F/)veighting rules described in [4], [5] to oeeds 2% =t pyl =18 (1-15/3) + 16 (15/3) + 1.5 =
and reduced their description to a set of seven conditio

1S7+ 1.5 = 18.5. The intuition behind this setting o, 5 is as
. I?ollows. Because there is excessive unprocessed backtog fo
Due to space constraints, we present only two of them bel
The other five conditions can be found in [13]. ligtbe the

OW, we would like to increase the frequency Bf's jobs and
time instant when task, changes its mode from normal to

start their execution right away. However, the above sgitih
recovery. If T, does not execute at time, then the release release time introduces some separation between the execut
time of its next job is determined as follow@): If 7} ; is the

of jobs T, 4 and T, 5 so that7, does not overallocate the
last-released job of}, anddy ; < t., thenry ;11 = t..

processor and lets other tasks to execute.
. . . Finally, when jobTs g completes, there are no pending files
Alternatively, if job T}, ; executes at time., then the release . Y J 2,8 X P g
time of its next job is determined as follow@i): If dy ; > t.

in Dy so Ty changes its mode from recovery to normal using
[r]

ol Pl Rule RN. As tasksT; and 7, have normal period8 after
and fy ; < dp;, thenry ;i1 = fr;-(1—-2=) 47k, J=+p;". time 25, their jobs are released three time units apart and the

Example 9. Consider the system in Example 8. Suppos%:yStem becomes fully recovered.

that the recovery task period jéfl = p[;] = 1.5, and the
recovery threshold isAF(V;) = AF(V2) = 8. At time 10,
data filesDy 2, Dy 3, and Dy, 4 arrive fork = 1,2. By Rule
2, F(Vi,10) = ts(Dy,1) = 1. By Def. 6, TE(V,10) =
tS(DkA) =10.

By RuleNR, both taskg; andT; are in normal mode prior
to time 10 and are eligible to enter recovery mode at tihie
This is becaus@E(V}, 10) — F(V;,10) = 9 > AF(V;) = 8
for k = 1,2. However, only taskl; can actually change
its mode, (i.e.png = {T1}) for otherwise, (6) will be
violated. This is because, before the swit§IjTi€pN u; = 2/3,

Selecting recovery periods.The design ofAUS allows late
data to be processed at a faster rate while maintaining the
progress of other tables. In the above discussion, we assume
that task recovery periods were known in advance. In cantras
to task normal periods, which are derived from data feed
parameters and task execution times, the choice of recovery
periods is a tradeoff between the recovery speed for an
individual table, response-time (staleness) bounds, &ed t
number of tables that can recover simultaneously. Though
a comprehensive evaluation of these tradeoffs is beyond the
s y scope of this paper, we give two heuristics below.

Driepn Wi = 00 Xomepm (Ui — u;:[ﬁl) = 0, which, by (6) Fﬁst, for ea?:hptasm, v%e can set

(recall thatm = 1), implies ZTie;NR “ht — ;) < 1/3. By

7‘]’

il _ €

(ii), the release time of; » is defined as+ » = 10. P max(1,m — Usum+ ;) @

D, is healthy
V, is healthy

which is the minimum possible value such thBt is able <
to enter recovery mode and maintain (6). This selection of
recovery periods maximizes the recovery rates of indididua
tables.

Alternatively, if we setp”) = max(e;, piUsumy for each r

»
I
»
>

A

task T;, then all tasks could enter recovery mode simultane- A
ously. However, the recovery time for an individual tabldl wi N0 .Jl+|<‘+p/);‘ p+0, _
be larger. o ot f, Y
In the next section, we quantitatively characterize théquer ¢
mance ofAUS. First, we apply prior results to find response- Fig. 8. lllustration of Theorem 2 in Example 11.

time bounds for tasks scheduled usiA@S. Second, we

establish table freshness (staleness) guarantees fot¥iea poiion 15 A table V;, is said to bef-healthy at timet if

base and derived tables, i.e., the tables for which incormféta F(Vi,t) > t— H

files arrive regularly. Finally, we determine the time nesde = '

to recover a table after an outage of one or more data feed©ur freshness (staleness) guarantee result, formallyngive

occurs. in Theorems 2 and 3 below, states that if tableis fresh at

some timet, and its sources are healthy, th&fp is A(V%)-

healthy after timet, if the maximum job response time is
To find response-time bounds for update jobs, we firghunded. (In other words, at any time> ¢, the most recent

introduce the definition of deadline tardiness. consistent data ifv;, has timestamp withimd(V;,) time units

Definition 11. Thetardinessof 7} ; is defined asnax(0, f; ; — from current timet). The constanti(V},) is defined below.

d; j), wheref; ; is T; ;’'s completion time. Atasks tardiness pefinition 13. Let
is the maximum of the tardiness of any of its jobs. WeXegt

IV. CALCULATING RESPONSETIME BOUNDS

denote a finite upper bound on ta®Ks tardiness. AV Ok + pr. + max(dr, prx + Ji + K1) if Vi is base,
k)= _ .
It has been shown by Block et. al that the maximum @k+pk+%e§£3§(m{fl(%)} otherwise.
deadline tardiness of an adaptable sporadic task system is
upper-bounded [5]. Theorem 2. (Proved in [13].) If table V; is base,

FRESH(V4, fx,q) = true for someg > 0, data feedDj, is
healthy at allt € [fx ¢, te], and T}’s per-job response time is
at mostOy, thenVj, is A(Vy)-healthy andS(Vj,t) < A(Vy)
for all t € [f,q,tc].

Theorem 1. (Proved in [4].)Let 7 be an adaptable sporadic
task system, where for anty> 0, > ;. .. ei/p(Ti,t) < m
holds. LetW (T,) = e,/ min>o(p(1%,t)). Then, for any
task T;, non-preemptivéSEDF on m processors ensures a
tardiness of at most Theorem 3. (Proved in [13].) If table V;, is derived,
S ce(rm) €= — mine.) FRESH(V4, fr,g) = true for someg > 0, each source table
= " , Vi € pred(Vy,) is A(V;)-healthy at allt € [fx g, te], and T}’s
m= ZTZGX(T,W—I) W(T) per-job response time is at madst;, thenVj, is A(Vj)-healthy
where&(r,m) is the set ofnin(|7|,m) tasks with the largest and S(Vi,t) < A(Vy) for all ¢ € [fx g, tc].
execution times an&’(r, m — 1) is the set ofnin(|7|,m — 1)
tasks with the largest values &F (7,).

Y, =e;+

We informally explain Theorem 2 using an example below.

The deadline tardiness bounds given by Theorem 1 can %)éample 11. Consider a base tabla with source data feed

: 1 that is updated by task;. Suppose thaD; experiences
used to calculate response-time bounds. L . N
an outage during intervalg,t;] and is healthy during in-

Lemma 1. (5) holds for®; = py + Y. terval [t1,+00) as shown in Fig. 8. It can be shown that
TE(Vi,t) < t and TE(Vy,t) > t — max(¢y,p1 + J1 + K1)
for eacht € [t1,4+00) as illustrated in Fig. 8. If tabld}
recovers at timef; 4, then its freshness becomes equal to its

Proof: If the tardiness bound’, is known for taskT},
then jobT}, ; completes withiny, time units after its deadline.

{by (3)} o ; . o
We thus havefy; < di; +Ye = =" 7rj +P(Tkrj) < trailing edge. After timef; ,, all changes if4’s trailing edge
Tk + Pk + Y. B (which happen when new data files arrive) are reflected in
V. STALENESSBOUNDS Vi's freshness within at most; + ©; time units because

freshness becomes lower-bounded as shown in Fig. 8.
for table_s whose source d_ata feeds are_healthy under € orem 3 can be illustrated similarly.
assumption that maximum job response times are bounded.
According to the definition of table healthiness below, ddab Setting recovery thresholdsF (V) asA(V};) we can ensure
is healthy if the discrepancy between the current time asd that taskT}, does not switch to recovery mode as longlas

freshness is at most some constant. remains healthy.

. . T)'s jobs have bounded maximum response time. Therefore,
In this section, we present guarantees on table stalenzg

V1. RECOVERY PERFORMANCE GUARANTEES respectively. For each table, the source data feed suppdied

In this section, we calculate the time needed to recovaata files regularly with zero timestamp e_md arrival jitteda
an individual base table after an outage. We assume thattg data feeds for table®, ..., V, experienced an outage
data file arrives during the intervddo — A, to], where \ is Tom time 5,000 to time 10,000 (in seconds).
sufficiently long. Additionally, we assume that all datadile T0 account for execution time variability, job; ;'s execu-
that arrive prior totg — \ are processed by timg, and at time tion time was taken uniformly at random from the interval
to, Ty, releases a job and switches to recovery mode. By Ruld —) - €ij, (1 +0) - €i;), wheree; ; = S; + R; - Lij,
RN, task7}, switches to normal mode at or after timesuch i = 0.01 - p;, and R; = 0.1 are execution time parameters
that TE(Vi, ts) = F(Vi,ts), which for base tables implies@ndb = 0.2 is the variability. (In [8], _aII tasks are nprmallzed
BL(Vi,) = 0. We next calculate such thaBL(Vj, t;) = 0, (0 haveS; =1 andF; = 100. Also, in [8], b = 0.5 is used.
wheret; < t, + z assuming thaD, is healthy after time,. We now have empirical evidence that suggests that a smaller

(i.e., we want to find the latest timg + = when T}, has value is more appropriate.) Because data files’ timestamps

processed its entire backlog). are strictly periodic, the maximum update length for table
_ Vi is pr, and hence, the worst-case job execution time is

Theorem 4. If, for base tablé/, taskT}, switches to recovery er = (1+b)-(S; +R; - py). Because, by (7), recovery periods

mode at timet, after an outage of length, then it takes at may depend on worst-case task execution times, we examined

mostz;, time units to clear the backlog, where two settings for recovery periods. In the first setting, we se
Ok e+ (N T+ i) -pg] the recovery periog, for each tas.k l[ﬁlng (7) and assuming
- » p[r] : er = Sk + Ry - pr. This resulted inp,' ~ p/5. We refer
k= Pg

to this setting as the “average-case” provisioning ruleabse
the average job execution time % + Ry - px. In the second
The theorem can be proved by comparing the maximugatting, we set the recovery peripfi! for each task using (7)
number of data files that can arrive within any interval odnd assuming;, = (1 + b) - (Sx + Ry - pi) (the maximum
length A 4 z;, to the minimum number of data files that Carhossible job execution time). This resulted pbr] ~ pi/3.
be processed within the intervab, to + x]. We refer to this setting as the “worst-case” provisioninggru
We examined a processor countsaf = 2 and simulated a

. .) schedule up to time 30,000 seconds.
In this section, we report on experiments that were con-

ducted to evaluate the performance/AdfS. Results. The goal of our experiments was to compare how
AUS andPRP recover table freshness after an outage. Inset (a)
of Fig. 9 shows the difference between the trailing edge and t
ble freshness as a function of time for tablgs. . ., V4, which
have a nominal update period of 300 seconds and experience
an outage. The upper graph gives results PP and the
lower graph forAUS. The recovery periods are set according
. . : . to the average-case provisioning rule. During the interval
time. Ad_dltlonally, in order to prevent starvation, taske a [0,5000] new data files come regularly and the difference
grouped into clusters bas_ed upon_thelr peno_d lengths. k"e'webetween the trailing edge and table freshness does notdxcee
a task can begpromotedif there is an _avallable Processory o t-vie period. During the interv&000, 10000] new data
Finally, underPRI?, the update length is not uppgr-bogndeé?es do not arrive. At time 10,000 backed-up data files become
and several pending updates can execute as a single job. available and the discrepancy between the trailing edge and
Task-set generation procedure.Our experiments involved freshness grows sharply. As can be seen in Fig. ®RP
running a synthetic task set on a proprietary warehougggressively recovers all late tables simultaneouslynguttie
simulator designed at AT&T. We designed our synthetic tasiterval [10000,12500]. In contrast,AUS recovers one late
set using a table configuration from an actual network dat@ble at a time. In each graph, the descending parts of the
warehouse as a guideline. In that configuratiof, 10, 14, curves correspond to time intervals where the respectidatep
and 196 tables have update periods 830, 900, 3600, and tasks execute in recovery mode. As seen, it takgS slightly
28800 seconds, respectively. According to system logs, mdsinger to recover all late tables comparedP®P. This may
of the workload is generated by update tasks for tables withakeAUS seem not competitive witRRP unless we consider
300 and 900 seconds. In prior work, it was also noted that ithe effects of recovery.
might be beneficial to schedule update tasks with signifigant Inset (b) of Fig. 9 shows the difference between the trailing
different periods on different processor sets [8]. edge and table freshness as a function of time for tables
Taking these considerations into account, in our expeli,..., V11, which have a nominal update period of 900
ments, we consideretivo classes of tables —€7 and C; seconds and do not experience an outage. UAdES, this
— with periods 300 and 900 seconds, respectively. Botlifference does not exceed the table period at any time. How-
classes contained seven tablgg ..., V7 and Vs,..., V14, ever,undePRP, for tablesVg andVjy the discrepancy between

VIl. EXPERIMENTAL EVALUATION

Scheduling algorithms. We comparedAUS to the state-of-
the art PRP algorithm [8]. UnderPRP, tasks with shorter
update periods have higher priority, which seems like anaatu
prioritization for multiple streams with different updatates.
Any ties are broken in favor of jobs with the largest ratiotuod t
resulting freshness increase to the job’s worst-case érecu

Difference between trailing edge and freshness (s)

6000

— V1 (PRP) (1)
V2 (PRP) (2)
V3 (PRP) (3)
V4 (PRP) (4)

5000

40001
30001

1 ing

2000

1000}

ASBNAANNEAANNALA
0 2000 4000

o

. . L] ‘ﬁﬂﬂﬂﬂlﬂﬂlknltj
6000 8000 10000 12000 14000 16000

6000

— V1 (AUS) (1)
V2 (AUS) (2)
V3 (AUS) (3)
V4 (AUS) (4)

5000

4000
30001

20001

1000

ARENARERASAINERER
0 2000 4000

yrro

12000

o

14000

6000 8000

Time (s)

10000 16000

VIIl. CONCLUSION

In this paper, we have proposed an adaptive approach to
scheduling updates in data warehouses. The presentedusched

algorithm, AUS, is capable of recovering tables after

1 feed outages while maintaining guarantees on data freshnes
and minimizing interference on tables that are not affected
by outages. Our experimental evaluation shows #as6 is
competitive with and more predictable than a state-ofatte-
heuristic-based proportional scheduler.

In the future, we plan to evaluate tradeoffs pertaining ® th
| selection of recovery periods and recovery arbitrationcpes
1 depending on the relative criticality of tables. We alsonpla
to implementAUS in DataDepot to evaluate its performance

under real workloads.

@

Difference between trailing edge and freshness (s)

4000 , , , [1]
3500 — V8 (PRP) (1)

3000 V9 (PRP) (2)
2500 V10 (PRP) (3)

2000 V11 (PRP) (4)

%, ELLLEEEREE

1000
4000 6000 8000 10000
— V8 (AUS) (1)

500

V9 (AUS) (2)
V10 (AUS) (3)
V11 (AUS) (4)

(2]

i
il
16000

o

13000 14600 [3]
[4]

(5]

4000
3500
3000
2500
2000

1500
1000 (12,34)

oo, f L LD EEEE LELEL LD

9] 2000 4000 6000 8000 10000 12000 14000 16000
Time (s)

(b)

Fig. 9. The difference between trailing edge and freshnessables with
period (a) 300 and (b) 900. Recovery periods are average-case provisioned.[

(6]

o

(7]

the trailing edge and freshness grows significantly afteeti
10,000. This is becaudeRP dedicates all available resources!
for recovering late tables with short periods. Moreoveg thioj
freshness ol is not completely restored until time 15,000,
which is about the time wheAUS fully completes recovery. 11
As mentioned in the introduction, such unpredictable disru
tive behavior is not good for a data warehouse. The situation
with worst-case recovery provisioning is similar exceptth (12]
AUS completes the recovery significantly afttRP (time [13]
25,000 vs 15,000). This is becausdS conservatively delays
updates and the available processing capacity is not fully
used. As data warehouse[s] are soft-real-time applicgtion
they are more likely to be provisioned using average-case or
near-average-case execution costs. Given this, our “gxa'era[15
case” results are probably more meaningful. Note that, aith
average-case provisioning, our analytically-derivedratsucan [16]
be assumed to hold in expectation only. However, as the above
experiments show, predictability is still significantlybemced.

To summarize the above discussid@RP recovers late (17]
tables very quickly but causes unwanted interference dedaby; g
that are not late. In contrast, due to its more conservative
scheduling policyAUS recovers late tables while maintaining
data freshness of tables that are not late.

]

10

REFERENCES

L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analigs of a
reservation-based feedback scheduler,Pinc. of the 23¢ Real-Time
Systems Symposiui2002, pp. 71-80.

M. Ahuja, C. C. Chen, R. Gottapu, J. Hallmann, W. HasanJéhnson,
M. Kozyrczak, R. Pabbati, N. Pandit, S. Pokuri, and K. Upp&Reta-
scale data warehousing at yahoo!”"Rmoc. of SIGMOD 2009, pp. 855—
862.

S. Babu and J. Widom, “Continuous queries over data stsgaSIG-
MOD Record vol. 30, no. 3, pp. 109-120, 2001.

A. Block, “Adaptive multiprocessor real-time systefnBh.D. disserta-
tion, UNC Chapel Hill, 2008.

A. Block, J. Anderson, and U. Devi, “Task reweighting endylobal
scheduling on multiprocessorsRReal-Time Systemsol. 39, pp. 123—
167, 2008.

D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M. Chenkia and
M. Stonebraker, “Operator scheduling in a data stream neayiaig
Proc. of VLDB 2003.

H. Cho, B. Ravindran, H. Wu, and E. D. Jensen, “On multig@ssor
utility accrual real-time scheduling with statistical tmg assurances,”
in Proc. of the IFIP International Conference on Embedded And
Ubiquitous ComputingAugust 2006, pp. 274-286.

8] L. Golab, T. Johnson, and V. Shkapenyuk, “Schedulingatgslin a real-

time stream warehouse,” iRroc. of the 25th International Conference
on Data Engineering2009, pp. 1207-1210.

9] L. Golab, T. Johnson, J. Spencer, and V. Shkapenyuke&tr ware-

housing with datadepot,” iProc. of SIGMOD 2009, pp. 847-854.

J. R. Haritsa, M. J. Carey, and M. Livny, “Value-basedhextuling in
real-time database system¥[LDB Journaj vol. 2, no. 2, pp. 117-152,
1993.

A. K. Jha, M. Xiong, and K. Ramamritham, “Mutual consisty in
real-time databases,” iAroc. of the 27th Real-Time Systems Sympgsium
2006, pp. 335-343.

A. Karakasidis, P. Vassiliadis, and E. Pitoura, “ETLeges for active
data warehousing,” ifProc. of IQIS 2005, pp. 28-39.

H. Leontyev, T. Johnson, and J. Anderson, “An adaptigheme for
overload handling in active data warehouses,” October 2[D8line].
http://cs.unc.edill/ anderson/papers/adaptivearehouse.pdf

P. Li, “Utility accrual real-time scheduling: Modelsnd algorithms,”
Ph.D. dissertation, Virginia Polytechnic Institute andt8tUniversity,
July 2004.

] C. Lu, J. Stankovic, S. Son, and G. Tao, “Feedback comgal-time

scheduling: Framework, modeling, and algorithniR¢al-Time Systems
vol. 23, no. 2-3, pp. 85-126, 2002.

N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. 3sis, and N.-E.
Frantzell, “Supporting streaming updates in an active @ateehouse,”
in Proc. of the 23rd International Conference on Data Engiriregr
2007, pp. 476-485.

J. Stankovic, S. S. Hyuk, and J. Hansson, “Misconcegtiabout real-
time databases/EEE Computervol. 32, no. 6, pp. 29-36, 1999.

M. Xiong, J. A. Stankovic, K. Ramamritham, D. Towsleynda
R. Sivasankaran, “Maintaining temporal consistency: éssand algo-
rithms,” in Proc. of International Workshop on Real-Time Database
Systems1996, pp. 2—7.

