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Abstract—This paper presents a novel adaptive approach for
scheduling updates in a data warehouse that processes “near-
real-time” data streams. Data is pushed to the warehouse from a
variety of external sources with a wide range of inter-arrival times
(e.g., once a minute to once a day). Due to network conditions,
the volume of incoming data can widely vary and data streams
can experience intermittent outages. Maintaining data freshness
in the presence of outages and load variations can be challenging.
In prior work, ad hoc heuristic algorithms have been proposed for
doing this. In this paper, a systematic approach based upon global
multiprocessor real-time scheduling theory is considered. The
proposed approach can handle overload and recovery situations
and maintain guarantees on data freshness for warehouse tables
that are not impacted by outages. Simulation experiments are
presented that show the effectiveness of the proposed approach.

I. I NTRODUCTION

Data stream warehouses (or, active data warehouses [16])
are used in critical business applications where near-real-time
access to streamed data and integrated access to historicaldata
are required [2], [9]. The DataDepot warehouse designed at
AT&T is one example [9]. DataDepot was designed to allow
network performance and potential attacks to be monitored by
collecting system logs, IP packet traces, traffic summaries, etc.

As explained below, the query-generated workload in
systems like DataDepot can be both highly variable and
computationally-intensive, necessitating the use of multipro-
cessor platforms. Thus, when deploying such a system, one
is faced with a complex multiprocessor real-time scheduling
problem where adaptivity arises. In current warehouse designs,
this scheduling problem is solved by using ad hoc methods.
In this paper, we examine whether recent research on real-
time multiprocessor scheduling can be leveraged to solve
this problem in a more systematic way that lends itself to
formal analysis. Such analysis is important because it enables
principled system design and optimization, which is very
important to database designers.

This paper was specifically motivated by issues faced in
deployments of DataDepot, the architecture of which is illus-
trated in Fig. 1. DataDepot consists of a network-accessible
disk storage, on which a hierarchy of database tables is stored,
and one or more servers that run user queries and warehouse
maintenance programs calledupdate tasks. New information
comes into the warehouse from a number of data feeds that

Fig. 1. Data warehouse architecture.

receivedata filesat regular intervals. These files are written
onto disk and are accessible by update tasks. Each such task is
associated with a particular table andappendsrecords to that
table by reading data files that come from data feeds or other
(source) tables. Each server has a scheduler that manages the
update tasks assigned to it. Because the data transformation
and loading process is time- and memory-consuming, only a
few update tasks can run simultaneously [12], [16]. The sup-
ported tables are of two types:basetables, which are sourced
directly from data streams, andderived tables (materialized
views), which are sourced from (i.e., defined as the result of
an SQL query over) one or more base or other derived tables.
Fig. 1 depicts several update tasks and their corresponding
tables;V1, V2, andV3 are base tables sourced from data feeds
D1, D2, andD3, respectively, andV4 is a derived table.

The problem. Maintaining high data freshness(which re-
quires that the timestamp of the mostly-recently loaded data be
“close” to the current time) is particularly challenging ifdata
feeds experience intermittent outages. Outages may occur due
to equipment and network failures or when data schemes are
changed, which may necessitate temporarily disabling certain
feeds. During an outage, new data files can become backed up
at the data-feed source and hence be unavailable for prolonged
intervals of time. When this occurs, the affected base tables
and their derived tables do not reflect the most recent infor-
mation available in unprocessed data files. In this case, such a
table is said to belate. In order to restore the freshness of late
tables, their respective update tasks have to be given a larger
share of the computing resources. However, since only few
update tasks can run simultaneously, such share increases may
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excessively delay updates for non-late tables, and hence, their
freshness could also be compromised (see examples in Sec. II
for details). In this paper, we develop a scheduling algorithm
called theAdaptive Update Scheduler(AUS) that is capable
of recovering tables after feed outages while maintaining
guaranteeson data freshness and minimizing interference on
tables that are not affected by outages.

Our approach. UnderAUS, each update task can execute in
either normal or recoverymode as characterized by normal
and recoveryperiods, respectively; such periods represent
the minimum time between consecutive task invocations.
Invocations of an update task, calledjobs of that task, are
assigneddeadlinesaccording to the task’s current period and
are scheduled using the global earliest-deadline-first (GEDF)
algorithm. A task’s normal period is defined so that it just
keeps up with arriving data when its table is healthy (i.e.,
not impacted by outages). Its recovery period is defined to
be shorter so that it can process backlogged work due to an
outage at a higher rate. Using prior work, it can be shown that
AUS limits the total processing capacity consumed by tasks
in recovery mode [4], [5]. Additionally, as we show, it allows
table freshness to be bounded for healthy tables.

Prior work. The append-only nature of real-time data ware-
houses is a significant difference in comparison to more con-
ventional real-time databases (RTDBs), which perform trans-
actions on timed data [11], [17], [18]. Still, some similarities
exist. In a data warehouse, the goal is to collect a history of
events so that the leading edge of the event history is as fresh
as possible. The notion of freshness is similar to the concept of
“temporal consistency” as applied to data objects. An object is
absolutely consistentif the difference between the current time
and the object’s timestamp does not exceed some pre-defined
validity threshold [18]. In prior work, these validity thresholds
have been generally used for determining priorities and timing
constraints of transactions. In contrast, due to the append-only
nature of data streams in our setting, stored data is always
valid, so validity thresholds are effectively infinite. This allows
some leeway in scheduling. Additionally, to our knowledge,
global scheduling algorithms have not been considered before
in work on RTDBs.

The issue of overload has been partially considered in prior
work on data-warehouse scheduling [3], [6], [8], [9]. However,
to our knowledge, all existing schedulers use heuristics ina
way that does not allow performance to be predicted.

A number of utility-based scheduling approaches have been
proposed for dealing with overloads in non-database [7],
[14] and database settings [10]. Though such approaches
can gracefully handle performance degradation, it might be
problematic (or impossible) to determine meaningful utility
functions in a warehouse setting. For example, while utilities
are often defined to decay rapidly (or immediately) beyond
a job’s deadline, warehouse updates are considered to be of
utility well beyond their deadlines.

In work on dynamically-changing workloads, feedback-
control-based algorithms have proved useful. Such an algo-

rithm typically monitors the number of deadline misses of
jobs and adjusts their priorities in order to achieve satisfactory
performance [1], [15]. Our approach can be seen as an example
of a such an algorithm where a very simple controller is used.

Contributions. The AUS algorithm mentioned earlier is the
main contribution of this paper. It has been designed by ex-
ploiting the fact that certain global multiprocessor schedulers
can ensure bounded maximum job response times even if
tasks dynamically change their timing requirements, as long
as the processing platform is not over-utilized (utilization
constraints beyond this are not required) [4], [5]. We show that,
given such response-time bounds, bounds on data staleness
can be derived (staleness is the inverse of freshness). After
deriving such bounds, we discuss the results of experimentsin
which AUS is compared to the state-of-the-art heuristic-based
“proportional” (PRP) scheduler [8] under overload conditions.
In this evaluation, a synthetic task set was run on a proprietary
warehouse simulator designed at AT&T. In these experiments,
AUS exhibited more predictable performance thanPRP. Note
that, while staleness bounds can be computed forAUS, this
is virtually impossible forPRP, given its heuristic nature.

In the rest of the paper, we formally define our system model
(Sec. II), describe theAUS algorithm (Sec. III), analyze it by
presenting per-job response time bounds (Sec. IV) and data
staleness bounds (Sec. V), present our experimental results
(Sec. VII), and conclude (Sec. VIII).

II. SYSTEM MODEL

As mentioned earlier, we study a relational data warehouse,
which is similar to that considered in prior work [8]. We
assume that relationships among source and derived tables
form a directed acyclic graph and do not change over time.
We denote the set of tables as{V1, . . . , Vn}. For a derived
tableVk, the set of its source tables is denotedpred(Vk). For
a base tableVk, pred(Vk) = ∅. Each tableVk is characterized
by anominal update periodpk that specifies the desired update
frequency for this table.

Data stream model.Our data stream model is captured by
the following definitions.

Definition 1. For base tableVk, a unique sourcedata feed
Dk exists.Dk is a sequence{Dk,j = (arr(Dk,j), ts(Dk,j))},
wherej ≥ 1. Each element of the sequence describes adata
file that needs to be ingested into the base table. A data file
is a logical unit of work.arr(Dk,j) is the arrival time of
the jth data file andts(Dk,j) is its timestamp, which is the
maximum timestamp of a record in that file. A data file’s
arrival time is the time instant when it becomes available
on the disk. The timestamp of a record in the file denotes
the physical time when that record was created. We assume
that, for each base tableVk, (1) below holds, and for each
j ≥ 1, ts(Dk,j) ≤ arr(Dk,j), arr(Dk,j) ≤ arr(Dk,j+1), and
ts(Dk,j) ≤ ts(Dk,j+1).

ts(Dk,1) > 0 (1)
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In order to establish guarantees on the quality of data, we
assume that data fileDk,j+1 only contains records with times-
tamps within(ts(Dk,j), ts(Dk,j+1)] (note thatDk,1 contains
records within (0, ts(Dk,1)]). Additionally, we assume that
data files are processed in order of their arrival.

Definition 2. We call a data feedDk healthy at time t, if
there existsDk,j such thatarr(Dk,j) ∈ [t − pk − Jk, t] and
arr(Dk,j) ∈ [φk + pk · (j − 1) − Jk, φk + pk · (j − 1)], and
ts(Dk,j) ∈ [arr(Dk,j)− κk, arr(Dk,j)], whereφk ≥ 0 is Dk ’s
phase, Jk ∈ [0, pk) is its arrival jitter , and κk ≥ 0 is its
timestamp jitter. A data feed that is not healthy is called
unhealthy.

Intuitively, in a healthy data feed, data files arrive with
some regularity and there is not much discrepancy between the
arrival time and the maximum record timestamp in the file. In
contrast, if a feed breaks and then is later restored after some
noticeable time, then many data files will have the same arrival
time and the discrepancy between record timestamps and the
arrival time can be large. We say that feedDk experiences an
outageduring an interval(t1, t2) if t2 − t1 > pk + Jk and no
new data files arrive during(t1, t2).

Definition 3. We call a data filependingat time t if it has
arrived but has not been uploaded into a base table by time
t. The set of pending data files for base tableVk at time t is
called thebacklogof Vk and is denotedBL(Vk, t). We assume
that data files inBL(Vk, t) are sorted by increasing timestamp.

Table freshness and data consistency.We next define table
freshness (which reflects the quality of stored data) and discuss
the notion of data consistency adopted in this paper.

Definition 4. [8] The freshnessof tableVk at timet, denoted
F(Vk, t), is the maximum timestamp of a record stored inVk

by time t. We defineF(Vk, 0) = 0.

Definition 5. [8] Thestalenessof tableVk at timet is defined
asS(Vk, t) = t− F(Vk, t).

Staleness indicates the extent to which the most recent
timestamp stored in a table lags behind the current time. The
state of derived tables must be consistent with the state of their
source tables at some time instant in the past. In this paper,
we follow the definition of “trailing edge consistency” [8].

Definition 6. We define thetrailing edgeof tableVk at time
t as

TE(Vk, t)

=







max{ts(Dk,y) | arr(Dk,y) ≤ t} if Vk is base,

min
Vi∈pred(Vk)

{F(Vi, t)} otherwise.

Intuitively, for base tableVk, the trailing edge at timet defines
a time instant such that all data with timestamps at or before
time t has arrived from its data feed. IfVk is derived, then the
trailing edge at timet indicates that each of its source tables
contains records with timestamps up to timeTE(Vk, t).

Fig. 2. Data file arrivals in Example 1.
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Fig. 3. State of tables at times(a) 12 and(b) 14 in Example 2.

As illustrated by the two examples below, the discrepancy
betweenTE(Vk, t) andF(Vk, t) indicates that tableVk needs
to be updated. The following predicate indicates that tableVk

reflects the most recent consistent information.

FRESH(Vk, t)
∆
= (TE(Vk, t) ≤ F(Vk, t)) (2)

Each tableVk is updated by an external program referred to as
taskTk. For base tables, the data is loaded from pending data
files, and for derived tables, data from other tables is used.

Example 1. Suppose that the base tablesV1 and V2 in
Fig. 1 are sourced from data feedsD1 and D2 and, for
data feedD2, data filesD2,j have timestamps and arrival
times arr(D2,j) = ts(D2,j) = 1 + 3 · (j − 1) for j ≥ 1.
Suppose that, for data feedD1, data filesD1,1, . . . , D1,10 have
timestampsts(D1,j) = 1 + 3 · (j − 1) for j = 1, . . . , 10
and arrival timesarr(D1,1) = 1 and arr(D1,j) = 10 for
j ≥ 2, respectively. This is illustrated in Fig. 2, where data
file arrivals are denoted with black circles. For those data files
with timestamps that do not coincide with file’s arrival time,
their timestamps are shown using empty circles. This example
scenario could occur ifD1 andD2 are required to supply data
periodically every3 time units butD1 goes down during the
interval [4, 10) so that several data files are available at once
at time 10. At time 1, D1,1 arrives, and hence, by Def. 6,
TE(V1, 1) = ts(D1,1) = 1. Similarly, TE(V2, 1) = ts(D2,1) =
1. By Def. 3,BL(V1, 10) = {D1,2, D1,3, D1,4}, and hence, by
Def. 6, TE(V1, 10) = ts(D1,4) = 1 + 3 · (4− 1) = 10.

Example 2. Suppose that at time12 the derived tableV4

in Fig. 1 contains data records up to time5 and its source
tables V2 and V3 have freshness8 and 9, respectively, as
shown in Fig. 3(a). TableV4 is consistent with respect to
the state of its sources as of time5. When taskT4 com-
mences execution at time12 it needs to add new records to
V4 to reflect the changes in its source tables. At time12,
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both source tables have all required information up to time
TE(V4, 12) = minVi∈pred(V4){F(Vi, 12)} = min{8, 9} = 8.
Therefore, taskT4 reads all data with timestamps within the
range(F(V4, 12),TE(V4, 12)] = (5, 8] from the source tables
and appends the corresponding records toV4. If task T4

finishes at time14, then the state ofV4 is consistent with
respect to the state ofV2 and V3 as of time 8 as shown
in Fig. 3(b).

Adaptable task model. In this paper, tasks are characterized
by several parameters as specified in theadaptable sporadic
task model, proposed by Block et. al [5]. We present this model
below, and introduce some additional constraints imposed by
the specifics of the update scheduling problem.

Changes inTE(Vk, t) trigger task invocations; each such
invocation is called ajob. Thejth job of Tk is denotedTk,j and
is characterized by itsrelease timerk,j , which is the earliest
time Tk,j can start its execution, and anabsolute deadline
dk,j ≥ rk,j . We let sk,j ≥ rk,j denote the earliest time when
job Tk,j is scheduled. The completion time ofTk,j is denoted
fk,j . We definerk,0 = dk,0 = fk,0 = 0 for eachTk. The
worst-case execution timeof Tk’s jobs is denotedek.

Due to the nature of the underlying database update process,
each job has to be executed non-preemptively and sequentially,
i.e., no two jobs of the same task can be scheduled in
parallel. In this paper, we assume that for base tables, each
job processes exactly one data file. However, all presented
results are applicable if jobs are allowed to process multiple
data files provided thatek ≤ pk holds for each taskTk.

Definition 7. JobTk,j is ready at time t if t ≥ rk,j and its
predecessorTk,j−1 (if it exists) completes by timet. Only
ready jobs can be scheduled.

To adapt to changes in the incoming workload, tasks can
independently change their reservations for processing capac-
ity. For taskTk, these reservations are expressed in terms of a
task period, p(Tk, t) ≥ ek, which defines the minimum time
between consecutive job invocations. In Sec. III, we define
task periods such that, under normal conditions, jobs ofTi are
invoked at the frequency corresponding toVi’s nominal update
period. Task periods are used to calculate job deadlines and
subsequent release times as follows. When jobTk,j is released,
its absolute deadline is

dk,j = rk,j + p(Tk, rk,j). (3)

Jobs are released so that some minimum separation between
consecutive job releases is maintained. In the absence of period
changes, forj ≥ 0, release times are defined according to the
following equation.

rk,j+1 =











dk,j if ¬FRESH(Vk,max(dk,j , fk,j)),

min{t | t≥max(dk,j , fk,j)∧¬FRESH(Vk, t)}

otherwise.
(4)

Fig. 4. Illustration of (4) in Example 3.

Example 3. Fig. 4 illustrates (4) whenVk is a base table.
In this and subsequent schedules, down-arrows denote job
deadlines and up-arrows denote job releases. (Coinciding up-
and down-arrows appear appear as a double arrow.) Insets (a)
and (b) illustrate the first case of (4). In inset (a), jobTk,j

completes before its deadlinedk,j (i.e.,fk,j ≤ dk,j ). However,
since data fileDk,j+1 is not processed by timedk,j , tableVk

is not fresh at timedk,j , and hence,rk,j+1 = dk,j . Inset (b)
is similar except thatTk,j finishes after its deadline. Insets
(c) and (d) illustrate the second case of (4). In inset (c),Tk,j

completes by timedk,j and data fileDk,j+1 arrives after time
dk,j . Thus, tableVk is fresh at timedk,j , and hence, the next
release is set to berk,j+1 = arr(Dk,j+1), (i.e., the earliest
time when the table is not fresh). Inset (d) is similar, except
thatTk,j completes after its deadline.

As seen, (4) ensures some minimum separation between
consecutive job releases if the current task period does not
change. In Sec. III, we discuss how release times are calculated
if task periods change.

Example 4. Consider the system in Example 1. As before,
tablesV1 andV2 are updated by tasksT1 andT2; we assume
here that they are scheduled on one processor so that released
jobs ofT2 are scheduled first. Insets (a) and (b) of Fig. 5 show
schedules in whichp(T1, t) = 1 and p(T1, t) = 1.5, respec-
tively. In both schedules,p(T2, t) = 3. In these schedules, the
numbers above the arrows indicate|BL(Vk, t)|. Each job is
denoted by its index, which is also the index of the data file
being processed.

As shown in Example 1,TE(V1, 1) = ts(D1,1) = 1.
Moreover, becauseT1 is not scheduled prior to time1,
F(V1, 1) = 0, which, by (2), impliesFRESH(V1, 1) = false.
This, by the second case of (4), triggers the release ofT1,1

(note thatd1,0 = f1,0 = 0) so that r1,1 = min{t | t >
max(d1,0, f1,0)∧¬FRESH(V1, t)}) = 1. Assuming periods as
defined in Fig. 5, by (3),d1,1 = r1,1+p(T1, r1,1) = 1+1 = 2.
Similarly, r2,1 = 1 andd2,1 = r2,1 + p(T2, r2,1) = 1+ 3 = 4.

Update jobs cause table freshness (and hence, staleness)
to change. When an update jobTk,j of table Vk starts to
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Fig. 5. Schedule with(a) p(T1, t) = 1 and (b) p(T1, t) = 1.5
in Examples 4 and 5. (Note that each schedule is compressed in
the interval[5, 10) to fit the column.)(c) Table staleness forV2 in
Example 6.

execute at timet, it loads records with timestamps within
the range(F(Vk, t),NF] into Vk, where NF ≤ TE(Vk, t)
is the new freshness value that will be set. (Records with
timestamps up toF(Vk, t) would have been loaded byTk,j ’s
predecessors.) Therefore, the freshness ofVk at time fk,j
becomesF(Vk, fk,j) = NF.

Example 5. Consider again the system illustrated in Fig. 5. At
time 2, job T1,1 uploadsD1,1 and setsF(V1, 2) = ts(D1,1) =
1. Now consider time11 in schedule (a), when jobT1,2 finishes
uploading data fileD1,2 and updates the freshness ofV1. At
this time,F(V1, 11) = ts(D1,2) = 4, where the last equality
holds becausets(D1,j) = 1+3 ·(j−1) for all j in Example 1.
Since the latest data file that has arrived at time11 is D1,4, by
Def. 6,TE(V1, 11) = ts(D1,4) = 1+3 ·(4−1) = 10. Thus, by
(2), FRESH(V1, 11) = falseand hence, by (4),r1,3 = d1,2 =
r1,2 + p(T1, r1,2) = 10+ 1 = 11. In contrast, in schedule (b),
r1,3 = d1,2 = r1,2 + p(T1, r1,2) = 10 + 1.5 = 11.5.

As seen in the above example, table freshness changes
incrementally. The magnitude of each incremental change is
characterized by the following definition.

Definition 8. Let

Lk,j =

{

min{BL(Vk, sk,j)} − F(Vk, sk,j) if Vk is base,

min(TE(Vk, sk,j)− F(Vk, sk,j), pk) otherwise,

where min{BL(Vk, sk,j)} = min{ts(Dk,y) | Dk,y ∈
BL(Vk, sk,j)}. Lk,j is called theupdate lengthof Tk,j and
is the amount by which table freshness increases whenTk,j

finishes. By the first case of the above equality, the update
length for the base table is the difference between the earliest
unprocessed data file and current table freshness. It can be
shown thatBL(Vk, sk,j) 6= ∅ and hence update lengths are

always defined. For base tables, jobTk,j processes the earliest
data file pending at timesk,j , and data files that arrive during
Tk,j ’s execution are processed byTk,j ’s successors.

Intuitively, for base tables, the next update job is released
only if the trailing edge differs from the table’s freshness, and
hence, there are pending data files. In contrast to the original
definition in [8], we limit the update length for derived tables
by Tk ’s period in Def. 8 (see the second case) in order to
achieve a predictable worst-case execution time forTk,j . For
base tables, update lengths are not limited because data files
are indivisible units of work.

TableVk ’s freshness is updated according to the rules below.
Note that these rules apply for both base and derived tables.

Rule 1: At time zero,F(Vk, 0) = 0.
Rule 2: At time t, F(Vk, t) = F(Vk, fk,h), whereTk,h is
the latest completed job ofTk by time t. (If no such job
exists, thenF(Vk, t) = F(Vk, fk,0) = 0.)
Rule 3: At the completion of jobTk,j the freshness of
Vk is set toF(Vi, fk,j) = F(Vk, sk,j) + Lk,j .

We next illustrate the rules presented above for the case of
a base table.

Example 6. Fig. 5(c) showsS(V2, t), for the schedules shown
in insets (a) and (b) of the figure. At time zero,S(V2, 0) = 0.
To see that staleness changes as in inset (c), consider first
the interval[0, 3). Since no job ofT2 completes within this
interval, by Rule 2,F (V2, t) = 0, and hence, by Def. 5,
S(V2, t) increases linearly. As shown in Fig. 5(a,b), the first
update job ofT2, T2,1, released at timer2,1 = 1, is scheduled
at time s2,1 = 2 and completes at timef2,1 = 3. By Def. 6,
TE(V2, s2,1) = 1. By Rule 2,F(V2, s2,1) = 0. Thus, by Def. 8,
the update length ofT2,1 is L2,1 = 1. Therefore,T2,1 loads
all data with timestamps from0 to 1 into V2, and hence, by
Rule 3, F(V2, f2,1) = F(V2, s2,1) + L2,1 = 0 + 1 = 1. We
thus haveS(V2, f2,1) = 3− 1 = 2. Consider now the interval
[10, 15) in schedule (a). By Rule 2, for eacht ∈ [10, 15),

F(V2, t) = F(V2, f2,3)
{by Rule 3}

= F(V2, s2,3) + L2,3
{by Def. 8}

=
ts(D2,3) = 7. By Def. 5, S(V2, t) = max(0, t − F(V2, t)) =
t−7, so staleness increases linearly during[10, 15). In contrast,
in schedule (b), jobT2,4, released at timer2,4 = 10 in
response to the arrival ofD2,4, completes at time12 and sets
F(V2, 12) = 10, so that staleness isS(V2, 12) = 2.

Response time and overload management.The response
time of job Tk,j is the delay between its release time and
completion,fk,j − rk,j . Task Tk’s maximum response time
is maxj(fk,j − rk,j). In Sec. V, we show that if data feeds
supply new data at a steady rate, then it is possible to establish
analytical bounds on maximum table staleness provided that
jobs are scheduled using a real-time scheduling algorithm that
ensures that inequality (5) below holds for each jobTk,j .

fk,j ≤ rk,j +Θk (5)

In (5),Θk is an upper bound onTk ’s maximum response time.
In practice, new data can arrive unevenly due to feed
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outages (as illustrated in Example 1) or due to changing
network conditions. Additionally, job execution times may
vary due to increases in data volumes being pushed or due to
hardware issues. Such scenarios can cause overload situations
in which the difference between the trailing edge and table
freshness temporarily (or permanently) increases compared
to an overload-free execution. A scheduler must handle such
overloads as gracefully as possible. Its objectives could include
minimizing recovery time for critical tables, preserving data
quality for tables that do not experience feed outages, etc.

Example 7. In the schedule shown in Fig. 5(a), the scheduler
attempts to recoverV1 as quickly as possible at the price
of delaying updates to tableV2 and drastically increasing
its staleness (see Fig. 5(c)). In contrast, in the schedule
shown in Fig. 5(b), the maximum staleness ofV1 does not
grow compared to intervals where new data files arrive reg-
ularly. However, it takes longer to process the late data files
D1,2, D1,3. Also, in the case of arbitrarily long outages, it
is not possible to establish an upper bound on the response
time of T2’s jobs under the first scheduler. For the second
scheduler, however, response-time bounds can be found easily
(see Sec. V).

In the next section, we present our algorithm for handling
overload situations. This algorithm is based upon the simple
idea that, if there are too many pending updates for a table,
then the respective update task needs to be given a larger
processor share. Similar behavior has been illustrated in Ex-
ample 5.

III. A DAPTIVE UPDATE SCHEDULER

The operation ofAUS can be summarized as shown in
Fig. 6. Each task operates in either normal or recovery mode.
Update jobs are released as described in Sec. II with deadlines
and release times calculated using (3) and (4), respectively. At
mostm ready jobs, wherem is the number of processors, are
selected for execution using non-preemptive globalEDF so
that jobs with smaller deadlines have higher priority. When
new data files arrive or jobs complete, the scheduler monitors
the state of each table and decides whether the operational
mode for one or more tasks needs to be changed. If one or
more tasks need to change their operational modes, then an
optimizer component (OPT in Fig. 6) calculates new task peri-
ods in two steps. First, if some tasks transition from recovery
to normal mode, their periods are increased hence creating
spare processing capacity (because their jobs are releasedless
frequently). After that processing capacity becomes available,
the periods of tasks that enter recovery mode are decreased and
the release times of subsequent jobs are re-calculated using a
set of reweighting rules (R/W in Fig. 6). In the rest of the
section, we describeAUS more formally.

Definition 9. Let uk = ek/pk be theutilization of task Tk

andUsum =
∑

Ti∈τ uk be the total utilization of all tasks. We
require thatuk ≤ 1 andUsum ≤ m for otherwise maximum
job response times can be unbounded.

Fig. 6. High-level organization ofAUS.

Definition 10. In normal mode, taskTk’s period isp(Tk, t) =

pk and, in recoverymode, its period isp(Tk, t) = p
[r]
k ∈

[ek, pk]. We assume thatp(Tk, 0) = pk.

In normal mode, taskTk ’s period equals tableVk ’s nominal
update period. If tableVk is not fresh continuously over
an interval, then, in the absence of mode changes, by (4),
rk,j+1 = rk,j + p(Tk, rk,j) ≤ rk,j + pk, i.e., Tk ’s jobs are
released at least everypk time units within that interval.

Example 8. Consider the system in Example 4 but assume
that the arrival times of data files inD2 are the same as in
D1. V1 andV2 are updated by two identical tasksT1 andT2

with the execution time for all jobs being exactly one time
unit. By Def. 10, the normal task period isp1 = p2 = 3.
Fig. 7 illustrates the execution of these two tasks in normal
and recovery modes in separate rows. (No job executes within
the interval[5, 10), so the schedule is compressed to fit the
column.) In the schedule shown in Fig. 7, jobsT1,1 andT2,1

have release timesr1,1 = r2,1 = 1 and at time1, tasksT1 and
T2 use their normal periods,p(T1, 1) = p(T2, 1) = p1 = p2 =
3. Thus, by (3),d1,1 = d2,1 = r1,1 + p(T1, r1,1) = 1+ 3 = 4.
If data feeds did not break, then jobs ofT1 and T2 would
continue to be released every three time units. (The rest of the
schedule is considered later.)

In contrast to the original definition of the adaptable
sporadic task model [5], underAUS, mode changes cannot
occur arbitrarily. (Additionally, the original model alsoallows
task execution costs to be changed.) TaskTk ’s transitions
between operational modes are governed by the following
two rules.

RN: If TE(Vk, fk,j)−F(Vk, fk,j) = 0 whereTk,j is some job,
and taskTk is in recovery mode immediately prior tofk,j ,
then Tk transitions to normal mode at timemax(fk,j , dk,j)
andrk,j+1 is set according to the second case of (4).

NR: At time t, taskTk is eligible to transition from normal
to recovery mode ifTk is in normal mode immediately prior
to t andTE(Vk, t)−F(Vk, t) > ∆F(Vk). The actual transition
depends on other tasks’ modes. LetρR andρN denote the set of
tasks in recovery and normal modes, respectively, immediately
prior to t. Let ρNR and ρRN denote the set of tasks that
transition between the respective modes at timet. These
transitions can take place iff

∑

Ti∈ρN

ui +
∑

Ti∈ρR

ui · pi

p
[r]
i

+
∑

Ti∈ρRN

(

ui −
ui · pi

p
[r]
i

)

+
∑

Ti∈ρNR

(

ui · pi

p
[r]
i

− ui

)

≤ m. (6)
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Fig. 7. Adaptive scheduling of the task system in Examples 8–10.

By Rule RN above, we would like to decreaseTk’s share
to a minimum “steady-state” valueuk to allow other tables to
catch up. In RuleNR, ∆F(Vk) is therecovery threshold. This
rule attempts to increase the processor share of each task in
Tk ∈ ρNR to ui·pi

p
[r]
i

if there is an excessive amount of pending

work for such tasks. However, these increases can only be
performed if the resulting total processor share does not exceed
m.

In Rule RN, we have shown how the release times are
calculated when a task transitions from recovery to normal
mode. The rules for calculating release times for the reverse
transition are presented below and are more involved. We have
tailored the reweighting rules described in [4], [5] to our needs
and reduced their description to a set of seven conditions. Let
tc be the time instant when taskTk changes its mode from
normal to recovery. IfTk does not execute at timetc, then the
release time of its next job is determined as follows.(i): If no
job of Tk is released prior to timet, thenrk,1 = tc.
(ii): If Tk,j is the last-released job ofTk anddk,j ≤ tc, then
rk,j+1 = tc.
(iii): If Tk,j is the last-released job ofTk, dk,j > tc, and
dk,j − tc ≤ p

[r]
k , thenrk,j+1 = dk,j .

(iv): If Tk,j is the last-released job ofTk, dk,j > tc, and
dk,j − tc > p

[r]
k , thenrk,j = tc anddk,j = rk,j + p

[r]
k .

Alternatively, if jobTk,j executes at timetc, then the release
time of its next job is determined as follows.
(v): If dk,j ≤ tc, thenrk,j+1 = tc.
(vi): If dk,j > tc andfk,j ≥ dk,j , thenrk,j+1 = dk,j .
(vii): If dk,j > tc and fk,j < dk,j , thenrk,j+1 = fk,j · (1 −
p
[r]
k

pk

) + rk,j ·
p
[r]
k

pk

+ p
[r]
k .

Example 9. Consider the system in Example 8. Suppose
that the recovery task period isp[r]1 = p

[r]
2 = 1.5, and the

recovery threshold is∆F(V1) = ∆F(V2) = 8. At time 10,
data filesDk,2, Dk,3, andDk,4 arrive for k = 1, 2. By Rule
2, F(Vk, 10) = ts(Dk,1) = 1. By Def. 6, TE(Vk, 10) =
ts(Dk,4) = 10.

By RuleNR, both tasksT1 andT2 are in normal mode prior
to time10 and are eligible to enter recovery mode at time10.
This is becauseTE(Vk, 10) − F(Vk, 10) = 9 > ∆F(Vk) = 8

for k = 1, 2. However, only taskT1 can actually change
its mode, (i.e.ρNR = {T1}) for otherwise, (6) will be
violated. This is because, before the switch,

∑

Ti∈ρN
ui = 2/3,

∑

Ti∈ρR
ui = 0,

∑

Ti∈ρRN
(ui −

ui·pi

p
[r]
i

) = 0 , which, by (6)

(recall thatm = 1), implies
∑

Ti∈ρNR

ui·pi

p
[r]
i

− ui) ≤ 1/3. By

(i), the release time ofT1,2 is defined asr1,2 = 10.
Because at least one data file is pending forV1 within

[10, 17), by (4), jobs ofT1 are released1.5 time units apart
as shown in Fig. 7. TableV1 recovers because after the
initial burst at time 10 only one new data file arrives every
three time units but two data files are processed. Jobs ofT2

are released3 time units apart within the interval[10, 17.5)
becauseT2’s mode did not change at time10. Note that
T2 receives minimum processing capacity so that its backlog
remains steady.

As the example above illustrates, only a limited number
of tasks may be able to switch to recovery mode. These tasks
can be selected using an arbitration policy. In our experiments,
described in Sec. VII, we selected eligible tasks in order of
increasingui·pi

p
[r]
i

− ui.

Tasks in recovery mode for which there is no pending work
change their mode using RuleRN.

Example 10. Consider the system from Example 8 again. At
time f1,6 = 17, there are no pending data files for taskT1.
By Rule RN, T1 changes its mode at timed1,6 = 17.5. Thus,
at time 17.5, ρR = {T1}, ρN = {T2}, andρRN = {T1}. By
Rule NR, taskT2 enters recovery mode at time17.5 because
(6) holds if ρNR = {T2}. By Rule RN, the next job ofT1,
T1,7, is released at timer1,7 = min{t | t ≥ max(d1,6, f1,6) ∧
¬FRESH(V1, t)} = min{t | t ≥ 17.5 ∧ ¬FRESH(V1, t)} =
arr(D1,7) = 19. Job T2,4 executes at timetc = 17.5 and
d2,4 > tc. Thus, by RuleNR and (vii), r2,5 = f2,4 · (1 −
p
[r]
2

p2
)+r2,4 ·

p
[r]
2

p2
+p

[r]
2 = 18 · (1−1.5/3)+16 · (1.5/3)+1.5 =

17+1.5 = 18.5. The intuition behind this setting ofr2,5 is as
follows. Because there is excessive unprocessed backlog for
V2, we would like to increase the frequency ofT2’s jobs and
start their execution right away. However, the above setting of
release time introduces some separation between the execution
of jobs T2,4 and T2,5 so thatT2 does not overallocate the
processor and lets other tasks to execute.

Finally, when jobT2,8 completes, there are no pending files
in D2 so T2 changes its mode from recovery to normal using
Rule RN. As tasksT1 and T2 have normal periods3 after
time 25, their jobs are released three time units apart and the
system becomes fully recovered.

Selecting recovery periods.The design ofAUS allows late
data to be processed at a faster rate while maintaining the
progress of other tables. In the above discussion, we assumed
that task recovery periods were known in advance. In contrast
to task normal periods, which are derived from data feed
parameters and task execution times, the choice of recovery
periods is a tradeoff between the recovery speed for an
individual table, response-time (staleness) bounds, and the
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number of tables that can recover simultaneously. Though
a comprehensive evaluation of these tradeoffs is beyond the
scope of this paper, we give two heuristics below.

First, for each taskTi, we can set

p
[r]
i =

ei
max(1,m− Usum+ ui)

, (7)

which is the minimum possible value such thatTi is able
to enter recovery mode and maintain (6). This selection of
recovery periods maximizes the recovery rates of individual
tables.

Alternatively, if we setp[r]i = max(ei,
pi·Usum

m
) for each

task Ti, then all tasks could enter recovery mode simultane-
ously. However, the recovery time for an individual table will
be larger.

In the next section, we quantitatively characterize the perfor-
mance ofAUS. First, we apply prior results to find response-
time bounds for tasks scheduled usingAUS. Second, we
establish table freshness (staleness) guarantees for “healthy”
base and derived tables, i.e., the tables for which incomingdata
files arrive regularly. Finally, we determine the time needed
to recover a table after an outage of one or more data feeds
occurs.

IV. CALCULATING RESPONSE-TIME BOUNDS

To find response-time bounds for update jobs, we first
introduce the definition of deadline tardiness.

Definition 11. Thetardinessof Ti,j is defined asmax(0, fi,j−
di,j), wherefi,j is Ti,j ’s completion time. Atask’s tardiness
is the maximum of the tardiness of any of its jobs. We letYi

denote a finite upper bound on taskTi’s tardiness.

It has been shown by Block et. al that the maximum
deadline tardiness of an adaptable sporadic task system is
upper-bounded [5].

Theorem 1. (Proved in [4].)Let τ be an adaptable sporadic
task system, where for anyt ≥ 0,

∑

Ti∈τ ei/p(Ti, t) ≤ m
holds. Let W (Tz) = ez/mint≥0(p(Tz, t)). Then, for any
task Ti, non-preemptiveGEDF on m processors ensures a
tardiness of at most

Yi = ei +

∑

Tz∈E(τ,m) ez −min(ez)

m−
∑

Tz∈X (τ,m−1)W (Tz)
,

whereE(τ,m) is the set ofmin(|τ |,m) tasks with the largest
execution times andX (τ,m− 1) is the set ofmin(|τ |,m− 1)
tasks with the largest values ofW (Tz).

The deadline tardiness bounds given by Theorem 1 can be
used to calculate response-time bounds.

Lemma 1. (5) holds forΘk = pk + Yk.

Proof: If the tardiness boundYk is known for taskTk,
then jobTk,j completes withinYk time units after its deadline.

We thus havefk,j ≤ dk,j + Yk

{by (3)}
= rk,j + p(Tk, rk,j) ≤

rk,j + pk + Yk.

V. STALENESSBOUNDS

In this section, we present guarantees on table staleness
for tables whose source data feeds are healthy under the
assumption that maximum job response times are bounded.
According to the definition of table healthiness below, a table
is healthy if the discrepancy between the current time and its
freshness is at most some constant.

Definition 12. A tableVk is said to beH-healthy at timet if
F(Vk, t) ≥ t−H .

Our freshness (staleness) guarantee result, formally given
in Theorems 2 and 3 below, states that if tableVk is fresh at
some timet0 and its sources are healthy, thenVk is A(Vk)-
healthy after timet0 if the maximum job response time is
bounded. (In other words, at any timet ≥ t0, the most recent
consistent data inVk has timestamp withinA(Vk) time units
from current timet). The constantA(Vk) is defined below.

Definition 13. Let

A(Vk) =







Θk + pk +max(φk, pk + Jk + κk) if Vk is base,

Θk + pk + max
Vi∈pred(Vk)

{A(Vi)} otherwise.

Theorem 2. (Proved in the appendix.)If table Vk is base,
FRESH(Vk, fk,g) = true for someg ≥ 0, data feedDk is
healthy at allt ∈ [fk,g, te], andTk ’s per-job response time is
at mostΘk, thenVk is A(Vk)-healthy andS(Vk, t) ≤ A(Vk)
for all t ∈ [fk,g, te].

Theorem 3. (Proved in the appendix.)If tableVk is derived,
FRESH(Vk, fk,g) = true for someg ≥ 0, each source table
Vi ∈ pred(Vk) is A(Vi)-healthy at allt ∈ [fk,g, te], andTk’s
per-job response time is at mostΘk, thenVk is A(Vk)-healthy
and S(Vk, t) ≤ A(Vk) for all t ∈ [fk,g, te].

We informally explain Theorem 2 using an example below.

Example 11. Consider a base tableV1 with source data feed
D1 that is updated by taskT1. Suppose thatD1 experiences
an outage during interval[t0, t1] and is healthy during in-
terval [t1,+∞) as shown in Fig. 8. It can be shown that
TE(V1, t) ≤ t and TE(V1, t) ≥ t − max(φ1, p1 + J1 + κ1)
for each t ∈ [t1,+∞) as illustrated in Fig. 8. If tableV1

recovers at timef1,g, then its freshness becomes equal to its
trailing edge. After timef1,g, all changes inV1’s trailing edge
(which happen when new data files arrive) are reflected in
V1’s freshness within at mostp1 + Θ1 time units because
T1’s jobs have bounded maximum response time. Therefore,
V1’s freshness becomes lower-bounded as shown in Fig. 8.
Theorem 3 can be illustrated similarly.

Setting recovery thresholds∆F(Vk) asA(Vk) we can ensure
that taskTk does not switch to recovery mode as long asVk

remains healthy.

VI. RECOVERY PERFORMANCEGUARANTEES

In this section, we calculate the time needed to recover
an individual base table after an outage. We assume that no

8



t-A(V )1

p +Q11
Max(f1, )J + +p1 1 1k

TE(V ,t)1 F(V ,t)1

t

t0 tt1 f1,g

D  is healthy1

V  is healthy1

Fig. 8. Illustration of Theorem 2 in Example 11.

data file arrives during the interval[t0 − λ, t0], whereλ is
sufficiently long. Additionally, we assume that all data files
that arrive prior tot0−λ are processed by timet0, and at time
t0, Tk releases a job and switches to recovery mode. By Rule
RN, taskTk switches to normal mode at or after timets such
that TE(Vk, ts) = F(Vk, ts), which for base tables implies
BL(Vk, ts) = ∅. We next calculatex such thatBL(Vk, t1) = ∅,
wheret1 ≤ t0 + x assuming thatDk is healthy after timet0.
(i.e., we want to find the latest timet0 + x when Tk has
processed its entire backlog).

Theorem 4. If, for base tableVk, taskTk switches to recovery
mode at timet0 after an outage of lengthλ, then it takes at
mostxk time units to clear the backlog, where

xk =
Θk · pk + (λ+ Jk + pk) · p

[r]
k

pk − p
[r]
k

.

The theorem can be proved by comparing the maximum
number of data files that can arrive within any interval of
lengthλ + xk to the minimum number of data files that can
be processed within the interval[t0, t0 + xk].

VII. E XPERIMENTAL EVALUATION

In this section, we report on experiments that were con-
ducted to evaluate the performance ofAUS.

Scheduling algorithms. We comparedAUS to the state-of-
the art PRP algorithm [8]. UnderPRP, tasks with shorter
update periods have higher priority, which seems like a natural
prioritization for multiple streams with different updaterates.
Any ties are broken in favor of jobs with the largest ratio of the
resulting freshness increase to the job’s worst-case execution
time. Additionally, in order to prevent starvation, tasks are
grouped into clusters based upon their period lengths. However
a task can bepromoted if there is an available processor.
Finally, underPRP, the update length is not upper-bounded
and several pending updates can execute as a single job.

Task-set generation procedure.Our experiments involved
running a synthetic task set on a proprietary warehouse
simulator designed at AT&T. We designed our synthetic task
set using a table configuration from an actual network data
warehouse as a guideline. In that configuration,10, 10, 14,
and 196 tables have update periods of300, 900, 3600, and
28800 seconds, respectively. According to system logs, most

of the workload is generated by update tasks for tables with
300 and900 seconds. In prior work, it was also noted that it
might be beneficial to schedule update tasks with significantly
different periods on different processor sets [8].

Taking these considerations into account, in our experi-
ments, we consideredtwo classes of tables —C1 and C2

— with periods 300 and 900 seconds, respectively. Both
classes contained seven tablesV1, . . . , V7 and V8, . . . , V14,
respectively. For each table, the source data feed suppliednew
data files regularly with zero timestamp and arrival jitter and
the data feeds for tablesV1, . . . , V4 experienced an outage
from time 5,000 to time 10,000 (in seconds).

To account for execution time variability, jobTi,j ’s execu-
tion time was taken uniformly at random from the interval
[(1 − b) · ei,j, (1 + b) · ei,j), where ei,j = Si + Ri · Li,j ,
Si = 0.01 · pi, andRi = 0.1 are execution time parameters
andb = 0.2 is the variability. (In [8], all tasks are normalized
to haveSi = 1 andPi = 100. Also, in [8], b = 0.5 is used.
We now have empirical evidence that suggests that a smaller
value is more appropriate.) Because data files’ timestamps
are strictly periodic, the maximum update length for table
Vk is pk, and hence, the worst-case job execution time is
ek = (1+ b) · (Si+Ri ·pk). Because, by (7), recovery periods
may depend on worst-case task execution times, we examined
two settings for recovery periods. In the first setting, we set
the recovery periodp[r]k for each task using (7) and assuming
ek = Sk + Rk · pk. This resulted inp[r]k ≈ pk/5. We refer
to this setting as the “average-case” provisioning rule because
the average job execution time isSk +Rk · pk. In the second
setting, we set the recovery periodp[r]k for each task using (7)
and assumingek = (1 + b) · (Sk + Rk · pk) (the maximum
possible job execution time). This resulted inp[r]k ≈ pk/3.
We refer to this setting as the “worst-case” provisioning rule.
We examined a processor count ofm = 2 and simulated a
schedule up to time 30,000 seconds.

Results. The goal of our experiments was to compare how
AUS andPRP recover table freshness after an outage. Inset (a)
of Fig. 9 shows the difference between the trailing edge and ta-
ble freshness as a function of time for tablesV1, . . . , V4, which
have a nominal update period of 300 seconds and experience
an outage. The upper graph gives results forPRP and the
lower graph forAUS. The recovery periods are set according
to the average-case provisioning rule. During the interval
[0, 5000] new data files come regularly and the difference
between the trailing edge and table freshness does not exceed
the table period. During the interval[5000, 10000] new data
files do not arrive. At time 10,000 backed-up data files become
available and the discrepancy between the trailing edge and
freshness grows sharply. As can be seen in Fig. 9(a),PRP
aggressively recovers all late tables simultaneously during the
interval [10000, 12500]. In contrast,AUS recovers one late
table at a time. In each graph, the descending parts of the
curves correspond to time intervals where the respective update
tasks execute in recovery mode. As seen, it takesAUS slightly
longer to recover all late tables compared toPRP. This may
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makeAUS seem not competitive withPRP unless we consider
the effects of recovery.

Inset (b) of Fig. 9 shows the difference between the trailing
edge and table freshness as a function of time for tables
V8, . . . , V11, which have a nominal update period of 900
seconds and do not experience an outage. UnderAUS, this
difference does not exceed the table period at any time. How-
ever, underPRP, for tablesV8 andV9 the discrepancy between
the trailing edge and freshness grows significantly after time
10,000. This is becausePRP dedicates all available resources
for recovering late tables with short periods. Moreover, the
freshness ofV8 is not completely restored until time 15,000,
which is about the time whenAUS fully completes recovery.
As mentioned in the introduction, such unpredictable disrup-
tive behavior is not good for a data warehouse. The situation
with worst-case recovery provisioning is similar except that
AUS completes the recovery significantly afterPRP (time
25,000 vs 15,000). This is becauseAUS conservatively delays
updates and the available processing capacity is not fully
used. As data warehouse[s] are soft-real-time applications,
they are more likely to be provisioned using average-case or
near-average-case execution costs. Given this, our “average-
case” results are probably more meaningful. Note that, withan
average-case provisioning, our analytically-derived bounds can
be assumed to hold in expectation only. However, as the above
experiments show, predictability is still significantly enhanced.

To summarize the above discussion,PRP recovers late
tables very quickly but causes unwanted interference on tables
that are not late. In contrast, due to its more conservative
scheduling policy,AUS recovers late tables while maintaining
data freshness of tables that are not late.

VIII. C ONCLUSION

In this paper, we have proposed an adaptive approach to
scheduling updates in data warehouses. The presented schedul-
ing algorithm, AUS, is capable of recovering tables after
feed outages while maintaining guarantees on data freshness
and minimizing interference on tables that are not affected
by outages. Our experimental evaluation shows thatAUS is
competitive with and more predictable than a state-of-the-art
heuristic-based proportional scheduler.

In the future, we plan to evaluate tradeoffs pertaining to the
selection of recovery periods and recovery arbitration policies
depending on the relative criticality of tables. We also plan
to implementAUS in DataDepot to evaluate its performance
under real workloads.
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APPENDIX

Before proving Theorems 2 and 3, we prove several auxil-
iary claims and lemmas.

Claim A1. If data feed Dk is healthy at timet, then
TE(Vk, t) ≥ t−max(φk, pk + Jk + κk).

Proof: Consider two cases.

Case 1:t ≤ φk. The required result follows trivially because
TE(Vk, t) ≥ 0 by Def. 6.

Case 2: t > φk. By Def. 2, there exists data fileDk,j such
that arr(Dk,j) ≥ t− pk − Jk, arr(Dk,j) ≤ t, and ts(Dk,j) ≥
arr(Dk,j)− κk. By Def. 6, TE(Vk, t) ≥ ts(Dk,j) ≥ t− pk −
Jk − κk. The required result follows.

Claim A2. TE(Vk, t) and F(Vk, t) are non-decreasing func-
tions of t.

Proof: The claim is trivial since record timestamps are
non-decreasing.

Claim A3. If FRESH(Vk, fk,j) = false for somej ≥ 0, then
FRESH(Vk,max(dk,j , fk,j)) = false.

Proof: If fk,j ≥ dk,j , then the required result follows
trivially. We thus assume thatfk,j < dk,j . By Rule 3, table
freshness is not updated until timefk,j+1 > sk,j+1 ≥ rk,j+1.
By (4), rk,j+1 ≥ dk,j . Thus,F(Vk, t) does not change within
the interval[fk,j , dk,j ]. The claim follows from Claim A2.

Claim A4. If table Vk is base,FRESH(Vk, fk,g) = true for
someg ≥ 0, data feedDk is healthy within the intervalt ∈
[fk,g, te], h > g, and arr(Dk,h) ≤ te, then ts(Dk,h) ≥ φk +
(h− 1) · pk − Jk − κk.

Proof: By the statement of the claim,
FRESH(Vk, fk,g) = true and h > g. This implies that
arr(Dk,h) ≥ fk,g, and hence,Dk,h is healthy at time
arr(Dk,h). By Def. 2, ts(Dk,h) ≥ arr(Dk,h) − κk ≥
φk + (h− 1) · pk − Jk − κk.

Claim A5. If FRESH(Vk, fk,g) = true for someg ≥ 0, and
FRESH(Vk, tc) = false for sometc ≥ fk,g, then rk,g+1 ≤
tc + pk.

Proof: Without loss of generality suppose thatF(Vk, t)
does not change over the interval[fk,g,max(dk,g, tc)).
Consider two cases.

Case 1:dk,g ≥ tc. BecauseFRESH(Vk, tc) = false, and table
Vk ’s freshness does not change,FRESH(Vk, dk,g) = false,

and hence,FRESH(Vk,max(dk,g , fk,g)) = false. By (4), we
have

rk,g+1 = dk,g

≤ rk,g + pk

{becauserk,g ≤ fk,g ≤ tc}

≤ tc + pk.

Case 2:dk,g < tc. BecauseFRESH(Vk, fk,g) = true, and ta-
ble Vk ’s freshness does not change,FRESH(Vk, dk,g) = true
if dk,g > fk,g, and hence,FRESH(Vk,max(dk,g , fk,g)) =
true. By (4), we haverk,g+1 ≤ tc ≤ tc + pk.

Claim A6. If FRESH(Vk,max(fk,j , dk,j)) = true for some
j, thenrk,j+1 = arr(Dk,j+1).

Proof: By the condition of the Claim and (4),

rk,j+1=min{t | t ≥ max(fk,j , dk,j)∧¬FRESH(Vk, t)}. (8)

Because no job ofTk completes within the interval
[fk,j , rk,j+1], F(Vk, t) = F(Vk, fk,j) for all t ∈ [fk,j , rk,j+1).
This, by (8), implies,F(Vk, t) = TE(Vk, t) for all t ∈
[fk,j , rk,j+1). By Def. 6, the next time aftermax(fk,j , dk,j)
when the trailing edge ofVk changes isarr(Dk,j+1). The
required result follows from (8).

Lemma A1. If FRESH(Vk, fk,g) = true for someg ≥ 0, and
data feedDk is healthy at timearr(Dk,g+1), then rk,g+1 ≤
φk + (g + 1) · pk.

Proof: We consider two cases based uponVk ’s freshness.

Case 1:FRESH(Vk,max(fk,g, dk,g)) = true. By the condi-
tion of Case 1 and Claim A6,

rk,g+1 = arr(Dk,g+1)

{by Def. 2}

≤ φk + g · pk

≤ φk + (g + 1) · pk.

Case 2:FRESH(Vk,max(fk,g, dk,g)) = false. If dk,g ≤ fk,g,
then the condition of Case 2 contradictsFRESH(Vk, fk,g) =
true in the condition of the lemma. We further assume that
dk,g > fk,g. By the condition of Case 2 and (4),

rk,g+1 = dk,g. (9)

BecauseFRESH(Vk, fk,g) = true, by the condition of
the lemma, andFRESH(Vk,max(fk,g, dk,g)) = false by the
condition of Case 2, fromdk,g > fk,g, we conclude that there
existst′ ∈ (fk,g, dk,g ] such thatFRESH(Vk, t

′) = false. This
time t′ = arr(Dk,g+2), which implies

fk,g < arr(Dk,g+1) ≤ dk,g. (10)

Additionally, becauserk,g ≤ sk,g < fk,g,

rk,g < arr(Dk,g+1) ≤ dk,g. (11)

Becausedk,g ≤ rk,g + pk, from (11), we have

dk,g < arr(Dk,g+1) + pk. (12)
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By (9), we have

rk,g+1 = dk,g

{by (12)}

≤ arr(Dk,g+1) + pk

{by Def. 2}

≤ φk + (g + 1− 1) · pk + pk

= φk + (g + 1) · pk.

Lemma A2. If FRESH(Vk, fk,g) = true for someg ≥ 0, then
rk,h ≤ φk + h · pk for eachh > g.

Proof: We prove this lemma by induction on job indexh.

Base case:h = g + 1. The required result follows from the
condition of base case and Lemma A1.

Induction step: h > g + 1. Suppose that the required result
holds for indexh, we now prove that it holds forh+ 1. We
consider two cases.

Case 1:FRESH(Vk,max(dk,h, fk,h)) = true. By the condi-
tion of Case 1 and Claim A6, we have

rk,h+1 = arr(Dk,h+1)

{by Def. 2}

≤ φk + (h+ 1− 1) · pk

Case 2:FRESH(Vk,max(dk,h, fk,h)) = false. By the condi-
tion of Case 2 and (4), we have

rk,h+1 = dk,h

≤ rk,h + pk

{by the induction hypothesis}

≤ (φk + h · pk) + pk

≤ φk + (h+ 1) · pk.

Lemma A3. If, for base tableVk, FRESH(Vk, fk,g) = true for
someg ≥ 0, and data feedDk is healthy at allt ∈ [fk,g, te],
thenF(Vk, fk,h) ≥ rk,h − pk − Jk − κk for eachh > g such
that arr(Dk,h) ∈ [fk,g, te].

Proof: By Rule 3,

F(Vk, fk,h) = ts(Dk,h)

{by Claim A4}

= φk + (h− 1) · pk − Jk − κk

{by Lemma A2}

≥ rk,h − pk − Jk − κk.

We next prove Theorem 2.

Theorem 2. If table Vk is base,FRESH(Vk, fk,g) = true for
someg ≥ 0, data feedDk is healthy at all t ∈ [fk,g, te],
andTk ’s jobs response time is at mostΘk, thenVk is A(Vk)-
healthy andS(Vk, t) ≤ A(Vk) for all t ∈ [fk,g, te].

Proof: Consider any time t ∈ [fk,g, te]. If
FRESH(Vk, t) = true, then, by (2),

F(Vk, t) ≥ TE(Vk, t)

{by Claim A1}

≥ t−max(φk, pk + Jk + κk)

{becausepk ≥ 0 andΘk ≥ 0, by Def. 13}

≥ t−A(Vk). (13)

In the rest of the proof we assume that
FRESH(Vk, t) = false. Let Tk,h be the last job ofTk

such thatfk,h ≤ t. (If no such job exists thenh = g = 0 and
fk,h = 0.)

Case 1: h = g. By the condition of the theorem,
FRESH(Vk, fk,g) = true, and hence,t > fk,g. Additionally,
there existstc ∈ (fk,g, t] such thatFRESH(Vk, tc− ε) = true
for ε → +0 and FRESH(Vk, tc) = false. We now consider
two subcases.

Subcase 1:t ≤ tc + pk +Θk. By the selection ofh and Rule
2,

F(Vk, t) = F(Vk, fk,h)

{by the condition of Case 1}

= F(Vk, fk,g)

{by the selection ofh and tc}

= F(Vk, tc − ε)

{by the selection oftc}

≥ TE(Vk, tc − ε)

{by Claim A1}

≥ tc − ε−max(φk, pk + Jk + κk)

{by the condition of Subcase 1}

≥ t− ε− pk −Θk −max(φk, pk + Jk + κk)

{by Def. 13}

= t− ε−A(Vk).

Because ε → +0, the last inequality implies
F(Vk, t) ≥ t−A(Vk).

Subcase 2:t > tc + pk +Θk. By (5),

fk,g+1 ≤ rk,g+1 + Θk

{by Claim A5}

≤ tc + pk +Θk

{by the condition of Subcase 2}

< t.

Thus,fk,g is not the latest job that completes by timet, which
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contradicts the selection ofh = g.
Case 2:h > g. In the remainder of the proof, we can assume
without loss of generality, that

FRESH(Vk, fk,h) = false (14)

for otherwise, we can consider a shorter interval[fk,h, te] and
apply Case 1. By (14) and Claim A3,

FRESH(Vk,max(dk,h, fk,h)) = false, (15)

and hence, by (4),Tk,h+1’s release time

rk,h+1 = dk,h. (16)

By the selection ofTk,h and Rule 2, we have,

F(Vk, t) = F(Vk, fk,h)

{by the condition of Case 2 and Lemma A3}

≥ rk,h − pk − Jk − κk

{becausedk,h ≤ rk,h + pk}

≥ dk,h − 2 · pk − Jk − κk

{by (16)}

= rk,h+1 − 2 · pk − Jk − κk

= rk,h+1 +Θk −Θk − 2 · pk − Jk − κk

{by (5)}

≥ fk,h+1 −Θk − 2 · pk − Jk − κk

{by the selection ofTk,h, fk,h+1 > t}

> t−Θk − 2 · pk − Jk − κk.

≥ t−Θk − pk −max(φk, pk + Jk + κk).

{by Def. 13}

= t−A(Vk).

We next prove several claims and lemmas that will be
needed for Theorem 3.

Claim A7. If rk,j+1 > dk,j for some j ≥ 0, then
rk,j+1 = min{t | t ≥ max(dk,j , fk,j) ∧ F(Vk, t) <
TE(Vk, t)}, F(Vk, t) ≥ TE(Vk, t) for all t ∈ [fk,j , rk,j+1),
and F(Vk, rk,j+1) < TE(Vk, rk,j+1).

Proof: By the condition of the claim and (4),
F(Vk, fk,j) ≥ TE(Vk, fk,j) and rk,j+1 = min{t | t ≥
max(dk,j , fk,j) ∧ F(Vk, t) < TE(Vk, t)}. By the selection of
rk,j+1 andfk,j , F(Vk, t) ≥ TE(Vk, t) for all t ∈ [fk,j , rk,j+1).

Claim A8. If j = 1 or j > 1 and rk,j > rk,j−1 + pk, then
F(Vk, rk,j) < TE(Vk, rk,j) and F(Vk, fk,j−1) = F(Vk, rk,j −
ε) ≥ TE(Vk, rk,j − ε)

Proof: Case 1: j = 1. Because TE(Vk, fk,0) =
F(Vk, fk,0) = 0, by (4) rk,1 = min{t | t ≥
max(dk,0, fk,0) ∧ ¬FRESH(Vk, t)} = min{t | t >
0 ∧ F(Vk, t) < TE(Vk, t)}), where the second equality
follows from TE(Vk, 0) = F(Vk, 0) = 0, which implies
F(Vk, rk,1) < TE(Vk, rk,1). By Rules 2 and 3,F(Vk, t) does

not change within[fk,j , fk,j+1), and hence, it does not change
within [fk,j , rk,j+1) becauserk,j+1 ≤ fk,j+1. Thus,TE(Vk, t)
andF(Vk, t) do not change during the interval[fk,0, rk,1), and
hence,TE(Vk, rk,1 − ε) = F(Vk, rk,1 − ε) = F(Vk, fk,0) = 0.

Case 2: j > 1 and rk,j > rk,j−1 + pk. By the condi-
tion of Case 2,rk,j > rk,j−1 + pk ≥ dk,j−1. Thus, by
Claim A7, F(Vk, t) ≥ TE(Vk, t) for all t ∈ [fk,j−1, rk,j) and
F(Vk, rk,j) < TE(Vk, rk,j). BecauseF(Vk, t) does not change
within [fk,j−1, rk,j), F(Vk, fk,j−1) ≥ TE(Vk, rk,j − ε).

Claim A9. LetVk be a derived table andq be a job index such
that, rk,q+1 ≤ rk,q + pk. Let a ≤ q be the smallest job index
such that for eachb ∈ [a, q], rk,b+1 ≤ rk,b+pk. If TE(Vk, t) ≥
t−B for each timet ∈ [rk,a, rk,q], thenF(Vk, fk,q) ≥ rk,q−B.

Proof: We prove by induction thatF(Vk, fk,b) ≥ rk,b−B
for eachb ∈ [a, q].
Base case:b = a. By the selection ofa, (17) below holds.

Either a = 1 or a > 1 andrk,a > rk,a−1 + pk. (17)

By Rule 3 and Def. 8,

F(Vk, fk,a)

= min(TE(Vk, sk,a),F(Vk, sk,a) + pk)

≥ min(TE(Vk, rk,a),F(Vk, rk,a) + pk)

{for ε → +0}

≥ min(TE(Vk, rk,a − ε),F(Vk, rk,a − ε) + pk)
{

by (17) and Claim A8
F(Vk, rk,a − ε) ≥ TE(Vk, rk,a − ε)

}

≥ min(TE(Vk, rk,a − ε),TE(Vk, rk,a − ε) + pk)

{by the condition of the claim}

≥ min(rk,a − ε−B, rk,a − ε −B + pk)

≥ rk,a − ε−B

for eachε → +0, which gives the required result.
Induction step: b > a.

F(Vk, fk,b+1)

= min(TE(Vk, sk,b+1),F(Vk, sk,b+1) + pk)

{by Rule 2}

= min(TE(Vk, sk,b+1),F(Vk, fk,b) + pk)

{by the induction hypothesis}

≥ min(TE(Vk, sk,b+1), rk,b −B + pk)

{by the condition of the claim}

≥ min(sk,b+1 −B, rk,b −B + pk)

≥ min(rk,b+1 −B, rk,b −B + pk)

{by the selection ofb}

≥ min(rk,b+1−B, rk,b+1−B)

= rk,b+1 −B
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Lemma A4. If for derived tableVk, FRESH(Vk, fk,g) = true
for someg ≥ 0, TE(Vk, t) ≥ t − B, whereB ≥ 0, at each
time t ∈ [fk,g, te], andTk’s per-job response time is at most
Θk, thenF(Vk, t) ≥ t−B − pk −Θk for all t ∈ [fk,g, te].

Proof: Consider any time t ∈ [fk,g, te]. If
FRESH(Vk, t) = true, then, by (2),

F(Vk, t) ≥ TE(Vk, t)

{by the condition of the lemma}

≥ t−B

{becausepk ≥ 0 andΘk ≥ 0, by Def. 13}

≥ t−B − pk −Θk.

In the rest of the proof we assume that
FRESH(Vk, t) = false. Let Tk,h be the last job ofTk

such thatfk,h ≤ t. (If no such job exists thenh = g = 0 and
fk,h = 0.)

Case 1: h = g. By the condition of the lemma,
FRESH(Vk, fk,g) = true, and hence,t > fk,g. Additionally,
there existstc ∈ (fk,g, t] such thatFRESH(Vk, tc− ε) = true
for ε → +0 and FRESH(Vk, tc) = false. We now consider
two subcases.

Subcase 1:t ≤ tc + pk +Θk. By the selection ofh and Rule
2,

F(Vk, t) = F(Vk, fk,h)

{by the condition of Case 1}

= F(Vk, fk,g)

{by the selection ofh and tc}

= F(Vk, tc − ε)

{by the selection oftc}

≥ TE(Vk, tc − ε)

{by the condition of the lemma}

≥ tc − ε−B

{by the condition of Subcase 1}

≥ t− ε− pk −Θk −B.

Because ε → +0, the last inequality implies
F(Vk, t) ≥ t−B − pk −Θk.

Subcase 2:t > tc + pk +Θk. By (5),

fk,g+1 ≤ rk,g+1 +Θk

{by Claim A5}

≤ tc + pk +Θk

{by the condition of Subcase 2}

< t.

Thus,fk,g is not the latest job that completes by timet, which
contradicts the selection ofh = g.
Case 2:h > g. In the remainder of the proof, we can assume

without loss of generality, that

FRESH(Vk, fk,h) = false (18)

for otherwise, we can consider a shorter interval[fk,h, te] and
apply Case 1. By (18) and Claim A3,

FRESH(Vk,max(dk,h, fk,h)) = false, (19)

and hence, by (4),Tk,h+1’s release time

rk,h+1 = dk,h ≤ rk,h + pk. (20)

By the selection ofTk,h and Rule 2, we have,

F(Vk, t) = F(Vk, fk,h)

{by (20) and Claim A9 ifVk is derived}

≥ rk,h −B

{by (20)}

≥ rk,h+1 − pk −B

= rk,h+1 +Θk −Θk − pk −B

{by (5)}

≥ fk,h+1 −Θk − pk − B

{by the selection ofTk,h}

> t−Θk − pk −B.

We now prove Theorem 3.
Theorem 3. If table Vk is derived,FRESH(Vk, fk,g) = true

for someg ≥ 0, each source tableVi ∈ pred(Vk) is A(Vi)-
healthy at each timet ∈ [fk,g, te], andTk ’s per-job response
time is at mostΘk, thenVk is A(Vk)-healthy andS(Vk, t) ≤
A(Vk) for all t ∈ [fk,g, te].

Proof: We first calculate the trailing edge forVk. Consider
time t ∈ [fk,g, te]. By Def. 6,

TE(Vk, t) = min
Vi∈pred(Vk)

(F(Vk, t))

{by Def. 12 and the condition of the theorem}

≥ min
Vi∈pred(Vk)

(t−A(Vi))

= t− max
Vi∈pred(Vk)

(A(Vi)).

By Lemma A4,F(Vk, t) ≥ t−maxVi∈pred(Vk)(A(Vi))−pk−
Θk = t−A(Vk), where the last equality follows from Def. 13.

We finally prove Theorem 4.

Theorem 4.If, for base tableVk, taskTk switches to recovery
mode at timet0 after an outage of lengthλ, then it takes at
mostxk time units to clear the backlog, where

xk =
Θk · pk + (λ+ Jk + pk) · p

[r]
k

pk − p
[r]
k

.

Proof: Suppose to the contrary thatBL(Vk, t) 6= ∅ for
all t ∈ [t0, t0 + xk], wherexk is defined as in the statement
of the theorem(X). Because data files are backed up during
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the outage and become available later, we first calculate the
number of data filesα(xk) that could arrive during the interval
[t0 − L, t0 + xk]. We have

α(xk) ≤ d
L+ Jk + xk

pk
e. (21)

BecauseBL(Vk, t) 6= ∅ for all t ∈ [t0, t0 + xk], a job of Tk

is released for each pending data file within this interval. Let
β(xk) be the number of jobs ofTk released within[t0, t0+xk]
and completed byt0+xk. BecauseTk ’s jobs complete within
Θk time units of their release and a job is released everyp

[r]
k

time units due to recovery mode,

β(xk) ≥

⌊

x−Θk

p
[r]
k

⌋

. (22)

BecauseBL(Vk, t0 + xk) is not empty,

α(xk) > β(xk),

which, by (21) and (22) implies
⌈

L+ Jk + xk

pk

⌉

>

⌊

xk −Θk

p
[r]
k

⌋

. (23)

From which we have
L+ Jk + xk

pk
+ 1 >

x−Θk

p
[r]
k

. (24)

Solving the above inequality forxk, we get xk <
Θk·pk+(L+Jk+pk)·p

[r]
k

pk−p
[r]
k

which is a contradiction to (X).
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