
Building a Real-Time Multi-GPU Platform: Robust Real-Time Interrupt
Handling Despite Closed-Source Drivers

Glenn A. Elliott and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract—Architectures in which multicore chips are
augmented with graphics processing units (GPUs) have
great potential in many domains in which computationally
intensive real-time workloads must be supported. How-
ever, unlike standard CPUs, GPUs are treated as I/O
devices and require the use of interrupts to facilitate
communication with CPUs. Given their disruptive nature,
interrupts must be dealt with carefully in real-time systems.
With GPU-driven interrupts, such disruptiveness is further
compounded by the closed-source nature of GPU drivers.
In this paper, such problems are considered and a solution
is presented in the form of an extension to LITMUSRT

called klitirqd. The design of klitirqd targets systems with
multiple CPUs and GPUs. In such settings, interrupt-
related issues arise that have not been previously addressed.

I. INTRODUCTION

Graphics processing units (GPUs) are capable of per-
forming parallel computations at rates orders of mag-
nitude greater than traditional CPUs. Driven both by
this and by increased GPU programmability and single-
precision floating-point support, the use of GPUs to solve
non-graphical (general purpose) computational problems
began gaining wide-spread popularity about ten years
ago [1], [2], [3]. However, at that time, non-graphical
algorithms still had to be mapped to languages developed
exclusively for graphics. Graphics hardware manufac-
tures recognized the market opportunities for better sup-
port of general purpose computations on GPUs (GPGPU)
and released more flexible language extensions and run-
time environments.1 Since the release of these second-
generation GPGPU technologies, both graphics hardware
and runtime environments have grown in generality,
enabling GPGPU across many domains. Today, GPUs
can be found integrated on-chip in mobile devices and
laptops [4], [5], [6], as discrete cards in higher-end
consumer computers and workstations, and also within
many of the world’s fastest supercomputers [7].

GPUs have applications in many real-time domains.
For example, GPUs can efficiently perform multidi-
mensional FFTs and convolutions, as used in signal
processing, as well as matrix operations such as fac-
torization on large data sets. Such operations are used
in medical imaging and video processing, where real-

1Notable platforms include the Compute Unified Device Architec-
ture (CUDA) from Nvidia, Stream from AMD/ATI, OpenCL from
Apple and the Khronos Group, and DirectCompute from Microsoft.

time constraints are common. A particularly compelling
use case is driver-assisted and autonomous automobiles,
where multiple streams of video and sensor data must
be processed and correlated in real time [8]. GPUs are
well suited for this purpose.

Prior Work. GPUs have received serious considera-
tion in the real-time community only recently. On the
theoretical side, Raravi et al. have developed methods
for estimating worst-case execution time on GPUs [9]
and scheduling algorithms for “two-type” heterogeneous
multiprocessor platforms, with CPU/GPU platforms par-
ticularly in mind [10], [11]. On the more applied side,
Kato et al. have developed quality-of-service techniques
for graphical displays on fixed-priority systems [12],
[13].

In our own work, we have investigated many of the
challenges faced when augmenting multicore platforms
with GPUs that have non-real-time, throughput-oriented,
closed-source device drivers [14]. These drivers exhibit
behaviors that are problematic. For example, the driver
only allows one task to execute work non-preemptively
on a GPU at a time.2 Also, when a GPU comes under
contention, blocked tasks wait on a spinlock. The result-
ing wasted CPU time can be significant: depending on
the application, GPU accesses can commonly take tens
of milliseconds up to several seconds [14]. More prob-
lematically, blocked tasks have no mechanism to change
the priority of a GPU-holding task. Thus, real-time tasks
may experience unbounded priority inversions.

The primary solution we presented in [14] to address
these issues is to treat a GPU as a shared resource,
protected by a real-time suspension-based semaphore.
This removes the GPU driver from resource arbitra-
tion decisions and enables bounds on blocking time to
be determined. We validated this approach in experi-
ments on LITMUSRT [15], UNC’s real-time extension
to Linux, and demonstrated improved real-time charac-
teristics such as reduced CPU utilization and reduced
deadline tardiness.

Contributions. One issue not addressed in our prior
work is the effect asynchronous GPU interrupts have
on real-time execution. Interrupts cause complications

2Newer GPUs allow some degree of concurrency, at the expense
of introducing non-determinism due to conflicts within co-scheduled
work. Further, execution remains non-preemptive in any case.

in real-time systems by introducing increased system
latencies, decreased schedulability, and additional com-
plexity in real-time operating systems. Ideally, interrupt
handling should respect the priorities of executing real-
time tasks. However, this is a non-trivial issue, especially
for systems with shared I/O resources. In this paper, we
examine the nature, servicing techniques, and effects that
interrupts have on real-time execution on a multiproces-
sor, with GPU-related interrupts particularly in mind.

Our major contributions are threefold. First, we de-
velop techniques that enable interrupts due to asyn-
chronous I/O to be handled without violating the single-
threaded sporadic task model. To the best of our knowl-
edge, prior interrupt-related work has not addressed
asynchronous I/O on multiprocessors. Second, we pro-
pose a technique to override the interrupt processing
of closed-source drivers and apply this technique to a
GPU driver. This required significant challenges to be
overcome to alter the interrupt processes of the closed-
source GPU driver. Third, we discuss an implementation
of the proposed techniques and present an associated
experimental evaluation. This implementation is given in
the form of an extension to LITMUSRT called klitirqd.

The rest of this paper is organized as follows. In
Sec. II, we review the problems posed by interrupts
in real-time systems and discuss interrupt processing in
Linux (the foundation for LITMUSRT). Then in Sec. III,
we review prior work on real-time interrupt handling
and describe our solution, klitirqd. In Sec. IV, we show
that klitirqd can be applied to handle GPU interrupts by
intercepting and rerouting the interrupt processing of the
closed-source GPU driver. In Secs. V–VII, we evaluate
klitirqd by examining its effects on priority inversions,
response times, and overhead-aware schedulability anal-
ysis, respectively. We conclude in Sec. VIII.

Due to space limitations, we henceforth limit attention
to GPU technologies from the manufacture NVIDIA.
NVIDIA’s CUDA [16] platform is widely accepted as
the leading solution for GPGPU.

II. INTERRUPT HANDLING

An interrupt is a hardware signal issued from a system
device to a system CPU. Upon receipt of an interrupt,
a CPU halts its currently-executing task and invokes an
interrupt handler, which is a segment of code responsible
for taking the appropriate actions to process the interrupt.
Each device driver registers a set of driver-specific
interrupt handlers for all interrupts its associated device
may raise. Only after an interrupt handler has completed
execution may an interrupted CPU resume the execution
of the previously scheduled task.

Interrupts require careful implementation and analysis
in real-time systems. Interrupts may come periodically,

sporadically, or at entirely unpredictable moments, de-
pending upon the application. In uniprocessor and parti-
tioned multiprocessor systems, one may be able model
an interrupt source and handler as the highest-priority
real-time task or as a blocking source [17], [18], though
the unpredictable nature of interrupts in some applica-
tions may require conservative analysis. Such approaches
can also be extended to multiprocessor systems where
real-time tasks may migrate between CPUs [19]. How-
ever, in such systems the subtle difference between an in-
terruption and preemption creates an additional concern:
an interrupted task cannot migrate to another CPU since
the interrupt handler temporarily uses the interrupted
task’s program stack. As a result, conservative analysis
must also be used when accounting for interrupts in these
systems too. A real-time system, both in analysis and
in practice, benefits greatly by minimizing interruption
durations. Split interrupt handling is a common way of
achieving this, even in non-real-time systems.

Under split interrupt handling, an interrupt handler
only performs the minimum amount of processing nec-
essary to ensure proper functioning of hardware; any
additional work that may need to be carried out in
response to an interrupt is deferred for later processing.
This deferred work may then be scheduled in a separate
thread of execution with an appropriate priority. The
duration of interruption is minimized and deferred work
competes fairly with other tasks for CPU time.

Interrupt Handling In Linux. We now review how split
interrupt handling is done in Linux. We focus on Linux
for three reasons. First, Linux is well supported by GPU
manufactures. Second, it is the basis for LITMUSRT.
Third, despite its general-purpose origins, variants of
Linux are widely used in supporting real-time workloads.

During the initialization of the Linux kernel, kernel
components and device drivers (even closed-source ones)
register interrupt handlers with the kernel’s interrupt
services layer. These registrations are essentially name-
value pairs of the form <interrupt identifier,
interrupt service routine>.

Upon receipt of an interrupt on a CPU, Linux imme-
diately invokes the registered interrupt service routine
(ISR). In terms of split interrupt handling, the ISR is the
top-half of the interrupt handler. If an interrupt requires
additional processing beyond what can be implemented
in a minimal top-half, the top-half may issue deferred
work to the Linux kernel in the form of softirqs. Softirqs
are small units of work executed by the Linux kernel,
and in split interrupt handling parlance, each invocation
of a softirq is an ISR bottom-half. The sequence of steps
taken by Linux to service an interrupt is illustrated in
Fig. 1. There are several types of softirqs, but in this
paper, we consider only tasklets, which are the type of

Scheduled

Real-Time Task

...
Interrupt ID Top-Half ISR Pointer

.........

............

ISR Table

Interrupt

Top-Half ISR (Driver)

Bottom-Half (softirq)...

Scheduled

Real-Time Task

1

2

3

4

Figure 1. The interrupt handling in Linux. (1) An interrupt occurs
and the currently scheduled task is suspended. (2) The ISR for the
interrupt type is executed. (3) The ISR may issue deferred work as a
tasklet. (4) Before resuming the interrupted task, up to ten softirqs are
executed, possibly including tasklets issued in (3).

softirq used by most I/O devices, including GPUs; we
use the terms “softirq” and “tasklet” synonymously.

The Linux kernel executes softirqs using a heuristic.
Immediately after executing a top-half, but before resum-
ing execution of the interrupted task, the kernel executes
up to ten bottom-halfs. Any pending softirqs remaining
are dispatched to one of several (per-CPU) kernel threads
dedicated to softirq processing; these are the “ksoftirq”
daemons. The ksoftirq daemons are scheduled with high
priority, but are schedulable and preemptible entities
nonetheless. The described heuristic can introduce long
interrupt latencies, causing one to wonder if this can even
be considered a split interrupt system. In all likelihood,
in a system experiencing few interrupts (though it may
still be heavily utilized), for every top-half that yields a
bottom-half, that bottom-half will subsequently be exe-
cuted before interrupt processing completes, delaying the
interrupted task. If a bottom-half is deferred to a ksoftirq
daemon, it is generally not possible to analytically bound
the length of the deferral since these daemons are not
scheduled with real-time priorities.

The well-known PREEMPT_RT Linux kernel patch
addresses this issue by processing all bottom-halfs (ex-
cept the most critical, such as timers) with a pool of
schedulable threads, one thread dedicated to each I/O
device. Ideally, interrupt processing threads should be
scheduled with the priority of the blocked client task
using the I/O device. However, interrupt threads in

PREEMPT_RT have only a single fixed priority, even if
the associated device is shared by multiple client tasks
of differing priorities. This can lead to harmful priority
inversions, as demonstrated in Sec. VI.

Priority inversions may also arise when asynchronous
I/O is used. In asynchronous I/O, a task may issue a
batch of I/O requests while continuing on to other pro-
cessing. The task rendezvouses with I/O results at a later
point in time. Asynchronous I/O helps improve overall
performance and is commonly used in GPU applications
to mask bus latencies. Since synchronization with the
I/O device is deferred in asynchronous I/O, it is possible
for interrupts to be received, and corresponding bottom-
halfs executed, while a client task is scheduled. In such
a case, the client task essentially becomes temporarily
multithreaded, which breaks the assumption of single-
threaded execution common in real-time task models
such as the sporadic model. A co-scheduled interrupt
can be interpreted as causing a priority inversion. These
issues caused by asynchronous I/O in multiprocessors are
not merely limited to Linux variants. To the best of our
knowledge, this problem has not been directly addressed
in the real-time literature.

Neither standard Linux nor its PREEMPT_RT variant
implement split interrupt handling in a way amenable to
real-time schedulability analysis. In the next section, we
propose such an implementation.

III. INTERRUPT HANDLING IN LITMUSRT

LITMUSRT, a real-time extension to Linux, has been
under continual development at UNC for over five years.
To date, LITMUSRT has largely been limited to work-
loads that are not very I/O intensive since LITMUSRT

has provided no mechanisms for real-time I/O. The
implementation of real-time I/O is a considerable effort,
and proper implementation of split interrupt handling is
one critical aspect of this work, one we begin here.

As discussed in Sec. II, current Linux-based operating
systems use fixed-priority softirq daemons. In this paper,
we introduce a new class of LITMUSRT-aware daemons
called klitirqd.3 This name is an abbreviation for “Litmus
softirq daemon” and is prefixed with a ‘k’ to indicate that
the daemon executes in kernel space. klitirqd daemons
may function under any LITMUSRT-supported job-level
static-priority (JLSP) scheduling algorithm, including
partitioned-, clustered-, and global-earliest-deadline-first
and -fixed-priority schedulers.

klitirqd is designed to be extensible. Unlike the
ksoftirq daemons, the system designer may create an
arbitrary number of klitirqd threads to process tasklets
from a single device, or a single klitirqd thread may
be shared among many devices. The detailed imple-
mentation of klitirqd is as follows. Instead of using the

3Source code available at http://www.cs.unc.edu/~anderson/litmus-rt

http://www.cs.unc.edu/~anderson/litmus-rt

standard Linux tasklet_schedule() function call
to issue a tasklet to the kernel, an alternative function
litmus_tasklet_schedule() is provided to is-
sue a tasklet directly to a klitirqd thread. The caller (such
as a device driver) must supply both an owner for the
given tasklet as well as a klitirqd identifier that specifies
which klitirqd daemon is to perform the processing. The
owner of the tasklet may be a pointer to a real-time user
process, such as one blocked for a particular I/O event,
or even a bandwidth server used to limit the processing
rate of a particular type of tasklet. An idle klitirqd thread
suspends, waiting for a tasklet to process. Once a tasklet
arrives, the klitirqd thread adopts the scheduling priority,
including any inherited priority, of the tasklet owner.

The LITMUSRT scheduler ensures that a klitirqd
thread and its tasklet owner are never co-scheduled. This
allows asynchronous I/O to be supported without violat-
ing the single-threaded task models commonly assumed.

We recognize that similar architectures for split inter-
rupt handling have been proposed and implemented be-
fore. For instance, LynxOS [20] has supported priority-
inheritance-based split interrupt handling for many years.
In LynxOS, the interrupt processing daemon inherits the
greatest priority of any task actively using the device
that raised the interrupt. Steinberg et al. have also devel-
oped and implemented similar techniques based upon
bandwidth inheritance to support interrupt processing
in a modified L4 microkernel [21] and the NOVA mi-
crohypervisor [22]. While these approaches are similar
to our own, there are several key differences. First,
we support JLSP schedulers, while prior work has fo-
cused only on fixed-priority systems. Second, we support
non-partitioned multiprocessor systems while maintain-
ing single-threaded execution. LynxOS supports non-
partitioned scheduling, but breaks the single-threaded
model. Steinberg et al.’s methods are limited to unipro-
cessor and partitioned systems and require any tasks that
share a resource to be within the same partition. Finally,
the implementation of our solution in LITMUSRT allows
the use of unmodified Linux device drivers. At this time,
native GPU drivers for LynxOS and L4 are unavailable.

More closely related to our approach is an implemen-
tation of real-time-scheduled interrupt handlers in Linux
by Manica et al. [23]. Their approach grouped softirqs
within bandwidth servers, similar to the techniques used
by Steinberg et al., with the aim of constraining resource
consumption by I/O-using tasks. However, each of their
interrupt threads is pinned to an individual CPU, which
limits applicability to partitioned scheduling.

IV. GPU INTEGRATION

In Sec. III, we described how interrupt handlers are
to call the function litmus_tasklet_schedule()
to dispatch klitirqd bottom-half tasklets. The caller must

provide two parameters: (1) the tasklet owner (the real-
time task that requires the bottom-half to execute to make
progress) and (2) a klitirqd identifier for the daemon that
is to execute the tasklet. While any LITMUSRT-aware
device driver could be easily modified to provide these
parameters, how shall we accomplish this with a closed-
source GPU driver that cannot even be modified to
call litmus_tasklet_schedule()? We addressed
this issue by focusing separately on tasklet interception,
device identification, owner identification, and dispatch.

Tasklet Interception. Though the GPU driver is closed-
source, it must still interface with an open source
operating system kernel. The driver makes use of a
variety of kernel services, including interrupt handler
registration and tasklet scheduling. Though we cannot
modify the GPU driver, we may still intercept the calls
the driver makes to these OS services. In particular,
we modify the standard internal Linux API function
tasklet_schedule().

When tasklet_schedule() is called by a kernel
component, a callback function pointer must be provided
that specifies the entry point for the execution of the
deferred work. If we can identify callbacks to the closed-
source driver, then we can identify and intercept all
tasklets the driver schedules. Luckily, this is possible
because the driver is loaded into Linux as a module
(or kernel plugin). We leverage this fact to use vari-
ous module-related features of Linux to inspect every
callback function pointer of every tasklet scheduled in
the system online.4 Thus, we make modifications to
tasklet_schedule() to catch tasklets from the
GPU driver and override their scheduling. It should be
possible to use this technique to schedule tasklets of any
closed-source driver in Linux, not just those from GPUs.

Device Identification. If a system has multiple GPUs,
merely intercepting deferred GPU work is not enough;
we must also determine which GPU in the system
raised the initial interrupt. While we could have possibly
performed this identification process at the lowest levels
of interrupt handling, we opted for a simpler solution
closer to the tasklet scheduling process. The GPU driver
attaches to every tasklet a reference to a block of memory
that provides input parameters to the tasklet callback.
This block of data includes a device identifier (ranging
from 0 to g − 1, where g is the number of system
GPUs), which indicates which GPU raised the interrupt.
However, accessing this data within the memory block
is challenging since it is packaged in a driver-specific
format. Fortunately, the driver’s links into the open
source OS code allow us to locate the device identifier.

Because the internal APIs of Linux change frequently
4This may sound like a costly operation, but it is actually quite a

low-overhead process, as is shown in Sec. VI.

and many Linux users use custom kernel configurations,
the NVIDIA driver is not distributed as a monolithic
precompiled binary. Instead, the driver is distributed in
a partially compiled form, allowing it to support a chang-
ing kernel in varied configurations. The portions of the
driver that NVIDIA wishes to keep closed are distributed
in obfuscated precompiled object files. However, the dis-
tribution also includes plain source code for an OS/driver
interface layer that bridges the internal Linux kernel
interfaces with the precompiled object files. Through the
visual inspection of this bridge code, we gained insight
into the format of the tasklet memory block, and through
a process of trial and error, determined the fixed address
offset of the device identifier.

To this point, we have explained how to intercept and
identify the source of tasklets the driver hands off to the
kernel for later processing. What remains is to schedule
the deferred work with the proper priority by identifying
the user task that is using the associated GPU and then
to dispatch the work to the appropriate klitirqd daemon.

Owner Identification. As mentioned in Sec. I, a closed-
source GPU driver can exhibit behaviors that are detri-
mental to the predictability requirements of a real-time
system. In [14], we presented methods for removing
the GPU driver from resource arbitration decisions,
thereby removing much of the associated uncertainty.
The primary method we presented introduced a real-time
semaphore to arbitrate access to GPUs. In particular,
to manage a pool of k GPUs, a real-time k-exclusion
protocol is used that can assign any available GPU to
a GPU-requesting task. We can use such a protocol not
only to arbitrate GPU access, but to also act as registry of
tasks actively using GPUs. Whenever a GPU is allocated
to a task by the protocol, an internal lookup table, called
the GPU ownership registry, indexed by device identifier,
is updated to record device ownership.

The arbitration protocol considered herein is a k-
exclusion extension of the flexible multiprocessor locking
protocol (FMLP) [24], which we call the k-FMLP.5 Us-
ing the k-FMLP, GPU-using jobs merely issue requests
for an available GPU, not a specific GPU. The k-FMLP
is particularly attractive because worst-case wait times
scale inversely with the number of GPUs. The k-FMLP
was implemented in LITMUSRT to support this work. In
doing so, special consideration had to be paid to integrate
with klitirqd. For example, the k-FMLP uses priority
inheritance; a priority inherited by a GPU holder must be
propagated transitively to any associated klitirqd tasklet.

With the device identifier extracted from the tasklet
5A full description of the k-FMLP is available in the online

version of this paper at http://www.cs.unc.edu/~anderson/papers.html.
A detailed discussion of some issues that arise when constructing a
real-time k-exclusion protocol can be found in [25].

tasklet_schedule()

Driver T.H. ISR tasklet

0101101

1001110

GPU ID

GPU Registry

Module Info:

Is callback to GPU driver?

callback

klitirqd

Registry

litmus_tasklet_schedule()

1 2

3

4

5

Figure 2. GPU tasklet redirection. (1) A tasklet from the GPU
driver is passed to tasklet_schedule(). (2) The tasklet is
intercepted if the callback points to the driver. (3) The GPU identifier
is extracted from the memory block attached to the tasklet using a
known address offset and the GPU owner is found. (4) The GPU is
mapped to a klitirqd instance, and (5) the GPU tasklet is passed on to
litmus_tasklet_schedule().

memory block and device registry table, determining the
current GPU owner is straightforward. We now have
gathered all required information to dispatch a GPU
klitirqd tasklet; now we must determine which klitirqd
instance will perform the processing.

klitirqd Dispatch. The architecture of klitirqd is general
enough to support any number of daemon instances, all
scheduled by a JLSP real-time scheduler. In a system
with g GPUs, there should be g klitirqd instances to
ensure that all GPUs can be used simultaneously. Each
klitirqd instance is assigned a specific GPU. This assign-
ment is recorded in the klitirqd assignment registry.

The overall klitirqd architecture is summarized
in Fig. 2. Using the device identifier extracted
from the intercepted tasklet of the GPU driver,
our modified tasklet_schedule() references the
GPU ownership and klitirqd assignment registries
and redirects all GPU tasklets to the proper kli-
tirqd instance, with the proper priority, by calling
litmus_tasklet_schedule().

V. EVALUATION OF PRIORITY INVERSIONS

In this and the next two sections, we present an evalu-
ation of klitirqd. Our focus in this section is determining
the impact of priority inversions caused by interrupts.

Evaluation Platform. The platform used in all of our
experiments is a dual-socket six-cores-per-socket Intel
Xeon X5060 CPU platform, with a total of twelve cores
running at 2.67GHz. This platform also includes eight
Nvidia GTX-470 GPUs.

In all of our experiments, we use a clustered scheduler,
with GPUs statically assigned to clusters, and a separate
instance of the k-FMLP used within each cluster to
manage the assigned GPUs. Clustered schedulers have
been shown to be effective if bounded deadline tardiness
is the real-time requirement of interest [26]. In this

http://www.cs.unc.edu/~anderson/papers.html

section, we consider only the clustered earliest-deadline-
first (C-EDF) algorithm, though later we also consider
the clustered rate-monotonic (C-RM) algorithm. In either
case, clustering is split along the NUMA architecture
of the system, yielding two clusters of six CPU cores
and four GPUs apiece. This configuration minimizes bus
contention, given the memory and I/O bus architectures
of the system. This is especially important for the
I/O bus since contention can significantly affect data
transmission rates between CPUs and GPUs. We use
CUDA 4.0 for our GPU runtime environment.

Experimental Setup. We assessed the impacts of pri-
ority inversions by generating sporadic task sets and
then executing them in LITMUSRT. Each generated
task set included both CPU-only and GPU-using tasks.
Individual task parameters were randomly generated as
follows. The period of every task was randomly selected
from the range [15ms, 60ms]; such a range is common
for multimedia processing and sensor feeds such as video
cameras. The utilization of each task was generated
from an exponential distribution with mean 0.5 (tasks
with utilizations greater than 1.0 were regenerated). This
yields relatively large average per-task execution times.
We expect GPU-using tasks to have such execution times
since current GPUs typically cannot efficiently process
short GPU requests due to I/O bus latencies. Next,
between 20% and 30% of tasks within each task set were
selected as GPU-using tasks. Each GPU-using task had a
GPU critical section length equal to 80% of its execution
time. Of the critical section length, 20% was allocated to
transmitting data to and from a GPU. This distribution
of critical section length and data transmission time is
common to many GPU applications, including FFTs and
convolutions [14], which are used frequently in image
processing. Finally, the task set was partitioned across
the two clusters using a two-pass worst-fit partitioning
algorithm that first assigns GPU-using tasks to clus-
ters, followed by CPU-only tasks. This tends to evenly
distribute GPU-using tasks between clusters. In order
to gauge the performance of our implementation with
respect to system utilization, task sets were generated
with system utilizations ranging from 7.5 to 11.5, in
increments of 0.1, for a total of 41 task sets.

Each generated task set was executed in LITMUSRT

on the evaluation platform for two minutes. Tasks exe-
cuted simple numerical code (on both CPUs and GPUs)
for the configured execution durations. GPU requests
were processed using asynchronous I/O. Every task set
was executed twice, once in LITMUSRT configured to
use klitirqd and once in LITMUSRT using standard
Linux interrupt handling. Scheduling logs were recorded,
from which we compared the performance of klitirqd
and standard Linux interrupt handling in LITMUSRT

 0

 50

 100

 150

 200

 250

 300

 350

 400

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5

#
 o

f
S

im
u

lt
a

n
e

o
u

s
 S

c
h

e
d

u
lin

g
s

Task Set Utilization

Count of Simultaneous Scheduling of Tasklet and Owner

klitirqd
Standard Handling

Figure 3. Histogram of concurrent execution events of a tasklet
and its owner. No concurrent execution events were observed under
klitirqd. There is no apparent trend with regard to task set utilization:
the number of events observed differs greatly among the task sets.

according to several metrics, as discussed next.

Metrics. Ideally, the system should conform to the spo-
radic task model and not suffer any priority inversions.
We assessed deviance from this ideal by: (i) counting the
number of concurrent execution events, where tasklets
and owners are simultaneously scheduled in violation of
the sporadic task model; (ii) determining the distribution
of priority inversion durations; (iii) counting the number
of priority inversions; and (iv) computing the cumulative
priority inversion length.

Results. Fig. 3 shows our measurements for the number
of concurrent execution events. No such events occurred
when using klitirqd. However, as expected, they do occur
under standard Linux. Most task sets experienced 100–
200 concurrent execution events. While these numbers
appear to be low, we found that it was most often
the case that a GPU-using task had already blocked
by the time its tasklet is scheduled for our simple test
programs; we expect that this would not be the case with
a more complex workload. The absence of concurrent
execution events under klitirqd shows that it is effective
at enforcing conformance to the sporadic task model.

While priority inversions cannot be totally eliminated,
they should nevertheless be as short as possible. Fig. 4
shows a representative example of the cumulative distri-
bution function of priority inversion length under both
interrupt handling methods.6 As seen, a typical priority
inversion is much shorter under klitirqd than under Linux
interrupt handling. For example, 90% of inversions under
klitirqd are shorter than 9µs, whereas the 90th percentile
exceeds 30µs under Linux interrupt handling.

6Graphs for all tested task sets are available in the online version
of this paper.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P
(I

n
v
e

rs
io

n
 D

u
ra

ti
o

n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.4

klitriqd Standard Handling

Figure 4. Cumulative distribution of priority inversion durations.

While priority inversions should be as short as possi-
ble, the number of inversions is also important because
a system that suffers many short inversions may be
disrupted by their cumulative effect. Fig. 5 depicts the
number of inversions caused by GPU tasklet processing
under both interrupt handling methods. For all but one of
the task sets, the use of klitirqd resulted in a significant
reduction of priority inversions. The sole exception was
the task set with a system utilization of 8.0. However,
a closer examination reveals that the cumulative priority
inversion length is in fact shorter under klitirqd, even for
this exceptional case. Fig. 6 shows cumulative priority
inversion length as a function of maximum priority
inversion length for the task set with utilization 8.0.
Observe in Fig. 6 that priority inversions of length up
to 50µs have a cumulative duration of only 180,000µs
under klitirqd, but more than 475,000µs under Linux
interrupt handling. Even though the number of prior-
ity inversions is slightly greater under klitirqd in this
particular case, the overall effect is much less because
most inversions are indeed short. In all other cases where
there were fewer priority inversions under klitirqd than
under standard Linux interrupt handling, the cumulative
priority inversion length was similarly (much) less.

In summary, our data shows that klitirqd outperforms
standard Linux interrupt handling in each of the four
evaluation metrics. Further, they demonstrate that even
closed-source drivers can still be prevented from causing
undue interference.

VI. SYSTEM-WIDE EVALUATION OF INTERRUPT
HANDLING METHODS

In this section, we examine system-wide effects of
interrupt handling in terms of job response time under
LITMUSRT, both with and without klitirqd, the PRE-
EMPT_RT real-time Linux patch, and standard Linux.
Recall from Sec. II that Linux often executes interrupt

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5

#
 o

f
P

ri
o

ri
ty

 I
n

v
e

rs
io

n
s

Task Set Utilization

Number of Priority Inversions

klitirqd
Standard Handling

Figure 5. Histogram of detected inversions. There is no observable
trend in task set utilization with this sample size, though variance
among task sets is significant.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

C
u

m
u

la
ti
v
e

 I
n

v
e

rs
io

n
 L

e
n

g
th

 (
m

ic
ro

s
e

c
o

n
d

s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.0

klitriqd Standard Handling

Figure 6. Cumulative priority inversion length as a function of
maximum priority inversion length for the task set with utilization
8.0. The total duration of priority inversion is more than twice as
large under standard Linux interrupt handling than klitirqd, despite
an increased number of priority inversions under klitirqd in this case.

bottom-halfs immediately after executing top-halfs, es-
sentially nullifying the real-time benefits of split inter-
rupt handling. While interrupt bottom-halfs are threaded
under PREEMPT_RT, the interrupt threads that execute
bottom-halfs must be assigned a single fixed priority,
which may lead to undue priority inversions.

Experimental Setup. To demonstrate these real-time
weaknesses in Linux and PREEMPT_RT, and show
how klitirqd can successfully address them, we exe-
cuted a workload of CPU-only and GPU-using tasks
on the platform described in Sec. V. In order to fairly
compare LITMUSRT (both with and without klitirqd)
against Linux and PREEMPT_RT, the workload was
scheduled using the C-RM algorithm since Linux and
PREEMPT_RT only support fixed real-time priorities.

C-RM C-EDF
Avg. Response Time PREEMPT_RT Linux LITMUSRT

as Percent of Period Low Prio. GPU-Matching (c) w/o klitirqd klitirqd klitirqd
Interrupts (a) Prio. Interrupts (b) (Linux) (d) (e) (f)

CPU-Only Tasks 429.03% 440.62% 100.98% 32.85% 32.83% 25.14%
GPU-Using Tasks 161.80% 71.63% 90.04% 26.70% 28.29% 18.13%

Table I
AVERAGE RESPONSE TIME OF CPU-ONLY AND GPU-USING TASKS EXPRESSED AS A PERCENTAGE OF PERIOD.

Counting semaphores were used to protect each pool of
GPU resources in Linux and PREEMPT_RT in a manner
similar to how the k-FMLP is used under LITMUSRT.
The workload consisted of 50 tasks: two GPU-using
tasks that consume 2ms of CPU time and 1ms of GPU
time with a period of 19.9ms; 40 CPU-only tasks that
consume 5ms of CPU time with a period of 20ms; and
finally, eight GPU-using tasks that consume 2ms of CPU
time and 1ms of GPU time with a period of 20.1ms.
The set of tasks was evenly partitioned between the two
scheduling clusters. Unique priorities were assigned to
each task within each cluster according to task period.
Thus, the 20 CPU-only tasks in each cluster had prior-
ities strictly between one GPU-using task with greater
priority and four with lesser priority.

The workload was executed on six different platform
configurations: (1) Standard Linux, to provide a baseline
of performance; (2) PREEMPT_RT, with GPU-interrupt
priorities set below that of any other real-time task; (3)
PREEMPT_RT with GPU-interrupt priorities equal to
that of the greatest GPU-using task;7 (4) LITMUSRT

without klitirqd; (5) LITMUSRT with klitirqd; and fi-
nally, (6) LITMUSRT with klitirqd, scheduled under C-
EDF (for the sake of comparison). This workload was
executed 25 times for each system configuration for a
duration of 60 seconds. Response times were recorded
for all jobs consistently on each platform.

Results. Table I gives average response times, as percent
of period, for CPU-only and GPU-using tasks under the
various platform scenarios.

Observation 1. There are no good options for selecting
a fixed priority for interrupt threads shared by tasks
of differing priorities. The increase of GPU interrupt
priority in column (b) causes all bottom-half thread
execution to preempt CPU-only jobs, directly increasing
their response times with respect to column (a), where
interrupts have the lowest priority. In most cases under
column (b), GPU interrupt execution is on behalf of
lower-priority GPU-using jobs, thus causing CPU-only
jobs to experience priority inversions. Priority inversions

7This is a rational choice when an interrupt-generating device is
shared by several tasks with differing priorities.

also occur if interrupt priority is too low, resulting in the
starvation of GPU-using jobs. This is evident in column
(a), where the average GPU-using job response time is
over twice that in column (b).

Observation 2. Standard Linux outperforms PRE-
EMPT_RT (in this pathological case) due to lower inter-
rupt handling overhead. Under standard Linux, bottom-
halfs are usually executed immediately after top-halfs;
thus, bottom-halfs essentially execute with maximum
priority (like column (b)), yet this is accomplished
without the overhead of threaded interrupt handling.
Increased CPU availability improves the response times
of CPU-only jobs in column (c) in comparison to both
columns (a) and (b), while GPU-using jobs still typically
complete before their deadlines.

Observation 3. klitirqd assigns priorities to interrupt
threads at runtime, resulting in schedulable and ana-
lyzable real-time systems. The average response time
values in columns (d) and (e) indicate that jobs are
typically completing well before their deadlines. While
GPU-using tasks fare slightly worse in column (e), the
heuristic-driven interrupt handling methods of standard
Linux are not amenable to schedulability analysis.

Observation 4. Overheads introduced by klitirqd into
LITMUSRT are largely negligible. The nearly-equal re-
sponse time values in columns (d) and (e) indicate that
klitirqd overhead costs are not too great or are offset by
a reduction in priority inversions.

Observation 5. LITMUSRT with klitirqd out-performs
PREEMPT_RT. A comparison of columns (b) and (e)
suggests that, in this experiment, deadline misses were
not significant under klitirqd but were common under
PREEMPT_RT. Unfortunately, it is difficult to iden-
tify a single difference between PREEMPT_RT and
LITMUSRT causing this disparity in performance, as
there are many core differences (in scheduler implemen-
tation, etc.) between the two. Additional investigation
is merited. Nevertheless, these differences do not have
bearing on the previously made observations.

Observation 6. C-EDF scheduling is superior to C-
RM in limiting deadline tardiness. This is not surprising,
in light of prior work [27], but we mention it nonetheless.
This is another indication that PREEMPT_RT may not

be a desirable solution in all applications, especially in
soft real-time systems, since C-EDF is not supported.8

VII. OVERHEAD-AWARE SCHEDULABILITY

As seen in Secs. V and VI, klitirqd reduces the fre-
quency and duration of priority inversions at the expense
of some additional scheduling overhead, while non-
threaded interrupt handling incurs low system overheads
due to the lack of scheduling, at the expense of poten-
tially longer (and more numerous) priority inversions that
may impact every task. How does this affect general task
set schedulability? The answer to this question depends
upon the actual system overheads and priority inversion
durations associated with each approach. To address
this question in the context of C-EDF, we conducted
schedulability experiments in which actual measured
overheads were considered using a methodology similar
to that proposed in [28].

Using the same hardware platform described in
Sec. V, we measured the following system overheads
under C-EDF scheduling: thread context switching,
scheduling, job release queuing, inter-processor interrupt
latency, CPU clock tick processing, both GPU interrupt
top half and bottom half processing, and, in the case of
klitirqd, tasklet release queuing. We then randomly gen-
erated task sets with properties similar to those in Sec. V.
Finally, we checked the schedulability of each generated
task set by using a soft real-time (bounded tardiness)
schedulability test for C-EDF scheduling augmented to
account for overheads [29]. In doing the latter, average
overhead values were used (as in [28] when analyzing
soft real-time systems). Interrupts were accounted for
using task-centric methods [19].9

A selection of our schedulability results is given in
Fig. 7,10 which presents results for task sets in which:
per-task utilizations vary uniformly over [0, 5, 0.9]; GPU-
using tasks use 75% of their execution time on the
GPU; and 50% to 60% of tasks in each task set are
GPU-using. Variance in GPU behavior was controlled
by a parameter n ∈ {1, 3, 6}, which specifies the
number of GPU interrupts each GPU-using job may
generate. In Fig. 7, schedulability is higher under klitirqd
(threaded) interrupt handling than under standard Linux
(non-threaded) interrupt handling for each choice of n,
with a greater disparity between the two for larger values
of n.

8Prior work has blended the PREEMPT_RT with another patch in
development, SCHED_DEADLINE, to achieve EDF-based interrupt
handlers [23] in a partitioned EDF-scheduled system. However, this
solution still suffers from utilization loss due to bin-packing-like
problems even when used in a soft real-time system.

9Please see the appendix of the online version of the paper for a
detailed description of interrupt and overhead accounting methods.

10Additional graphs are available in the online version of the paper.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12

R
a

ti
o

 o
f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

 (
s
o

ft
)

CPU Utilization (prior inflations)

Critical Section Exe 75%; GPU Task Share [50, 60%]; Util [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

[1]

[4] [5][6]

[2]

[3]

Figure 7. The percentage of schedulable task systems (y-axis) as a
function of CPU utilization (x-axis) under klitirqd (threaded) interrupt
handling and standard Linux (non-threaded) interrupt handling.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

R
a

ti
o

 o
f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

 (
s
o

ft
)

Effective CPU Utilization (prior inflations)

Critical Section Exe 75%; GPU Task Share [50, 60%]; Util [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

[1][2, 3][5][4][6]

Figure 8. Schedulability results similar to Fig. 7 except that a GPU
speedup of 16× is assumed.

The primary motivation for utilizing GPUs in a real-
time system is increased performance. The benefits of
threaded GPU interrupt handling are even more clear
when effective utilization is considered instead of actual
CPU utilization. By supposing a GPU-to-CPU speed-up
ratio of R, we may convert each GPU-using task into a
functionally equivalent CPU-only task by viewing each
time unit spent executing on a GPU as R times units
spent executing on a CPU. We define effective utilization
to be the utilization of a task set after such a conversion.
Fig. 8 depicts the same schedulability results shown in
Fig. 7, except that effective utilizations are considered,
for the case R = 16 (i.e., a GPU is 16× faster than a
CPU), a common speed-up.

As Fig. 8 shows, the impact of using klitirqd is
even greater if effective utilizations are considered. As
seen, when n = 6, 90% of task sets with an effective
utilization of 65.0 CPUs are schedulable under klitirqd.

In contrast, effective utilization must be decreased to
35.0 CPUs to achieve the same degree of schedulability
under Linux interrupt handling. This is nearly half the
performance of klitirqd!

VIII. CONCLUSION

In this paper, we presented flexible real-time interrupt-
handling techniques for multiprocessor platforms that
are applicable to any JLSP-scheduler and that respect
single-threaded task execution. We also reported on our
efforts in implementing such techniques in LITMUSRT,
and showed that they can be successfully applied to
even a closed-source GPU driver, thus allowing for
improved real-time characteristics for real-time systems
using GPUs. We presented an experimental evaluation
of this implementation that shows that it reduces the
interference caused by GPU interrupts in comparison to
standard interrupt handling in Linux, outperforms fixed-
priority interrupt handling methods, and offers better
results in terms of overall schedulability (with overheads
considered).

This paper lays the groundwork for future investiga-
tions into real-time platforms using GPUs. In this paper,
we have limited attention to clustered scheduling. In a
future study, we intend to consider the full gamut of
partitioned, clustered, and global schedulers and different
GPU-to-CPU assignment methods and GPU arbitration
(i.e., locking) protocols. The goal of this future study will
be to identify the best combinations of scheduler, locking
protocol, etc., for both soft and hard real-time systems,
from the perspective of schedulability with overheads
considered.

ACKNOWLEDGMENT

Work supported by NSF grants CNS 1016954 and CNS 1115284;
ARO grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-0549;
and AFRL grant FA8750-11-1-0033.

REFERENCES

[1] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse
matrix solvers on the GPU: conjugate gradients and
multigrid,” in SIGGRAPH ’03, 2003.

[2] M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Las-
tra, “Simulation of cloud dynamics on graphics hard-
ware,” in SIGGRAPH ’03, 2003.

[3] J. Krüger and R. Westermann, “Linear algebra operators
for gpu implementation of numerical algorithms,” in
SIGGRAPH ’03, 2003.

[4] AMD Fusion Family of APUs. [Online].
Available: http://sites.amd.com/us/Documents/48423B_
fusion_whitepaper_WEB.pdf

[5] Intel details 2011 processor features, of-
fers stunning visuals build-in. [Online]. Avail-
able: http://download.intel.com/newsroom/kits/idf/2010_
fall/pdfs/Day1_IDF_SNB_Factsheet.pdf

[6] Bringing high-end graphics to handheld devices. [Online].
Available: http://www.nvidia.com/object/IO_90715.html

[7] V. Kindratenko and P. Trancoso, “Trends in high-
performance computing,” Computing in Science Engi-
neering, vol. 13, no. 3, 2011.

[8] S. Thrun. (2010) GPU technology conference
keynote, day 3. [Online]. Available: http://livesmooth.
istreamplanet.com/nvidia100923/

[9] G. Raravi and B. Andersson, “Calculating an upper bound
on the finishing time of a group of threads executing on a
GPU: A preliminary case study,” in WiP session of 16th
ECRTS, 2010.

[10] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-
time tasks on heterogeneous multiprocessors with two
unrelated types of processors,” in 31st RTSS, 2010.

[11] G. Raravi, B. Andersson, and K. Bletsas, “Provably good
scheduling of sporadic tasks with resource sharing on
two-type heterogeneous multiprocessor platform,” in 15th
OPODIS, 2011, to appear.

[12] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa,
“Resource sharing in GPU-accelerated windowing sys-
tems,” in 17th RTAS, 2011.

[13] ——, “TimeGraph: GPU scheduling for real-time multi-
tasking environments,” in USENIX Annual Technical
Conference, 2011.

[14] G. Elliott and J. Anderson, “Globally scheduled real-time
systems with GPUs,” in 18th RTNS, 2010.

[15] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson, “LITMUSRT: A testbed for empirically comparing
real-time multiprocessor schedulers,” in 27th RTSS, 2006.

[16] CUDA Zone. [Online]. Available: http://www.nvidia.
com/object/cuda_home_new.html

[17] J. Liu, Real-Time Systems. Prentice Hall, 2000.
[18] K. Jeffay and D. Stone, “Accounting for interrupt han-

dling costs in dynamic priority task systems,” in 14th
RTSS, 1993.

[19] B. Brandenburg, H. Leontyev, and J. Anderson, “An
overview of interrupt accounting techniques for multi-
processor real-time systems,” Journal of Systems Archi-
tecture, vol. 57, no. 6, 2010.

[20] Writing device drivers for LynxOS. [Online]. Avail-
able: http://www.lynuxworks.com/support/lynxos/docs/
lynxos4.2/0732-00-los42_writing_device_drivers.pdf

[21] U. Steinberg, J. Wolter, and H. Härtig, “Fast component
interaction for real-time systems,” in 17th ECRTS, 2005.

[22] U. Steinberg, A. Böttcher, and B. Kauer, “Timeslice
donation in component-based systems,” in 6th OSPERT,
2010.

[23] N. Manica, L. Abeni, L. Palopoli, D. Faggioli, and
C. Scordino, “Schedulable device drivers: Implementation
and experimental results,” in 6th OSPERT, 2010.

[24] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson,
“A flexible real-time locking protocol for multiproces-
sors,” in 13th ECRTS, 2007.

[25] G. Elliott and J. Anderson, “An optimal k-exclusion real-
time locking protocol motivated by multi-GPU systems,”
in 19th RTNS, 2011.

[26] A. Bastoni, B. Brandenburg, and J. Anderson, “An em-
pirical comparison of global, partitioned, and clustered
multiprocessor real-time schedulers,” in 31st RTSS, 2010.

[27] U. Devi, “Soft real-time scheduling on multiprocessors,”
Ph.D. dissertation, University of North Carolina at Chapel
Hill, 2006.

[28] B. Brandenburg, “Scheduling and locking in multipro-
cessor real-time operating systems,” Ph.D. dissertation,
University of North Carolina at Chapel Hill, 2011.

[29] J. Erickson, N. Guan, and S. Baruah, “Tardiness bounds
for global EDF with deadlines different from periods,” in
14th OPODIS, 2010.

http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://download.intel.com/newsroom/kits/idf/2010_fall/pdfs/Day1_IDF_SNB_Factsheet.pdf
http://download.intel.com/newsroom/kits/idf/2010_fall/pdfs/Day1_IDF_SNB_Factsheet.pdf
http://www.nvidia.com/object/IO_90715.html
http://livesmooth.istreamplanet.com/nvidia100923/
http://livesmooth.istreamplanet.com/nvidia100923/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.lynuxworks.com/support/lynxos/docs/lynxos4.2/0732-00-los42_writing_device_drivers.pdf
http://www.lynuxworks.com/support/lynxos/docs/lynxos4.2/0732-00-los42_writing_device_drivers.pdf

	Introduction
	Interrupt Handling
	Interrupt Handling in LITMUSRT
	GPU Integration
	Evaluation of Priority Inversions
	System-Wide Evaluation of Interrupt Handling Methods
	Overhead-Aware Schedulability
	Conclusion
	References

