
Building a Real-Time Multi-GPU Platform: Robust Real-Time Interrupt
Handling Despite Closed-Source Drivers

Glenn A. Elliott and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract—Architectures in which multicore chips are
augmented with graphics processing units (GPUs) have
great potential in many domains in which computationally
intensive real-time workloads must be supported. How-
ever, unlike standard CPUs, GPUs are treated as I/O
devices and require the use of interrupts to facilitate
communication with CPUs. Given their disruptive nature,
interrupts must be dealt with carefully in real-time systems.
With GPU-driven interrupts, such disruptiveness is further
compounded by the closed-source nature of GPU drivers.
In this paper, such problems are considered and a solution
is presented in the form of an extension to LITMUSRT

called klitirqd. The design of klitirqd targets systems with
multiple CPUs and GPUs. In such settings, interrupt-
related issues arise that have not been previously addressed.

I. INTRODUCTION

Graphics processing units (GPUs) are capable of per-
forming parallel computations at rates orders of mag-
nitude greater than traditional CPUs. Driven both by
this and by increased GPU programmability and single-
precision floating-point support, the use of GPUs to solve
non-graphical (general purpose) computational problems
began gaining wide-spread popularity about ten years
ago [1], [2], [3]. However, at that time, non-graphical
algorithms still had to be mapped to languages developed
exclusively for graphics. Graphics hardware manufac-
tures recognized the market opportunities for better sup-
port of general purpose computations on GPUs (GPGPU)
and released more flexible language extensions and run-
time environments.1 Since the release of these second-
generation GPGPU technologies, both graphics hardware
and runtime environments have grown in generality,
enabling GPGPU across many domains. Today, GPUs
can be found integrated on-chip in mobile devices and
laptops [4], [5], [6], as discrete cards in higher-end
consumer computers and workstations, and also within
many of the world’s fastest supercomputers [7].

GPUs have applications in many real-time domains.
For example, GPUs can efficiently perform multidi-
mensional FFTs and convolutions, as used in signal
processing, as well as matrix operations such as fac-
torization on large data sets. Such operations are used
in medical imaging and video processing, where real-

1Notable platforms include the Compute Unified Device Architec-
ture (CUDA) from Nvidia, Stream from AMD/ATI, OpenCL from
Apple and the Khronos Group, and DirectCompute from Microsoft.

time constraints are common. A particularly compelling
use case is driver-assisted and autonomous automobiles,
where multiple streams of video and sensor data must
be processed and correlated in real time [8]. GPUs are
well suited for this purpose.

Prior Work. GPUs have received serious considera-
tion in the real-time community only recently. On the
theoretical side, Raravi et al. have developed methods
for estimating worst-case execution time on GPUs [9]
and scheduling algorithms for “two-type” heterogeneous
multiprocessor platforms, with CPU/GPU platforms par-
ticularly in mind [10], [11]. On the more applied side,
Kato et al. have developed quality-of-service techniques
for graphical displays on fixed-priority systems [12],
[13].

In our own work, we have investigated many of the
challenges faced when augmenting multicore platforms
with GPUs that have non-real-time, throughput-oriented,
closed-source device drivers [14]. These drivers exhibit
behaviors that are problematic. For example, the driver
only allows one task to execute work non-preemptively
on a GPU at a time.2 Also, when a GPU comes under
contention, blocked tasks wait on a spinlock. The result-
ing wasted CPU time can be significant: depending on
the application, GPU accesses can commonly take tens
of milliseconds up to several seconds [14]. More prob-
lematically, blocked tasks have no mechanism to change
the priority of a GPU-holding task. Thus, real-time tasks
may experience unbounded priority inversions.

The primary solution we presented in [14] to address
these issues is to treat a GPU as a shared resource,
protected by a real-time suspension-based semaphore.
This removes the GPU driver from resource arbitra-
tion decisions and enables bounds on blocking time to
be determined. We validated this approach in experi-
ments on LITMUSRT [15], UNC’s real-time extension
to Linux, and demonstrated improved real-time charac-
teristics such as reduced CPU utilization and reduced
deadline tardiness.

Contributions. One issue not addressed in our prior
work is the effect asynchronous GPU interrupts have
on real-time execution. Interrupts cause complications

2Newer GPUs allow some degree of concurrency, at the expense
of introducing non-determinism due to conflicts within co-scheduled
work. Further, execution remains non-preemptive in any case.



in real-time systems by introducing increased system
latencies, decreased schedulability, and additional com-
plexity in real-time operating systems. Ideally, interrupt
handling should respect the priorities of executing real-
time tasks. However, this is a non-trivial issue, especially
for systems with shared I/O resources. In this paper, we
examine the nature, servicing techniques, and effects that
interrupts have on real-time execution on a multiproces-
sor, with GPU-related interrupts particularly in mind.

Our major contributions are threefold. First, we de-
velop techniques that enable interrupts due to asyn-
chronous I/O to be handled without violating the single-
threaded sporadic task model. To the best of our knowl-
edge, prior interrupt-related work has not addressed
asynchronous I/O on multiprocessors. Second, we pro-
pose a technique to override the interrupt processing
of closed-source drivers and apply this technique to a
GPU driver. This required significant challenges to be
overcome to alter the interrupt processes of the closed-
source GPU driver. Third, we discuss an implementation
of the proposed techniques and present an associated
experimental evaluation. This implementation is given in
the form of an extension to LITMUSRT called klitirqd.

The rest of this paper is organized as follows. In
Sec. II, we review the problems posed by interrupts
in real-time systems and discuss interrupt processing in
Linux (the foundation for LITMUSRT). Then in Sec. III,
we review prior work on real-time interrupt handling
and describe our solution, klitirqd. In Sec. IV, we show
that klitirqd can be applied to handle GPU interrupts by
intercepting and rerouting the interrupt processing of the
closed-source GPU driver. In Secs. V–VII, we evaluate
klitirqd by examining its effects on priority inversions,
response times, and overhead-aware schedulability anal-
ysis, respectively. We conclude in Sec. VIII.

Due to space limitations, we henceforth limit attention
to GPU technologies from the manufacture NVIDIA.
NVIDIA’s CUDA [16] platform is widely accepted as
the leading solution for GPGPU.

II. INTERRUPT HANDLING

An interrupt is a hardware signal issued from a system
device to a system CPU. Upon receipt of an interrupt,
a CPU halts its currently-executing task and invokes an
interrupt handler, which is a segment of code responsible
for taking the appropriate actions to process the interrupt.
Each device driver registers a set of driver-specific
interrupt handlers for all interrupts its associated device
may raise. Only after an interrupt handler has completed
execution may an interrupted CPU resume the execution
of the previously scheduled task.

Interrupts require careful implementation and analysis
in real-time systems. Interrupts may come periodically,
sporadically, or at entirely unpredictable moments, de-

pending upon the application. In uniprocessor and parti-
tioned multiprocessor systems, one may be able model
an interrupt source and handler as the highest-priority
real-time task or as a blocking source [17], [18], though
the unpredictable nature of interrupts in some applica-
tions may require conservative analysis. Such approaches
can also be extended to multiprocessor systems where
real-time tasks may migrate between CPUs [19]. How-
ever, in such systems the subtle difference between an in-
terruption and preemption creates an additional concern:
an interrupted task cannot migrate to another CPU since
the interrupt handler temporarily uses the interrupted
task’s program stack. As a result, conservative analysis
must also be used when accounting for interrupts in these
systems too. A real-time system, both in analysis and
in practice, benefits greatly by minimizing interruption
durations. Split interrupt handling is a common way of
achieving this, even in non-real-time systems.

Under split interrupt handling, an interrupt handler
only performs the minimum amount of processing nec-
essary to ensure proper functioning of hardware; any
additional work that may need to be carried out in
response to an interrupt is deferred for later processing.
This deferred work may then be scheduled in a separate
thread of execution with an appropriate priority. The
duration of interruption is minimized and deferred work
competes fairly with other tasks for CPU time.

Interrupt Handling In Linux. We now review how split
interrupt handling is done in Linux. We focus on Linux
for three reasons. First, Linux is well supported by GPU
manufactures. Second, it is the basis for LITMUSRT.
Third, despite its general-purpose origins, variants of
Linux are widely used in supporting real-time workloads.

During the initialization of the Linux kernel, kernel
components and device drivers (even closed-source ones)
register interrupt handlers with the kernel’s interrupt
services layer. These registrations are essentially name-
value pairs of the form <interrupt identifier,
interrupt service routine>.

Upon receipt of an interrupt on a CPU, Linux imme-
diately invokes the registered interrupt service routine
(ISR). In terms of split interrupt handling, the ISR is the
top-half of the interrupt handler. If an interrupt requires
additional processing beyond what can be implemented
in a minimal top-half, the top-half may issue deferred
work to the Linux kernel in the form of softirqs. Softirqs
are small units of work executed by the Linux kernel,
and in split interrupt handling parlance, each invocation
of a softirq is an ISR bottom-half. The sequence of steps
taken by Linux to service an interrupt is illustrated in
Fig. 1. There are several types of softirqs, but in this
paper, we consider only tasklets, which are the type of
softirq used by most I/O devices, including GPUs; we
use the terms “softirq” and “tasklet” synonymously.

2



Scheduled

Real-Time Task

...
Interrupt ID Top-Half ISR Pointer

.........

............

ISR Table

Interrupt

Top-Half ISR (Driver)

Bottom-Half (softirq)...

Scheduled

Real-Time Task

1

2

3

4

Figure 1. The interrupt handling in Linux. (1) An interrupt occurs
and the currently scheduled task is suspended. (2) The ISR for the
interrupt type is executed. (3) The ISR may issue deferred work as a
tasklet. (4) Before resuming the interrupted task, up to ten softirqs are
executed, possibly including tasklets issued in (3).

The Linux kernel executes softirqs using a heuristic.
Immediately after executing a top-half, but before resum-
ing execution of the interrupted task, the kernel executes
up to ten bottom-halfs. Any pending softirqs remaining
are dispatched to one of several (per-CPU) kernel threads
dedicated to softirq processing; these are the “ksoftirq”
daemons. The ksoftirq daemons are scheduled with high
priority, but are schedulable and preemptible entities
nonetheless. The described heuristic can introduce long
interrupt latencies, causing one to wonder if this can even
be considered a split interrupt system. In all likelihood,
in a system experiencing few interrupts (though it may
still be heavily utilized), for every top-half that yields a
bottom-half, that bottom-half will subsequently be exe-
cuted before interrupt processing completes, delaying the
interrupted task. If a bottom-half is deferred to a ksoftirq
daemon, it is generally not possible to analytically bound
the length of the deferral since these daemons are not
scheduled with real-time priorities.

The well-known PREEMPT_RT Linux kernel patch
addresses this issue by processing all bottom-halfs (ex-
cept the most critical, such as timers) with a pool of
schedulable threads. Ideally, interrupt processing threads
should be scheduled with the priority of the blocked
client task using the I/O device. However, interrupt
threads in PREEMPT_RT have only a single fixed pri-
ority, even if the associated device is shared by multiple
client tasks of differing priorities. This can lead to

harmful priority inversions, as demonstrated in Sec. VI.
Priority inversions may also arise when asynchronous

I/O is used. In asynchronous I/O, a task may issue a
batch of I/O requests while continuing on to other pro-
cessing. The task rendezvouses with I/O results at a later
point in time. Asynchronous I/O helps improve overall
performance and is commonly used in GPU applications
to mask bus latencies. Since synchronization with the
I/O device is deferred in asynchronous I/O, it is possible
for interrupts to be received, and corresponding bottom-
halfs executed, while a client task is scheduled. In such
a case, the client task essentially becomes temporarily
multithreaded, which breaks the assumption of single-
threaded execution common in real-time task models
such as the sporadic model. A co-scheduled interrupt
can be interpreted as causing a priority inversion. These
issues caused by asynchronous I/O in multiprocessors are
not merely limited to Linux variants. To the best of our
knowledge, this problem has not been directly addressed
in the real-time literature.

Neither standard Linux nor its PREEMPT_RT variant
implement split interrupt handling in a way amenable to
real-time schedulability analysis. In the next section, we
propose such an implementation.

III. INTERRUPT HANDLING IN LITMUSRT

LITMUSRT, a real-time extension to Linux, has been
under continual development at UNC for over five years.
To date, LITMUSRT has largely been limited to work-
loads that are not very I/O intensive since LITMUSRT

has provided no mechanisms for real-time I/O. The
implementation of real-time I/O is a considerable effort,
and proper implementation of split interrupt handling is
one critical aspect of this work, one we begin here.

As discussed in Sec. II, current Linux-based operating
systems use fixed-priority softirq daemons. In this paper,
we introduce a new class of LITMUSRT-aware daemons
called klitirqd.3 This name is an abbreviation for “Litmus
softirq daemon” and is prefixed with a ‘k’ to indicate that
the daemon executes in kernel space. klitirqd daemons
may function under any LITMUSRT-supported job-level
static-priority (JLSP) scheduling algorithm, including
partitioned-, clustered-, and global-earliest-deadline-first
and -fixed-priority schedulers.

klitirqd is designed to be extensible. Unlike the
ksoftirq daemons, the system designer may create an
arbitrary number of klitirqd threads to process tasklets
from a single device, or a single klitirqd thread may
be shared among many devices. The detailed imple-
mentation of klitirqd is as follows. Instead of using the
standard Linux tasklet_schedule() function call
to issue a tasklet to the kernel, an alternative function

3Source code available at http://www.cs.unc.edu/~anderson/litmus-rt

3

http://www.cs.unc.edu/~anderson/litmus-rt


litmus_tasklet_schedule() is provided to is-
sue a tasklet directly to a klitirqd thread. The caller (such
as a device driver) must supply both an owner for the
given tasklet as well as a klitirqd identifier that specifies
which klitirqd daemon is to perform the processing. The
owner of the tasklet may be a pointer to a real-time user
process, such as one blocked for a particular I/O event,
or even a bandwidth server used to limit the processing
rate of a particular type of tasklet. An idle klitirqd thread
suspends, waiting for a tasklet to process. Once a tasklet
arrives, the klitirqd thread adopts the scheduling priority,
including any inherited priority, of the tasklet owner.

The LITMUSRT scheduler ensures that a klitirqd
thread and its tasklet owner are never co-scheduled. This
allows asynchronous I/O to be supported without violat-
ing the single-threaded task models commonly assumed.

We recognize that similar architectures for split inter-
rupt handling have been proposed and implemented be-
fore. For instance, LynxOS [20] has supported priority-
inheritance-based split interrupt handling for many years.
In LynxOS, the interrupt processing daemon inherits the
greatest priority of any task actively using the device
that raised the interrupt. Steinberg et al. have also devel-
oped and implemented similar techniques based upon
bandwidth inheritance to support interrupt processing
in a modified L4 microkernel [21] and the NOVA mi-
crohypervisor [22]. While these approaches are similar
to our own, there are several key differences. First,
we support JLSP schedulers, while prior work has fo-
cused only on fixed-priority systems. Second, we support
non-partitioned multiprocessor systems while maintain-
ing single-threaded execution. LynxOS supports non-
partitioned scheduling, but breaks the single-threaded
model. Steinberg et al.’s methods are limited to unipro-
cessor and partitioned systems and require any tasks that
share a resource to be within the same partition. Finally,
the implementation of our solution in LITMUSRT allows
the use of unmodified Linux device drivers. At this time,
native GPU drivers for LynxOS and L4 are unavailable.

More closely related to our approach is an implemen-
tation of real-time-scheduled interrupt handlers in Linux
by Manica et al. [23]. Their approach grouped softirqs
within bandwidth servers, similar to the techniques used
by Steinberg et al., with the aim of constraining resource
consumption by I/O-using tasks. However, each of their
interrupt threads is pinned to an individual CPU, which
limits applicability to partitioned scheduling.

IV. GPU INTEGRATION

In Sec. III, we described how interrupt handlers are
to call the function litmus_tasklet_schedule()
to dispatch klitirqd bottom-half tasklets. The caller must
provide two parameters: (1) the tasklet owner (the real-
time task that requires the bottom-half to execute to make

progress) and (2) a klitirqd identifier for the daemon that
is to execute the tasklet. While any LITMUSRT-aware
device driver could be easily modified to provide these
parameters, how shall we accomplish this with a closed-
source GPU driver that cannot even be modified to
call litmus_tasklet_schedule()? We addressed
this issue by focusing separately on tasklet interception,
device identification, owner identification, and dispatch.

Tasklet Interception. Though the GPU driver is closed-
source, it must still interface with an open source
operating system kernel. The driver makes use of a
variety of kernel services, including interrupt handler
registration and tasklet scheduling. Though we cannot
modify the GPU driver, we may still intercept the calls
the driver makes to these OS services. In particular,
we modify the standard internal Linux API function
tasklet_schedule().

When tasklet_schedule() is called by a kernel
component, a callback function pointer must be provided
that specifies the entry point for the execution of the
deferred work. If we can identify callbacks to the closed-
source driver, then we can identify and intercept all
tasklets the driver schedules. Luckily, this is possible
because the driver is loaded into Linux as a module
(or kernel plugin). We leverage this fact to use vari-
ous module-related features of Linux to inspect every
callback function pointer of every tasklet scheduled in
the system online.4 Thus, we make modifications to
tasklet_schedule() to catch tasklets from the
GPU driver and override their scheduling. It should be
possible to use this technique to schedule tasklets of any
closed-source driver in Linux, not just those from GPUs.

Device Identification. If a system has multiple GPUs,
merely intercepting deferred GPU work is not enough;
we must also determine which GPU in the system
raised the initial interrupt. While we could have possibly
performed this identification process at the lowest levels
of interrupt handling, we opted for a simpler solution
closer to the tasklet scheduling process. The GPU driver
attaches to every tasklet a reference to a block of memory
that provides input parameters to the tasklet callback.
This block of data includes a device identifier (ranging
from 0 to g − 1, where g is the number of system
GPUs), which indicates which GPU raised the interrupt.
However, accessing this data within the memory block
is challenging since it is packaged in a driver-specific
format. Fortunately, the driver’s links into the open
source OS code allow us to locate the device identifier.

Because the internal APIs of Linux change frequently
and many Linux users use custom kernel configurations,
the NVIDIA driver is not distributed as a monolithic

4This may sound like a costly operation, but it is actually quite a
low-overhead process, as is shown in Sec. VI.

4



precompiled binary. Instead, the driver is distributed in
a partially compiled form, allowing it to support a chang-
ing kernel in varied configurations. The portions of the
driver that NVIDIA wishes to keep closed are distributed
in obfuscated precompiled object files. However, the dis-
tribution also includes plain source code for an OS/driver
interface layer that bridges the internal Linux kernel
interfaces with the precompiled object files. Through the
visual inspection of this bridge code, we gained insight
into the format of the tasklet memory block, and through
a process of trial and error, determined the fixed address
offset of the device identifier.

To this point, we have explained how to intercept and
identify the source of tasklets the driver hands off to the
kernel for later processing. What remains is to schedule
the deferred work with the proper priority by identifying
the user task that is using the associated GPU and then
to dispatch the work to the appropriate klitirqd daemon.

Owner Identification. As mentioned in Sec. I, a closed-
source GPU driver can exhibit behaviors that are detri-
mental to the predictability requirements of a real-time
system. In [14], we presented methods for removing
the GPU driver from resource arbitration decisions,
thereby removing much of the associated uncertainty.
The primary method we presented introduced a real-time
semaphore to arbitrate access to GPUs. In particular,
to manage a pool of k GPUs, a real-time k-exclusion
protocol is used that can assign any available GPU to
a GPU-requesting task. We can use such a protocol not
only to arbitrate GPU access, but to also act as registry of
tasks actively using GPUs. Whenever a GPU is allocated
to a task by the protocol, an internal lookup table, called
the GPU ownership registry, indexed by device identifier,
is updated to record device ownership.

The arbitration protocol considered herein is a k-
exclusion extension of the flexible multiprocessor locking
protocol (FMLP) [24], which we call the k-FMLP.5 Us-
ing the k-FMLP, GPU-using jobs merely issue requests
for an available GPU, not a specific GPU. The k-FMLP
is particularly attractive because worst-case wait times
scale inversely with the number of GPUs. The k-FMLP
was implemented in LITMUSRT to support this work. In
doing so, special consideration had to be paid to integrate
with klitirqd. For example, the k-FMLP uses priority
inheritance; a priority inherited by a GPU holder must be
propagated transitively to any associated klitirqd tasklet.

With the device identifier extracted from the tasklet
memory block and device registry table, determining the
current GPU owner is straightforward. We now have
gathered all required information to dispatch a GPU

5A full description of the k-FMLP is available in the online
version of this paper at http://www.cs.unc.edu/~anderson/papers.html.
A detailed discussion of some issues that arise when constructing a
real-time k-exclusion protocol can be found in [25].

tasklet_schedule()

Driver T.H. ISR tasklet

0101101

1001110

GPU ID

GPU Registry

Module Info:

Is callback to GPU driver?

callback

klitirqd

Registry

litmus_tasklet_schedule()

1 2

3

4

5

Figure 2. GPU tasklet redirection. (1) A tasklet from the GPU
driver is passed to tasklet_schedule(). (2) The tasklet is
intercepted if the callback points to the driver. (3) The GPU identifier
is extracted from the memory block attached to the tasklet using a
known address offset and the GPU owner is found. (4) The GPU is
mapped to a klitirqd instance, and (5) the GPU tasklet is passed on to
litmus_tasklet_schedule().

klitirqd tasklet; now we must determine which klitirqd
instance will perform the processing.

klitirqd Dispatch. The architecture of klitirqd is general
enough to support any number of daemon instances, all
scheduled by a JLSP real-time scheduler. In a system
with g GPUs, there should be g klitirqd instances to
ensure that all GPUs can be used simultaneously. Each
klitirqd instance is assigned a specific GPU. This assign-
ment is recorded in the klitirqd assignment registry.

The overall klitirqd architecture is summarized
in Fig. 2. Using the device identifier extracted
from the intercepted tasklet of the GPU driver,
our modified tasklet_schedule() references the
GPU ownership and klitirqd assignment registries
and redirects all GPU tasklets to the proper kli-
tirqd instance, with the proper priority, by calling
litmus_tasklet_schedule().

V. EVALUATION OF PRIORITY INVERSIONS

In this and the next two sections, we present an evalu-
ation of klitirqd. Our focus in this section is determining
the impact of priority inversions caused by interrupts.

Evaluation Platform. The platform used in all of our
experiments is a dual-socket six-cores-per-socket Intel
Xeon X5060 CPU platform, with a total of twelve cores
running at 2.67GHz. This platform also includes eight
Nvidia GTX-470 GPUs.

In all of our experiments, we use a clustered scheduler,
with GPUs statically assigned to clusters, and a separate
instance of the k-FMLP used within each cluster to
manage the assigned GPUs. Clustered schedulers have
been shown to be effective if bounded deadline tardiness
is the real-time requirement of interest [26]. In this
section, we consider only the clustered earliest-deadline-
first (C-EDF) algorithm, though later we also consider
the clustered rate-monotonic (C-RM) algorithm. In either

5

http://www.cs.unc.edu/~anderson/papers.html


case, clustering is split along the NUMA architecture
of the system, yielding two clusters of six CPU cores
and four GPUs apiece. This configuration minimizes bus
contention, given the memory and I/O bus architectures
of the system. This is especially important for the
I/O bus since contention can significantly affect data
transmission rates between CPUs and GPUs. We use
CUDA 4.0 for our GPU runtime environment.

Experimental Setup. We assessed the impacts of pri-
ority inversions by generating sporadic task sets and
then executing them in LITMUSRT. Each generated
task set included both CPU-only and GPU-using tasks.
Individual task parameters were randomly generated as
follows. The period of every task was randomly selected
from the range [15ms, 60ms]; such a range is common
for multimedia processing and sensor feeds such as video
cameras. The utilization of each task was generated
from an exponential distribution with mean 0.5 (tasks
with utilizations greater than 1.0 were regenerated). This
yields relatively large average per-task execution times.
We expect GPU-using tasks to have such execution times
since current GPUs typically cannot efficiently process
short GPU requests due to I/O bus latencies. Next,
between 20% and 30% of tasks within each task set were
selected as GPU-using tasks. Each GPU-using task had a
GPU critical section length equal to 80% of its execution
time. Of the critical section length, 20% was allocated to
transmitting data to and from a GPU. This distribution
of critical section length and data transmission time is
common to many GPU applications, including FFTs and
convolutions [14], which are used frequently in image
processing. Finally, the task set was partitioned across
the two clusters using a two-pass worst-fit partitioning
algorithm that first assigns GPU-using tasks to clus-
ters, followed by CPU-only tasks. This tends to evenly
distribute GPU-using tasks between clusters. In order
to gauge the performance of our implementation with
respect to system utilization, task sets were generated
with system utilizations ranging from 7.5 to 11.5, in
increments of 0.1, for a total of 41 task sets.

Each generated task set was executed in LITMUSRT

on the evaluation platform for two minutes. Tasks exe-
cuted simple numerical code (on both CPUs and GPUs)
for the configured execution durations. GPU requests
were processed using asynchronous I/O. Every task set
was executed twice, once in LITMUSRT configured to
use klitirqd and once in LITMUSRT using standard
Linux interrupt handling. Scheduling logs were recorded,
from which we compared the performance of klitirqd
and standard Linux interrupt handling in LITMUSRT

according to several metrics, as discussed next.

Metrics. Ideally, the system should conform to the spo-
radic task model and not suffer any priority inversions.

 0

 50

 100

 150

 200

 250

 300

 350

 400

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5

#
 o

f 
S

im
u

lt
a

n
e

o
u

s
 S

c
h

e
d

u
lin

g
s

Task Set Utilization

Count of Simultaneous Scheduling of Tasklet and Owner

klitirqd
Standard Handling

Figure 3. Histogram of concurrent execution events of a tasklet
and its owner. No concurrent execution events were observed under
klitirqd. There is no apparent trend with regard to task set utilization:
the number of events observed differs greatly among the task sets.

We assessed deviance from this ideal by: (i) counting the
number of concurrent execution events, where tasklets
and owners are simultaneously scheduled in violation of
the sporadic task model; (ii) determining the distribution
of priority inversion durations; (iii) counting the number
of priority inversions; and (iv) computing the cumulative
priority inversion length.

Results. Fig. 3 shows our measurements for the number
of concurrent execution events. No such events occurred
when using klitirqd. However, as expected, they do occur
under standard Linux. Most task sets experienced 100–
200 concurrent execution events. While these numbers
appear to be low, we found that it was most often
the case that a GPU-using task had already blocked
by the time its tasklet is scheduled for our simple test
programs; we expect that this would not be the case with
a more complex workload. The absence of concurrent
execution events under klitirqd shows that it is effective
at enforcing conformance to the sporadic task model.

While priority inversions cannot be totally eliminated,
they should nevertheless be as short as possible. Fig. 4
shows a representative example of the cumulative distri-
bution function of priority inversion length under both
interrupt handling methods.6 As seen, a typical priority
inversion is much shorter under klitirqd than under Linux
interrupt handling. For example, 90% of inversions under
klitirqd are shorter than 9µs, whereas the 90th percentile
exceeds 30µs under Linux interrupt handling.

While priority inversions should be as short as possi-
ble, the number of inversions is also important because
a system that suffers many short inversions may be
disrupted by their cumulative effect. Fig. 5 depicts the

6Graphs for all tested task sets are available in the online version
of this paper.

6



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e

rs
io

n
 D

u
ra

ti
o

n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.4 

klitriqd Standard Handling

Figure 4. Cumulative distribution of priority inversion durations.

number of inversions caused by GPU tasklet processing
under both interrupt handling methods. For all but one of
the task sets, the use of klitirqd resulted in a significant
reduction of priority inversions. The sole exception was
the task set with a system utilization of 8.0. However,
a closer examination reveals that the cumulative priority
inversion length is in fact shorter under klitirqd, even for
this exceptional case. Fig. 6 shows cumulative priority
inversion length as a function of maximum priority
inversion length for the task set with utilization 8.0.
Observe in Fig. 6 that priority inversions of length up
to 50µs have a cumulative duration of only 180,000µs
under klitirqd, but more than 475,000µs under Linux
interrupt handling. Even though the number of prior-
ity inversions is slightly greater under klitirqd in this
particular case, the overall effect is much less because
most inversions are indeed short. In all other cases where
there were fewer priority inversions under klitirqd than
under standard Linux interrupt handling, the cumulative
priority inversion length was similarly (much) less.

In summary, our data shows that klitirqd outperforms
standard Linux interrupt handling in each of the four
evaluation metrics. Further, they demonstrate that even
closed-source drivers can still be prevented from causing
undue interference.

VI. SYSTEM-WIDE EVALUATION OF INTERRUPT
HANDLING METHODS

In this section, we examine system-wide effects of
interrupt handling in terms of job response time under
LITMUSRT, both with and without klitirqd, the PRE-
EMPT_RT real-time Linux patch, and standard Linux.
Recall from Sec. II that Linux often executes interrupt
bottom-halfs immediately after executing top-halfs, es-
sentially nullifying the real-time benefits of split inter-
rupt handling. While interrupt bottom-halfs are threaded
under PREEMPT_RT, the interrupt threads that execute

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5

#
 o

f 
P

ri
o

ri
ty

 I
n

v
e

rs
io

n
s

Task Set Utilization

Number of Priority Inversions

klitirqd
Standard Handling

Figure 5. Histogram of detected inversions. There is no observable
trend in task set utilization with this sample size, though variance
among task sets is significant.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u

m
u

la
ti
v
e

 I
n

v
e

rs
io

n
 L

e
n

g
th

 (
m

ic
ro

s
e

c
o

n
d

s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.0 

klitriqd Standard Handling

Figure 6. Cumulative priority inversion length as a function of
maximum priority inversion length for the task set with utilization
8.0. The total duration of priority inversion is more than twice as
large under standard Linux interrupt handling than klitirqd, despite
an increased number of priority inversions under klitirqd in this case.

bottom-halfs must be assigned a single fixed priority,
which may lead to undue priority inversions.

Experimental Setup. To demonstrate these real-time
weaknesses in Linux and PREEMPT_RT, and show
how klitirqd can successfully address them, we exe-
cuted a workload of CPU-only and GPU-using tasks
on the platform described in Sec. V. In order to fairly
compare LITMUSRT (both with and without klitirqd)
against Linux and PREEMPT_RT, the workload was
scheduled using the C-RM algorithm since Linux and
PREEMPT_RT only support fixed real-time priorities.
Counting semaphores were used to protect each pool of
GPU resources in Linux and PREEMPT_RT in a manner
similar to how the k-FMLP is used under LITMUSRT.
The workload consisted of 50 tasks: two GPU-using

7



C-RM C-EDF
Avg. Response Time PREEMPT_RT Linux LITMUSRT

as Percent of Period Low Prio. GPU-Matching (c) w/o klitirqd klitirqd klitirqd
Interrupts (a) Prio. Interrupts (b) (Linux) (d) (e) (f)

CPU-Only Tasks 429.03% 440.62% 100.98% 32.85% 32.83% 25.14%
GPU-Using Tasks 161.80% 71.63% 90.04% 26.70% 28.29% 18.13%

Table I
AVERAGE RESPONSE TIME OF CPU-ONLY AND GPU-USING TASKS EXPRESSED AS A PERCENTAGE OF PERIOD.

tasks that consume 2ms of CPU time and 1ms of GPU
time with a period of 19.9ms; 40 CPU-only tasks that
consume 5ms of CPU time with a period of 20ms; and
finally, eight GPU-using tasks that consume 2ms of CPU
time and 1ms of GPU time with a period of 20.1ms.
The set of tasks was evenly partitioned between the two
scheduling clusters. Unique priorities were assigned to
each task within each cluster according to task period.
Thus, the 20 CPU-only tasks in each cluster had prior-
ities strictly between one GPU-using task with greater
priority and four with lesser priority.

The workload was executed on six different platform
configurations: (1) Standard Linux, to provide a baseline
of performance; (2) PREEMPT_RT, with GPU-interrupt
priorities set below that of any other real-time task; (3)
PREEMPT_RT with GPU-interrupt priorities equal to
that of the greatest GPU-using task;7 (4) LITMUSRT

without klitirqd; (5) LITMUSRT with klitirqd; and fi-
nally, (6) LITMUSRT with klitirqd, scheduled under C-
EDF (for the sake of comparison). This workload was
executed 25 times for each system configuration for a
duration of 60 seconds. Response times were recorded
for all jobs consistently on each platform.

Results. Table I gives average response times, as percent
of period, for CPU-only and GPU-using tasks under the
various platform scenarios.

Observation 1. There are no good options for selecting
a fixed priority for interrupt threads shared by tasks
of differing priorities. The increase of GPU interrupt
priority in column (b) causes all bottom-half thread
execution to preempt CPU-only jobs, directly increasing
their response times with respect to column (a), where
interrupts have the lowest priority. In most cases under
column (b), GPU interrupt execution is on behalf of
lower-priority GPU-using jobs, thus causing CPU-only
jobs to experience priority inversions. Priority inversions
also occur if interrupt priority is too low, resulting in the
starvation of GPU-using jobs. This is evident in column
(a), where the average GPU-using job response time is
over twice that in column (b).

Observation 2. Standard Linux outperforms PRE-
7This is a rational choice when an interrupt-generating device is

shared by several tasks with differing priorities.

EMPT_RT (in this pathological case) due to lower inter-
rupt handling overhead. Under standard Linux, bottom-
halfs are usually executed immediately after top-halfs;
thus, bottom-halfs essentially execute with maximum
priority (like column (b)), yet this is accomplished
without the overhead of threaded interrupt handling.
Increased CPU availability improves the response times
of CPU-only jobs in column (c) in comparison to both
columns (a) and (b), while GPU-using jobs still typically
complete before their deadlines.

Observation 3. klitirqd assigns priorities to interrupt
threads at runtime, resulting in schedulable and ana-
lyzable real-time systems. The average response time
values in columns (d) and (e) indicate that jobs are
typically completing well before their deadlines. While
GPU-using tasks fare slightly worse in column (e), the
heuristic-driven interrupt handling methods of standard
Linux are not amenable to schedulability analysis.

Observation 4. Overheads introduced by klitirqd into
LITMUSRT are largely negligible. The nearly-equal re-
sponse time values in columns (d) and (e) indicate that
klitirqd overhead costs are not too great or are offset by
a reduction in priority inversions.

Observation 5. LITMUSRT with klitirqd out-performs
PREEMPT_RT. A comparison of columns (b) and (e)
suggests that, in this experiment, deadline misses were
not significant under klitirqd but were common under
PREEMPT_RT. Unfortunately, it is difficult to iden-
tify a single difference between PREEMPT_RT and
LITMUSRT causing this disparity in performance, as
there are many core differences (in scheduler implemen-
tation, etc.) between the two. Additional investigation
is merited. Nevertheless, these differences do not have
bearing on the previously made observations.

Observation 6. C-EDF scheduling is superior to C-
RM in limiting deadline tardiness. This is not surprising,
in light of prior work [27], but we mention it nonetheless.
This is another indication that PREEMPT_RT may not
be a desirable solution in all applications, especially in

8



soft real-time systems, since C-EDF is not supported.8

VII. OVERHEAD-AWARE SCHEDULABILITY

As seen in Secs. V and VI, klitirqd reduces the fre-
quency and duration of priority inversions at the expense
of some additional scheduling overhead, while non-
threaded interrupt handling incurs low system overheads
due to the lack of scheduling, at the expense of poten-
tially longer (and more numerous) priority inversions that
may impact every task. How does this affect general task
set schedulability? The answer to this question depends
upon the actual system overheads and priority inversion
durations associated with each approach. To address
this question in the context of C-EDF, we conducted
schedulability experiments in which actual measured
overheads were considered using a methodology similar
to that proposed in [28].

Using the same hardware platform described in
Sec. V, we measured the following system overheads
under C-EDF scheduling: thread context switching,
scheduling, job release queuing, inter-processor interrupt
latency, CPU clock tick processing, both GPU interrupt
top half and bottom half processing, and, in the case of
klitirqd, tasklet release queuing. We then randomly gen-
erated task sets with properties similar to those in Sec. V.
Finally, we checked the schedulability of each generated
task set by using a soft real-time (bounded tardiness)
schedulability test for C-EDF scheduling augmented to
account for overheads [29]. In doing the latter, average
overhead values were used (as in [28] when analyzing
soft real-time systems). Interrupts were accounted for
using task-centric methods [19].9

A selection of our schedulability results is given in
Fig. 7,10 which presents results for task sets in which:
per-task utilizations vary uniformly over [0, 5, 0.9]; GPU-
using tasks use 75% of their execution time on the
GPU; and 50% to 60% of tasks in each task set are
GPU-using. Variance in GPU behavior was controlled
by a parameter n ∈ {1, 3, 6}, which specifies the
number of GPU interrupts each GPU-using job may
generate. In Fig. 7, schedulability is higher under klitirqd
(threaded) interrupt handling than under standard Linux
(non-threaded) interrupt handling for each choice of n,
with a greater disparity between the two for larger values
of n.

The primary motivation for utilizing GPUs in a real-
time system is increased performance. The benefits of

8Prior work has blended the PREEMPT_RT with another patch in
development, SCHED_DEADLINE, to achieve EDF-based interrupt
handlers [23] in a partitioned EDF-scheduled system. However, this
solution still suffers from utilization loss due to bin-packing-like
problems even when used in a soft real-time system.

9Please see the appendix of the online version of the paper for a
detailed description of interrupt and overhead accounting methods.

10Additional graphs are available in the online version of the paper.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a

ti
o

 o
f 
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

 (
s
o

ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

[1]

[4] [5][6]

[2]

[3]

Figure 7. The percentage of schedulable task systems (y-axis) as a
function of CPU utilization (x-axis) under klitirqd (threaded) interrupt
handling and standard Linux (non-threaded) interrupt handling.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a

ti
o

 o
f 
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

 (
s
o

ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

[1][2, 3]

[5][4][6]

Figure 8. Schedulability results similar to Fig. 7 except that a GPU
speedup of 16× is assumed.

threaded GPU interrupt handling are even more clear
when effective utilization is considered instead of actual
CPU utilization. By supposing a GPU-to-CPU speed-up
ratio of R, we may convert each GPU-using task into a
functionally equivalent CPU-only task by viewing each
time unit spent executing on a GPU as R times units
spent executing on a CPU. We define effective utilization
to be the utilization of a task set after such a conversion.
Fig. 8 depicts the same schedulability results shown in
Fig. 7, except that effective utilizations are considered,
for the case R = 16 (i.e., a GPU is 16× faster than a
CPU), a common speed-up.

As Fig. 8 shows, the impact of using klitirqd is
even greater if effective utilizations are considered. As
seen, when n = 6, 90% of task sets with an effective
utilization of 65.0 CPUs are schedulable under klitirqd.
In contrast, effective utilization must be decreased to
55.0 CPUs to achieve the same degree of schedulability

9



under Linux interrupt handling. klitirqd supports effec-
tive utilizations 10 CPUs greater at 90% schedulability!

VIII. CONCLUSION

In this paper, we presented flexible real-time interrupt-
handling techniques for multiprocessor platforms that
are applicable to any JLSP-scheduler and that respect
single-threaded task execution. We also reported on our
efforts in implementing such techniques in LITMUSRT,
and showed that they can be successfully applied to
even a closed-source GPU driver, thus allowing for
improved real-time characteristics for real-time systems
using GPUs. We presented an experimental evaluation
of this implementation that shows that it reduces the
interference caused by GPU interrupts in comparison to
standard interrupt handling in Linux, outperforms fixed-
priority interrupt handling methods, and offers better
results in terms of overall schedulability (with overheads
considered).

This paper lays the groundwork for future investiga-
tions into real-time platforms using GPUs. In this paper,
we have limited attention to clustered scheduling. In a
future study, we intend to consider the full gamut of
partitioned, clustered, and global schedulers and different
GPU-to-CPU assignment methods and GPU arbitration
(i.e., locking) protocols. The goal of this future study will
be to identify the best combinations of scheduler, locking
protocol, etc., for both soft and hard real-time systems,
from the perspective of schedulability with overheads
considered.

ACKNOWLEDGMENT

Work supported by NSF grants CNS 1016954 and CNS 1115284;
ARO grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-0549;
and AFRL grant FA8750-11-1-0033.

REFERENCES

[1] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse
matrix solvers on the GPU: conjugate gradients and
multigrid,” in SIGGRAPH ’03, 2003.

[2] M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Las-
tra, “Simulation of cloud dynamics on graphics hard-
ware,” in SIGGRAPH ’03, 2003.

[3] J. Krüger and R. Westermann, “Linear algebra operators
for gpu implementation of numerical algorithms,” in
SIGGRAPH ’03, 2003.

[4] AMD Fusion Family of APUs. [Online].
Available: http://sites.amd.com/us/Documents/48423B_
fusion_whitepaper_WEB.pdf

[5] Intel details 2011 processor features, of-
fers stunning visuals build-in. [Online]. Avail-
able: http://download.intel.com/newsroom/kits/idf/2010_
fall/pdfs/Day1_IDF_SNB_Factsheet.pdf

[6] Bringing high-end graphics to handheld devices. [Online].
Available: http://www.nvidia.com/object/IO_90715.html

[7] V. Kindratenko and P. Trancoso, “Trends in high-
performance computing,” Computing in Science Engi-
neering, vol. 13, no. 3, 2011.

[8] S. Thrun. (2010) GPU technology conference
keynote, day 3. [Online]. Available: http://livesmooth.
istreamplanet.com/nvidia100923/

[9] G. Raravi and B. Andersson, “Calculating an upper bound
on the finishing time of a group of threads executing on a
GPU: A preliminary case study,” in WiP session of 16th
ECRTS, 2010.

[10] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-
time tasks on heterogeneous multiprocessors with two
unrelated types of processors,” in 31st RTSS, 2010.

[11] G. Raravi, B. Andersson, and K. Bletsas, “Provably good
scheduling of sporadic tasks with resource sharing on
two-type heterogeneous multiprocessor platform,” in 15th
OPODIS, 2011, to appear.

[12] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa,
“Resource sharing in GPU-accelerated windowing sys-
tems,” in 17th RTAS, 2011.

[13] ——, “TimeGraph: GPU scheduling for real-time multi-
tasking environments,” in USENIX Annual Technical
Conference, 2011.

[14] G. Elliott and J. Anderson, “Globally scheduled real-time
systems with GPUs,” in 18th RTNS, 2010.

[15] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson, “LITMUSRT: A testbed for empirically comparing
real-time multiprocessor schedulers,” in 27th RTSS, 2006.

[16] CUDA Zone. [Online]. Available: http://www.nvidia.
com/object/cuda_home_new.html

[17] J. Liu, Real-Time Systems. Prentice Hall, 2000.
[18] K. Jeffay and D. Stone, “Accounting for interrupt han-

dling costs in dynamic priority task systems,” in 14th
RTSS, 1993.

[19] B. Brandenburg, H. Leontyev, and J. Anderson, “An
overview of interrupt accounting techniques for multi-
processor real-time systems,” Journal of Systems Archi-
tecture, vol. 57, no. 6, 2010.

[20] Writing device drivers for LynxOS. [Online]. Avail-
able: http://www.lynuxworks.com/support/lynxos/docs/
lynxos4.2/0732-00-los42_writing_device_drivers.pdf

[21] U. Steinberg, J. Wolter, and H. Härtig, “Fast component
interaction for real-time systems,” in 17th ECRTS, 2005.

[22] U. Steinberg, A. Böttcher, and B. Kauer, “Timeslice
donation in component-based systems,” in 6th OSPERT,
2010.

[23] N. Manica, L. Abeni, L. Palopoli, D. Faggioli, and
C. Scordino, “Schedulable device drivers: Implementation
and experimental results,” in 6th OSPERT, 2010.

[24] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson,
“A flexible real-time locking protocol for multiproces-
sors,” in 13th ECRTS, 2007.

[25] G. Elliott and J. Anderson, “An optimal k-exclusion real-
time locking protocol motivated by multi-GPU systems,”
in 19th RTNS, 2011.

[26] A. Bastoni, B. Brandenburg, and J. Anderson, “An em-
pirical comparison of global, partitioned, and clustered
multiprocessor real-time schedulers,” in 31st RTSS, 2010.

[27] U. Devi, “Soft real-time scheduling on multiprocessors,”
Ph.D. dissertation, University of North Carolina at Chapel
Hill, 2006.

[28] B. Brandenburg, “Scheduling and locking in multipro-
cessor real-time operating systems,” Ph.D. dissertation,
University of North Carolina at Chapel Hill, 2011.

[29] J. Erickson, N. Guan, and S. Baruah, “Tardiness bounds
for global EDF with deadlines different from periods,” in
14th OPODIS, 2010.

[30] B. Brandenburg and J. Anderson, “Real-time resource-
sharing under clustered scheduling: Mutex, reader-writer,
and k-exclusion locks,” in 11th EMSOFT, 2011.

10

http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://download.intel.com/newsroom/kits/idf/2010_fall/pdfs/Day1_IDF_SNB_Factsheet.pdf
http://download.intel.com/newsroom/kits/idf/2010_fall/pdfs/Day1_IDF_SNB_Factsheet.pdf
http://www.nvidia.com/object/IO_90715.html
http://livesmooth.istreamplanet.com/nvidia100923/
http://livesmooth.istreamplanet.com/nvidia100923/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.lynuxworks.com/support/lynxos/docs/lynxos4.2/0732-00-los42_writing_device_drivers.pdf
http://www.lynuxworks.com/support/lynxos/docs/lynxos4.2/0732-00-los42_writing_device_drivers.pdf


APPENDIX

A. k-FMLP

Inspired by the Flexible Multiprocessor Locking Pro-
tocol (FMLP) [24], the k-Exclusion Flexible Multipro-
cessor Locking Protocol (k-FMLP) is a simple and easy
to understand protocol. The blocking experienced by a
job waiting for a resource protected by the k-FMLP is
O(n/k) where n is the number of tasks using the lock
and k is the size of the protected resource pool. Unlike
the more recent O(m) Locking Protocol (OMLP) the
k-FMLP is not optimal with respect to the number of
m CPU processors. Achieving an O(m/k) k-exclusion
protocol (one might expect a 1/k term in any reasonable
k-exclusion protocol) is actually a non-trivial [30], [25].
However, for the sake of the interrupt-handling focus
of this paper, the k-FMLP will suffice. The k-FMLP is
designed as follows.

Task Model. We consider the problem of scheduling a
mixed task set of n sporadic tasks, T = {T1, . . . , Tn},
on m CPUs with one pool of k resources. A subset
TR ⊂ T of the tasks require use of one of the system’s
k resources. We assume k ≤ m. A job is a recurrent
invocation of work by a task, Ti, and is denoted by
Ji,j where j indicates the jth job of Ti (we may
omit the subscript j if the particular job invocation is
inconsequential). Each task Ti is described by the tuple
Ti(ei, li, di, pi). The worst-case CPU execution time of
Ti, ei, bounds the amount of CPU processing time a
job of Ti must receive before completing. The critical
section length of Ti, li, denotes the length of time task
Ti holds one of the k resources. For tasks Ti /∈ TR,
li = 0. The deadline, di, is the time after which a job
is released by when that job must complete. Arbitrary
deadlines are supported by the k-FMLP. The period of
Ti, pi, measures the minimum separation time between
job invocations for task Ti.

We say that a job Ji is pending from the time of its
release to the time it completes. A pending job Ji is
ready if it may be scheduled for execution. Conversely,
if Ji is not ready, then it is suspend.

A job Ji,j (of a task Ti ∈ TR) may issue a resource
request Ri,j for one of the k resources. Requests that
have been allocated a resource (resource holders) are
denoted by Hx, where x is the index of the particular
resource (of the k) that has been allocated. Requests
that have not yet been allocated a resource are pending
requests. We assume that a job requests a resource
at most once, though the analysis presented in this
paper can be generalized to support multiple, non-nested,
requests. We let bi denote an upper bound on the duration
a job may be blocked.

In the k-FMLP, a job Ji suspends if it issues a
request Ri that cannot be immediately satisfied. We use

Priority inheritance as a mechanism to bound worst-
case blocking time. Under priority inheritance, a resource
holder may temporarily assume the higher-priority of a
blocked job that is waiting for the held resource. The
priority of a job Ji in the absence of priority inheritance
is the base priority of Ji. We call the priority with which
Ji is scheduled the effective priority of Ji.
Structure. The k-FMLP uses k FIFO request queues,
each queue assigned to one of the k protected resources.
A job Ji enqueues a resource request Ri onto the queue
FIFOx when the job requires a resource. A job with a
request at the head of its queue is considered the holder
of the associated resource and is ready to run.
Rules. We define the worst-case wait time for a
queue, FIFOx, at time t with the formula waitx(t) =∑

Rj∈FIFOx
lj . However, it may be too burdensome for an

implementation to maintain critical section length values
for each queued request. We may instead use the con-
servative approximation waitx(t) = max {l} · |FIFOx|,
where max{l} is the longest duration any job may hold
a resource and |FIFOx| denotes the number of requests
in FIFOx. We call an implementation which is informed
of critical section lengths to be l-aware and those that
are not as l-oblivious.

The k-FMLP is governed by the following rules.
R1 When Ji issues a request Ri at time t, Ri is

appended to the queue with the minimum worst-
case wait time, min1≤x≤k{waitx(t)}. Ji is granted
ownership of the xth resource when Ri is at the head
of FIFOx.

R2 All jobs with queued request are suspended except
for the resource holders, which are ready. Hx inherits
the priority of the highest-priority blocked job in
FIFOx if that priority exceeds the base priority of
Hx.

R3 When Ji frees resource x, Ri is dequeued from
FIFOx and the job with the next queued request in
FIFOx is granted the newly available resource. If
there is no pending job in FIFOx, then the highest-
priority blocked job waiting for one of the k re-
sources is “stolen” (removed from its queue) and
granted the free resource.11

Blocking Analysis. The k-FMLP essentially load-
balances resource requests amongst the k resources,
similar to how patrons at a grocery store may organize
themselves at several checkout stations, selecting the line
they anticipate to have the shortest wait time.

Lemma 1. When Ji issues a request for a resource at
time t, there exists a resource queue with a worst-case
wait time less than or equal to

(∑k
x=1 waitx(t)

)
/k.

11Request “stealing” does not affect worst-case blocking analysis,
but is a useful to ensure an efficient, work-conserving, system.

11



Proof: Suppose all other resource-using jobs cur-
rently hold a resource or have a queued request issued
before Ri. Therefore, all requests other than Ri have
been partitioned into k groups. The sum total worst-
case wait time at time t is

∑k
x=1 waitx(t). In the l-

aware case, then the total worst-case wait time is equal
to
∑

Tj∈TR\{Ti} lj . Otherwise, it may be approximated
by
∑k

x=1 max {l}·|FIFOx| = max {l}·
∣∣Tj ∈ TR\{Ti}

∣∣,
in the l-oblivious case.

On average, each queue has a worst-case wait
time of

(∑
Tj∈TR\{Ti} lj

)
/k in the l-aware case, or(

max {l} ·
∣∣Tj ∈ TR\{Ti}

∣∣) /k in the l-oblivious case.
If one queue has a worst-case wait time greater than
average, then another must have a worst-case wait time
less than average. Thus, the average worst-case wait time
upper-bounds the maximum wait time of the shortest
queue at time t.

Theorem 1. The maximum time a job may be blocked
under the k-FMLP in an l-aware implementation is
bounded by the formula

bi ≤

 ∑
Tj∈TR\{Ti}

lj

 /k. (1)

Proof: Follows from Lemma 1 and rule R1.

Theorem 2. The maximum time a job may be blocked
under the k-FMLP in an l-oblivious implementation is
bounded by the formula

bi ≤
(
max {l} ·

∣∣Tj ∈ TR\{Ti}
∣∣) /k. (2)

Proof: Follows from Lemma 1 and rule R1.

Observe that both Eq. 1 and Eq. 2 are O(n/k).

In the case of an l-aware implementation, we may
derive an exact bound for bi by determining the maxi-
mum worst-case wait time of the shortest FIFO queue.
Unfortunately, the problem to compute an exact solution
is a variant of the NP-hard (in the strong sense) job shop
scheduling problem. Nevertheless, bi may be computed
exactly by solving the following 0-1 integer linear pro-
gram for tasks in TR:

Maximize bi
subject to∑

Tj∈TR\{Ti} xj,q · lq ≥ bi ∀j ∈ {1, . . . , k}∑k
j=1 xj,q = 1 ∀Tq ∈ TR\{Ti}

xj,q ∈ {0, 1}
(3)

where xj,q is an indicator variable denoting the assign-
ment of Rq to FIFOj .

B. Overhead Accounting

In Sec. VII, we presented the results of overhead-
aware schedulability tests. It was shown that threaded
GPU interrupt processing in klitirqd is able to meet soft
real-time bounded tardiness constraints for more task
sets than standard non-threaded Linux interrupt handling,
despite additional overheads associated with klitirqd’s
thread scheduling. Due to page constraints in Sec. VII,
we were unable to present a detailed description of
how overheads were accounted in our schedulability
experiments. This is done here.

Traditional real-time schedulability tests usually
model a theoretical system where scheduling decisions
are instantaneous, with no execution overheads. How-
ever, overheads must be considered if we are to apply
schedulability test methods to real systems in practice.
The dissertation of B. Brandenburg [28] describes sev-
eral methods for incorporating system overheads from
various sources such as operating system ticks, timer
interrupts, scheduling decisions, etc. into traditional
schedulability tests, thus making them overhead-aware.
These tests better reflect real-world performance than
the traditional overhead-oblivious tests. One overhead
accounting technique described in [28] is the “task-
centric” method. We adapt the task-centric method in
this work to account for interrupts caused by GPUs.

This section proceeds in six parts. First, we describe
the schedulability test for bounded tardiness used in this
paper and outline the general process of task execution
inflation to account for overheads. Following, we up-
date our schedulability test to account for basic over-
heads such as blocking due to locking protocols, self-
suspensions, scheduling decisions, and context switches.
Next, we further develop this model to liberally account
for overheads of GPU interrupts under standard Linux
interrupt handling. Thereafter, we alter this model to
account for overheads of GPU interrupts under klitirqd.
Then, we account for overheads due to operating system
ticks. Finally, we present the values of the observed
overheads from LITMUSRT running on our evaluation
platform (platform described in Sec. V) used in our
schedulability tests.

We express our overhead accounting methods using
with the task model presented in Appx. A, with minor
additions presented as needed.

Schedulability. The basic schedulability test for
bounded tardiness in a soft real-time system scheduled
under G-EDF is described in [27]. Under this test, two
conditions must hold:

ei ≤ pi (4)∑
Ti∈T

ei/pi ≤ m (5)

12



t
0

t
2

t
1

J
i
 released

J
i
 completesJ

i
 begins execution

Figure 9. Basic accounting of overheads for simple CPU-only job,
Ji. Job execution is framed by overheads to due scheduling decisions
and context switches.

Condition Eq. (4) ensures that no individual task (or
single CPU) is over utilized, and condition Eq. (5)
ensures that the system as a whole (with m CPUs) is
not over utilized. To test schedulability under C-EDF
scheduling, we simply perform the G-EDF test on each
cluster, scaling m accordingly to reflect the number of
CPUs in each cluster.

To account for system overheads, such as scheduling
decisions, we inflate ei to include processing time for
the appropriate operations. Accounting techniques, such
as the task-centric method, determine what overheads
should be charged against which tasks. Also, under
suspension-oblivious analysis, we also inflate ei to in-
clude suspension-based delays in execution. In this work,
this includes the suspension of when a GPU-using job
blocks waiting for an available GPU, as well as when a
GPU-using job suspends while waiting for results from
a GPU.

Fixed-point iterative schedulability tests must be used
since the overhead accounting methods presented here
depend upon the worst-case response time jobs. For-
tunately, worst-case response times can be computed
using bounded tardiness analysis [29]. However, this
response time is likewise dependent upon the overheads
under consideration. Thus, schedulability tests must be
iteratively performed until tardiness bounds remain un-
changed.

Basic Accounting. Let us begin accounting for basic
overheads and suspension-based execution delays.

A system must make one scheduling decision for
every job arrival and once again for every job comple-
tion. We account for scheduling decision overheads by
charging every task the cost of two scheduling decisions.
Similarly, the arrival of a job may trigger a preemption,
causing a context switch. Another context switch occurs
again when the preempting job completes, and the sys-
tem switches back to the originally scheduled job. Thus,
we charge each task for the cost of two context switches.

Fig. 9 gives a basic depiction of execution of a CPU-only
job where job execution is framed by scheduling decision
and context switch costs. This gives the following basic
inflation equation:12

e
(cpu-only)6
i = ei + 2(∆sch + ∆cxs), (6)

where ∆sch denotes the duration of a scheduling deci-
sion and ∆cxs the time to perform a context switch.

We may also perform a basic accounting of overheads
for GPU-using jobs. Unlike CPU-only jobs, GPU-using
jobs must incur at least two suspensions in the worst-
case. The first suspension occurs when a GPU-using job
attempts to acquire a GPU when none are available;
the job must suspend to wait for an available GPU.
The next suspension occurs when the GPU-using job
blocks to wait for the results from a GPU invocation.
An additional suspension may be experienced for each
additional use of the GPU by a job. Each suspension
induces two additional scheduling decision overheads
and context switch costs. Thus,

e
(gpu-using)7
i = ei + (1 + 1 + ηi)(2(∆sch + ∆cxs)), (7)

where ηi denotes the number of times the job Ji uses the
GPU. Note that ηi also denotes the number of interrupts
the GPU will send to the system to signal the completion
of an invocation; this will be important later.

Due to our suspension-oblivious analysis, we must
treat all durations of self-suspensions as additional ex-
ecution time (i.e. CPU demand). To account for the
suspension due to GPU acquisition, we must inflate ei
by bi (Appx. A). To account for suspensions due to GPU
use, we introduce a new term si. Let si denote the total
time the GPU spends executing for Ji as well as the
execution time for any associated top-halfs or bottom-
halfs. Fig. 10 gives a depiction of a simple (ηi = 1)
GPU-using job and associated overhead costs.

By simplifying Eq. (7) and incorporating bi and si,
we get:

e
(gpu-using)8
i = ei+bi+si+(2+ηi)(2(∆sch+∆cxs)). (8)

Release Overheads. In addition to scheduling and con-
text switch overheads, there are also overheads associ-
ated with job releases. Consider a periodic task system
where jobs are released by OS timers that trigger via
timer interrupts. Suppose at time t0 a timer interrupt
is raised to release job Ji. In an ideal system, Ji
would instantaneously appear in the ready queue of the
appropriate CPU (or even immediately scheduled) at t0.
However, this is not the case in a real system, and there

12We will be progressively inflating execution costs and need a
means of keeping track of our incremental steps. We use the super-
script notation on ei such that the super-script value matches the
equation label where the inflated execution cost was defined.

13



t
0

t
2

t
1

J
i
 released

J
i
 begins execution

J
i
 waits (suspends)

to acquire GPU

J
i
 acquires GPU and executes

J
i
 completes

J
i
 invokes GPU

execution and

self-suspends to

wait for results

J
i
 releases GPU and

continues execution

t
3

t
4

t
5

t
7

t
6

b
i

s
i

Figure 10. Basic accounting of overheads for simple GPU-using job, Ji. Suspensions incur additional scheduling and context switch overhead
costs. Execution time must also be inflated by bi and si under suspension-oblivious analysis.

Ji release

timer interrupt

Interrupt raised

on CPU x

Timer ISR invoked

on CPU x

Ji linked;

IPI sent

CPU y selects Ji
to execute

Context switched

Ji completes

t0 t1 t2 t3 t4 t5 t6 t7

hardware/interrupt

latency, ∆hw

release overhead, ∆rel

CPU y receives IPI

IPI latency, ∆ipi

scheduling, ∆sch

context switch, ∆cxs

job execution time

Figure 11. A newly released job experiences delays due to interrupt delivery latency and updates of ready queue data structures, in addition
to scheduling and context switch overheads.

are delays which should be accounted for.
Fig. 11 depicts the event sequence of a job released

by a timer. When the timer interrupt fires at time t0, it is
not received by CPU x until time t1. It takes a moment
for CPU x to respond to the interrupt, so the timer
ISR is not invoked until time t2. The interval [t0, t2]
may be modeled as delay due to hardware delays in
interrupt delivery, denoted by ∆hw. We ignore the effects
of ∆hw here since the goal of this paper is to compare
the effects klitirqd interrupt handling and standard Linux
interrupt handling have on schedulability. We presume
∆hw affects both methods equally.

Continuing after t2, the timer ISR must add Ji to
the appropriate ready queue. Before the ready queue

data structures can be updated, spinlocks must first be
acquired to enforce safe concurrent access. Once these
locks are acquired, Ji is added to the ready queues.
These operations are not completed until time t3. We
denote the duration [t2, t3] with ∆rel.

It is possible that at time t3, Ji should be immediately
scheduled, but Ji should not run on CPU x according
to the active scheduling algorithm. Instead, Ji must
be scheduled on CPU y. To handle this case, CPU x
updates data structures (links) at time t3 to make Ji
available to CPU y and then notifies CPU y of the need
to schedule Ji using an inter-processor interrupt (IPI),
which is received by CPU y at time t4. The interval
[t3, t4] captures delays caused by IPI latencies and is

14



GPU raises

interrupt

Interrupt raised

on CPU x

GPU top-half

ISR invoked

on CPU x

GPU bottom-half

completes

t0 t1 t2 t3 t4

hardware/interrupt

latency, ∆gpu_hw

top-half execution

time, ∆th

bottom-half execution

time, ∆bh

GPU top-half completes,

bottom-half invoked

Figure 12. Interrupt handling overheads under standard Linux, with
the liberal assumption that bottom-halfs are executed immediately and
not preceded by other bottom-halfs from other sources or deferred to
ksoftirq processing.

denoted by ∆ipi.
Observe that ∆rel and ∆ipi overheads may delay

execution whenever a job becomes ready to run, not
just from timer-based releases, but also resumptions from
self-suspensions. We must account for these overheads
accordingly. CPU-only jobs only experience overheads
∆rel and ∆ipi once (per release), so

e
(cpu-only)9
i = e

(cpu-only)6
i + ∆rel + ∆ipi. (9)

GPU-using jobs experience several self-suspensions, so

e
(gpu-using)10
i = e

(gpu-using)8
i + (2 + ηi)(∆

rel + ∆ipi). (10)

GPU Interrupts. We now present our accounting
method for GPU interrupt overheads under standard
Linux interrupt handling and klitirqd.

Standard Linux Interrupts. Fig. 12 illustrates the se-
quence of events from a GPU interrupt, raised by the
GPU device, to the completion of the interrupt bottom-
half under standard Linux. At time t0, the GPU raises
an interrupt and the associated top-half commences
execution at time t2. This sequence is similar to the
sequence already described for job release timer inter-
rupts. Similarly, the interval [t0, t2] models as delay due
to hardware delays in GPU interrupt delivery; we denote
this duration with the term ∆gpu_hw. However, like ∆hw,
we also ignore ∆gpu_hw for the same reasons.

At time t2, the top-half of the GPU interrupt begins
execution and completes at time t3. This duration de-
noted by ∆th. We make the liberal assumption that the
GPU interrupt bottom-half begins execution immediately
at time t3 and completes at time t4. This duration is
denoted by ∆bh. The response time of the interrupt
handler, end-to-end, is [t0, t4] (recall that the CPU cannot
be preempted while it is processing the interrupt under
standard Linux).

We say that this bound for response time is liberal for
two important reasons: (1) it assumes no other bottom-
halfs for other system interrupts are queued ahead of

the GPU interrupt bottom-half; and (2) it assumes the
GPU interrupt bottom-half is never deferred to Linux’s
ksoftirqd daemon. These are best-case assumptions for
standard Linux interrupt handling. If (1) fails to hold,
then the job interrupted by the GPU interrupt is further
delayed. If (2) fails to hold, then it is generally not
possible to bound the response time of the bottom-half
since ksoftirqd is not scheduled real-time priorities. If the
response time of the bottom-half is not bounded, then the
response time of the GPU-using job that depends upon
the bottom-half’s completion is also not bounded and no
real-time guarantees for the job can be made!

Since the execution on the interval [t2, t4] = ∆th +
∆bh is non-preemptive, GPU interrupt processing can
induce a priority inversion if a higher-priority job is
interrupted. This inversion is (∆th + ∆bh) in length
for every GPU interrupt in the worst-case. Under task-
centric accounting when there is no CPU dedicated to
interrupt handling (as is the case in this study), we
cannot know which CPUs will be affected by GPU
interrupts. As a result, we must model the processing
for a single interrupt as occurring on all CPUs (within
a given cluster) simultaneously (see [28] for a complete
explanation). Furthermore, any job, both CPU-only and
GPU-using, can be affected by these inversions.

To quantify the effect of GPU interrupts on job Ji, we
must first determine the maximum number of GPU in-
terrupts that may occur while Ji may be executing. Once
the total number of interrupts is known, we multiply the
number of interrupts by (∆th + ∆bh) to make a total
per-task accounting. The following formula computes the
number of GPU interrupts that may, in the worst-case,
delay job Ji in a soft real-time system with bounded
tardiness (assuming n is the number of tasks within the
cluster under consideration):

Hi =

n∑
i 6=j

(⌈
pi + xi + pj + xj

pj

⌉
· ηj
)
, (11)

where xi and xj denote tardiness bounds, as computed
by [29].

Since GPU interrupts affect both CPU-only and GPU-
using jobs, we further inflate ei with the same term
according to the following formulas:

e
(cpu-only)12
i = e

(cpu-only)9
i +Hi(∆

th + ∆bh) (12)

and

e
(gpu-using)13
i = e

(gpu-using)10
i +Hi(∆

th + ∆bh) (13)

for CPU-only and GPU-using tasks, respectively.

klitirqd Interrupts. The use of klitirqd shortens the dura-
tion of non-preemptive execution of interrupt handling at
the expense of additional thread-scheduling overheads.

15



GPU raises

interrupt

Interrupt raised

on CPU x

GPU top-half

ISR invoked

on CPU x

GPU bottom-half

ISR release queued
CPU y receives IPI

CPU y selects

klitirqd to

execute

Context switched

GPU bottom-half

completes

t0 t1 t2 t3 t4 t5 t6 t7 t8

hardware/interrupt

latency, ∆gpu_hw

top-half execution

time, ∆th

bottom-half execution time, ∆bh

bottom-half queued,

klitirqd linked to CPU y and

IPI sent to CPU y

klitirqd queueing, ∆krel

IPI latency, ∆ipi

scheduling, ∆sch

context switch, ∆cxs

Figure 13. Interrupt handling overheads under klitirqd.

bi

si

interrupts, ηi = 3

t0 t2 t3 t4 t5 t6 t9 t10 t13 t14 t15 t17t1

Ji waits (suspends)

to acquire GPU

Ji acquires GPU and executes

Ji invokes GPU execution and

self-suspends to wait for results

Bottom half executes in klitirqd

Ji invokes more GPU execution Ji releases GPU and

continues execution

t7 t8 t11 t12 t16

Ji released

Ji completes

Ji begins execution

Figure 14. Execution of a GPU-using job under klitirqd. By definition, si already incorporates ∆bh.

Fig. 13 illustrates the sequence of events from a GPU
interrupt, raised by the GPU device, to the completion of
the interrupt bottom-half by klitirqd. Observe in Fig. 13
that immediately after the completion of an interrupt top-
half at time t3, the bottom-half is “released” (or queued)
to klitirqd. This operation completes at time t4. Thus,
the entire non-preemptive duration of interrupt handling
lasts from [t2, t4] = ∆th + ∆krel. Thus, we can update
Eqs. (12) and (13) to replace ∆bh with ∆krel. This gives
us

ê
(cpu-only)14
i = e

(cpu-only)9
i +Hi(∆

th + ∆krel) (14)

and

ê
(gpu-using)15
i = e

(gpu-using)10
i +Hi(∆

th + ∆krel) (15)

for CPU-only and GPU-using tasks, respectively.
Eqs. (14) and (15) account for the effects of GPU

interrupt top-half processing under klitirqd. However,
we must still account for additional thread-scheduling
overheads. These remaining overheads only affect GPU-
using tasks, so Eq. (14) completes our accounting un-
der klitirqd for CPU-only tasks (though tick interrupt

accounting remains).
We must inflate every GPU-using job to include addi-

tional thread-scheduling costs. To schedule each bottom-
half we charge costs for ∆sch, ∆cxs, and ∆ipi. We
isolate these charges to the single job that triggers them
because the bottom-half is scheduled with the priority of
the originating job. Charging GPU-using jobs for thread-
scheduling overheads, we get the formula:

ê
(gpu-using)16
i = ê

(gpu-using)15
i + ηi(2(∆sch + ∆cxs) + ∆ipi).

(16)
Observe that we do not make a charge for ∆rel because
bottom-half releasing is already accounted for by ∆krel.
Furthermore, ∆krel � ∆rel because klitirqd threads are
already in a prepped idle state.

Due to suspension-oblivious analysis, we do not have
to make any overhead charges for ∆bh under klitirqd
since si, by definition, already incorporates their execu-
tion time. This can be observed in Fig. 14.

This completes our accounting of GPU interrupt over-
heads under both standard Linux interrupt handling and
klitirqd.

16



Overhead Duration
∆sch 1.34µs
∆cxs 0.75µs
∆ipi 35.6µs
∆rel 1.52µs
∆th 15.79µs
∆bh 40.63µs

∆krel 3.78µs
∆tck 0.28µs
Q 1ms

Table II
OBSERVED OVERHEADS ON OUR EVALUATION PLATFORM. Q IS A

COMPILE-TIME CONFIGURED VALUE.

Tick Accounting. An operating system will periodically
execute, once every quantum, a tick interrupt to per-
form periodic maintenance of internal bookkeeping data.
Methods for accounting for operating system ticks are
well known. As described in [28] and other sources, ticks
can be accounted for with the following equation:

e′tck
i = e′i +

⌈
pi + xi
Q

⌉
∆tck, (17)

where Q denotes the tick quantum length and e′i denotes
an already-inflated task execution time. For our account-
ing, we account for tick overheads last, after having
already inflated ei for the various system overheads.

Observed Overheads. We executed task sets made up
of both CPU-only and GPU-using tasks on our eval-
uation platform in LITMUSRT using both klitirqd and
standard Linux interrupt handling and recorded logs of
all scheduling events. Roughly 28 hours of execution
was spent gathering these logs. From these logs we
determined average-case values for each of the required
overheads. We are only interested in average-case values
since our system is soft real-time. With the exception of
∆th and ∆bh, outliers were removed by only considering
values from the interquartile range (a standard statistical
technique) before computing averages. We choose to not
remove outliers in the averages for ∆th and ∆bh because,
unlike the other overheads, the duration of each ∆th and
∆bh vary greatly. This is because each may perform a
very different operation each invocation. For example,
we have no visibility into the closed-source driver and
are unable to identify different types of bottom-halfs.
Thus, we merely group all types of bottom-halfs together
and compute an average.

Table II displays all the relevant overheads discussed
in this section. Note that Q is actually a compile-
time configured variable in Linux and not an observed
variable.

Please refer to Appx. D for all results to our overhead-
aware schedulability experiments.

17



C. Priority Inversion Results
As described in Sec. V, 41 task sets were executed

for two minutes in LITMUSRT twice: once with klitirqd
and once with standard Linux interrupt handling. Data
on the frequency and duration of priority inversions
was gathered. Figures for all of our gathered data are
presented here.

Fig. 15 through Fig. 55 depict the probability that an
observed priority inversion was less than a given value
(x-axis). When comparing two curves in these graphs,
a higher curve is generally better since this indicates
that more priority inversions are likely to be shorter by
comparison.

Fig. 56 through Fig. 96 depict the cumulative priority
inversion duration as a function of maximum priority
inversion duration (x-axis). In other words, for a given
x value, the corresponding y value is the sum weight
of all observed priority inversions with durations ≤ x.
When comparing two curves in these graphs, a lower
curve for larger values of x is better since this indicates
a lesser total duration of priority inversions. Stated more
simply, a lower curve reflects a system that spends less
time in an inversion state.

18



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 7.5 

klitriqd Standard Handling

Figure 15. Task set utilization (prior inflation): 7.5. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 7.6 

klitriqd Standard Handling

Figure 16. Task set utilization (prior inflation): 7.6. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 7.7 

klitriqd Standard Handling

Figure 17. Task set utilization (prior inflation): 7.7. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 7.8 

klitriqd Standard Handling

Figure 18. Task set utilization (prior inflation): 7.8. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 7.9 

klitriqd Standard Handling

Figure 19. Task set utilization (prior inflation): 7.9. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 8.0 

klitriqd Standard Handling

Figure 20. Task set utilization (prior inflation): 8.0. Cumulative
distribtion of priority inversion durations. Higher curve is better.

19



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 8.1 

klitriqd Standard Handling

Figure 21. Task set utilization (prior inflation): 8.1. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 8.2 

klitriqd Standard Handling

Figure 22. Task set utilization (prior inflation): 8.2. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 8.3 

klitriqd Standard Handling

Figure 23. Task set utilization (prior inflation): 8.3. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 8.4 

klitriqd Standard Handling

Figure 24. Task set utilization (prior inflation): 8.4. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 8.5 

klitriqd Standard Handling

Figure 25. Task set utilization (prior inflation): 8.5. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 8.6 

klitriqd Standard Handling

Figure 26. Task set utilization (prior inflation): 8.6. Cumulative
distribtion of priority inversion durations. Higher curve is better.

20



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 8.7 

klitriqd Standard Handling

Figure 27. Task set utilization (prior inflation): 8.7. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 8.8 

klitriqd Standard Handling

Figure 28. Task set utilization (prior inflation): 8.8. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 8.9 

klitriqd Standard Handling

Figure 29. Task set utilization (prior inflation): 8.9. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 9.0 

klitriqd Standard Handling

Figure 30. Task set utilization (prior inflation): 9.0. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 9.1 

klitriqd Standard Handling

Figure 31. Task set utilization (prior inflation): 9.1. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 9.2 

klitriqd Standard Handling

Figure 32. Task set utilization (prior inflation): 9.2. Cumulative
distribtion of priority inversion durations. Higher curve is better.

21



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 9.3 

klitriqd Standard Handling

Figure 33. Task set utilization (prior inflation): 9.3. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 9.4 

klitriqd Standard Handling

Figure 34. Task set utilization (prior inflation): 9.4. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 9.5 

klitriqd Standard Handling

Figure 35. Task set utilization (prior inflation): 9.5. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 9.6 

klitriqd Standard Handling

Figure 36. Task set utilization (prior inflation): 9.6. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 9.7 

klitriqd Standard Handling

Figure 37. Task set utilization (prior inflation): 9.7. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 9.8 

klitriqd Standard Handling

Figure 38. Task set utilization (prior inflation): 9.8. Cumulative
distribtion of priority inversion durations. Higher curve is better.

22



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 9.9 

klitriqd Standard Handling

Figure 39. Task set utilization (prior inflation): 9.9. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 10.0 

klitriqd Standard Handling

Figure 40. Task set utilization (prior inflation): 10.0. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 10.1 

klitriqd Standard Handling

Figure 41. Task set utilization (prior inflation): 10.1. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 10.2 

klitriqd Standard Handling

Figure 42. Task set utilization (prior inflation): 10.2. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 10.3 

klitriqd Standard Handling

Figure 43. Task set utilization (prior inflation): 10.3. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 10.4 

klitriqd Standard Handling

Figure 44. Task set utilization (prior inflation): 10.4. Cumulative
distribtion of priority inversion durations. Higher curve is better.

23



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 10.5 

klitriqd Standard Handling

Figure 45. Task set utilization (prior inflation): 10.5. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 10.6 

klitriqd Standard Handling

Figure 46. Task set utilization (prior inflation): 10.6. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 10.7 

klitriqd Standard Handling

Figure 47. Task set utilization (prior inflation): 10.7. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 10.8 

klitriqd Standard Handling

Figure 48. Task set utilization (prior inflation): 10.8. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 10.9 

klitriqd Standard Handling

Figure 49. Task set utilization (prior inflation): 10.9. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.0 

klitriqd Standard Handling

Figure 50. Task set utilization (prior inflation): 11.0. Cumulative
distribtion of priority inversion durations. Higher curve is better.

24



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.1 

klitriqd Standard Handling

Figure 51. Task set utilization (prior inflation): 11.1. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.2 

klitriqd Standard Handling

Figure 52. Task set utilization (prior inflation): 11.2. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.3 

klitriqd Standard Handling

Figure 53. Task set utilization (prior inflation): 11.3. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.4 

klitriqd Standard Handling

Figure 54. Task set utilization (prior inflation): 11.4. Cumulative
distribtion of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.5 

klitriqd Standard Handling

Figure 55. Task set utilization (prior inflation): 11.5. Cumulative
distribtion of priority inversion durations. Higher curve is better.

25



 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 7.5 

klitriqd Standard Handling

Figure 56. Task set utilization (prior inflation): 7.5. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 7.6 

klitriqd Standard Handling

Figure 57. Task set utilization (prior inflation): 7.6. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 7.7 

klitriqd Standard Handling

Figure 58. Task set utilization (prior inflation): 7.7. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 7.8 

klitriqd Standard Handling

Figure 59. Task set utilization (prior inflation): 7.8. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 7.9 

klitriqd Standard Handling

Figure 60. Task set utilization (prior inflation): 7.9. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.0 

klitriqd Standard Handling

Figure 61. Task set utilization (prior inflation): 8.0. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

26



 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.1 

klitriqd Standard Handling

Figure 62. Task set utilization (prior inflation): 8.1. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.2 

klitriqd Standard Handling

Figure 63. Task set utilization (prior inflation): 8.2. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.3 

klitriqd Standard Handling

Figure 64. Task set utilization (prior inflation): 8.3. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.4 

klitriqd Standard Handling

Figure 65. Task set utilization (prior inflation): 8.4. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.5 

klitriqd Standard Handling

Figure 66. Task set utilization (prior inflation): 8.5. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.6 

klitriqd Standard Handling

Figure 67. Task set utilization (prior inflation): 8.6. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

27



 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.7 

klitriqd Standard Handling

Figure 68. Task set utilization (prior inflation): 8.7. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.8 

klitriqd Standard Handling

Figure 69. Task set utilization (prior inflation): 8.8. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.9 

klitriqd Standard Handling

Figure 70. Task set utilization (prior inflation): 8.9. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 9.0 

klitriqd Standard Handling

Figure 71. Task set utilization (prior inflation): 9.0. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 9.1 

klitriqd Standard Handling

Figure 72. Task set utilization (prior inflation): 9.1. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 9.2 

klitriqd Standard Handling

Figure 73. Task set utilization (prior inflation): 9.2. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

28



 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 9.3 

klitriqd Standard Handling

Figure 74. Task set utilization (prior inflation): 9.3. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 9.4 

klitriqd Standard Handling

Figure 75. Task set utilization (prior inflation): 9.4. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 9.5 

klitriqd Standard Handling

Figure 76. Task set utilization (prior inflation): 9.5. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 9.6 

klitriqd Standard Handling

Figure 77. Task set utilization (prior inflation): 9.6. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 9.7 

klitriqd Standard Handling

Figure 78. Task set utilization (prior inflation): 9.7. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 9.8 

klitriqd Standard Handling

Figure 79. Task set utilization (prior inflation): 9.8. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

29



 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 9.9 

klitriqd Standard Handling

Figure 80. Task set utilization (prior inflation): 9.9. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 10.0 

klitriqd Standard Handling

Figure 81. Task set utilization (prior inflation): 10.0. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 50000

 100000

 150000

 200000

 250000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 10.1 

klitriqd Standard Handling

Figure 82. Task set utilization (prior inflation): 10.1. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 10.2 

klitriqd Standard Handling

Figure 83. Task set utilization (prior inflation): 10.2. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 10.3 

klitriqd Standard Handling

Figure 84. Task set utilization (prior inflation): 10.3. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 10.4 

klitriqd Standard Handling

Figure 85. Task set utilization (prior inflation): 10.4. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

30



 0

 50000

 100000

 150000

 200000

 250000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 10.5 

klitriqd Standard Handling

Figure 86. Task set utilization (prior inflation): 10.5. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 10.6 

klitriqd Standard Handling

Figure 87. Task set utilization (prior inflation): 10.6. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 10.7 

klitriqd Standard Handling

Figure 88. Task set utilization (prior inflation): 10.7. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 10.8 

klitriqd Standard Handling

Figure 89. Task set utilization (prior inflation): 10.8. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 10.9 

klitriqd Standard Handling

Figure 90. Task set utilization (prior inflation): 10.9. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 11.0 

klitriqd Standard Handling

Figure 91. Task set utilization (prior inflation): 11.0. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

31



 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 11.1 

klitriqd Standard Handling

Figure 92. Task set utilization (prior inflation): 11.1. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 11.2 

klitriqd Standard Handling

Figure 93. Task set utilization (prior inflation): 11.2. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 11.3 

klitriqd Standard Handling

Figure 94. Task set utilization (prior inflation): 11.3. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 11.4 

klitriqd Standard Handling

Figure 95. Task set utilization (prior inflation): 11.4. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 11.5 

klitriqd Standard Handling

Figure 96. Task set utilization (prior inflation): 11.5. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

32



D. Schedulability Results

This section contains figures for all the schedulability
experiments that were performed in Sec. VII. The figures
are organized in the following manner. The first half of
the figures are for the schedulability tests where per-
task utilizations were uniformly selected at random from
a given utilization range. These ranges were [1%, 10%],
[10%, 40%], and [50%, 90%]. Within each given utiliza-
tion range, the percentage share of GPU-using tasks
was varied in 10% blocks (yielding ten graphs for each
utilization range). These experiments were repeated four
times, varying the GPU-to-CPU speed-up ratio such that
R ∈ {1, 4, 8, 16}, as described in Sec. VII. This yields
a total of 240 schedulability experiment graphs.

Note, when R = 1, the generated schedulability
graphs are plotted against CPU utilization. When R 6= 1,
then the generated schedulability graphs are plotted
against the effective system utilization.

Please also note that the following plots may not be
smooth at higher effective system utilizations when R 6=
1. This is because it was difficult to generate many task
sets with these effective utilization. We could make these
lines smoother, but it would require a significant increase
in the number of tested task sets (each schedulability
graph already represents the testing of several million
task sets). As it is, it took over 24 hours to perform
the schedulability experiments reflected in the following
graphs.

The organization of the following graphs are summa-
rized in Table III.

33



Per-Task x-axis Per-Task Utilization Figures
Utilization Distribution Range or Average

[1%, 10%] Fig. 97 to Fig. 106
CPU Utilization, R = 1 [10%, 40%] Fig. 107 to Fig. 116

[50%, 90%] Fig. 117 to Fig. 126
[1%, 10%] Fig. 127 to Fig. 136

Effective Utilization, R = 4 [10%, 40%] Fig. 137 to Fig. 146
Uniform [50%, 90%] Fig. 147 to Fig. 156

[1%, 10%] Fig. 157 to Fig. 166
Effective Utilization, R = 8 [10%, 40%] Fig. 167 to Fig. 176

[50%, 90%] Fig. 177 to Fig. 186
[1%, 10%] Fig. 187 to Fig. 196

Effective Utilization, R = 16 [10%, 40%] Fig. 197 to Fig. 206
[50%, 90%] Fig. 207 to Fig. 216

10% Fig. 217 to Fig. 226
CPU Utilization, R = 1 25% Fig. 227 to Fig. 236

50% Fig. 237 to Fig. 246
10% Fig. 247 to Fig. 256

Effective Utilization, R = 4 25% Fig. 257 to Fig. 266
Exponential 50% Fig. 267 to Fig. 276

10% Fig. 277 to Fig. 286
Effective Utilization, R = 8 25% Fig. 287 to Fig. 296

50% Fig. 297 to Fig. 306
10% Fig. 307 to Fig. 316

Effective Utilization, R = 16 25% Fig. 317 to Fig. 326
50% Fig. 327 to Fig. 336

Table III
ORGANIZATION OF FIGURED FOR SCHEDULABILITY EXPERIMENTS.

34



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]; Util (uniform) [0.01, 0.1]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 97. The percentage of schedulable task sets as a function of
CPU utilization. The percentage number of GPU-using tasks per task
set is in the range [1%, 10%]. Suspension-oblivious per task utilization
selected uniformly from the range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]; Util (uniform) [0.01, 0.1]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 98. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [10%, 20%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]; Util (uniform) [0.01, 0.1]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 99. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [20%, 30%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]; Util (uniform) [0.01, 0.1]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 100. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [30%, 40%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]; Util (uniform) [0.01, 0.1]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 101. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [40%, 50%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.01, 0.1]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 102. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [50%, 60%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].

35



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]; Util (uniform) [0.01, 0.1]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 103. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [60%, 70%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]; Util (uniform) [0.01, 0.1]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 104. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [70%, 80%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]; Util (uniform) [0.01, 0.1]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 105. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [80%, 90%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]; Util (uniform) [0.01, 0.1]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 106. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [90%, 100%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].

36



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]; Util (uniform) [0.1, 0.4]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 107. The percentage of schedulable task sets as a function of
CPU utilization. The percentage number of GPU-using tasks per task
set is in the range [1%, 10%]. Suspension-oblivious per task utilization
selected uniformly from the range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]; Util (uniform) [0.1, 0.4]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 108. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [10%, 20%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]; Util (uniform) [0.1, 0.4]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 109. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [20%, 30%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]; Util (uniform) [0.1, 0.4]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 110. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [30%, 40%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]; Util (uniform) [0.1, 0.4]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 111. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [40%, 50%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.1, 0.4]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 112. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [50%, 60%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].

37



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]; Util (uniform) [0.1, 0.4]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 113. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [60%, 70%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]; Util (uniform) [0.1, 0.4]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 114. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [70%, 80%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]; Util (uniform) [0.1, 0.4]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 115. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [80%, 90%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]; Util (uniform) [0.1, 0.4]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 116. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [90%, 100%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].

38



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 117. The percentage of schedulable task sets as a function of
CPU utilization. The percentage number of GPU-using tasks per task
set is in the range [1%, 10%]. Suspension-oblivious per task utilization
selected uniformly from the range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 118. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [10%, 20%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 119. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [20%, 30%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 120. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [30%, 40%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 121. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [40%, 50%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 122. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [50%, 60%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].

39



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 123. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [60%, 70%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 124. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [70%, 80%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 125. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [80%, 90%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 126. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [90%, 100%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].

40



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 127. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 128. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 129. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 130. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 131. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 132. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

41



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 133. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 134. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 135. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 136. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [1%, 10%].

42



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 137. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 138. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 139. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 140. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 141. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 142. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

43



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 143. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 144. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 145. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 146. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [10%, 40%].

44



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 147. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 148. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 149. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 150. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 151. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 152. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

45



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 153. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 154. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 155. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 156. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [50%, 90%].

46



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 157. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 158. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 159. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 160. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 161. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 162. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

47



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 163. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 164. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 165. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 166. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [1%, 10%].

48



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 167. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 168. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 169. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 170. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 171. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 172. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

49



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 173. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 174. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 175. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 176. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [10%, 40%].

50



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 177. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 178. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 179. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 180. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 181. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 182. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

51



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 183. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 184. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 185. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 186. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [50%, 90%].

52



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 187. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 188. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 189. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 190. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 191. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 192. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

53



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 193. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 194. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 195. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]; Util Uniform [0.01, 0.1]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 196. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [1%, 10%].

54



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 197. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 198. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 199. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 200. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 201. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 202. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

55



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 203. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 204. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 205. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]; Util Uniform [0.1, 0.4]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 206. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [10%, 40%].

56



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 207. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 208. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 209. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 210. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 211. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 212. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

57



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 213. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 214. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 215. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]; Util Uniform [0.5, 0.9]; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 216. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [50%, 90%].

58



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]Exp Dist. Avg. 0.1; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 217. The percentage of schedulable task sets as a function of
CPU utilization. The percentage number of GPU-using tasks per task
set is in the range [1%, 10%]. Suspension-oblivious per task utilization
selected from the exponential distribution with an average utilization
of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]Exp Dist. Avg. 0.1; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 218. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [10%, 20%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]Exp Dist. Avg. 0.1; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 219. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [20%, 30%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]Exp Dist. Avg. 0.1; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 220. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [30%, 40%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]Exp Dist. Avg. 0.1; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 221. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [40%, 50%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]Exp Dist. Avg. 0.1; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 222. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [50%, 60%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.

59



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]Exp Dist. Avg. 0.1; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 223. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [60%, 70%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]Exp Dist. Avg. 0.1; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 224. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [70%, 80%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]Exp Dist. Avg. 0.1; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 225. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [80%, 90%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]Exp Dist. Avg. 0.1; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 226. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [90%, 100%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.

60



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]Exp Dist. Avg. 0.25; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 227. The percentage of schedulable task sets as a function of
CPU utilization. The percentage number of GPU-using tasks per task
set is in the range [1%, 10%]. Suspension-oblivious per task utilization
selected from the exponential distribution with an average utilization
of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]Exp Dist. Avg. 0.25; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 228. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [10%, 20%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]Exp Dist. Avg. 0.25; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 229. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [20%, 30%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]Exp Dist. Avg. 0.25; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 230. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [30%, 40%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]Exp Dist. Avg. 0.25; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 231. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [40%, 50%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]Exp Dist. Avg. 0.25; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 232. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [50%, 60%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.

61



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]Exp Dist. Avg. 0.25; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 233. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [60%, 70%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]Exp Dist. Avg. 0.25; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 234. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [70%, 80%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]Exp Dist. Avg. 0.25; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 235. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [80%, 90%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]Exp Dist. Avg. 0.25; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 236. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [90%, 100%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.

62



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]Exp Dist. Avg. 0.5; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 237. The percentage of schedulable task sets as a function of
CPU utilization. The percentage number of GPU-using tasks per task
set is in the range [1%, 10%]. Suspension-oblivious per task utilization
selected from the exponential distribution with an average utilization
of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]Exp Dist. Avg. 0.5; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 238. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [10%, 20%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]Exp Dist. Avg. 0.5; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 239. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [20%, 30%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]Exp Dist. Avg. 0.5; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 240. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [30%, 40%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]Exp Dist. Avg. 0.5; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 241. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [40%, 50%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]Exp Dist. Avg. 0.5; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 242. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [50%, 60%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.

63



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]Exp Dist. Avg. 0.5; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 243. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [60%, 70%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]Exp Dist. Avg. 0.5; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 244. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [70%, 80%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]Exp Dist. Avg. 0.5; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 245. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [80%, 90%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]Exp Dist. Avg. 0.5; Per (uniform) [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 246. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [90%, 100%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.

64



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 247. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 248. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 249. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 250. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 251. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 252. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

65



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 253. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 254. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 255. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 256. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

66



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 257. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 258. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 259. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 260. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 261. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 262. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

67



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 263. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 264. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 265. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 266. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

68



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 267. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 268. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 269. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 270. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 271. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 272. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

69



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 273. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 274. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 275. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 276. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

70



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 277. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 278. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 279. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 280. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 281. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 282. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

71



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 283. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 284. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 285. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 286. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

72



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 287. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 288. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 289. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 290. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 291. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 292. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

73



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 293. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 294. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 295. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 296. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

74



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 297. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 298. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 299. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 300. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 301. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 302. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

75



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 303. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 304. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 305. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 306. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

76



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 307. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 308. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 309. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 310. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 311. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 312. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

77



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 313. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 314. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 315. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]Exp Dist. Avg. 0.1; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 316. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.

78



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 317. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 318. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 319. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 320. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 321. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 322. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

79



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 323. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 324. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 325. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]Exp Dist. Avg. 0.25; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 326. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.

80



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [0, 10%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 327. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [10, 20%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 328. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [20, 30%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 329. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [30, 40%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 330. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [40, 50%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 331. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 332. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

81



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [60, 70%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 333. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [70, 80%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 334. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [80, 90%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 335. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [90, 100%]Exp Dist. Avg. 0.5; Util [15ms, 60ms]

[1] klitirqd, n=1
[2] Linux, n=1

[3] klitirqd, n=3
[4] Linux, n=3

[5] klitirqd, n=6
[6] Linux, n=6

Figure 336. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

82


	Introduction 
	Interrupt Handling 
	Interrupt Handling in LITMUSRT 
	GPU Integration 
	Evaluation of Priority Inversions  
	System-Wide Evaluation of Interrupt Handling Methods 
	Overhead-Aware Schedulability 
	Conclusion  
	References
	Appendix
	k-FMLP 
	Overhead Accounting 
	Priority Inversion Results 
	Schedulability Results 


