
GPUSync: A Framework for Real-Time GPU Management ∗
Glenn A. Elliott, Bryan C. Ward, and James H. Anderson

Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
The integration of graphics processing units (GPUs) into
real-time systems has recently become an active area of re-
search. However, prior research on this topic has failed to
produce real-time GPU allocation methods that fully exploit
the available parallelism in GPU-enabled systems. In this
paper, a GPU management framework called GPUSync is
described that enables increased parallelism while providing
predictable real-time behavior. GPUSync can be applied
in multi-GPU real-time systems, is cognizant of the system
bus architecture, and fully exposes the parallelism offered by
modern GPUs, even when closed-source GPU drivers are
used. Schedulability tests presented herein that incorporate
empirically measured overheads, including those due to bus
contention, demonstrate that GPUSync offers real-time pre-
dictability and performs well in practice.

1 Introduction
Graphics processing units (GPUs) are commonly used to-
day to accelerate intensive general-purpose computations,
a practice termed GPGPU. The breadth of application do-
mains that can benefit from GPGPU includes many in
which real-time constraints exist. In automotive systems,
for example, GPUs can be utilized to perform eye track-
ing [18], pedestrian detection [25], navigation [14], and ob-
stacle avoidance [23]. If a single platform consolidates such
features, then it may require a multicore system with multi-
ple GPUs. Such systems are the focus of this paper.

CPU scheduling in such a system can follow a partitioned,
clustered, or global approach. Under clustered scheduling,
a system’s m CPUs are partitioned into clusters of c CPUs
each, and each task is scheduled within a specific cluster.
Partitioned and global scheduling are special cases, where
c = 1 and c = m, respectively. Similarly, GPUs can be
organized by following a partitioned, clustered, or global ap-
proach. This categorization yields nine possible allocation
categories, as illustrated in matrix form in Fig. 1.

It is currently unclear which allocation categories in Fig. 1
should be preferred in practice. To determine this, we are
currently engaged in a long-term study in which these cate-
gories will be compared on the basis of real-time schedula-
bility, for both fixed-priority (FP) and earliest-deadline-first
(EDF) task prioritizations—18 categories in total. For such

∗Supported by NSF grants CNS 1016954, CNS 1115284, and CNS
1218693; ARO grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-
0549; AFRL grant FA8750-11-1-0033; and an NSF graduate fellowship.

Figure 1: Matrix of CPU
and GPU organization.

a comparison to be meaning-
ful, per-category methods are
needed for utilizing the con-
siderable parallelism available
in multi-GPU systems. After
all, GPU-enabled systems are
architected with the goal of
fostering parallelism in mind.

This paper is directed at
such methods. Our goal is
to determine how GPU-related
parallelism can be dealt with
within a single category in
Fig. 1 when assessing schedulability (cross category compar-
isons are left for future work). Due to space constraints, we
cannot consider all 18 alternatives. Thus, we limit attention
to EDF scheduling under the shaded categories, as these suf-
ficiently expose most interesting parallelism-related issues.

GPU-related parallelism. In any GPU-enabled multicore
system, parallelism-related issues arise at several levels. For
example, data must be transmitted to a GPU before compu-
tation begins; ideally, GPU transmissions and computation
should overlap in time. Additionally, such transmissions re-
sult in increased traffic on shared buses, which are utilized in
parallel by different tasks for different purposes. Bus traffic
needs to be managed carefully or all computations in the sys-
tem may be slowed [20]. If a system has multiple GPUs, as
we assume, then further opportunities for parallelism exist.
For example, on such a platform, it may be desirable to use
a clustered or global GPU organization in order to avoid the
utilization loss common to partitioned approaches. However,
a GPU-using task may develop memory-based affinity for a
particular GPU as it executes. In such cases, program state
(data) is stored in GPU memory that is accessed each time
the task executes on that particular GPU. This state must be
migrated each time the task uses a GPU different from the
one it used previously. Such migrations increase bus traffic
and thus affect system-wide performance and predictability.

As explained in greater detail later, prior work on real-
time GPU management has only partially addressed these
parallelism-related issues. Furthermore, issues unique to
multi-GPU systems have received very little attention.

Contributions. In this paper, we present a real-time GPU
management framework called GPUSync, which is cog-
nizant of system architecture and task GPU affinity and ex-
ploits the parallelism offered by modern GPUs. While the
management of GPUs is viewed as a scheduling problem in



most prior related efforts (e.g., see [2, 6, 15, 16]), we view
such management as a synchronization problem. This view-
point reflects the fact that GPUs are treated as I/O devices by
the scheduler within the OS (even in on-chip architectures).

As noted above, we focus exclusively herein on EDF
scheduling applied to the shaded categories in Fig. 1. How-
ever, variants of GPUSync that utilize different synchro-
nization techniques can be applied to the other categories.

This paper’s organization and our specific contributions
are as follows. After addressing necessary preliminaries in
Secs. 2 and 3, we describe the design of GPUSync in Sec. 4.
GPUSync utilizes real-time locking protocols to man-
age GPU-related resources, so blocking bounds are needed
for schedulability analysis—these we derive in Sec. 5.
GPUSync is configurable in many respects. For example,
the “distance” (with respect to the interconnection topology)
that GPU data can migrate and the “chunking size” to use
are configurable. Sec. 6 presents an assessment of tradeoffs
concerning such configurable settings from both schedula-
bility and runtime-performance perspectives. For the former
purpose, we implemented GPUSync in UNC’s Linux-based
LITMUSRT real-time OS [5], measured relevant overheads,
and applied these overheads within overhead-aware schedu-
lability studies. For the latter purpose, we conducted stud-
ies in which various real-time-related metrics were recorded
for test workloads. Many of our proposed GPU management
techniques proved able to either improve schedulability or
improve actual performance without degrading schedulabil-
ity. After discussing these results, we conclude in Sec. 7.

2 Target Platform
Our assumed target platform is a multicore system with one
or more GPUs. The task systems we envision being hosted
on such a platform are motivated by the automotive systems
mentioned in Sec. 1. Specifically, we assume that such tasks
are sporadic, have provisioned worst-case execution times
that are rarely (if ever) exceeded, and are subject to the soft
real-time (SRT) constraint of bounded deadline tardiness. In
work on CPU scheduling, the clustered and global schedul-
ing alternatives highlighted in Fig. 1 have been shown to be
particularly effective in supporting such task systems [4].

It may seem counterintuitive to allow deadline tardi-
ness in a safety-critical automotive application. However,
“bounded tardiness” does not necessarily equate to “unsafe.”
For example, the reaction time of an alert driver is about
700ms [13]. Thus, a pedestrian avoidance system may only
need to react to events within a 700ms window to be a vi-
ably safe system. Furthermore, a system designer may only
be able to implement basic safety features under hard real-
time (HRT) constraints (no tardiness), yet more complex and
robust systems may be possible if stringent requirements are
relaxed.1 These robust systems may indeed be safer than ba-

1True HRT constraints are problematic in a GPU-enabled system any-
way due to hardware complexity in such systems, the closed-source nature
of GPU drivers, and the lack of timing analysis tools for such systems [8].

Multicore

Processor 0:

CPUs [0..5]

I/O

Hub 0

GPU 0

GPU 1

GPU 2

Multicore

Processor 1:

CPUs [6..12]

System

Memory 1
I/O

Hub 1

GPU 4

Copy

Engine 0

Copy

Engine 1

Execution

Engine M
em

o
ry

 C
o

n
tr

o
ll

er

GPU

Memory

Memory Controller

CPU [0..5]

and Caches

Node 0

Node 1

PCIe
High-Speed

Interconnect

Memory

Bus

System

Memory 0

Switch

Figure 2: Assumed system architecture.

sic ones, despite bounded tardiness. This is especially true if
empirical tests show that deadline misses are rare even when
tardiness is merely bounded analytically.
High-level architecture of assumed system. GPUSync
should expose the parallelism offered by the underlying
hardware to the extent possible while maintaining bounded
tardiness. We now describe the canonical architecture as-
sumed in this paper and the parallelism it offers. This canon-
ical system is based on the lab machine used in our experi-
ments. We note potentially interesting architectural alterna-
tives found in other systems where appropriate. Due to space
limitations, we limit attention to GPU technologies from
NVIDIA, whose CUDA [1] platform is a popular GPGPU
solution. However, our techniques may also be used with
GPUs from other manufacturers.

Fig. 2 depicts the high-level architecture of the assumed
system, which is a large-scale GPU-enabled system. There
are four major types of components: system memory, multi-
core (MC) processors,2 I/O hubs, and GPUs. These compo-
nents are connected via three bus interconnects: the memory
bus, high-speed processor interconnect, and PCIe bus.

The CPUs in each MC processor are connected to system
memory by an on-chip memory controller attached directly
to the memory bus. The MC processors are linked through
full-duplex high-speed interconnects that allow data to travel
in both directions simultaneously at full speed. On the MC
processors, these interconnects communicate directly with
the memory controller, allowing access to system memory.
The I/O hubs also connect to each other and the MC proces-
sors using the same high-speed interconnect. Thus, I/O hubs
can also access system memory.

The I/O hubs connect to GPUs using a packet-switched,
dual-simplex, PCIe bus.3 Each I/O hub has many indepen-
dent “lanes” that are bundled in parallel to form “links.” Each

2We use the terms “CPU” and “core” interchangeably. We use the term
“multicore processor” to refer an entire multicore chip.

3A dual-simplex bus is functionally equivalent to a full-duplex bus. The
two only differ at the physical level.



link attaches to a PCIe switch that multiplexes additional
links to increase the number of supported GPUs. Thus, the
PCIe bus is organized hierarchically.4 The GPUs attach to
the links provided by the switches.5 Devices can also trans-
mit directly to each other if they share an I/O hub.

At the highest level, components are partitioned into non-
uniform memory access (NUMA) nodes. As seen in Fig. 2,
each NUMA node includes a pool of system memory, a MC
processor, an I/O hub, and a collection of GPUs.6 Memory
and device access across nodes is supported, but requires
an additional “hop” over the high-speed interconnect. Thus,
memory traffic should be localized within a node if possible.
GPU architecture. As seen in Fig. 2, a GPU has four major
components: an execution engine, one or more DMA copy
engines, a memory controller, and specialized high-speed
memory. The execution engine consists of many parallel pro-
cessors and performs computations, similar to a CPU. The
copy engines, connected to the PCIe bus, transmit data be-
tween system memory and GPU memory. Though the PCIe
bus is dual-simplex, most GPUs only have one copy engine,
and thus cannot send and receive data at the same time. How-
ever, high-end GPUs may have an additional copy engine,
enabling simultaneous bi-directional transmissions.

The execution and copy engines operate independently—
a copy engine may transmit data while the execution engine
executes. Also, some modern GPUs have the capability to
transmit directly to each other, bypassing system memory.
GPGPU operations and state migration. GPGPU pro-
grams execute on CPUs and invoke programs on GPUs
called kernels. The typical execution sequence is as follows:
(i) transmit input data for GPU kernels from system memory
to GPU memory; (ii) execute kernels to operate on the input
data, storing results in GPU memory; (iii) copy results from
GPU memory back to system memory. A program may re-
peat this sequence several times before completing. Each ac-
tion, unless explicitly broken up by the programmer, is per-
formed non-preemptively by the GPU.

In addition to memory used for input and output, recur-
rent tasks may maintain state in GPU memory. For exam-
ple, motion-tracking algorithms maintain information about
the movement of objects between video frames. A task has
affinity with the GPU that holds its most recent state. State
must migrate with tasks from one GPU to another.7 The cost
of migration is the time it takes to move state from one GPU

4Unlike the older PCI bus where only one device on a bus may transmit
data at a time, PCIe devices can transmit data simultaneously.

5Smaller systems may not be equipped with PCIe switches in which case
GPUs attach directly to the I/O hubs.

6Nodes may share a single I/O hub in other configurations. Smaller sys-
tems may have only a single node and a single GPU.

7Memory must be pre-allocated on each GPU where a task may run to
facilitate fast migrations. This is a reasonable constraint given that memory
footprints of real-time GPU applications are relatively small. For example,
the per-GPU memory footprint of an implementation of a complex com-
puter vision algorithm that processes 640x480 resolution video streams is
only 40MB [17]—much smaller than the 2GB and 6GB available in today’s
mid-range and high-end GPUs, respectively.

to another. Cost is partly dependent upon the method used
to copy state between GPUs as well as the distance between
GPUs. Distance is the number of links to the nearest com-
mon switch or I/O hub of two GPUs. For example, in Fig. 2,
the distance between GPUs 0 and 2 is two (one link to a
switch, a second link to a common I/O hub). Migrations
using direct GPU-to-GPU memory copies, especially over
short distances, are fast due to proximity and likely reduce
bus contention since less distance is traveled.

Architectural implications. From a real-time perspective,
we wish to constrain system utilization the least while main-
taining predictable real-time performance. System utiliza-
tion can be increased by exploiting parallelism. In the ar-
chitecture above, GPU-related parallelism includes the dual-
simplex PCIe bus and the independent operation of the ex-
ecution and copy engines. Efficient GPU management tech-
niques should allow the simultaneous use of these compo-
nents. However, this is difficult due to bus contention issues.

GPGPU programs are data intensive and generate signif-
icant traffic between system and GPU memory. Within the
same NUMA node in Fig. 2, data copied between system and
GPU memory traverses the three buses, a system memory
controller, and one PCIe switch. These elements are shared
by concurrently executing operations. The speed of such a
data copy is a function of contention, interconnect band-
width, and bus arbitration protocols.

The management of bus contention in real-time systems
has been explored extensively by Pellizzoni in his Ph.D. the-
sis [20]. However, his approach requires custom elements at
every system level: specialized PCI hardware interposed be-
tween devices, OS modifications for memory and PCI bus
scheduling, a custom compiler, and customized source code.
While impressive in its scope, such an approach is currently
infeasible in GPU-enabled real-time systems due to software
complexity: the software stack that manages GPUs is ex-
ceedingly complex and often closed-source. Also, [20] does
not address issues of GPU allocation and state migration.
Instead, we endeavor to design efficient GPU resource man-
agement techniques that: (i) are cognizant of system archi-
tecture issues; (ii) aware of task GPU affinity; (iii) exploit
the parallelism offered by modern GPUs; (iv) maintain real-
time predictability; and (v) can be easily applied to existing
systems and support a variety of real-time schedulers.

3 Prior GPU Approaches
Table 1 compares features of other notable GPU manage-
ment frameworks related to GPUSync. PTasks [21], devel-
oped by Rossbach et al., creates a new OS-level infrastruc-
ture for GPU management. RGEM is a user-space real-time
GPU scheduler designed by Kato et al. [15]. In more recent
work, Kato et al. also developed Gdev, which extends many
of the ideas developed in RGEM to the OS kernel space [16].

Other than GPUSync, only RGEM is designed for pre-
dictable real-time systems. RGEM schedules GPU opera-
tions by fixed priority. RGEM also addresses schedulabil-



Data/ Auto. Supports
Real-Time Comp. GPU P2P Clsd.-Src.
FP EDF Overlap Alloc. Migr. Drivers

PTasks x x x
RGEM x x
Gdev x

GPUSync x x x x x x

Table 1: GPUSync vs. notable prior work.

ity problems caused by long non-preemptive copies between
system and GPU memory by breaking large copies into
smaller chunks, reducing the duration of priority inversions
and thus improving schedulability. This chunking approach
is also adopted by GPUSync.

PTasks and Gdev support the overlapping of GPU
data transmissions and computation. PTasks uses data-flow
graphs to describe flows of execution, and this is leveraged
to individually schedule execution and copy engines. Gdev
accomplishes overlapping by separately scheduling the ex-
ecution and copy engines of a GPU. This is possible be-
cause Gdev is implemented in an open-source GPU device
driver. This can be a limitation since these drivers lag behind
vendor-provided ones with respect to performance, available
features, and support for the most recent GPUs.

Excluding GPUSync, only PTasks supports automatic
GPU allocation in multi-GPU systems. PTasks includes a
data-aware GPU scheduler that attempts to greedily schedule
GPU computations on the “best” available GPU at the time
of an issued operation, where “best” is defined by GPU capa-
bilities (such as speed) and affinity. However, data migration
between GPUs must be performed by copying data to and
from system memory. In the field of responsive or real-time
GPGPU, no prior work has supported direct GPU-to-GPU,
commonly referred to as peer-to-peer (P2P), migrations, let
alone with real-time determinism.

Precursors to GPUSync use a synchronization-based ap-
proach for real-time GPU management in [10], with support
for multiple GPUs added in [7] and [9]. GPUSync greatly
expands upon these prior efforts by enabling fine-grained
management of GPU resources.

4 GPUSync
We describe GPUSync’s design by focusing on the platform
depicted in Fig. 2, where EDF is used for CPU scheduling
on a per-node basis, and the tasks assigned to a node can
compete for any GPU within that node. This corresponds to
the case of clustered CPU and GPU scheduling in Fig. 1. The
other shaded regions in this figure can be seen as special-case
instantiations of the case we consider.

GPUSync is made up of several components: a GPU
allocator that utilizes a real-time k-exclusion locking pro-
tocol;8 per-GPU real-time mutual exclusion (mutex) engine
locks, one for each GPU copy and execution engine, to arbi-

8k-exclusion extends ordinary mutual exclusion by allowing up to k
tasks to simultaneously hold a lock.

Figure 3: High-level design of GPUSync.

trate access to those engines; and API routines that facilitate
memory copies and P2P migrations.

Fig. 3 illustrates how tasks acquire GPU-related re-
sources. A request is issued to the GPU allocator in Step
A. The GPU allocator determines the GPU to be allocated
to satisfy the request, though the GPU may not be immedi-
ately available. The requesting job is allowed access to the
assigned GPU once the GPU becomes available in Step B.
In Step C, the job competes with other jobs allocated the
same GPU for GPU engines; access is arbitrated by the en-
gine locks. A job may access an engine on its assigned GPU
after acquiring the corresponding engine lock in Step D.

We now describe GPUSync’s individual components.

4.1 GPU Allocation and Engine Access

GPU allocation is performed using a k-exclusion locking
protocol, and engine access is arbitrated by nested mutex
locks. This overall locking strategy is derived from the real-
time nested locking protocol (RNLP), which has been shown
to be asymptotically optimal for supporting nested resource
requests in multiprocessor real-time systems [27].

GPU allocator. We explain how GPU allocation is done by
considering a single cluster with g GPUs (in Fig. 2, each
node is a cluster and g = 4). GPU allocation is token-based.
We associate ρ GPU tokens with each GPU. A job can only
compete for access to a GPU’s engines when it holds one of
that GPU’s tokens. The portion of a job’s execution where a
token must be held is called a token critical section. All GPU
tokens are pooled and managed by a single k-exclusion lock,
where k = ρ× g. ρ is a configurable parameter. We explore
the effect ρ has on schedulability further in Secs. 5 and 6.

We use a modified version of the Replica-Request Do-
nation Global Locking Protocol (R2DGLP), a recently pro-
posed real-time k-exclusion locking protocol that is asymp-
totically optimal for globally-scheduled systems, to perform
token allocation within a cluster [28]. Our modifications to
the R2DGLP are limited to load-balancing requests among
GPUs and a few other technical details having to do with our
particular usage of it. Due to space constraints, we cannot
fully describe the R2DGLP and only give a brief overview.

Access to each token in the R2DGLP is arbitrated by a
per-token FIFO-ordered queue, as seen in Fig 4. Jobs are
enqueued on the shortest token queue upon token request. If



Figure 4: R2DGLP token queues populated with token requests,
identified by the task identifier, Ti, of the requesting task.

k > 1, then requests are load-balanced across queues.9 An
enqueued job suspends until it is at the head of its queue, in
which case it is granted the corresponding token.
Engine locks. A mutex is associated with each GPU copy
and execution engine, as seen in Fig. 3. For GPUs with two
copy engines, there is some flexibility in how copy engines
may be used. For example, one copy engine may be reserved
only for P2P operations with the remaining engine used both
for inbound and outbound data. For a machine like our eval-
uation platform, which has one copy engine per GPU, we are
not able to take advantage of separate copy engines.

Each engine mutex prioritizes requests in FIFO order.
Blocked jobs suspend while waiting for an engine. A job
that holds an engine lock may inherit the priority of any job
it blocks. Priority inheritance relations from the R2DGLP
may propagate to an engine holder to ensure timely real-
time scheduling. A job releases an engine lock once all of
its engine-related operations (e.g., GPU kernel execution
or memory copy) complete. In order to reduce worst-case
blocking, a job is allowed to hold at most one engine lock at a
time, except during P2P migrations. Engine locks enable the
parallelism offered by GPUs to be utilized while simultane-
ously obviating the need for the (unpredictable) GPU driver
to make resource arbitration decisions.

4.2 Migrations

GPUSync supports both P2P and system memory migra-
tions. The rules governing each type of migration differ.
P2P migrations. When migrating from GPUa to GPUb,
a job must hold copy engine locks for both GPUa and
GPUb. As shown in the full version of this paper [11], if
these locks are acquired separately, then worst-case block-
ing grows quadratically with respect to the total number of
GPU tokens. We avoid such excessive blocking by instead
using dynamic group locks (DGLs) [26]. Using DGLs, a job
atomically requests both copy engine locks simultaneously.

A job may issue memory copies to carry out migration
once both engine locks are held. This isolates migration traf-
fic to the PCIe bus: copied data does not traverse the high-
speed processor interconnect or system memory buses—
computations utilizing these interconnects are not disturbed.

9It is possible to use affinity-aware heuristics to estimate queue length
in terms of time instead of number of requests. Such heuristics can improve
average-case performance while maintaining real-time predictability. Due
to space constraints, we do not consider such heuristics further.

System memory migrations. Migrations through system
memory are also supported by GPUSync. Such migrations
are performed speculatively, i.e., migrations are always as-
sumed to be necessary. Thus, state data is aggregated with
input and output data. State is always copied off of a GPU af-
ter per-job GPU computations have completed. State is then
copied back to the next GPU used by the task for the sub-
sequent job if a different GPU is allocated. An advantage of
this approach over P2P migrations is that a job never has to
hold two copy engine locks at once. This reduces lock con-
tention and may improve blocking bounds, depending upon
system and task set parameters.

Speculative migrations may seem heavy handed, espe-
cially when migrations between GPUs may not always be
necessary. Instead, an “on demand” approach could be taken
where each migration forces data to be copied off of the
previously-allocated GPU to system memory and then to the
newly-allocated GPU. However, this method offers no an-
alytical real-time benefits over P2P migrations and would
likely increase interconnect contention.

4.3 Memory Copy Routines

Recall from Sec. 2 that GPU copy engines perform opera-
tions non-preemptively, and large memory transactions can
cause tasks to experience long periods of blocking. Prior
work has shown that response times can be improved if these
large copy operations are broken up, or chunked, into smaller
ones [15, 16]. We adopt this method. Chunking is imple-
mented via user-space memory copy APIs. The programmer
specifies the source, destination, and amount of memory to
be copied. The copy is carried out incrementally in config-
urable chunk sizes. The API also automatically acquires the
necessary copy engine locks before copying each chunk.

5 Analysis
For completeness, we now present a coarse analysis of
blocking under GPUSync. Our main purpose here is to
expose analytical differences among various configurations
of GPUSync. Fine-grained blocking analysis can be found
in [11]. We make the simplifying assumption that each job
of any task competes for a GPU token at most once.

We assume that the tasks utilizing GPUSync execute
globally on m CPUs (perhaps a cluster or the entire sys-
tem) and compete for access to g GPUs. Each task Ti is an
implicit-deadline sporadic task specified by a tuple (ei, ci,
pi, N

I
i , N

O
i , N

S
i , N

K
i ,Ki). pi is the minimum job separa-

tion parameter for Ti. The other terms are defined by focus-
ing on an arbitrary job Ji of Ti. ei (ci) bounds the amount
of CPU execution time Ji receives outside (inside10) a token
critical section. N I

i , NO
i , and NS

i bound the number of data
chunks making up Ji’s GPU input, output, and state, respec-
tively. NK

i bounds the number of GPU kernels issued by Ji,
each of which executes for at most Ki time (the CPU execu-

10The CPU may execute control logic during GPU computations.



tion time required to dispatch a kernel assumed negligible).
We now present various blocking-related notation. Let Ci

denote the maximum token critical section length of Ti, bCi
denote the maximum time Ji may be blocked while waiting
for a token, and bEi denote the maximum time Ji may be
blocked within a token critical section for all engine locks.
Then, the maximum time a job may be blocked accessing
locks and tokens is give by bi , bCi + bEi . Let XI , XO, and
XP2P denote the maximum time it takes to transmit a chunk
of GPU data for input, output, and P2P migration, respec-
tively, and let Xmax denote the maximum of XI , XO, and
XP2P . Also, let Si denote the maximum time to perform a
GPU migration. For P2P migrations, Si = XP2PNS

i . For
migrations through system memory, Si = XINS

i +XONS
i .

Si = 0 when GPUs are partitioned (no migrations). Let
Kmax denote the longest duration an execution engine lock
is held by any other task, and let Cmax denote the longest
token critical section among all tasks.

A job must first acquire a token from the GPU alloca-
tor before it can begin using a GPU. This allocator uses the
R2DGLP to control access to ρg tokens. Using the block-
ing analysis presented in [28] for the R2DGLP, a token-
requesting job is blocked by at most 2dm/(ρg)e − 1 to-
ken critical sections of other jobs. Thus, the total duration
of blocking while waiting for a token is bounded by bCi =
Cmax(2dm/(ρg)e − 1). Bounds on Cmax must be com-
puted since tasks may block while acquiring engine locks.
By construction, the token critical section length for Ti is
Ci = ci + bEi +XIN I

i +XONO
i +KiN

k
i +Si. All param-

eters for this equation have been derived, except for bEi .
bEi is the sum of all blocking experienced within the token

critical section. Let bKi denote Ji’s maximum total blocking
time for the execution engine lock, let bI/Oi denote its maxi-
mum total blocking time while waiting to transmit input and
output chunks, and let bP2P

i denote its maximum total block-
ing time while waiting for copy engines locks to perform a
P2P migration. Then, bEi = bKi + b

I/O
i + bP2P

i .
A job may be blocked for every GPU kernel it executes

when acquiring the execution engine lock of its allocated
GPU. At most ρ−1 other jobs at a time may compete for this
lock for a given request. Since requests are FIFO ordered, the
resulting blocking is bounded by bKi = (ρ− 1)Kmax.

Bounds for bI/Oi and bP2P
i depend on whether migrations

are P2P or through system memory and on the number of
copy engines per GPU. In our analysis, we assume that all
migrations are supported using the same mechanism, though
in practice GPUSync could support both types in the same
system. Due to space constraints, we only present blocking
analysis for GPUs with one copy engine here. (Analysis for
GPUs with two copy engines is available in [11].)

Copy engine blocking with P2P. Under P2P migrations,
any task holding a GPU token may request the copy engine
lock of the GPU it used in its prior job in order to perform
a migration. There are ρg such tasks. In the worst-case, they
may all attempt to access the same copy engine lock at the

same instant. Thus, any request for a copy engine lock may
be blocked by ρg−1 other requests. From the blocking anal-
ysis of DGLs [26], the total number of blocking requests
for the copy engine is at most (ρg − 1). Since no task re-
quires more than Xmax time to complete bI/Oi = ((ρg −
1)Xmax)(N I

i +NO
i ) and bP2P

i = ((ρg − 1)Xmax)NS
i .

Copy engine blocking with system memory migration.
In this case, copy engines are only accessed by tasks that
have been given a token for an allocated GPU, so at most
ρ − 1 other jobs may compete for the copy engine lock at
a given instant. Recall that state is aggregated with input
and output data. Thus, bP2P

i = 0. However, now b
I/O
i =

((ρ− 1)Xmax)(N I
i +NO

i + 2NS
i ) since state data must be

handled twice.
Note the analytical differences between P2P migrations

and system memory migrations. In the case of P2P migra-
tions, copy engine lock contention isO(ρg), which results in
O(m) blocking total when including token blocking, while
in the case of system memory migrations, copy engine lock
contention is is O(ρ), which results in O(m/g) total block-
ing. Despite its inferior order of complexity, P2P migration
may still result in better analytical bounds if the advantages
of fewer and faster memory copies can be exploited (it is
faster because state is not copied to memory). Furthermore,
there are benefits to P2P migrations that cannot be captured
in the above analysis, namely, isolation from the system
memory bus and improved average-case performance.
Number of per-GPU tokens. We conclude this section by
discussing trade-offs in selecting ρ. If ρ is small, then bCi is
large and bEi is small. The converse is true if ρ is large. What
value for ρ should be used? Is there a balance between bCi
and bEi to be made? Analytically speaking, the ρ term often
cancels out between bCi and bEi . However, this is not always
the case due to the ceiling taken when computing bCi . In prac-
tice, ρ should only be great enough to keep GPU resources
busy while maintaining acceptable blocking bounds.

6 Experimental Results
In this section, we assess trade-offs in the design choices
affecting GPUSync by presenting the results of overhead-
aware schedulability studies. We also discuss experiments
involving real-time computer vision workloads. To obtain
the overhead information needed in our schedulability study,
we implemented GPUSync in LITMUSRT [5]11 and mea-
sured various overheads while executing workloads devised
to expose worst-case scenarios. We then incorporated these
overheads into schedulability experiments. We also used our
LITMUSRT implementation for the computer vision study.
These experimental efforts are discussed in detail next.

6.1 Overhead Measurements

Our implementation of GPUSync was run on a test plat-
form much like that in Fig. 2. This platform has two “nodes,”

11Source code is available at www.litmus-rt.org.



Figure 5: CPMD cost increase with GPU traffic.

each with one Xeon X5060 processor with six 2.67GHz
cores and four closely connected NVIDIA GTX-470 GPUs.
Within each node, we used EDF scheduling globally and ei-
ther pooled GPUs or statically assigned them to cores. We
used a CUDA 5.0 for our GPGPU runtime environment.

Relevant overheads include those of an algorithmic na-
ture and those related to memory accesses. Algorithmic over-
heads include: thread context switching, scheduling, job re-
lease queuing, inter-processor interrupt latency, CPU clock
tick processing, and GPU interrupt processing. We measured
these overheads by using light-weight tracing techniques
while executing workloads that stress the various hardware
components managed by GPUSync.12

Memory overheads reflect lost capacity due to cache
affinity loss and GPU memory transfer rates. These over-
heads are dependent on the interleaving of memory accesses
by different tasks and thus are more difficult to measure.
Cache affinity loss manifests as cache preemption/migration
delays (CPMDs) [3, 4], which reflect the increased execu-
tion time of a task needed to repopulate caches after it is pre-
empted or migrated. Overheads due to GPU memory traf-
fic, called GPU memory traffic delays (GMTDs), affect the
rate at which GPU memory copies can be executed. CP-
MDs and GMTDs are interrelated because CPUs and GPUs
share the system memory bus. This interrelation has not been
fully considered in prior work in which CPMDs or GMTDs
were measured [3, 4, 15]. We account for this interrelation
by stressing buses with respect to both GPU and CPU traf-
fic simultaneously. We now describe our CPMD and GMTD
measurement process in more detail and discuss a subset of
the measurement results presented in full in [11].

Measuring CPMDs. We measured CPMDs using meth-
ods described in [3, 4], extended to include the effects of
GPU memory traffic. Specifically, a test thread that performs
memory operations was executed in the presence of “cache-
polluting” threads that cause cache evictions and heavy sys-
tem memory bus load, and additional threads that copy data
between GPUs and system memory. The test thread periodi-
cally sleeps and migrates among CPUs to simulate preemp-
tions and migrations. CPMDs were computed by comparing

12As is done in [3, 4] and suggested by the US National Institute of Stan-
dards and Technology [22], we used an interquartile range filter to remove
outliers in all measurements that can be affected by non-deterministic events
such as interrupt handling since these events introduce measurement errors.

Figure 6: Worst-case GPU memory transmission times.

the execution time of a sequence of read/write operations
upon data of a given working set size (WSS) in the pres-
ence and absence of preemptions and migrations. CPMDs
are sensitive to read:write ratios; to keep our study tractable,
we limited attention to a read:write ratio of 3:1. Many thou-
sands of samples are required for good measurements.

Fig. 5 shows the relative increase in CPMDs we observed
in the presence of GPU traffic on the system memory bus.
The cost increase is depicted as a ratio of CPMDs with GPU
traffic to CPMDs without GPU traffic. CPMDs increased be-
tween 10% and 20% for average-case measurements, and up
to 40% for worst-case measurements.

Measuring GMTDs. GMTDs were measured in the pres-
ence of system memory bus load caused by CPU cache pol-
luters. GPU bus polluters were also executed to stress the
PCIe bus. A test thread then performed GPU memory copies
of various sizes. Memory pages were pinned so that mem-
ory copies would be exempt from page faults and be as fast
as possible. Measurements for sending, receiving, and per-
forming P2P memory copies were made.

Fig. 6 illustrates the measured times; note that both axes
are on a base-2 logarithmic scale. Far (near) P2P copies are
between GPUs with a distance of two (one). Note that far
P2P copies take only slightly longer than copies between
system memory and GPUs. However, near P2P copies take
less than half the time of any other copy method for copies
256KB or greater in size—reduced bus contention is a clear
win. Note also that small memory copies (4K or less) take
roughly the same time within (but not among) each copy
method, indicating that fixed-cost overheads dominate for
small copies, though these overheads differ for each type of
copy. These fixed costs gradually have less of an effect be-
tween 8K to 256K, after which transmit times scale linearly
with data size. This implies that chunk sizes should at least
be 256K to minimize overhead-related utilization loss.

Fig. 7(a) shows the relative increase in worst-case GPU
memory copy times we observed in the presence of CPU
traffic on the system memory bus. There are some surpris-
ing results. First, there appears to be an anomaly for near
P2P copies of 512B, where worst-case transmissions are ac-
tually faster with CPU traffic. Another surprise is that the
worst-case system-memory-to-GPU transfer time for small
transfers is also faster with CPU traffic. Both anomalies per-



(a)

(b)

Figure 7: (a) Worst-case and (b) average GMTD cost increase with
CPU system bus traffic.

sisted across many trials, so additional investigation is mer-
ited. These anomalies may be due to behaviors within the
closed-source GPU driver that are difficult to discern. In any
event, the time-scale of these transfer times is less than 32µs
so they are of little practical impact. Also, when we examine
the relative increase in average GPU memory copy times in
Fig. 7(b), we see that system-memory-to-GPU copy times do
increase, as expected. Despite these anomalies, our data in-
dicates that GMTDs rarely increase by more than 5% in the
worst case, and less than 2% in the average case. Thus, this
data suggests that GMTDs, unlike CPMDs, are not strongly
affected by system memory traffic from the CPUs.

6.2 Schedulability Experiments

We evaluated GPUSync with overhead-aware schedulabil-
ity tests to better understand the real-time properties of
GPUSync and trade-offs in design choices. We randomly
generated task sets of varying characteristics and tested them
for SRT schedulability using the methods described in [12].
We now describe the experimental process we used.

Experimental setup. There is a wide space of task set and
system configuration parameters to explore. Task set param-
eters include: task set utilization distribution, task set period
distribution, CPU cache WSS distribution, number and du-
ration of GPU kernels, size of per-job GPU input and output
data, size of task state stored in GPU memory, GPU mem-
ory transmission chunk size, the critical section length of the
GPUSync token, and the ratio of GPU-using tasks to CPU-
only tasks. System configuration parameters include: the

number of GPU tokens, migration method used, and GPU
cluster configuration. In order to keep our study tractable,
we kept several of these parameters constant and allowed
others to vary between (what we believe to be) realistic real-
world bounds for the automotive systems discussed earlier.
For example, task periods were uniformly distributed in the
range [33ms, 100ms], reflecting the sensor rates of video
cameras and LIDAR detectors found in advanced vehicle
prototypes [14]. Due to page constraints, we cannot fully de-
scribe the full range of task set parameters here and refer the
reader to [11] for details. We merely state that each unique
permutation of parameters yields a single task set scenario,
and that there were 360 task set scenarios in total.

Each task set scenario was combined with several system
configurations, assuming a platform like our test platform
(as illustrated in Fig. 2). System configurations varied in ρ,
chunk size, and CPU/GPU organization. GPU management
methods using GPUSync with P2P migrations, GPUSync
with migrations through system memory, and exclusive GPU
allocation through a R2DGLP k-exclusion lock were also
tested. Each permutation of these parameters resulted in a
unique system configuration, for a total of 54 system config-
urations. Task set scenarios and system configurations were
combined and then tested under both average- and worst-
case overhead assumptions, for a total of 38,880 experi-
ments. We generated task sets for each experiment with task
set utilizations ranging from (0, 12], capturing the possible
system utilizations on our test platform. Each task set was
partitioned using a two-pass, worst-fit, heuristic that first par-
titioned GPU-using tasks among GPU clusters and associ-
ated CPU clusters in one pass, and then partitioned CPU-
only tasks in another. Schedulability for bounded tardiness
was then tested. Blocking terms were computed using fine-
grained analysis from [11] (in contrast to the coarse-grained
analysis in Sec. 5). Enough task sets were tested for each ex-
periment to generate smooth schedulability curves; this came
to roughly 400,000 task sets per experiment.

Results. Our schedulability results are given in full in [11].
Key observations following from these results are stated be-
low and supported using representative graphs that compare
different GPUSync settings in terms of schedulability (the
fraction of generated task sets deemed schedulable). In the
presented graphs, “P2P” denotes P2P migrations, “System
memory” denotes system memory migrations, and “Exclu-
sive alloc.” denotes exclusive allocation using the R2DGLP
to arbitrate access to the GPU as a whole.

Obs. 1. When tasks’ state sizes are large, P2P migrations
offer better schedulability, despite greater worst-case copy
engine contention. When the state size is small, such con-
tention leads to worse schedulability.

In Fig. 8, we observe that when each task’s state is 64MB
(curves 3 and 4), GPUSync with P2P migrations has bet-
ter schedulability than exclusive GPU allocation. However,
when the state size is only 4MB, GPUSync with mem-
ory migrations (curves 1 and 2) has better schedulability



Figure 8: Effect of state size on schedulability.

than P2P migrations. Recall from Sec. 5 that P2P migra-
tions cause O(m) blocking, while memory migrations only
cause O(m/g) blocking. The increased asymptotic blocking
in the case of P2P migrations is offset by the improved bus
contention and therefore transfer times of migrations. How-
ever, when the state size is small, such gains do not offset
increased blocking bounds.
Obs. 2. Schedulability of fine-grained locking meets or ex-
ceeds that of coarse-grained locking when state sizes are
large. However, the parallelism afforded by this approach
can have a negative effect on schedulability when state size
is small. In either case, we expect improved average-case re-
sponse times in practice.

This can also be seen in Fig. 8, where the curve for system
memory migration (5) and exclusive GPU locking (6) over-
lap. Given that coarse- and fine-grained locking are compa-
rable for applications with larger state sizes, from a schedu-
lability point of view, it makes sense to employ fine-grained
locking in practice to improve average-case response times,
as will be discussed later.
Obs. 3. ρ does not significantly impact schedulability, but
larger values of ρ support more average-case parallelism.

Due to space constraints, we omit a graph demonstrat-
ing this observation since schedulability curves are nearly
indistinguishable among tested values of ρ. However, such
graphs are available in [11]. In our experiments, we only
tested ρ ∈ {1, 2, 3} because larger values negatively impact
blocking when applying fine-grained analysis. Our results
do however suggest that ρ can be set to the number of en-
gines per GPU. This allows copy and execute engines to be
used concurrently, which can improve average-case response
times.

While comparing different organizational methods is not
the focus of this paper, we note the following.
Obs. 4. Regarding the clustering of GPUs, schedulability is
generally better with a cluster size of one (partitioning) and
is similar for other cluster sizes.

This observation is supported by Fig. 9. In this figure,
curves 4, 5, 6; 7, 8, 9; and 10, 11, 12 depict a system in which

Figure 9: Effect of organizational method on schedulability.

the six CPUs on one node form a cluster and the four GPUs
on that node are organized, respectively, in four clusters of
size one (partitioned), two clusters of size two, and one clus-
ter of size four. Curves 1, 2, and 3 depict a partitioned sys-
tem, in which both GPUs and CPUs are partitioned; each
GPU is mapped to a single processor, and tasks cannot mi-
grate among processors. In the partitioned case, four proces-
sors host tasks that cannot access any GPU.

We believe that different non-unit cluster sizes exhibit
similar schedulability because migration data is only part of
a job’s use of the copy engines—there is also input and out-
put data. Additionally, as is seen in Fig. 7, the difference in
transfer times between near and far migrations is small. GPU
partitioning avoids these migration costs. However, parti-
tioning approaches are subject to capacity loss on account
of bin-packing-related issues, and may not be as responsive
as systems in which migrations are allowed.

6.3 Real-Time Vision Workloads

We now describe the vision-related experiments mentioned
earlier. In these experiments, we adapted a freely-available
CUDA-based feature tracking program to GPUSync on
LITMUSRT [24].13 Feature tracking is an important applica-
tion in automotive systems (our motivating application) that
sense and monitors the environment. The tracker represents
a scheduling challenge since it utilizes both CPUs and GPUs
to carry out its computations. Though feature tracking is only
one GPGPU application, its image processing operations are
emblematic of many others.

We stressed the system by applying featuring tracking to
many independent video streams simultaneously, each with
320x240 resolution. Each video stream was handled by one
task, with each frame being processed by one job. Tasks were
partitioned between the two NUMA nodes of our system.

Frames were preloaded into memory in order to avoid
disk latencies (such latencies would be non-existent with real
video cameras). All data was page-locked in system mem-
ory to facilitate fast and deterministic memory operations.
Memory copies for input and output data between system

13Source code available at www.litmus-rt.org.



Figure 10: Observed response times under GPUSync

and GPU memory was roughly 1MB per frame, combined.
However, task state data was about 6.5MB in size.

We let ρ = 2, and tested P2P and system memory migra-
tions and exclusive GPU arbitration. We used a chunk size of
2MB for the P2P and system memory migrations (chunking
is not necessary under exclusive GPU arbitration).

Measurements of job response times were made within a
five minute execution window. Response times, as a percent
of period, were averaged and are plotted in Fig. 10. Note that
P2P migrations improve average-case response times rather
significantly over either exclusive GPU arbitration, or sys-
tem memory migrations. These results, together with those
of the prior section, suggest that our techniques for managing
parallelism can improve average-case responsiveness with-
out compromising predictablility.

7 Conclusion
We have presented GPUSync, a GPU management frame-
work that can be flexibly applied under different real-time
schedulers to manage GPU-related resources in multi-GPU
muticore systems. GPUSync’s design leverages recently
developed asymptotically optimal multiprocessor real-time
locking protocols to manage GPU-related resources that can
be accessed in parallel. While we have focused on cer-
tain scheduler and synchronization-protocol choices, vari-
ants of GPUSync can be applied assuming other choices.
In fact, GPUSync enables schedulability to be assessed in a
parallelism-cognizant way for all of the CPU/GPU allocation
categories reflected in Fig. 1. Using these results, we next
intend to conduct an overhead-aware schedulability study in
which all of these categories are compared.

References
[1] CUDA Zone. http://www.nvidia.com/object/cuda_

home_new.html.

[2] B. Andersson, G. Raravi, and K. Bletsas. Assigning real-time tasks
on heterogeneous multiprocessors with two unrelated types of proces-
sors. In 31st RTSS, 2010.

[3] A. Bastoni. Towards the Integration of Theory and Practice in Multi-
processor Real-Time Scheduling. PhD thesis, Univ. of Rome, 2011.

[4] B. Brandenburg. Scheduling and Locking in Multiprocessor Real-
Time Operating Systems. PhD thesis, Univ. of North Carolina at
Chapel Hill, 2011.

[5] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.
LITMUSRT: A testbed for empirically comparing real-time multipro-
cessor schedulers. In 27th RTSS, 2006.

[6] J. Correa, M. Skutella, and J. Verschae. The power of preemption
on unrelated machines and applications to scheduling orders. In 12th
APPROX and 13th RANDOM, 2009.

[7] G. Elliott and J. Anderson. An optimal k-exclusion real-time locking
protocol motivated by multi-GPU systems. In 19th RTNS, 2011.

[8] G. Elliott and J. Anderson. Real-world constraints of GPUs in real-
time systems. 17th RTCSA, 2, 2011.

[9] G. Elliott and J. Anderson. Building a real-time multi-GPU platform:
Robust real-time interrupt handling despite closed-source drivers. In
24th ECRTS, 2012.

[10] G. Elliott and J. Anderson. Globally scheduled real-time multiproces-
sor systems with GPUs. Real-Time Systems, 48, 2012.

[11] G. Elliott, B. Ward, and J. Anderson. GPUSync: A framework for
real-time GPU management (full version). http://www.cs.unc.
edu/˜anderson/papers.html, 2012.

[12] J. Erickson, U. Devi, and J. Anderson. Improved tardiness bounds for
Global EDF. In 22nd ECRTS, 2010.

[13] M. Green. “How long does it take to stop?” Methodological analy-
sis of driver perception-brake times. Transportation Human Factors,
2(3), 2000.

[14] F. Homm, N. Kaempchen, J. Ota, and D. Burschka. Efficient occu-
pancy grid computation on the GPU with LIDAR and radar for road
boundary detection. In Intelligent Vehicles Symposium, 2010.

[15] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar. RGEM: A responsive GPGPU execution model for run-
time engines. In 32nd RTSS, 2011.

[16] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev: First-class
GPU resource management in the operating system. In USENIX ATC,
2012.

[17] J. S. Kim, M. Hwangbo, and T. Kanade. Realtime affine-photometric
KLT feature tracker on GPU in CUDA framework. In 12th ICCV
Workshop, 2009.

[18] M. Lalonde, D. Byrns, L. Gagnon, N. Teasdale, and D. Laurendeau.
Real-time eye blink detection with GPU-based SIFT tracking. In
Canadian Conf. on Computer and Robot Vision, 2007.

[19] PCI-SIG. PCIe Base 3.0 Specification, 2010.

[20] R. Pellizzoni. Predictable and Monitored Execution for COTS-based
Real-Time Embedded Systems. PhD thesis, Univ. of Illinois at Urbana
Champaign, 2010.

[21] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel.
PTask: operating system abstractions to manage GPUs as compute
devices. In 23rd SOSP, 2011.

[22] S. Thrun. e-handbook of statistical methods. http://www.itl.
nist.gov/div898/handbook/, 2010.

[23] S. Thrun. GPU Technology Conf. Keynote, Day 3. http://
livesmooth.istreamplanet.com/nvidia100923, 2010.

[24] C. Tomasi and T. Kanade. Shape and motion from image streams
under orthography: A factorization method. J. of Computer Vision,
9(2), 1992.

[25] Y. Wang and J. Kato. Integrated pedestrian detection and localiza-
tion using stereo cameras. In Digital Signal Processing for In-Vehicle
Systems and Safety. 2012.

[26] B. Ward and J. Anderson. Nested multiprocessor real-time locking
with improved blocking. in submission.

[27] B. Ward and J. Anderson. Supporting nested locking in multiprocessor
real-time systems. In 24th ECRTS, 2012.

[28] B. Ward, G. Elliott, and J. Anderson. Replica-request priority dona-
tion: A real-time progress mechanism for global locking protocols. In
18th RTCSA, 2012.


