
Bringing Theory Into Practice:
A Userspace Library for Multicore Real-Time Scheduling

Malcolm S. Mollison and James H. Anderson
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract

As multicore computing hardware has become more
ubiquitous, real-time scheduling theory aimed at multicore
systems has become increasingly sophisticated and diverse.
Real-time operating systems (RTOSs) are ill-suited for this
kind of rapid change, and the slow-moving RTOS ecosystem
is falling further and further behind advances in real-time
scheduling theory. Thus, supporting new functionality in a
layer of middleware software running in userspace (i.e.,
outside the RTOS kernel) has been proposed. In this paper,
we describe the first userspace scheduler that supports
preemptive, dynamic-priority, migrating real-time tasks on
multicore hardware, and report empirical latency and over-
head measurements. On an eight-core Intel Xeon platform,
these measurements are in the range of ones to tens of
microseconds under most tested configurations. We believe
that this approach may prove superior to a kernel-based
approach for supporting a subset of future real-world real-
time applications.

1. Introduction
In recent years, real-time systems researchers have de-

veloped an increasingly complex and diverse ecosystem of
scheduling algorithms and locking protocols. Particularly
large strides have been made with regard to resource alloca-
tion techniques targeting multicore systems. Unfortunately,
industry practitioners wishing to begin making use of these
advancements today are generally unable to do so, because
software infrastructure to support these advancements re-
mains largely unavailable.

The majority of implementation-oriented research in this
area has focused on modifying RTOS kernels to support new
resource allocation techniques. For example, recent work has
shown that the clustered earliest-deadline-first algorithm (C-
EDF) performs well on large multicore machines [26], and
an asymptotically optimal locking protocol that can be used
with this algorithm has been given [25].

Kernel-focused work has been invaluable in demonstrating
the capabilities and limitations of new multicore resource
allocation techniques on actual hardware. However, our prior
work with colleagues in industry suggests that adopting this

Work supported by the NC Space Grant College and Fellowship Program;
NC Space Grant Consortium; NSF grants CNS 1016954 and CNS 1115284;
ARO grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-0549; and
AFRL grant FA8750-11-1-0033.

approach in deployed systems is unappealing, and that a
userspace (i.e., middleware) approach may be much more
readily useful, if such an approach were to prove feasible.
Below, we list some of the reasons for this observation.

1) Customization. Industrial practitioners would benefit
from the ability to select and deploy resource allocation
techniques commensurate with their particular applica-
tions, rather than being “shoehorned” into the relatively
“one-size-fits-all” traditional commercial/open-source
RTOS software model. RTOSs have been very slow
to change, and cannot easily adapt to the growing
diversity of resource allocation techniques.

2) Robustness. A middleware approach could potentially
allow different resource allocation techniques to be
employed by different groups of co-hosted applica-
tions, assuming these groups do not share cores with
one another. This would permit critical and/or legacy
applications to run independently on the underlying,
unmodified RTOS. In contrast, a modified RTOS kernel
would expose all co-hosted applications to (potentially
unacceptable) risk from defects in resource allocation
software.

3) Maintainability. Well-designed middleware could po-
tentially run without modification from one underlying
OS version to the next. In contrast, a kernel-based ap-
proach entails time-consuming and potentially unsafe
modifications every time existing software infrastruc-
ture is deployed on a newer OS version.

4) Portability. Similarly, well-conceived middleware soft-
ware could be easily ported between entirely different
OSs, whereas a kernel-based approach would typically
require starting nearly from scratch for each new OS.
The value of software infrastructure greatly decreases
when much effort must be spent to allow it to run on a
new OS, so portability tends to be highly valued among
industry practitioners.

5) Historical precedent. While the core functionality of
most RTOSs has remained mostly unchanged in re-
cent decades, various kinds of middleware have seen
widespread adoption in industry. For example, [1] lists
over fifty real-world applications using the TAO [7]
distributed communication middleware.

The potential usefulness of a middleware approach raises
the question, thus far largely unexplored, of whether mid-
dleware can support recent multicore real-time resource allo-
cation techniques. Specifically, most such techniques require



fully-preemptive tasks, the priorities of which can be changed
dynamically at runtime.

Contributions. In this paper, we present a userspace library
that can support fully-preemptive multicore scheduling of
dynamic-priority real-time tasks, thereby answering in the
affirmative the question of whether middleware can support
state-of-the-art real-time scheduling techniques. In our li-
brary, real-time tasks are instantiated as user-level threads
sharing a single address space. We also present empirical
measurements of overheads and latencies for the library that
generally fall into the range of ones to tens of microseconds
(as seen in Tables 1 and 2). Under more taxing configura-
tions, wherein tasks are permitted to migrate among four or
more cores, worst-case latencies range into the low hundreds
of microseconds.

Overheads and latencies for kernel-based implementations
of similar real-time techniques fall into similar ranges [26].
However, making a direct comparison between these two
approaches is not straightforward, as discussed in Section 4.

We chose to focus on a user-level threading solution,
as opposed to a more heavyweight solution that would
support memory protection between tasks, for two reasons.
First, we believe that a user-level threading solution is
likely to achieve lower overheads and latencies than any
alternative middleware-based approach (such as manipulating
the scheduling parameters of kernel-level threads). Second,
sharing a single address space is standard practice for
concurrent threads within a single application, which is
the specific scenario that prompted this work (as described
immediately below). However, our approach does permit
memory protection between real-time tasks belonging to
different applications that are assigned to disjoint sets of
cores.

Our interest in this topic arose from interactions with
industry colleagues developing next-generation unmanned
aerial vehicles (UAVs), which will be far more capable than
current UAVs, particularly with regards to autonomy. The
design of our library would allow novel applications to use
innovative scheduling techniques across certain fixed cores
of a multicore machine. Given sufficiently capable schedul-
ing support, these applications could incorporate real-world
domain knowledge into scheduling decisions. For example,
real-world deadlines could be used to dynamically set the
deadlines of real-time tasks. Meanwhile, more conventional
applications with static priorities could be safely scheduled
by the underlying RTOS on other cores.

In accordance with the desired properties listed above,
the library relies upon only a small number of operating
system features and is believed to be easily maintainable
(across different versions of a given OS) and portable (to
different OSs). In our evaluation we employed the popular
PREEMPT_RT Linux kernel variant as the underlying RTOS.

The source code of the library is available online [11].

Relationship to prior work. To the best of our knowledge,
there exists no other userspace resource allocation software
that supports as general a class of resource allocation tech-
niques as that presented herein—specifically, those wherein
tasks are fully preemptive, have dynamic priorities, and can
migrate between cores. However, a number of more restricted

classes have been supported previously at the user level,
and the same class has been supported at the kernel level.
In earlier work [38] we raised the possibility of creating a
library such as that presented here.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide background information. In Section 3, we
describe the implementation of our library. In Section 4, we
present an empirical evaluation of the library (particularly,
measured overheads). Finally, in Section 5, we discuss future
work and conclude.

2. Background
In this section, we first describe the sporadic task model,

which is the resource model targeted by our library. This
model is identical to or more general than that assumed
by most research on multicore real-time systems. Then, we
describe the resource allocation techniques (scheduling algo-
rithms and synchronization protocols) that the library targets.
Finally, we describe related real-time resource allocation
software.

2.1. Sporadic Task Model

The basic unit of computational work is a series of sequen-
tial instructions known as a task. In a real-time task system,
a sporadic task T has an associated worst-case execution
time (WCET), T.e, and minimum separation time, T.p. Each
successive job of T is released at least T.p time units after
its predecessor. The utilization, or long-run processor share
required by a sporadic task, is given by T.u = T.e/T.p.
Associated with each sporadic task is a relative deadline,
T.d. In an arbitrary-deadline task system, task deadlines may
be be greater than, equal to, or less than T.p. A notable
special case of a sporadic task is a periodic task, wherein
each successive job is released precisely T.p time units after
its predecessor.

A task system of n tasks is schedulable if, given a schedul-
ing algorithm and m processors, the algorithm can schedule
tasks in such a way that all of their timing constraints
are met. More specifically, for hard real-time task systems,
jobs must never miss their deadlines, while for soft real-
time task systems, some deadline misses are tolerable. A
common interpretation of soft real-time correctness is that
the tardiness of jobs of soft real-time tasks must be bounded
by a pre-computed constant that is reasonably small.

2.2. Scheduling Algorithms

Approaches to scheduling real-time tasks on multicore
systems can be categorized according to two fundamental
(but related) dimensions: first, the choice of how tasks
are mapped onto processing cores; and second, the choice
of how tasks are prioritized. In each case, there are two
common choices. Tasks are typically mapped onto cores
either by partitioning, in which each task is assigned to a
core at system design time and never migrates to another
core; or by using a migrating approach, in which tasks are
assigned to cores at runtime (and can be dynamically re-
assigned). Tasks are typically prioritized using either static
priorities, in which case priorities are chosen at design time
and never change; or dynamic priorities, in which case



tasks’ priorities relative to one another change at runtime
according to some criteria specified by the scheduling al-
gorithm. Related to task prioritization is whether tasks are
non-preemptible, in which case a higher-priority task may
have to wait for a previously-scheduled lower-priority task
to complete before being scheduled; or fully-preemptible,
in which case the highest-priority task is always scheduled.
Our userspace scheduling library aims to support migrating,
dynamic-priority, fully-preemptive scheduling algorithms.

An example of such an algorithm is the clustered earliest-
deadline-first (C-EDF) algorithm, which was mentioned in
Section 1. Under C-EDF, before system runtime, each core
is assigned to one of c clusters, where 1 ≤ c ≤ m; and
each of the n tasks is assigned to one of the clusters.1 For
simplicity, we assume a uniform cluster size, d, given by
m/c. At system runtime, within each cluster, the d eligible
tasks with highest priority are scheduled on the d available
cores. Eligible tasks are those that have a released job and
are not waiting for a shared resource to become available.

As of the time of writing, C-EDF is the only scheduling
algorithm implemented by our userspace scheduling library.
This implementation is the basis of the empirical measure-
ments provided in Section 4. We chose to focus on C-
EDF because it exhibits many of the key features of other
migrating, dynamic-priority, fully-preemptible scheduling al-
gorithms. C-EDF provides the basic foundation for many
such algorithms.

A typical C-EDF implementation maintains three key data
structures for each cluster.

1) The ready queue contains tasks that are eligible, and
is ordered in earliest-deadline-first order.

2) The release queue contains tasks that are ineligible
but will release a job in the future, and is ordered in
earliest-release-time-first order.

3) The priority mapping tracks the priority of the task
running on each processor, and is referred to in order to
preempt the lowest-priority task when a higher-priority
task is released.

2.3. Synchronization Protocols

A real-time synchronization protocol is used to arbitrate
among tasks that share resources that cannot be simul-
taneously accessed by any number of tasks, such as a
critical section of code or a shared hardware device. These
protocols typically attempt to reduce priority inversions, in
which lower-priority tasks are allowed to execute in favor of
higher-priority tasks due to resource-sharing dependencies.
The possibility of priority inversions in a system must
be accounted for in schedulability analysis. A number of
multiprocessor locking protocols have been developed (for
example, [41,42]). To demonstrate that our approach is com-
patible with synchronization protocols, our library includes
support for the global version of the flexible multiprocessor
locking protocol (FMLP) [23]. Our FMLP implementation
supports both “short” (spin-based) and “long” (suspension-
based) synchronization.

1. Under C-EDF, tasks are partitioned (and do not migrate) if and only
if c = m.

2.4. Related Software

There is a large body of pre-existing resource alloca-
tion software. We present a survey of this body of work
below. Due to space constraints, we omit discussions of
microkernel-specific approaches, real-time programming lan-
guages, and non-real-time parallel threading libraries.

RTOSs. Typical commercial and open-source RTOSs support
only static-priority scheduling. This stands in contrast to our
library, which aims to support dynamic-priority scheduling
policies. One notable exception is the ERIKA Enterprise
RTOS [3], which supports partitioned EDF scheduling. A
classification and summary of existing RTOSs can be found
in [26].

Kernel patches. LITMUSRT [6,28] patches the Linux kernel
to provide support for the same class of schedulers and
locking protocols that is targeted by our library. Thus, our
library can be viewed as a userspace analogue to LITMUSRT,
though LITMUSRT is at a far more mature stage of devel-
opment. Practitioners seeking to use LITMUSRT to support
real-world workloads would face the pitfalls delimited in
Section 1. For these and other, related reasons, LITMUSRT

is intended to be a research tool, and is not intended for
practical deployment.

Another Linux kernel patch, SCHED_DEADLINE [10,33,
36], targets C-EDF specifically. For more than two and a
half years, its developers have been working with Linux
kernel contributors to have it adopted for eventual mainlining
in the Linux kernel. The longevity of the effort to main-
line this project—which supports only a single scheduling
algorithm—helps to demonstrate the points made in Sec-
tion 1.

Kernel modules. AQuoSA [39] provides a real-time re-
source reservation mechanism for Linux. While AQuoSA
requires a kernel patch, it decreases coupling with the kernel
by moving some functionality into a kernel module, which
is compiled independently of the kernel, but still executes in
kernelspace (i.e., inside the kernel).

A promising line of recent work has investigated kernel-
module-based scheduling systems that allow customized
schedulers provided from userspace to be loaded as plugin
components. The most recent representative is ExSched [21].

Compared to such an approach, the approach we present
in this paper has the downside of being limited to schedul-
ing within a single application, instead of among multiple
applications instantiated as separate processes. However, in
our domain of interest, it is important that applications with
novel, customized, or domain-specific schedulers be allowed
to fail independently of one another in the presence of bugs
in scheduler code. This property allows such applications
to run alongside safety- or mission-critical applications on
the same machine. Moreover, our approach more completely
decouples resource allocation code from the kernel, and
thereby more completely addresses the pitfalls mentioned in
Section 1.

Scheduler activations. Scheduler activations were proposed
in 1992 [20] as an alternative to conventional kernel-level
threads that effectively allow user applications to define
application-specific scheduling policies. Were scheduler ac-



tivations to be present in modern RTOSs, the design of our
library (as described in Section 3) could be significantly
simplified. Scheduler activations have been offered most
recently in certain versions of the Solaris operating system
and in Windows 7; unfortunately, we are not aware of any
modern RTOSs that offer scheduler activations.

DRE middleware. There exists a wide body of work on
distributed, real-time, embedded (DRE) middleware, which
offers functionality beyond that provided by the underlying
RTOS [35]. This work differs from the library presented here
primarily in that real-time tasks are either non-preemptive, or
are preemptive only across the static priority levels offered by
the underlying RTOS. DRE middleware has seen widespread
adoption in industry [1]. This supports our hypothesis that a
userspace approach holds promise for bringing the resource
allocation techniques supported by our library to industry
practitioners.

Preemptive userspace libraries. There also exists prior
work on userspace-based resource allocation techniques that
do offer preemptivity, but which, for other reasons, fall
outside the class of techniques supported by our library.

The most relevant example that we are aware of was pre-
sented in a 2004 investigation of EDF on power-constrained
systems that relied on a preemptive userspace scheduler [18,
19]. Another is wuthreads [14], which was created as a
pedagogical demonstration of userspace scheduling.

These examples are less sophisticated than the library pre-
sented here, and are not aimed at investigating or providing
real-world usability. For example, neither project supports
multicore scheduling, includes empirical evaluations of over-
heads and latencies, addresses portability, supports system
calls in a useful manner, or offers support for synchronization
protocols.

Virtualization. RTAI [30], RT-Linux [43], and Xenomai [15]
permit a real-time kernel and the Linux kernel to be co-
hosted by virtualizing interrupt delivery. VSched [37] is a
userspace Linux system that provides resource reservation
services for virtual machines. LinSched [27] is an application
that allows Linux kernel scheduler code to be simulated,
tested, and debugged in userspace, albeit in a single-threaded
manner.

3. Implementation
In this section, we first describe the overall architecture

of our library. In subsequent subsections, we describe how
the library addresses three critical design challenges: pro-
viding preemptivity; supporting critical sections within the
scheduler; and facilitating system calls. Finally, we discuss
miscellaneous remaining issues.

3.1. Overall Architecture

In order to schedule real-time tasks completely indepen-
dently of the kernel, the library makes use of a classic
design pattern in computer science: the introduction of an
additional level of indirection. This is composed of two basic
building blocks, kernel-level threads and user-level threads,
as described below. A schematic of the architecture is shown

in Figure 1.

Kernel-level threads. A given real-time application is allo-
cated a set of processors available on the system. A kernel-
level thread (i.e., an entity directly schedulable by the native
kernel scheduler) is spawned for each processor allocated
to the application. Each kernel-level thread is pinned to a
specific, unique processor. The purpose of the kernel-level
threads is to act as “virtual CPUs” that can execute real-
time tasks. We denote these threads as worker threads. Each
worker thread is assigned the highest available real-time
priority in the system.2 Thus, on a correctly implemented
kernel, worker threads are only suspended due to system
calls they themselves issue (which are carefully controlled).
This allows our library to guarantee that the worker threads
are always available to process work, and thereby ensure
real-time timing constraints.

User-level threads. The real-time tasks that make up the
application are instantiated as user-level threads (i.e., enti-
ties not visible to the native kernel scheduler, but instead
controlled directly by kernel-level threads—in this case, the
worker threads). User-level threading is a technique that was
commonly used by threading libraries before kernel-level
threads were widely available [32], and that is traditionally
made available by POSIX3-compliant C libraries. In user-
level threading, the current execution context of a CPU can
be stored to memory, and a previously-stored context can be
loaded onto the CPU.

In our library, when a user-level thread begins executing
for the first time, a library-defined harness function is called.
This function then calls an application-provided function that
serves as an entry point for the real-time task corresponding
to that user-level thread.

Scheduling. Our library defines a function, schedule(),
which is responsible for performing any context switch from
one user-level thread to another. In our C-EDF scheduler, it
switches execution to the earliest-deadline task in the ready
queue, if that task has an earlier deadline than the task
already running in a particular worker thread.

3.2. Preemptivity

The architecture described thus far is sufficient to enable
non-preemptive C-EDF scheduling (with a minor modifica-
tion to schedule() to check the release queue for newly-
eligible tasks). In this subsection, we describe one of the key
novelties of our library: enabling preemptive scheduling.

Release timer. In C-EDF, the need for preemptivity arises
due to job releases. Specifically, a task may become eligible
due to a new job release at an arbitrary point in time; if it has
an earlier deadline than any currently-running task, it must
be scheduled immediately.

A POSIX timer is used to deal with this situation. At
system initialization, the timer is set to fire at the time of the
earliest job release. Each time the timer fires, it is re-armed

2. With the possible exception of interrupt bottom halves and proxy
threads; both are discussed later.

3. A family of IEEE standards for compatibility between operating
systems.



ready queue

cpu 1
w.t. 1
task 1

cpu 2
w.t. 2
task 2

cpu 3
w.t. 3
task 3

cpu 4
w.t. 4
task 4

Figure 1: Schematic of overall architecture. This application is scheduled across one cluster of four processors. “w.t.” stands
for “worker thread.” Note how worker threads perform the role of “virtual CPUs” for real-time tasks. Auxiliary data structures
(most notably, the release queue) are not pictured.

to fire again at the time of the subsequent job release.

Handling releases. Each time the release timer fires, a
POSIX signal of type RELEASE_SIGNAL (a library-defined
constant) is emitted. The emission of this signal causes the
library-defined function release_handler(), a signal
handler, to run asynchronously in one of the worker threads
(i.e., it will interrupt the currently-executing real-time task).
In addition to re-arming the release timer, this function has
three responsibilities. First, it moves any tasks that are newly
eligible from the release queue to the ready queue. Second,
if any of these newly-eligible tasks necessitate re-scheduling
on remote worker threads, it emits POSIX signals of type
PREEMPTION_SIGNAL directly to the appropriate threads
using the pthread_kill()4 function, as is discussed in
greater detail below. Finally, if local re-scheduling is needed,
it calls schedule().

Handling preemptions. Like the release_handler()
function, the preemption_handler() function is a
signal handler that executes asynchronously in a worker
thread. It is called only in response to a signal of type
PREEMPTION_SIGNAL emitted from an invocation of
release_handler().

3.3. Scheduler Critical Sections

Observe that both the schedule() and
release_handler() functions are critical sections,
because they update per-cluster data structures (as described
in Section 2.2). To guard these data structures against
simultaneous access by multiple worker threads, they are
protected by a user-level spin lock. (The implementation of
spin locks in our library is discussed later.)

Deadlock prevention protocol. Absent further precaution,
the system as described thus far would be prone to deadlock.
That is because a worker thread holding a per-cluster lock
could be asynchronously interrupted by either of the two
signal handlers. The thread would then attempt to re-obtain
the per-cluster lock, without having first released it.

To prevent asynchronous interruptions in these two critical
sections, two techniques are used. First, when one of these
critical sections is entered via a signal handler, signals
are automatically blocked upon signal handler invocation,

4. pthreads is the POSIX API for thread control.

and automatically unblocked upon signal handler return.
POSIX allows this behavior to be configured for each signal
handler. Second, when one of the critical sections is entered
synchronously (e.g., when a job completes, schedule()
is called), the library explicitly blocks signals using an
appropriate POSIX C library call. When the critical section
is exited, signals are explicitly unblocked. Note that signal
blocking and unblocking is specific to each worker thread.

Safe signal handler postponement. When a signal handler
is invoked, causing a new task to be scheduled, the signal
handler will not return until the task it interrupted is even-
tually re-scheduled. Before that task is re-scheduled, many
other tasks may run in the meantime. When it finally is re-
scheduled, the signal handler will return; however, it could
return in a different worker thread than the one from which it
was invoked. Counterintuitively, this behavior cannot cause
signals to be blocked for an arbitrary amount of time while
a signal handler is outstanding, which would cause temporal
failure. That is because the deadlock prevention protocol
described above guarantees the following invariant: whenever
a context blocks signals, the same context or a different
context will immediately unblock them again after the critical
section has completed.

3.4. System Calls

Under POSIX, when a signal is received by a kernel-
level thread that is performing a system call, the system call
may immediately return with an error. In other cases, the
system call proceeds after the signal handler returns, but may
cause faulty behavior if any async-signal-unsafe system calls
are invoked in the meantime [16]. Because of the continual
use of signals by the library (and postponed return of signal
handlers), our library treats system calls specially, in one of
two possible ways (as described below).

Proxy threads. For system calls that can cause blocking in
the kernel for a long or unbounded duration (e.g., waiting
for data to arrive over a socket), real-time tasks should
request entrance to a proxy thread. Proxy threads are special
kernel-level threads that are spawned (in any application-
defined quantity) during application initialization. Proxy
threads are prioritized immediately above worker threads.
Normally, proxy threads are suspended, waiting for a special
PROXY_ENTER signal.



To request use of a proxy thread, a real-time task invokes
a library function that causes the task to be de-scheduled,
and then emits a PROXY_ENTER signal. Upon receipt of the
signal, the proxy thread is scheduled by the kernel scheduler
and initiates a context switch to the real-time task requesting
its services. The real-time task should immediately make the
system call. If the system call blocks, the proxy thread is
suspended by the kernel, and if a worker thread was assigned
to the same processor, it is resumed. When the system call
returns, the proxy thread is again scheduled, and the real-
time task should immediately request an exit from the proxy
thread. The real-time task’s context is saved, and a special
PROXY_EXIT signal is sent to a worker thread to request
that the real-time task be returned to the ready queue.

Communication between proxy threads and worker
threads is problematic: shared data structures implemented
using locks could cause deadlock if a proxy thread were to
resume on the same processor as a worker thread holding
the lock. To resolve this issue, some form of lock-free
communication must be utilized. In our implementation,
the task_id is communicated between proxy threads and
worker threads by “attaching” it to the signals that are
exchanged, using a special POSIX feature offered by the
sigqueue function.

Proxy threads are not problematic for real-time schedu-
lability analysis, because potential interruptions of worker
threads by proxy threads (which are short) can be treated as
non-preemptive critical sections.

Short system calls. For system calls that do not block or are
likely to only block for a short period of time, it is sufficient
for the real-time task to simply block signals before and
after the system call. This may cause the worker thread to
become suspended, and temporarily unable to serve other
tasks. Analytically, such a system call can be treated as a
non-preemptive critical section.

3.5. Other Issues

Other implementation details that may be of interest to
some readers are discussed in this subsection.

Accessing time. To enable extremely high-resolution over-
head measurements and scheduling decisions to be made, our
library relies on an x86-architecture-specific feature known
as the timestamp counter (TSC). The TSC is a per-processor
register that records the number of CPU cycles that have
elapsed since the processor was initialized at boot time.
Using the TSC makes inaccuracies in time measurement a
non-issue for our library.

We suspect dependency on the TSC could be ameliorated
in many cases where non-x86 platforms are desired. For
example, 64-bit Linux can support a nanosecond resolution
gettimeofday() virtual system call [31], which has
less overhead than a regular system call and is specifically
intended for use in real-time systems. This facility depends
on the availability of userspace-accessible timers.

Besides decreasing portability, the TSC has some potential
drawbacks [29, 31]. First, power management functionality
(for example, dynamic voltage and frequency scaling fea-
tures) can cause the TSC to be an unreliable source of
time. Typically, such features are controlled by the operating

system per the ACPI standard [2], and can be enabled
or disabled by the user. Users should also check BIOS
settings for power management options. Second, system
management interrupts on some hardware can also render
the TSC unreliable; thus, to use the library in a non-research
system, hardware would have to be screened for this kind
of interrupt. Finally, although Intel has pledged to support
synchronization of the TSC across all cores on all upcoming
platforms (as it is in our experimental platform), there is no
guarantee of this in all current platforms [5].

Locking. The need for locks inside the user-level sched-
uler was discussed earlier. For the scheduler to perform
well, these locks must be extremely performant. While the
pthreads API provides for locks, it makes no guaran-
tees about their underlying implementation. For example,
on Linux, locks are realized using futexes [34], in which
a kernel-level thread requesting a contended lock can be
suspended by the kernel in favor of lower-priority work.
Frequent suspensions of this kind could be devastating to
the performance of the library.

Thus, the library implements spin locks (wherein contend-
ing threads wait on a shared variable) using architecture-
specific assembly code. (Currently, only x86 is supported,
but supporting other architectures is straightforward.) Spin
locks are appropriate, since critical sections in the scheduler
are extremely short.

Synchronization protocols. For short critical sections, real-
time tasks can safely use the spin locks provided by the
library (as described above) to protect critical sections.

The library also supports both short (spin-based) and long
(suspension-based) resources under the FMLP, as mentioned
in Section 2. This feature has been tested relatively well, and
appears to have overheads commensurate with the rest of
the library. (This is intuitively expected, because most of the
FMLP implementation re-uses lower-level library features.)
An empirical evaluation of FMLP-induced overheads was
decided to be excessive for this paper.

Our goal was simply to show that the library can support
global task-level dynamic-priority synchronization protocols;
the choice of FMLP over other synchronization protocols was
arbitrary.

Protecting against page faults. During initialization, the
POSIX mlockall() function is used to ensure that mem-
ory is never swapped to disk, which is in accordance with
established practice for hard real-time systems [9]. This
guarantees that no page faults will occur while the library
code itself is running. Any page fault that does occur is
likely to be triggered from a proxy thread during a system
call, and thus will not disrupt the scheduling of the real-time
workload.

Idleness. During initialization, the library creates “idle tasks”
that have the lowest possible priority, and therefore are
scheduled when there is no other available real-time work.
When selected to run, an idle task immediately calls the
POSIX sleep() function, causing the host kernel-level
thread to be suspended and allowing other (i.e., background)
work to be scheduled by the underlying RTOS. Whenever a
signal is sent to the suspended thread, sleep() returns and



the idle task calls schedule().

Standards compliance. A design goal of our library was
to avoid esoteric operating system services that are not
commonly present on UNIX-like operating systems.

The library makes use almost exclusively of POSIX-
standardized features. Moreover, the features that are used
are drawn from a relatively small set that revolves around
thread creation and signals. We believe this set of features is
likely to be well-supported, in general, even in RTOSs that
are only partially POSIX compliant.

One non-POSIX feature used by our library is
pthread_setaffinity_np(), which allows a kernel-
level task to be pinned to a particular processor. We believe
that this feature is nearly universally supported by multicore-
capable RTOSs.

Another such feature is a set of portable func-
tions for managing user-level threads: makecontext(),
swapcontext(), and getcontext(). These functions
were deprecated after the 2004 version of POSIX, but are
still widely supported in practice, and nonetheless can be
implemented relatively easily.

As mentioned before, one hardware-related portability
barrier is use of the TSC.

The fast swapcontext() function. The library’s
fast_swapcontext() function is called by
schedule() to perform a context switch. It is an assembly-
level replacement for the POSIX swapcontext()
function. A replacement was desired for two reasons.
First, swapcontext() includes an extra system call
(thus introducing additional overhead), used to update the
signal mask, that is superfluous for our purposes. Second,
swapcontext() was deprecated after the 2004 edition of
POSIX [16]. The drawback of providing a replacement is
that such an approach introduces additional porting effort as
the library is used on new machine architectures.5 A similar
swapcontext() replacement has been implemented
elsewhere (for example, [40]).

Rather than provide a replacement for swapcontext(),
it appears tempting to use the POSIX setjmp() and
longjmp() functions. Unfortunately, POSIX forbids the
use of these functions across different POSIX threads, which
makes that approach unsafe for the library.

Context initialization. In order to initialize the contexts
used by real-time tasks, our implementation currently relies
on the POSIX getcontext() and makecontext()
functions, which were also deprecated after 2004. However,
contexts can be initialized in a fully portable and POSIX-
compliant way, as demonstrated in [32], at the expense
of additional implementation effort. That method may be
adopted in a future release of the library.

Device interrupts. When a device raises an interrupt, the
operating system suspends whatever work is being performed
at the time, and executes a piece of code on behalf of the
device. In order to decrease the impact of interrupts on
scheduling, some RTOSs employ a technique known as split
interrupt handling. Under this technique, each interrupt is

5. This drawback is minor, because existing projects like glibc [4]
provide largely equivalent code for many architectures.

split into a top half, which executes immediately when the
interrupt is issued, and a bottom half, which is deferred.
Bottom-halves are executed in kernel-level threads spawned
by the kernel for that purpose. Such threads are assigned
priorities that are appropriate for the device or devices they
serve (which, in turn, depend on which real-time tasks use
the services provided by those devices).

In the ideal case, our library would provide some mecha-
nism to execute bottom halves in a dynamic-priority manner.
Unfortunately, we are not aware of any portable technique
that would make this possible.6 Thus, our library leaves the
scheduling of bottom halves to the underlying RTOS, if it
supports split interrupt handling.

When split interrupt handling is available, care must be
taken to ensure that bottom halves are executed in a timely
manner. For each bottom-half processing thread, there are
three options. First, the thread may be pinned to a core that
does not host a worker thread, and assigned an appropri-
ate static priority. Second, the thread may be assigned a
static priority higher than the worker threads. In effect, this
replicates non-split interrupt handling. Finally, if the thread’s
bottom halves may be treated as having lower priority than
all of the library’s real-time tasks, then the thread may be
assigned a static priority lower than that of the worker thread.

Unfortunately, our library provides less flexibility with
regard to bottom-half processing than would otherwise be
available. In a fully static-priority system (i.e., without our
library), it would be possible to assign a bottom-half pro-
cessing thread a priority in between that of two real-time
application threads.

Other device interaction. In addition to interrupt handling,
there are two other situations in which device driver code is
executed.

The first case is when a real-time task issues a system
call that causes device driver code to run in the kernel. This
situation does not merit special concern for a user of our
library. (However, real-time tasks must obey the protocol for
making system calls that was described in Section 3.4.)

The second case is when device driver code (excluding
interrupt handlers) resides in a kernel-level thread. For ex-
ample, in Linux, the kblockd thread periodically executes
driver code for block devices (such as disks) [24]. If the
services provided by such threads are needed by real-time
tasks, one must make appropriate provisions. The options
available are identical to those described earlier for bottom-
half processing threads.

Just as our library does not require any modifications
to be made to the RTOS kernel, nor does it require any
modifications to be made to code that interacts with devices.

4. Empirical Evaluation
In this section, we present overhead and latency measure-

ments for the library. In general, these measurements fall in
the range of ones to tens of microseconds. Under more taxing
configurations (i.e., larger C-EDF clusters), measurements
range into the hundreds of microseconds.

6. There may be non-portable, operating system-specific techniques. For
example, the QNX Neutrino RTOS allows bottom halves to be executed in
userspace [17].



The remainder of this section is organized as follows.
First, we specify the latencies and overheads that are of
interest. Then, we describe our experimental methodology.
After that, we present our measured results and analysis.
Finally, we describe an experiment to validate the robustness
of our implementation in which soft real-time guarantees
were maintained over a 24-hour period.

4.1. Overheads and Latencies

Overheads and latencies relevant to our library are as
follows. (The ordering here matches that used in Tables 1
and 2.)

Event latency. Event latency is the amount of time that
elapses between the periodic release time of a real-time task
and the corresponding invocation of the release handler.

Release overhead. Release overhead is the duration of exe-
cution of the release handler, minus the time taken to request
preemption signals for remote processors. We were motivated
to measure the latter separately from the former by the
observation that they change independently with respect to
various experimental parameters (as discussed immediately
below).

Request overhead. Request overhead is the time taken,
within the release handler, to request preemption signals for
remote processors. There is no POSIX mechanism to request
that multiple signals be sent with one system call; rather, our
implementation invokes pthread_kill() repeatedly, in a
loop (once per remote processor that needs to be preempted).
In our experiments, this was observed to be one of the most
significant sources of overhead.

Signal latency. Signal latency is the amount of time that
elapses between a signal being requested by the release
handler, and the corresponding invocation of the preemption
handler on a remote processor.

Scheduling overhead. Scheduling overhead is the duration
of schedule(), minus the time taken to perform a context
switch.

Context switch overhead. Context switch overhead is the
time taken to perform a context switch.

4.2. Experimental Methodology

In this subsection, we discuss our experimental method-
ology. We subdivide the discussion into the underlying
platform, RTOS setup, and the experimental workload.

Underlying platform. An eight-core, 2.493-GHz Intel Xeon
machine was used as the experimental hardware platform.
Each core has private L1 instruction and data caches, and
shares an L2 cache with a neighboring core. Power man-
agement features were disabled in the BIOS, and the ma-
chine was physically disconnected from the network during
experiments. We believe that this platform is representative
of hardware that manufacturers of advanced UAVs wish to
deploy in upcoming systems (see Section 1).

The Linux kernel with the PREEMPT_RT patch (ver-
sion 3.0.14-rt31) was used as the underlying RTOS.
PREEMPT_RT is a major effort on the part of core Linux

contributors to eliminate uninterruptible sections of the Linux
kernel of long duration, among other changes geared towards
enabling low-latency Linux deployments. It has been used in
various industrial applications [13], and is also the basis for
at least two commercial RTOS offerings [8, 12]. We chose
to use PREEMPT_RT Linux over a commercial RTOS (such
as VxWorks) because it is open source; this makes it more
easily accessible to a wider range of researchers. In future
work, we hope to examine the performance of our library
across a variety of RTOSs.

RTOS setup. In order to ensure that TSC readings would
not be perturbed by CPU frequency scaling or other power
management features, the PREEMPT_RT kernel was com-
piled with all such features disabled.

By default, PREEMPT_RT processes interrupt bottom
halves in a series of special-purpose kernel-level threads.
To prevent the starvation of bottom halves, the system was
configured such that the library’s worker threads had a lower
SCHED_FIFO priority than the PREEMPT_RT bottom-half-
processing threads, yet a higher priority than all other kernel-
level threads. The chrt command was used to re-assign
priorities.

As a protection against faulty kernel-level threads that
could starve the system, PREEMPT_RT has a feature that
caps the utilization available to each thread. This fea-
ture was disabled by setting the /proc/sys/kernel/
sched_rt_runtime_us parameter to -1.

Experimental workload. We tested four cluster configura-
tions, as listed in Tables 1 and 2. We tested task systems
comprised of m ·k tasks, where k ranges from two to twenty
in steps of two. For each configuration and each of the ten
values of k, five task systems were produced, yielding 200
tasks systems in total. Each task system was executed for 30
seconds.

Our task systems were generated using the same method-
ology as in an earlier LITMUSRT kernel-level implementa-
tion study [26]. Specifically, tasks were generated in groups
wherein utilization is close to but not more than one; d such
groups are assigned to a cluster of size d. Each group has one
of the following randomly-chosen utilization distributions,
as proposed by Baker [22]: light uniform, light bimodal,
light exponential, medium uniform, and medium bimodal.
Task periods fall uniformly in the range [10ms, 100ms].
The execution time of each task is determined based on its
assigned utilization and period.

Processors were allocated to clusters in accordance with
the cache hierarchy of the machine; for example, a cluster of
size two would be allocated processors sharing the same L2
cache. In addition, m non-real-time processes that repeatedly
access large arrays in memory were used as background
work. This ensures that cache lines used by the library are not
permanently resident in cache memory, which could unfairly
bias the overhead and latency measurements.

4.3. Results and Analysis

In total, 170,737,806 unique scheduling events were
recorded. These events were then distilled into the average-
and worst-case overheads and latencies presented in Tables
1 and 2.



Event
Latency

Release
Overhead

Request
Overhead

Signal
Latency

Scheduling
Overhead

Context Switch
Overhead

c = 8, d = 1 10.81 3.07 0.08 – 0.37 0.51
c = 4, d = 2 11.25 4.01 4.07 13.38 1.25 0.89
c = 2, d = 4 11.59 4.71 10.43 40.57 1.57 1.18
c = 1, d = 8 13.18 6.02 52.62 62.84 1.63 1.29

Table 1: Average-case latencies and overheads, in µs.

Event
Latency

Release
Overhead

Request
Overhead

Signal
Latency

Scheduling
Overhead

Context Switch
Overhead

c = 8, d = 1 84.60 32.30 7.06 – 21.72 18.31
c = 4, d = 2 86.29 31.38 65.94 91.23 18.27 20.84
c = 2, d = 4 78.24 27.53 84.20 120.80 19.00 18.78
c = 1, d = 8 60.64 36.53 218.61 187.13 32.58 18.90

Table 2: Worst-case latencies and overheads, in µs.

There is no reported signal latency for the c = 8, d =
1 case, because signal latency measures the time required
to trigger remote preemptions, which are never used in a
cluster of size one. For the same reason, no requests to send
a remote preemption signal are made in this particular case.
Counterintuitively, we report a worst-case request overhead
of approximately 7 microseconds. This is likely due to the
inopportune firing of hardware interrupts while the remote
preemption signal requesting code was being skipped over.

The work most directly comparable to our library is
LITMUSRT. As in our work, latencies and overheads under
clustered schedulers in LITMUSRT fall within the range of
ones to tens of microseconds for small clusters, and some-
times hundreds of microseconds for larger clusters7 [26].
However, in LITMUSRT, overheads and latencies tend to
be distributed differently among the various measurements,
which are not always directly comparable to our own. For
example, LITMUSRT does not accrue significant request
overhead, but has greater context switch overhead; and
LITMUSRT tends to have smaller release overhead, but
greater scheduling overhead. It would be interesting to find
out if LITMUSRT strictly outperforms our library (or vice
versa), or, possibly, under which circumstances each one
performs better. To conduct such a comparison would require
incorporating measurements for each system into a full
schedulability analysis (as described in [26]), and would
require a more detailed treatment than can be provided in
this paper, but is intended for future work.

One important observation is that with larger clusters,
request overhead and signal latency begin to grow signifi-
cantly. In general, LITMUSRT studies have shown that small
cluster sizes tend to dominate larger cluster sizes in terms
of schedulability anyway; thus, this result is not greatly
concerning.

4.4. Robustness Experiment
In order to ensure the robustness of our implementation,

we conducted an experiment in which a single task system

7. We refer to a LITMUSRT study on a Xeon L7455 platform as opposed
to the Xeon E5420 used in these experiments. The E5420 is marginally
faster, among other minor differences.

executed continuously for over 24 hours. Soft real-time
correctness was ensured by a special “watchdog task” that
executed once every second. This task ensured that all
other tasks had completed the proper number of jobs up
to that point within a small tolerance. The tolerance was
necessary to accommodate the fact that the system was over-
provisioned from a hard real-time perspective, guaranteeing
the existence of some tardiness during certain intervals.

5. Conclusion and Future Work
As the complexity and diversity of resource allocation

techniques has grown, supporting them at the kernel level has
become increasingly burdensome. Thus, we have proposed
supporting these techniques at the user level. Our results are
sufficient to demonstrate that a userspace library can support
the class of resource allocation methods of interest, with
latencies and overheads that are sufficiently small as to make
our library relevant for a subset of future real-world real-
time applications. While our library is currently a proof-of-
concept research effort, we hope to see it become a platform
for both broader research and practical deployment.

In addition to the future work mentioned previously, we
plan to expand this research along a number of fronts.
First, we would like to precisely characterize the scalability
of the library as cluster size and the number of clusters
increase, and investigate techniques to improve scalability,
with an eye towards advancing capabilities for real-time
systems on manycore platforms. Second, we would like
to better characterize tradeoffs in terms of schedulability
under various schedulers and locking protocols. Third, we
would like to investigate supporting advanced techniques
for future avionics systems, including adaptable scheduling
and mixed criticality. Finally, we would like to investigate
software engineering concerns. In particular, we would like
to support virtual machines for high-level languages, which
could provide an avenue for memory protection, among other
advantages. In addition, we would like to develop “self-
monitoring” schedulers that can provide data about their
performance, and perhaps even their correctness.

We are very eager to receive feedback on the source code



of our library [11], which we anticipate maintaining as an
open-source project.

Acknowledgments. We would like to thank the anonymous refer-
ees, each of whom provided useful advice that contributed to this
paper. We would also like to thank Daniel M. Johnson, of Northrop
Grumman Corp., and Glenn A. Elliott, of the University of North
Carolina at Chapel Hill, both of whom also influenced this paper.

References

[1] ACE, TAO, and CIAO Success Stories. http://www.cs.wustl.
edu/∼schmidt/TAO-users.html.

[2] ACPI home page. http://acpi.info.
[3] Evidence web site. http://www.evidence.eu.com.
[4] GLIBC, the GNU C Library. http://www.gnu.org/software/

libc/.
[5] Intel 64 and IA-32 Architectures Software Developer’s Man-

ual. Section 17.12.1.
[6] LITMUSRT web site. http://www.cs.unc.edu/∼anderson/

litmus-rt/.
[7] Real-Time CORBA with TAO. http://www.cs.wustl.edu/

∼schmidt/TAO.html.
[8] RedHat MRG Realtime. http://www.redhat.com/products/mrg/

realtime/.
[9] RT PREEMPT HOWTO. https://rt.wiki.kernel.org/articles/r/t/

/RT PREEMPT HOWTO 6bc9.html.
[10] SCHED DEADLINE web site. http://gitorious.org/sched\

deadline/pages/Home.
[11] Source code for the library described herein. http://cs.unc.edu/

∼mollison/userspace-library/.
[12] SUSE Linux Enterprise Real Time Extension. http://www.

suse.com/products/realtime/.
[13] Systems based on Real time preempt Linux.

https://rt.wiki.kernel.org/articles/s/y/s/Systems based on
Real time preempt Linux 29a7.html.

[14] wuthreads: Implementing a user-space threading library. http:
//www.arl.wustl.edu/∼fredk/Courses/OS/wuthreads.html.

[15] Xenomai web site. http://www.xenomai.org/.
[16] IEEE Std 1003.1, 2004 Edition, 2004. See entry on ‘make-

context, swapcontext’.
[17] QNX Software Systems Limited. QNX Neutrino RTOS: Sys-

tem Architecture. 2012.
[18] A. Anantaraman, A. Mahmoud, R. Venkatesan, Y. Zhu, and

F. Mueller. EDF-DVS Scheduling on the IBM Embedded
PowerPC 405LP. In Proceedings of the IBM P=ac2 Confer-
ence, 2004.

[19] A. Anantaraman, A. Mahmoud, R. Venkatesan, Y. Zhu, and
F. Mueller. EDF-DVS Scheduling on the IBM Embedded
PowerPC 405LP Progress Report. Technical report, 2004.
http://moss.csc.ncsu.edu/∼mueller/rt/rt04/g9/progress.pdf.

[20] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Sched-
uler activations: Effective kernel support for user-level man-
agement of parallelism. ACM Transactions on Computer
Systems, 10(1):53–79, 1992.

[21] M. Asberg, T. Nolte, S. Kato, and R. Rajkumar. ExSched: An
External CPU Scheduler Framework for Real-Time Systems.
In Proceedings of the 18th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applica-
tions, pages 240–249, 2012.

[22] T. Baker. A comparison of global and partitioned EDF
schedulability tests for multiprocessors. Technical Report TR-
051101, 2005.

[23] A. Block, B. Leontyev, B. Brandenburg, and J. Anderson.
A flexible real-time locking protocol for multiprocessors. In
Proceedings of the 13th IEEE Conference on Embedded and
Real-Time Computing Systems and Applications, pages 47–57,
2007.

[24] D. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly, 3rd edition, 2006.

[25] B. Brandenburg and J. Anderson. Real-time resource-sharing
under clustered scheduling: Mutex, reader-writer, and k-
exclusion locks. In Proceedings of the ACM International
Conference on Embedded Software, pages 69–78, October
2011.

[26] B. B. Brandenburg. Scheduling and Locking in Multiprocessor
Real-Time Operating Systems. PhD thesis, The University of
North Carolina at Chapel Hill, 2011.

[27] J. Calandrino, D. Baumberger, T. Li, J. Young, and S. Hahn.
LinSched: The Linux Scheduler Simulator. In Proceedings
of the ISCA 21st International Conference on Parallel and
Distributed Computing and Communications Systems, pages
171–176, September 2008.

[28] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson. LITMUSRT: A testbed for empirically comparing
real-time multiprocessor schedulers. In Proceedings of the
27th IEEE Real-Time Systems Symposium, pages 111–123,
December 2006.

[29] J. Corbet. Counting on the time stamp counter. http://lwn.net/
Articles/209101/, November 2006.

[30] L. Dozio and P. Mantegazza. Real time distributed control
systems using RTAI. In Sixth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, pages
11–18, May 2003.

[31] J. Edge. The trouble with the TSC. http://lwn.net/Articles/
388188/, May 2010.

[32] R. S. Engelschall. Portable multithreading: the signal stack
trick for user-space thread creation. In Proceedings of the
USENIX Annual Technical Conference, pages 20–20, 2000.

[33] D. Faggioli, M. Trimarchi, F. Checconi, M. Bertogna, and
A. Mancina. An implementation of the earliest deadline
first algorithm in Linux. In Proceedings of the 2009 ACM
Symposium on Applied Computing, pages 1984–1989, 2009.

[34] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and
furwocks: Fast userlevel locking in Linux. In Proceedings of
the Ottawa Linux Symposium, 2002.

[35] C. Gill. Flexible Scheduling in Middleware for Distributed
Rate-Based Applications. PhD thesis, Washington University,
2002.

[36] J. Lelli, D. Faggioli, and T. Cucinotta. An efficient and
scalable implementation of global EDF in Linux. In Proceed-
ings of the 7th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications, pages 6–15,
July 2011.

[37] B. Lin and P. A. Dinda. VSched: Mixing batch and interactive
virtual machines using periodic real-time scheduling. In
Proceedings of ACM/IEEE Supercomputing 2005, 2005.

[38] M. Mollison and J. Anderson. Virtual real-time scheduling. In
Proceedings of the 7th International Workshop on Operating
Systems Platforms for Embedded Real-Time Applications,
pages 33–40, July 2011.

[39] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. AQuoSA
- adaptive quality of service architecture. Software: Practice
and Experience, 39(1):1–31, 2009.

[40] H. Pan, B. Hindman, and K. Asanović. Composing parallel
software efficiently with Lithe. In Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 376–387, 2010.

[41] R. Rajkumar. Real-time synchronization protocols for shared-
memory multiprocessors. In Proceedings of the 10th Inter-
national Conferece on Distributed Computing Systems, pages
116–123, 1990.

[42] R. Rajkumar, L. Sha, and J. Lehockzy. Real-time synchro-
nization protocols for multiprocessors. In Proceedings of the
9th Real-Time Systems Symposium, pages 259–269, 1988.

[43] V. Yodaiken. The RTLinux Manifesto. In Proceedings of the
5th Linux Expo, 1999.


