Attacking the One-Out-Of-m Multicore Problem by Combining
Hardware Management with Mixed-Criticality Provisioning *

Namhoon Kim, Bryan C. Ward, Micaiah Chisholm, Cheng-Yang Fu, James H. Anderson, and F. Donelson Smith
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

The multicore revolution is having limited impact in safety-
critical application domains. A key reason is the “one-out-
of-m” problem: when validating real-time constraints on
an m-core platform, excessive analysis pessimism can effec-
tively negate the processing capacity of the additional m — 1
cores so that only “one core’s worth” of capacity is avail-
able. Two approaches have been investigated previously to
address this problem: mixed-criticality allocation techniques,
which provision less-critical software components less pes-
simistically, and hardware-management techniques, which
make the underlying platform itself more predictable. A bet-
ter way forward may be to combine both approaches, but to
show this, fundamentally new criticality-cognizant hardware-
management tradeoffs must be explored. Such tradeoffs are
investigated herein in the context of a large-scale, overhead-
aware schedulability study. This study was guided by exten-
sive trace data obtained by executing benchmark tasks on
a new variant of the MC? framework that supports config-
urable criticality-based hardware management. This study
shows that the two approaches mentioned above can be much
more effective when applied together instead of alone.

1 Introduction

Multicore platforms have the potential of enabling a wealth
of new computationally intensive features in safety-critical
domains such as in the avionics and automotive industries.
However, certifying the real-time correctness of a system
running on m cores can require analysis that is so pessimistic,
the processing capacity of the additional m — 1 cores is en-
tirely negated. In effect, only “one core’s worth” of capacity
can be utilized even though m cores are available. In do-
mains such as avionics, this “one-out-of-m” problem has led
to the common practice of simply disabling all but one core.
This problem is the most serious unresolved obstacle in work
on real-time multicore resource allocation today.

The root of this problem is that shared hardware resources,
such as caches, buses, and memory banks, are not predictably
managed. As reviewed later, several proposals for predictably
managing such resources have been presented that strive to
reduce pessimism by enabling tighter task execution-time
estimates. While these approaches seem promising, another

*Work supported by NSF grants CNS 1115284, CNS 1218693, CPS
1239135, CNS 1409175, and CPS 1446631, AFOSR grant FA9550-14-1-
0161, ARO grant W911NF-14-1-0499, and a grant from General Motors.
The second author was also supported by an NSF graduate fellowship.

"Multicore-related certification difficulties are extensively discussed in
a recent position paper from the U.S. Federal Aviation Administration [7].

way forward is the application of mixed-criticality (MC)
analysis assumptions, as originally proposed by Vestal [28].
Under such assumptions, less-critical tasks are provisioned
somewhat optimistically, allowing for increased platform
utilization. These research directions share a similar goal of
improving platform utilization, but are themselves orthog-
onal, raising broader research questions pertaining to the
combination of both approaches. Can better platform uti-
lization be realized if resources are managed differently at
different criticality levels? If so, how should resources be
managed both within and across criticality levels?

Isolation versus sharing. Addressing these questions re-
quires delving into sharing/isolation tradeoffs that have not
been considered before. For example, while higher-criticality
tasks might require strong hardware-isolation guarantees,
more optimistically provisioned lower-criticality tasks might
actually benefit from less restricted hardware sharing because
shared hardware is often designed to improve average-case
performance or throughput. With respect to caches, higher-
criticality tasks might tolerate severe restrictions on cache
usage, because they are provisioned pessimistically anyway.
For lower-criticality tasks, the opposite may be true.

In this paper, we report on our efforts to construct an
experimental platform that enables such tradeoffs to be as-
sessed, and discuss the results of an experimental investi-
gation conducted to provide such an assessment. Our new
platform extends a framework called MC? (mixed-criticality
on multicore) [11, 24, 29], which has been the subject of
continuing research by our group, by adding support for
several hardware-management techniques. Specifically, we
provide management for both the last-level cache (LLC) and
DRAM memory banks. Additionally, we provide techniques
that isolate the operating system (OS) from user-space tasks
with respect to the LLC and DRAM banks; to our knowledge,
the issue of OS isolation has not been considered before in
work on hardware management. We regard MC? as a rich
and interesting platform for our investigation because (as dis-
cussed later) it supports several criticality levels (not just two,
as typically assumed in work on MC scheduling), has both
hard real-time (HRT) and soft real-time (SRT) components,
both priority-scheduled and time-triggered components, and
both partitioned and globally scheduled components.
Contributions. Our contributions are threefold. First, af-
ter providing needed background (Sec. 2), we describe
the hardware-management mechanisms we added to MC?

(Sec. 3). The resulting MC? variant is highly configurable
and breaks new ground by allowing sharing/isolation trade-

offs to be studied in a criticality-cognizant way.

Second, we present extensive experiments concerning
such tradeoffs that demonstrate the value of managing hard-
ware in MC systems (Sec. 4.1). In the considered MC?
configuration, strong hardware-isolation guarantees were
provided to highly critical tasks, but somewhat permissive
sharing was allowed for less-critical tasks.

Third, we provide evidence in favor of combining MC
analysis with hardware management in attacking the one-
out-of-m problem. This evidence is provided in the form of
a large-scale overhead-aware schedulability study (Sec. 4.2)
that we conducted to demonstrate the benefits of combining
both approaches, and associated runtime experiments that
we conducted to partially assess the reasonableness of some
of the assumptions underlying this study (Sec. 4.3). To our
knowledge, this is the first overhead-aware schedulability
study that considers MC scheduling, hardware management,
and a combination of both.

In work on MC systems, there has been some limited prior
work in which hardware management was applied (see
Sec. 2). However, to our knowledge, we are the first to pro-
vide criticality-aware isolation—with respect to both the
OS and some of the most problematic sources of hardware
interference—within a framework as diverse as MCz, under
Vestal’s notion of MC analysis, which was proposed with the
express goal of improving platform utilization.

2 Background
We begin by reviewing needed background and related work.

Task model. We consider real-time workloads specified us-
ing the implicit-deadline periodic task model and assume fa-
miliarity with this model. We specifically consider a task sys-
tem 7 = {71,...,7,}, scheduled on m processors,> where
task 7;’s period and worst-case execution time (WCET) are
denoted T; and C}, respectively. (We generalize this model
below when considering MC scheduling.) The utilization
of task 7; is given by u; = C;/T; and the total system uti-
lization is defined as), u;. A periodic task system may be
scheduled following a partitioned approach (tasks are stati-
cally assigned to processors), a global scheduling approach
(any task may execute on any processor), or some hybrid of
the two. If a job of 7; has a deadline at time d and completes
execution at time ¢, then its tardiness is max{0, ¢ — d}. Tar-
diness should be zero for any job of a hard real-time (HRT)
task, and should be bounded by a (reasonably small) constant
for any job of a soft real-time (SRT) task.

Mixed-criticality scheduling. The roots of most recent
work on MC scheduling can be traced to a seminal paper by
Vestal [28]. For systems where tasks of differing criticalities
exist, he proposed adopting less-pessimistic execution-time
assumptions when checking the schedulability of less-critical
tasks. More formally, in a system with L criticality levels,
each task has a provisioned execution time (PET)? specified
at every level, and L system variants are analyzed: in the

2We use the terms “processor,” “core,” and “CPU” interchangeably.
3We use “PET” instead of “WCET” because under MC?, some tasks are
SRT, and hence may not be provisioned on a worst-case basis.

CPUO CPU1 CPU 2 CPU 3
higher
Level A (static)
priority
Level B
Level C G-EDF
[] [] []
lower
Level D Best Effort (static)
priority

Figure 1: Scheduling in MC? on a quad-core machine.

Level-¢ variant, the real-time requirements of all Level-£
tasks are verified with Level-¢ PETs assumed for all tasks (at
any level). The degree of pessimism in determining PETs is
level-dependent: if Level ¢ is of higher criticality than Level
¢, then Level-¢ PETs will generally be greater than Level-¢’
PETs. For example, in the systems considered by Vestal [28],
observed WCETs were used to determine PETs for tasks at
lower levels, and such times were inflated to determine PET's
at higher levels. The task model resulting from Vestal’s work
has come to be known as the MC task model.

MC?. Vestal’s work led to a significant body of follow-up
work (see [5] for an excellent survey). Within this body

of work, MC? was the first MC scheduling framework for

multiprocessors (to our knowledge) [11, 24, 29]. MC2 is
implemented as a LITMUS®T [22] plugin and supports four
criticality levels, denoted A (highest) through D (lowest),
as shown in Fig. 1. Higher-criticality tasks are statically
prioritized over lower-criticality ones. Level-A tasks are par-
titioned and scheduled on each core using a time-triggered
table-driven cyclic executive.* Level-B tasks are also parti-
tioned but are scheduled using a rate-monotonic (RM) sched-
uler on each core.* On each core, the Level-A and -B tasks
are required to be simply periodic (all tasks commence exe-
cution at time 0 and periods are harmonic), with the Level-B
task periods being integer multiples of the Level-A hyper-
period. Level-C tasks are scheduled via a global earliest-
deadline-first (GEDF) scheduler.* Level-A and -B tasks are
HRT, Level-C tasks are SRT, and Level-D tasks are non-
real-time (so we do not consider them further). MC? is a
flexible framework. For example, it can be configured to
have only two HRT criticality levels (as in most theoretical
work on MC scheduling) or to fully assign the Level-A and
-B subsystems to distinct, dedicated cores.

MC? was originally designed in consultation with col-
leagues in the avionics industry. A major thesis underlying
its design is that Levels A and B would be mostly comprised
of quite deterministic “fly-weight” tasks with rather low uti-
lizations; less-deterministic computationally intensive tasks
of higher utilization would likely be assigned to Level C.

Page coloring. Page coloring is a technique that can be ap-
plied to eliminate interference within the LLC and memory

4Other per-level schedulers optionally can be used, and Level-C tasks
can be defined according to the sporadic task model. These options, and
other considerations, such as slack reallocation, schedulability conditions,
and execution-time budgeting are discussed in prior papers [11, 24, 29].

banks [14]. We explain the basic idea here with respect to
the LLC (which we assume to be set-associative). Consider
the pages of physical memory in turn. Assign the color “0”
to the first page, and assign the same color to the sets in
the LLC to which its content’s addresses map. In a similar
way, assign the color “1” to the next page and corresponding
cache sets, and so on. Eventually, such color assignments
will “wrap” and we will sequence through the same colors
again. This process ensures that differently colored pages
map to different sets in the LLC. Thus, accesses to two differ-
ently colored pages cannot cause cache conflicts. Note that
this coloring process is based on physical memory addresses.
Such addresses also determine how memory pages map to
DRAM banks, so pages can also be colored with respect to
the banks to which they are mapped.

Ensuring isolation with respect to the LL.C. In most prior
work on eliminating or reducing interference in the LLC,
some variant of cache partitioning is used (see [19] for an
overview). Set-based cache partitioning can be implemented
by page coloring: each partition corresponds to a disjoint sub-
sequence of colors that maps to some disjoint subsequence
of sets in the LLC. Way-based cache partitioning is also pos-
sible, but this requires hardware support. The ARM platform
utilized in our experiments provides such support, which we
describe in detail later in Sec. 3 (see Fig. 3).

Ensuring isolation with respect to memory banks. Mod-
ern DRAM designs contain multiple banks, which can be
interleaved to parallelize memory accesses. Each bank con-
sists of memory in an array of rows and columns, along with
a row buffer. For a memory location to be read or written
via the data bus, that location’s row must be stored in the
row buffer. If the row was already in the buffer, then we have
a row-buffer hit, otherwise we have a row-buffer miss. In
the event of a miss, the row previously in the buffer must
be copied back to the array. Row-buffer misses create extra
latency. Tasks executing on different processors can be pre-
vented from causing each other to experience such misses by
partitioning DRAM banks among processors [23].

Prior related work. The use of cache partitioning in real-
time systems has been considered by Kim et al. [17] and
Altmeyer et al. [2]. However, both of these papers are di-
rected at uniprocessor platforms and neither considers MC
systems. As an alternative to cache partitioning, a technique
called cache lockdown can be used that prevents designated
cached data or instructions from being evicted [6]. Also, it
is possible to redesign the cache allocator itself to provide a
replacement policy that is more predictable [12].
Regarding memory-related issues generally, prior work
has been done on more predictable memory architectures
and memory controllers for single-criticality [21] and MC
[3, 15, 26] systems, on improved timing analysis for MC
multicore systems that more accurately assesses memory
interference [13], and on making bus accesses more pre-
dictable in single-criticality [1, 27] and MC systems [9, 10].
Regarding DRAM-related issues specifically, Kim ez al. [16]
presented analysis for predicting memory-access delays in
which DRAM characteristics are carefully considered, and

[cpuo | [cpus |
L1-1 L1-D | *°*°| L1 L1-D
32KB | 32KB 32KB | 32KB
L2
1MB
DRAM DRAM
Bank 0 oo Bank 7
128 MB 128 MB

Figure 2: Quad-core ARM Cortex A9.

Yun et al. [30] presented PALLOC, an OS-based dynamic
memory allocator that can specifically allocate pages to pro-
vide bank and/or cache isolation. Neither of these papers
considers MC systems. In other cache-related work, Yun et
al. [31] presented an approach that reduces cache, bus, and
memory interference in MC systems by stalling some mem-
ory accesses. A survey of challenges created by shared hard-
ware interference has been presented by Kotaba ez al. [20].
Of the just-cited papers, only three consider the notion
of MC scheduling espoused by Vestal [3, 13, 15]. These
three papers focus on hardware issues and only peripherally
touch on the issue of achieving better platform utilization
from a schedulability point of view through less pessimistic
analysis assumptions as proposed by Vestal. This issue is

the subject of two prior MC?-related papers by our group.
The first of these papers [29] considers a scheduling-based
approach to LLC management for high-criticality tasks only.
In that work, the OS prefetches all potentially accessed pages
before a high-criticality job executes, and enforces that co-
scheduled jobs do not conflict in the LLC. Lower-criticality
jobs are allowed to execute in periods of high LLC contention
that otherwise would have idled a processor. In contrast, we
take a more holistic approach to hardware management here,
and consider hardware-management tradeoffs within and
among all criticality levels. The second paper [8] tackles
the theoretical problem of assigning different portions of the
LLC to different criticality levels by applying a combination
of set- and way-based partitioning. This last paper is actually
a stepping stone towards the work described herein.
Specifically, we build upon that paper by considering OS
and DRAM-bank isolation, by analyzing important overhead
sources based on an actual implementation, and by applying
this overhead data in a large-scale schedulability study. Our
overall research agenda breaks new ground on several fronts.
First, we are the first to investigate sharing/isolation tradeoffs
with respect to shared hardware in a criticality-cognizant way
(prior work only emphasized isolation). Second, we consider
systems with more than two criticality levels (as opposed
to only two, as in almost all prior work). Third, we are the
first to investigate cache partitioning in MC systems, and
in systems in which both partitioned and global schedulers
are used. Fourth, we are the first to consider interference
with respect to both the LLC and DRAM memory banks in
MC multicore systems. Finally, we are the first to address
shared-hardware interference due to the OS.

3 Implementation

We now describe the hardware-management extensions we

added to MC?. All source code for our new MC? prototype
is available online [22]. To discuss the specific hardware re-
sources to be managed, we must first describe our considered
hardware platform, which is a quad-core ARM Cortex A9
machine. Each core on this machine is clocked at 800MHz
and has separate 32KB L1 instruction and data caches. Ad-
ditionally, the LLC is a shared, unified IMB 16-way set-
associative L2 cache. 1GB of off-chip DRAM is available,
and this memory is partitioned into eight 128MB banks. The
basic architecture is illustrated in Fig. 2.

Way- and set-based LLC partitioning. Our ARM platform
provides per-CPU lockdown registers that enable the LLC to
be partitioned by way. This is illustrated in Fig. 3(a). In the
depicted situation, the lockdown bit corresponding to Way 2
is cleared on CPU 0, which directs cache allocations from
CPU 0 to Way 2 of the LLC. Per-CPU lockdown registers
can be modified via the proc filesystem interface.

As an alternative to way-based partitioning, our imple-
mentation allows set-based partitioning via page coloring.
This is illustrated in Fig. 3(b) for our ARM platform, which
has an LLC with 16 colors. Way- and set-based partitioning
can be combined to flexibly create rectangular LLC areas
that can be designated for the sole use of certain tasks. This
is illustrated in Fig. 3, which depicts our overall allocation
strategy; we consider this figure in detail later.

DRAM banks. Our test platform allows DRAM bank in-
terleaving to be optionally enabled. With bank interleaving
enabled, successive pages map to different banks; with it
disabled, the first 32K pages map to Bank 0, the next 32K
to Bank 1, and so on. Bank interleaving results in increased
memory throughput in certain use cases. However, when
enabled on our test platform, the bits within a physical ad-
dress that determine the mapped-to bank overlap those that
determine the LLC color, and as a result, each bank contains
pages of only two LLC colors. In contrast, with interleaving
disabled, each bank contains pages of all LLC colors. The lat-
ter permits more fine-grained control over page allocations,
so we disable bank interleaving. However, when allocating
pages to tasks, we attempt to distribute a task’s pages across
all of the banks that it can access (if more than one), to obtain
the benefits of bank interleaving. The manner in which we
allocate pages is discussed next.

Allocating pages to tasks. A memory location’s physical
address determines both its LLC color and DRAM bank. To
properly allocate LLC colors and DRAM banks to tasks, we
construct pools of pages for each color and bank combina-
tion. We then reallocate pages to tasks from these pools via
a system call. In our experiments, we were able to fully allo-
cate to these pools all pages from four of the DRAM banks,
Banks 3 through 6. Each of these four banks is dedicated to
the Level-A and -B tasks on a specific CPU of our quad-core
platform. The other four banks are shared by the OS and
all Level-C tasks. As a result, the OS can allocate pages
only from these banks and dynamic memory allocation is

---L2 Cache Lockdown Register

,,,,,

§CPU 0 Lockdown Register l

Way Way

i Lockdown bits [15:0] | 0 L S
i [1111 1111 1111 1011] || [Color \\
L | 0 &

I— Color

Way
15

(a)

Way | Way | Way Way
Address Bits [31:0] 0 1 2 15

[15:12] [0010] COZ:W &\N&\&Q\\\\\Qx\\%&\%

Color
15

(b)
Figure 3: LLC partitioning (a) by way and (b) by set.

only supported for Level-C tasks.’ With the exception of a
rarely accessed signal-handling page, our page-coloring pro-
cess can color all pages associated with each task. However,
we currently do not allocate shared pages, though shared
libraries can be dealt with via static linking. We defer full
consideration of shared pages to future work.

Way-based OS isolation. Our prototype isolates the OS
from Level-A and -B tasks in the LLC via way-based parti-
tioning. Specifically, whenever kernel code begins executing
on a CPU as the result of an interrupt, exception, or system
call, we save the current value of that CPU’s lockdown reg-
ister and then modify it so that the OS code accesses only
certain LLC ways in kernel mode. When exiting kernel mode,
we restore the lockdown register using the saved value. To-
gether with the DRAM isolation just described, this ensures
that the OS only minimally interferes with Levels A and B.

Unmanaged hardware resources. Our prototype does not
provide management for L1 caches, translation lookaside
buffers (TLBs), memory controllers, or memory buses. How-
ever, we assume a measurement-based approach to determin-
ing PETSs, so such unconsidered resources are implicitly con-
sidered when PETs are determined. We adopt a measurement-
based approach because work on static timing-analysis tools
for multicore machines has not matured to the point of being
directly applicable. Moreover, measurement-based processes
for determining PETSs are often used in practice.

Overall allocation strategy. Our overall allocation strategy

is depicted in Fig. 4. This strategy ensures strong isolation
guarantees for higher-criticality tasks, while allowing for

5 According to the thesis underlying the design of MC? (mentioned in
Sec 2), Level-A and -B tasks are expected to be fly-weight, deterministic
tasks, and hence should not require dynamic memory allocation.

16 Ways

CPUO 7
4 Colors CPUO Level B
—
Level A
t crlf1
e— —
4 Colors cPU1 Levil B
[- Level C
l Level A
& = LLC(L2)
1 cpu 2
le— — 0s
4 Colors cPU2 evel B
le—
Level A
t pu3
le—
4 Colors CPU3 Ljvel B
le—
Level A B

DRAM | DRAM | DRAM | DRAM | DRAM | DRAM | DRAM | DRAM
Bank 0 | Bank1 | Bank2 | Bank3 | Bank4 | Bank5 | Bank6 | Bank7
Level C | Level C | LevelC| CPUO | CPU1 | CPU2 | CPU3 | LevelC
& 0S & 0S &0S | A&B | A&B | A&B | A&B &0S

Figure 4: Example LLC and DRAM allocation. Note that the Level-
A and -B LLC areas for each core can overlap. LLC boundaries
indicated by double lines are settable parameters.

fairly permissive hardware sharing for lower-criticality tasks.
DRAM allocations are depicted at the bottom of the figure
and are as discussed earlier. LLC allocations, which we
describe next, are depicted at the top.

As seen, Level C and the OS share a subsequence of the
available LLC ways and all LLC colors. In prior work on
MC? [11, 24, 29], Level-C tasks (being SRT) were assumed
to be provisioned on an average-case basis, and we assume
that here. Under this assumption, LLC sharing with the OS
should not be a major concern. The remaining LLC ways
are partitioned among Level-A and -B tasks on a per-CPU
basis. That is, the Level-A and -B tasks on a given core share
a partition. Each of these partitions is allocated 1/4 of the
available colors, as depicted. This scheme ensures that Level-
A and -B tasks do not experience LLC interference due to
tasks on other cores (spatial isolation). Also, Level-A tasks
(being of higher priority) do not experience LLC interference
due to Level-B tasks on the same core (temporal isolation).

The specific number of LLC ways allocated to the Level-
C/OS partition and to the per-core Level-A and -B partitions
is a tunable parameter determined on a per-task-set basis us-
ing optimization techniques that were the main contribution
of the precursor paper to this one [8]. These optimization
techniques seek to minimize a task set’s Level-C utilization
while ensuring schedulability at all criticality levels.

In addition to the basic allocation strategy depicted in
Fig. 4, we also consider a variant of it in which the Level-
C/OS LLC area is partitioned by way on a per-CPU basis.
This variant provides stronger isolation guarantees to Level-
C tasks but reduces the LLC area that such a task can utilize.

4 Evaluation

We experimentally assessed the impact of combining MC
allocation and hardware management in attacking the one-
out-of-m problem via the following process. First, to assess
the impact of hardware management, we collected extensive
trace data concerning synthetic tasks and benchmark pro-
grams. A subset of this data is discussed in Sec. 4.1. Second,
we conducted a large-scale overhead-aware schedulability
study involving task systems randomly generated using a
process based on our collected trace data. A subset of these

Programs Memory Access
Pointer Small blocks at unpredictable locations.
Update Small blocks at unpredictable locations with
memory updates.
Matrix Irregular or mixed, with mixed levels of reuse.
Neighborhood Regular access to pairs of words at arbitrary
distance.
Field Regular, with little reuse.
Transitive Closure ~ Reads and writes to different matrices concur-
rently.

Table 1: DIS Stressmark programs [25].

experimental results is presented in Sec. 4.2. In these schedu-
lability experiments, certain provisioning assumptions were
made regarding PETs. To partially assess the soundness of
these assumptions, we conducted experiments in which run-
time data was collected for systems of benchmark programs.
This data is presented and discussed in Sec. 4.3.

4.1 Isolation Impacts

We examined isolation impacts by collecting trace data for
both synthetic micro-benchmark (p:B) tasks devised by us
and publicly available benchmark programs. The uB tasks
were designed as stress cases to demonstrate the upper limits
of potential performance improvements made possible by
LLC and DRAM bank management. Each uB task consists
of a main loop that is repeated 500 times. During each loop
iteration, a different randomly chosen sequence of unique
word addresses is read, where each address aligns with the
first word in a cache line (32 bytes on our hardware). Every
available cache line is referenced once in an iteration. This
access pattern has the effect of forcing each cache reference
to a random line and eliminating hits for successive refer-
ences within a line (reducing spatial and temporal locality in
references). Each uB task has a specified working set (WS),
which is the set of addresses used to reference data, and
correspondingly a working set size (WSS).

The benchmark programs we considered are listed in
Tbl. 1 and come from the Data Intensive Systems (DIS)
Stressmark Suite [25]. This suite was defined to reflect
memory-usage patterns common in real-world use cases.

Quantifying cache-usage patterns is harder for real appli-
cation code than pB tasks. However, there must naturally
be a point of diminishing returns for larger and larger LLC
allocations for any task (assuming it is executed in isolation).
We call this point, where execution times do not substantially
decrease given a larger LLC allocation, a task’s ideal cache
allocation size (ICAS). Note that it is possible for a task to
have an ICAS larger than the LLC. In such cases, we define
its ICAS to match the LLC size. Our uB tasks have a very
small code footprint, so for them, ICAS is the same as WSS.

Impact of providing full isolation. In our first set of exper-
iments, we examined the impact of providing full isolation
to a task by giving it a dedicated LLC area and/or DRAM
bank that are accessed by no other task. When full isolation
is provided, these experiments have implications when deter-
mining PETs for Level-A and -B tasks. Such tasks can only
experience interferences from other tasks due to preemp-
tions, and any execution-time increases due to preemptions

ldle —<— Loaded, no cache or bank isolation

WCET : Color = 16
1600 T T T

2 1400 - g
Tg 1200 —m 4
£ 1000 | e E
& 800 -
g 600 g]
e e M i

o 400 B I e - e S S RV VY

200 I 1 T T T T T

2 4 6 8 10 12 14 16
Number of Ways
(a) 256KB-WSS 1B task WCET assuming 16 colors.
WCET : Color = 16

5500 ‘ T \
‘2 5000]
T 4500 &
E 4000 |~
= 3500
£ 3000
8 2500
& 2000

1500 Il Il Il Il Il Il Il

Number of Ways

(c) Matrix program WCET assuming 16 colors.

Loaded, cache isolation but no bank isolation ---&---

Loaded, both cache and bank isolation ---%---

AVG : Color = 16
1600 T T

2 1400 g
g 1200 | g E
E 1000 P g e
= AN
g 80F o\ y
3 600 < 5
% 400 R §
w B s e Lt " %

200 I 1 T T T T T

2 4 6 8 10 12 14 16
Number of Ways
(b) 256KB-WSS 1B task ACET assuming 16 colors.
AVG : Color = 16
1400 T T

@ 1300 -
£ 1200 g
£ 1100 % B
E 1000 | B
5 900 e
S 800 -
8§ 700 i
& 600 e

500 —

2 4 6 8 10 12 14 16
Number of Ways

(d) Matrix program ACET assuming 16 colors.

Figure 5: Execution-time data for (a) & (b) the 256KB-WSS 1B task and (¢) & (d) the Matrix program.

are dealt with in overhead accounting.

To assess the impacts of providing full isolation, we ran
experiments in which a measured task (either a B task or
a DIS program) was run alone on one core either in the
presence of no other running tasks—we call this the idle
scenario—or along with stress-inducing tasks running con-
currently on the other three cores—we call this the loaded
scenario. The loaded scenario was further factored into three
cases: (i) no cache or bank isolation, (ii) cache isolation but
no bank isolation, and (iii) both cache and bank isolation.
This yielded a total of four isolation configurations. The
stress-inducing tasks were configured like our synthetic uB
tasks, with a WSS of 1MB. When bank isolation was not
provided, these tasks were configured to specifically target
the DRAM bank used by the measured task.

For each measured task and isolation configuration, we
considered 272 possible LLC area sizes (given by O to 16
ways and 1 to 16 colors) for allocation to the measured
task. Each additional way or color increases the allocated
LLC space by 4KB. This process yielded 272 x 4 = 1,088
experiments per measured task. In each such experiment, we
recorded the (observed) WCET and average-case execution
time (ACET) of the measured task from data collected in
100s of execution. We are interested in both WCETs and
ACETs because we assume that Level-A and -B PETs are
based on WCETs, and Level-C PETSs are based on ACETs,
as in prior work on MC2 [11, 24, 29].

We collected trace data (6GB in total) for all six programs
in Tbl. 1 and for ;B-task WSSsin {32, 64, 256, 512} KB. We
now make several observations based on this data. We sup-
port these observations using the data in Fig. 5, which depicts
recorded WCET and ACET values for both the 256KB-WSS
variant of the uB task and the Matrix program, given an
allocated LLC area consisting of 16 colors and some number
of ways. Due to space constraints, the rest of our collected
data is given in an online appendix [18].

Obs. 1. For a given LLC allocation, isolation reduced
WCETS by up to 277% for the uB task and by up to 242%
for the Matrix program.

The noted 277% (resp., 242%) reduction can be seen by

comparing the curves in Fig. 5(a) (resp., Fig. 5(c)) at the data
points corresponding to five (resp., twelve) ways. However,
isolation comes at a cost. For example, if we choose to isolate
Level-C tasks by way on a per-CPU basis (refer to Fig. 4),
then each Level-C task would only be able to access 1/4 of
the available LLC area size (assuming it is divisible by four)
instead of sharing the entire area.
Obs. 2. For a given LLC allocation space, sharing the en-
tire space without isolation and partitioning the space and
providing isolation are incomparable with respect to ACETs
and WCETs. This exposes a tradeoff that is dependent upon
the given application, as well as the size and configuration
of the LLC-allocation space under consideration.

For example, suppose we have the option at Level C of
either sharing the entire LLC among all four cores or provid-
ing per-core partitions with four ways and 16 colors. From
the perspective of the B task considered in Fig. 5(b), these
two options can be compared by examining the curves for a
loaded system with LLC isolation at four ways and no LLC
isolation at 16 ways. From these two points, we see that the
ACETs for these two options are 466 ms and 677 ms, respec-
tively, a 31% ACET improvement under isolation. To more
clearly investigate this tradeoff, we generated histograms,
two of which are given in Fig. 6, that visually depict the
distribution of how frequently, and by how much, sharing vs.
isolation improves ACETs and WCETs. The two presented
histograms show that for the Matrix program, isolation tends
to improve ACETs, while for the 256KB-WSS B task, the
reverse is true. Also, there exist cases in which one approach
may be substantially better, as demonstrated by the leftmost
“outlier” in Fig. 6(b), where isolation yields a 45% improve-
ment. Given this tradeoff, we opted to fully consider in our

Samples
IO NWSUO N ®O

-
[

-10 -5 0 5 10
Percent improvement from sharing over isolation.

(a) Matrix.

=50 —40 =30 =20 -10 0 10 20 30
Percent improvement from sharing over isolation.

(b) 256KB-WSS uB.

Figure 6: Histograms showing the percentage improvement in the ACET of two benchmark programs provided by sharing the LLC allocation,
instead of providing isolated partitions. The x-axis gives different precentages, and for a given percentage, the histogram shows the number of
cases observed across all considered LLC-allocation sizes that exhibited that percentage improvement. Negative (resp. positive) percentages

indicate that isolation (resp. sharing) is better.

schedulability experiments the variant of our general allo-
cation strategy mentioned at the end of Sec. 3 in which the
Level-C/OS LLC area is partitioned instead of shared.

Obs. 3. LLC isolation had a greater impact on WCETs as
LLC space approached ICAS. Beyond this point, WCETs
were only marginally greater than in an idle system, imply-
ing that unmanaged hardware resources (TLB, memory bus,
memory controllers—see Sec. 3) had only a small impact.

In Fig. 5(a), the WCET with LLC isolation becomes quite
close to that in an ideal system at four colors, which yields
an LLC area matching the B task’s WSS, and therefore its
ICAS. A similar trend can be seen in Fig. 5(c) at ten ways.

Obs. 4. Isolation with respect to both the LLC and DRAM
banks improved WCETs over LLC isolation alone especially
when the allocated LLC area is less than ICAS.

This effect can be seen in insets (a) and (c) of Fig. 5. Note
that, if the allocated LLC area is at least the given task’s
ICAS, then DRAM bank isolation has only a small impact.

Because Level-C PETs are based upon ACETsS, we care
about ACETsS as well, even for provisioning Levels A and B
(refer to our earlier discussion of MC analysis in Sec. 2).

Obs. 5. The WCET trends noted above also apply to ACETs.
ACETs were lower than WCETSs by approximately 5-10%
(resp., 80%) for the uB task (resp., Matrix program).

This can be seen by comparing the left-side insets to the
right-side insets in Fig. 5. (The 5-10% reduction in the case
of insets (a) and (b) may be somewhat hard to see because
of the scale.) The Matrix program exhibits a relatively lower
ACET because it is less deterministic than the ;B task.

Impact of sharing at Level C. If hardware isolation is pro-
vided, then ACETSs can be computed without much regard for
any background workload. However, the situation is murkier
for Level-C tasks assuming the default configuration in Fig. 4
since they share the same LLC area and DRAM banks. To
better understand this issue, we conducted experiments in
which a mixture of DIS programs was executed at Level C
and ACETs were determined for individual programs. The
following observation follows from these experiments.

Obs. 6. Level-C ACETs for Level-C tasks increased when
the allocated Level-C LLC area was reduced or when the uti-
lization of the background Level-C workload was increased.

ACET
- 1600 — . I | |
1S LLC size = 64KB ——
g 0T 128KB ---X---
: 256KB ---%--- 3
E 1200 512KB - -
= ool K SRR T-‘x-'-fié'--;:‘;_m _____ g
g e R - B
3 8o * :**x -
i x O - D o
S 600 F goE-EE | | |
0 0.5 1 15 . v

Total utilization of background workload

Figure 7: ACETs of the Matrix program with varying LLC sizes
and background workloads.

Data supporting this observation is given in Fig. 7, which
gives ACETs for the Matrix program assuming various LLC
area sizes and total background Level-C utilization. To de-
termine Level-C PETs for Level-C tasks in practice, some
domain knowledge would be required when defining an ap-
propriate background workload. In our schedulability experi-
ments, we determined such PETs by “indexing into” a graph
similar to that in Fig. 7, which is reflective of the assumption
that the background workload is a mix of DIS programs.®
In Sec. 4.3, we present the results of runtime experiments
involving observed timeliness that partially validate this and
other provisioning assumptions made in this paper.

OS isolation. Our new MC? prototype isolates the OS from
Levels A and B with respect to the LLC and DRAM banks
(recall Fig. 4). We examined the impact of this feature by
conducting an experiment in which a Level-B uB task was
executed with and without OS isolation. The B task was
modified to invoke a dummy system call once per loop itera-
tion that allocated and read 16 pages of memory. While such
a system call may seem somewhat extreme, the point here is
that if OS isolation is not provided, then predictability can
be lost, unless the code paths the OS will take are known
with high assurance. Fig. 8 shows measured execution times
for 100 jobs of the B task, with and without OS isolation.

5This method must actually be iteratively applied because a Level-C
tasks’s ACET depends on the total average-case utilization of all other
Level-C tasks, and hence their ACETs. However, given the scale of our
schedulability experiments, which involved millions of task systems, this
was infeasible. As a result, we applied this method in a more conservative
manner that actually penalized MC? with isolation (see [18] for details).

OS not isolated —+— OS isolated ---x---

60 T T T T

@

| SRR Y
g sl]
E 52 f]
c 50} .
o

g as| o ¥ -
3 46 X R % 0K Ao I, ,x“xéx%ﬂ“ X X5
8 14 RIS LY Wyw& % Xﬁ’sﬁxx
b 42 I I I I

0 20 40 60 80 100

Job Instance #

Figure 8: The effect of OS isolation.

Obs. 7. OS isolation substantially reduced the WCET and
ACET of the uB task.

OS-related overheads can induce much pessimism in
schedulability analysis [4], but Fig. 8 and additional data
available online [18] suggest that per-overhead costs can be
significantly reduced through OS isolation. One potential
concern, however, is that restricting the OS to execute within
a smaller LLC area might increase its own execution times
unacceptably. However, in additional experiments, we found
that providing OS isolation increased system-call overheads
by a mere 35 ns in the worst case and by 15 ns on average.

4.2 Overhead-Aware Schedulability Experiments

To quantify the gains afforded by criticality-cognizant iso-
lation, we randomly generated millions of task systems and
evaluated their schedulability with implementation-related
overheads considered under the following scheduling- and
resource-allocation schemes.

o MC?-ISO: MC? with DRAM-bank and LLC isolation
at Levels A and B (as depicted in Fig. 4).

e MC?-FULL-ISO: MC? with DRAM-bank and LLC
isolation at Levels A and B, and LLC isolation at
Level C (where Level-C LLC isolation is achieved via
creating per-core LLC areas via way-based partitioning,
as discussed at the end of Sec. 3). Differences in schedu-
lability between MC?-1SO and MC?-FULL-ISO allow
us to analyze the tradeoffs noted in Obs. 2 at Level C.

e MC?: MC? with no DRAM-bank or LLC isolation. This
scheme provides the advantage of MC analysis only.

e PEDF-ISO: Partitioned EDF (PEDF) with DRAM-
bank and LLC isolation. This scheme provides the ad-
vantage of hardware-management only, thus all tasks
use Level-A PETs. PEDF has been shown in previous
work [4] to be perhaps the most competitive known
HRT scheduling algorithm for multiprocessors when
considering implementation overheads.

e PEDF: PEDF with no DRAM-bank or LLC isolation.

e EDF: EDF on only one core. As stated in Sec. 1, this
scheme represents the current industry best practice of
disabling all but one core.

These six schemes allow us to independently investigate
the gains afforded by isolation and MC analysis, and fully
quantify the value of combining both approaches.

[[Choice [Level A [Level B [LevelC |
A-Heavy [50, 70) [10, 30) [10, 30)
B-Heavy [10, 30) [50, 70) [10, 30)
Criticality C-Heavy [10, 30) [10, 30) [50, 70)
Utilization AB-Moderate [35, 45) [35, 45) [10, 30)
Ratios AC-Moderate [35, 45) [10, 30) [35,45)
BC-Moderate [10, 30) [35, 45) [35,45)
All-Moderate [35, 45) [35, 45) [35,45)
Short 3,6} 6,12} [3,33)
Period (ms) Contrasting 3,6} 96,192} [10,100)
Long 48,96} 96,192} [50,500)
Light [0.001,0.03) | [0.001,0.05) [0.001,0.1)
Task Util. Moderate [0.02,0.1) [0.05,0.2) [0.1,0.4)
Heavy [0.1,0.3) [0.2,0.4) [0.4,0.6)
Max Light [0.0L, 0.1) [0.01, 0.1) [0.01, 0.)
Reload Moderate [0.1,0.25) [0.1,0.25) [0.1,0.25)
Time Heavy [0.25,0.5) [0.25,0.5) [0.25,0.5)
Level-A Constant [0.5,0.5) [0.5,0.5) [0.5,0.5)
Inflation Small Variation [0.3,0.7) [0.3,0.7) [0.3,0.7)
(%) Large Variation | [0.1,0.9) [0.1,0.9) [0.1,0.9)

Table 2: Task-set parameters and distributions.

Schedulability experimental framework. In our schedula-
bility experiments, we assumed that Level-C and -B PETs
are defined to be ACETs and WCETs, respectively, and
Level-A PETs are defined by applying an inflation factor to
Level-B PETs, as is commonly done in industry [28]. Task
sets were randomly generated by using five uniform distri-
butions to choose task and task-set parameters. The specific
distributions to use were selected from the per-distribution
choices listed in Tbl. 2. These distributions are defined with
respect to the single-core EDF scheme. All combinations
of these choices were considered. These distributions deter-
mine the criticality utilization ratio (i.e. the fraction of the
overall utilization assigned to each criticality level), task pe-
riods, task utilizations, the maximum LLC reload time after
a preemption or migration (specified as a fraction of overall
task execution time), and per-task Level-A inflation factors
(which are similar to those considered by Vestal [28]).

At a high level, our overall experimental framework was
as follows. First, the specific five distributions to use were
selected from among the choices listed in Tbl. 2. Second,
task and task-set parameters were generated under the single-
core EDF scheme using these distributions. Third, based on
the generated EDF PETs, PETs were generated for other
isolation configurations and MC-provisioning assumptions
(e.g., PETs should be smaller in schemes that provide isola-
tion compared to those that do not)—this step is described
in greater detail in App. B. Fourth, task parameters were
adjusted to account for relevant overheads—this step is de-
scribed in greater detail in App. A. Finally, the resulting task
set was checked for schedulability under each considered
scheme. In the third and fourth steps, the adjustments to ap-
ply were based upon measurement data. (We collected 6GB
of task execution-time data and 9GB of overhead data.)

The distributions in Tbl. 2 were defined to enable the
systematic study of different factors impacting schedulabil-
ity, such as MC analysis, isolation, and overheads. We de-
note each combination of distribution choices using a tuple
notation. For example, (C-Heavy, Long, Moderate, Heavy,
Constant) denotes using the C-Heavy, Long, Moderate, efc.,
distribution choices in Tbl. 2. We call such a combination

4ot MC21SO e -+ MC-FULL-ISO w®=—=a

mc?

— PEDF-ISO - - PEDF EDF

1.0 -
SR

o
®
=
®

=4
o
=
o

o
P
1
=

Schedulability
Schedulability

o
N
o
N

0.0! 0.0 :
0

1.0

e o
> ®

I
S

Schedulability

1 2 3 9 0 1 2 3

Original System Utilization

(a) (C-Heavy, Long, Mod., Heavy, Const.)

4

Original System Utilization

(b) (B-Heavy, Short, Light, Heavy, Large Var.)

0! L
5 6 7 8 9 0 1

Original System Utilization

(c) (B-Heavy, Long, Mod., Heavy, Const.)

Figure 9: Representative schedulability plots.

a scenario. We considered all possible such combinations,
and for each one, we generated between 100 and 2,000 task
sets, while ensuring that enough were generated to estimate
the mean schedulability under a given combination to within
+0.05 with 95% confidence.

For the schemes that support LLC isolation, we deter-
mined allocated LLC areas using our previously proposed
optimization method [8], which involves solving a linear pro-
gram. Under the MCZ-FULL-ISO scheme, we divided the
overall Level-C area into fourths (rounding as necessary) to
give per-core areas. For schemes requiring task partitioning,
we used the worst-fit-decreasing bin-packing heuristic.

Schedulability results. In total, we evaluated the schedula-
bility of approximately three million randomly generated
task sets, which took roughly 18 CPU-days of computation.
From this abundance of data, we generated over 500 schedu-
lability plots, of which three representative plots are shown
in Fig. 9. The full set of plots is available online [18].

Each schedulability plot corresponds to a specific task-
set catergory corresponding to a specific combination of
the parameter distributions in Tbl. 2. To understand how
these plots are interpreted, consider Fig. 9(a). For this plot’s
task-set category, the circled point indicates that 61% of
the generated task sets with EDF utilizations of 6.5 were
schedulable under MC? with criticality-cognizant isolation.
Note that, because the z-axis represents system utilizations
under the single-core HRT EDF scheme, it is possible under
MC? to support systems with an EDF utilization exceeding
four, as the MC-provisioning assumptions decrease PETs.

We now state several observations that follow from the
full set of collected schedulability data. We illustrate these
observations using the data presented in Fig. 9.

Obs. 8. MC provisioning assumptions improved schedula-
bility significantly for approximately 68% of the considered
scenarios. Within this 68%, the MC? schemes were typi-
cally able to schedule at least two to three cores’ worth of
additional utilization in comparison to the PEDF schemes.

This observation is supported by insets (a) and (c) of
Fig. 9. The scenario in inset (a) corresponds to the industry-
inspired motivation underlying the specification of MC? (see
Sec. 2), as in this scenario, only tasks of rather light utiliza-
tions exist at Levels A and B. For some scenarios where loads
are concentrated at higher criticality levels, the MC? schemes
also yielded substantial schedulability improvements. Inset

(c) provides an example.

Obs. 9. LLC and DRAM-bank isolation improved schedu-
lability only mildly for all scenarios under PEDF. However,
such improvements were quite substantial for over 90% of
scenarios that benefited from MCQ, enabling MC?2-1SO to
schedule one to two cores’ worth of additional utilization
compared to MC? in most cases.

Fig. 9(c) gives one example of this for B-Heavy task sets.

In this case, Level-B tasks are afforded the benefits of the
LLC while the unmanaged cases are not. However, isola-
tion yields little improvement under PEDF. This is because,
under PEDF-ISO, all tasks are assigned to cores and con-
tend for LLC allocations, while in MCZ, Level-C tasks share
LLC space apart from Level B. This shows that criticality-
cognizant isolation can provide major schedulability benefits
not seen in criticality-oblivious isolation.
Obs. 10. PEDF outperformed MC? in roughly 22% of the
considered scenarios, particularly those most affected by
overheads (short periods, light utilization tasks, or both). In
approximately 10% of the other scenarios, MC? and PEDF
essentially tied.

Fig. 9(b) presents a scenario for which PEDF outper-

formed unmanaged MC? at certain utilizations, due to addi-
tional overheads for MC2. However, for most scenarios, the
benefits of MC provisioning outweighed the disadvantages
of additional overheads under MC?.
Obs. 11. Adding LLC isolation for Level C in MC? resulted
in differences between MC?-1SO and MC2-FULL-ISO that
were rather neglible in 60% of the considered scenarios and
noticably favored MC?-FULL-ISO in 10%

In the specific scenarios in Fig. 9, the impact of adding
Level-C LLC isolation ranges from negligible (inset (b)) to
slight (inset (c)) to moderate (inset (a)).

4.3 Case Studies

The conclusions drawn in our schedulability study are pred-
icated on our provisioning assumptions, in particular the
assumption that Level-C tasks can be reasonably provisioned
based on measured ACETSs. To investigate the validity of
this assumption, we created ten task systems for the sce-
narios in insets (a) and (c) of Fig. 9 corresponding to the
highest-utilization point in the MC2-1SO curves with non-
zero schedulability, as highlighted by a square in each fig-
ure. (The scenarios of these two insets represent interesting

use-case categories for MC?-1SO.) Each task system was
composed of synthetic B tasks for Levels A and B, and
DIS benchmarks for Level C. Each of these task systems
was executed for ten minutes each. Across all of these task
systems, there were no Level-A or -B deadlines misses. At
Level-C, there were deadline misses—recall this is accept-
able as Level-C is SRT—but of the Level-C tasks, the largest
relative deadline miss (response time divided by period) was
1.35, and the largest deadline-miss ratio was 1.40%. These re-
sults are likely acceptable for most SRT applications. These
results suggest that our provisioning assumptions are reason-
able, and support our analytical schedulability results.

5 Conclusion

We presented a significant extension to the MC? framework
that provides LLC and DRAM-bank isolation and that iso-
lates the OS from high-criticality tasks. We also presented
the results of extensive experiments (with substantially more
data found online [18]) in which the impact of the newly
provided isolation mechanisms was assessed individually
as well as collectively from a system-wide schedulability
point of view. To our knowledge, this is the first work to ex-
plore criticality-cognizant hardware-management techniques
with the goal of improving platform utilization, the first
work that considers isolating the OS from application-level
real-time tasks, and the first work to show that the one-out-of-
m problem can be effectively addressed through criticality-
cognizant hardware management.

This paper suggests many avenues for future work. While
we have considered a vast array of possible LLC and DRAM-
bank configurations, we made several assumptions to keep
the design space tractable, such as isolating high-criticality
tasks in the LLC and DRAM banks. Other allocation strate-
gies could potentially yield improved results. We also as-
sumed that Level-C tasks were provisioned based on ACETs.
While our case studies suggest this assumption yields posi-
tive results, in the future we plan to explore alternative pro-
visioning assumptions, and the tradeoff between increased
platform utilization and deadline tardiness and miss ratios.
For example, if we provision Level-C tasks based on the
70t percentile, how much smaller would observed tardiness
be? Regarding our implementation itself, the most pressing
concern is further extensions to handle shared pages.

References

[1] A Alhammad, S. Wasly, and R. Pellizzoni. Memory efficient global
scheduling of real-time tasks. In RTAS ’15.

[2] S. Altmeyer, R. Douma, W. Lunniss, and R.I. Davis. Evaluation of
cache partitioning for hard real-time systems. In ECRTS ’"14.

[3] N. Audsley. Memory architecture for NoC-based real-time mixed
criticality systems. In WMC ’13.

[4] B.Brandenburg. Scheduling and Locking in Multiprocessor Real-Time
Operating Systems. PhD thesis, University of North Carolina, Chapel
Hill, NC, 2011.

[5] A.Burns and R. Davis. Mixed criticality systems — a review. Technical
report, Department of Computer Science, University of York, 2014.

[6] M. Campoy, A. Ivars, and J. Mataix. Static use of locking caches
in multitask preemptive real-time systems. In /EEE/IEE Real-Time
Embedded Sys. Workshop 01.

[7]

[8]

[9]

[10]

[11]
[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21

[22]
[23]

[24]

[25]

[26]

(27]

[28]
[29]

(30]

[31]

Certification Authorities Software Team (CAST). Position paper
CAST-32: Multi-core processors, May 2014.

M. Chisholm, B. Ward, N. Kim, and J. Anderson. Cache sharing and
isolation tradeoffs in multicore mixed-criticality systems. In RTSS
’15 (to appear).

G. Giannopoulou, N. Stoimenov, P. Huang, and L.Thiele. Schedul-
ing of mixed-criticality applications on resource-sharing multicore
systems. In EMSOFT ’13.

M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling

DRAM memory accesses for multi-core mixed-time critical systems.
In RTAS °15.

J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson.
RTOS support for multicore mixed-criticality systems. In RTAS "12.
J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA: A pre-
dictable cache-aware memory allocator. In ECRTS '11.

J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and P. Ca-
zorla. A dual-criticality memory controller (DCmc) proposal and
evaluation of a space case study. In RTSS '14.

R. Kessler and M. Hill. Page placement algorithms for large real-
indexed caches. ACM Trans. on Comp. Sys., 10:338-359, 1992.

H. Kim, D. Broman, E. Lee, M. Zimmer, A. Shrivastava, and J. Oh. A
predictable and command-level priority-based DRAM controller for
mixed-criticality systems. In RTAS ’15.

H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajku-
mar. Bounding memory interference delay in COTS-based multi-core
systems. In RTAS ’14.

H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for
practical OS-level cache management in multi-core real-time systems.
In ECRTS ’13.

N. Kim, B. Ward, M. Chisholm, C.-Y. Fu, J. Anderson, and F.D.
Smith. Attacking the one-out-of-m multicore problem by combin-
ing hardware management with mixed-criticality provisioning. Full
version of this paper, available at http://www.cs.unc.edu/
~anderson/papers.html.

D. Kirk. SMART (strategic memory allocation for real-time) cache
design. In RTSS ’89.

0. Kotaba, J. Nowotsch, M. Paulitsch, S. Petters, and H. Theiling.
Multicore in real-time systems — temporal isolation challenges due to
shared resources. In WICERT ’13.

Y. Krishnapillai, Z. Wu, and R. Pellizzoni. ROC: A rank-switching,
open-row DRAM controller for time-predictable systems. In ECRTS
'14.

LITMUSRT Project. http://www.litmus-rt.org/.

L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software
memory partition approach for eliminating bank-level interference in
multicore systems. In /CPACT ’12.

M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos.
Mixed criticality real-time scheduling for multicore systems. In /ICESS
'10.

J. Musmanno. Data intensive systems (DIS) benchmark performance
summary, Aug. 2003.

J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and
M. Schmidt. Multi-core interference-sensitive WCET analysis lever-
aging runtime resource capacity environment. In ECRTS ’14.

R. Pellizzoni, A. Schranzhofer, J. Chen, M. Caccamo, and L. Thiele.
Worst case delay analysis for memory interference in multicore sys-
tems. In DATE ’10.

S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In RTSS '07.

B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared
caches more predictable on multicore platforms. In ECRTS ’13.

H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicoore
platforms. In RTAS ’14.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
access control in multiprocessor for real-time systems with mixed
criticality. In ECRTS ’12.

A Overhead Accounting

To account for implementation-related overheads in our
schedulability experiments, we applied several existing
overhead-accounting techniques [4, 8]. While a complete,
formal description of these techniques is beyond the scope of
this paper, in what follows, we give a high-level description
of the techniques employed, and highlight the most relevant
ideas. We account for all overhead sources through PET
inflation, i.e., increasing the PET of each task before evalu-
ating schedulability. We considered the following overhead
sources, defined in [4]: cache-related delays, context switch-
ing, release latency, timer ticks, scheduling, job release, and
inter-processor interrupts (IPIs).

Of these overhead sources, cache-related delays are the
most significant. We handled such delays similarly to our
previous work [8]. However, in our earlier work, we assumed
that if Level-A jobs are split into subjobs when creating a
cyclic-executive dispatching table, then PETs were already
defined to account for the effects of such splitting. This
assumption is reasonable if jobs are split at specific points in
the job logic. However, our implementation uses budgets at
Level A, and therefore we do not a priori know the slicing
point. Therefore, we must account for cache-related delays
in our overhead model.

Of the remaining overheads considered, we applied tech-
niques pioneered by Brandenburg [4] for PEDF and GEDF,
for Level B and Level C, respectively, with minor modifi-
cations to account for interactions among criticality levels
in MC?. When analyzing the subsystem for each criticality
level, we used measured overheads acquired using similar
assumptions as used for PETs, e.g., at Level C, average-case
measured overheads were considered. Also, in the case of
scheduling and release overheads, we have to account for per-
core partitioned scheduling and release overheads at Levels
A and B, and also global scheduling and release overheads
that may be incurred on any core for Level C. Releases and
IPI overheads from task migrations at Level C may cause
delays at all criticality levels.

Our MC? implementation heavily uses PET budgets. The
management of such budgets gives rise to a new overhead
source. These overheads are incurred when a budget is re-
plenished or depleted, and are accounted for similarly to
other overheads by inflating PETs.

B PET-Generation Process

The PETs assumed in Sec. 4.2 are based on an analytical
model, which we derived through distilling the measured
execution-time data discussed in Sec. 4. This appendix de-
scribes this PET-generation model in greater detail. As de-
scribed in Sec. 4.1, all PETs required in our schedulability
experiments are defined based on EDF-scheme PETSs, which
correspond to A-inflated WCETs in an idle system with
the full LLC allocated to the task in question. We denote
this WCET parameter as CY for task 7;. In our experimen-
tal framework, the C? values are obtained implicitly from
the randomly generated task utilizations and periods. All
execution-time values used to obtain all other PETS for 7;

Exec. WCET Idle
Time or or LLC | DRAM LLC
Val. ACET? | Load? | Iso.? Is0.? Area
A-infl. Entire
c? WCET | Idle | N/A N/A LLC
A-infl. Entire
o WCET | Load | Yes Yes LLC
A-infl. Any
Cc? WCET Load Yes Yes Area
A-infl. Any
c? WCET | Load | Yes No Area
A-infl. Any
c} WCET | Load | No No Area
All
Relevant Any
C f’ WCET Load Cases Area
Any
(e} ACET Load Yes Yes Area
Any
c7y ACET | Load | Yes No Area
Any
cs ACET | Load | No No Area

Table 3: Generated PET values.

Task | PET MC? MC? MC? | PEDF | PEDF | EDF
Level Level -ISO |-FULL-ISO -ISO
AMHRT || C? c? ct c? c} c?
A B c? c? c? N/A N/A | N/A
C cs cs c? N/A N/A | N/A
A/HRT || N/A N/A NA | CF ct c?
B B c? c? c? N/A N/A | N/A
C cs cs cs N/A N/A | N/A
AHRT || N/A N/A N/A c? c} c?
C B N/A N/A N/A | NA N/A | N/A
C c? cy c N/A N/A | N/A

Table 4: Assignment of execution time parameters to PETs.

for different isolation and analysis assumptions are listed
in Tbl. 3. Tbl. 4 shows how these values are used to define
all PETs under each schem. The columns of Tbl. 3 indicate
how each execution-time value is defined (i.e., whether the
value is a Level-A-inflated WCET, a non-inflated WCET, or
an ACET, whether the system is assumed to be under load
or idle, efc.). Each of these values is generated by applying
scaling factor(s) to the prior-listed execution-time values. We
present an overview of this entire process here.

Step 1: Generate C} by scaling C? to account for
interfering workload. We choose C} uniformly from
[120,150)% of C?, based on WCET measurement data in
idle and loaded systems with the full LLC allocation.

Step 2: Generate C? by scaling C} for different LLC
allocations. Our C? values are defined from generated uti-
lizations. The process for generating such utilizations was
carefully defined to produce trends similar to those seen from
measurement data. Since our C} values are simply scaled
versions of our C? parameters, similar utilization trends will
be seen when utilizations are defined in terms of C} val-
ues. Fig. 10 illustrates typical generated utilizations. As seen
in this figure, task utilizations monotonically decrease with
increasing LLC space and converge at the ICAS. This is
in accordance with Obs. 3. To reflect this, we obtain C’f
values for different LLC-allocation choices by applying a

0.09

0.08 |

ions

(1074 T N I S R —

0.06 -

0.05

2 0.04

Original Task Utilizati

0.03

.

) 2.")(5 5‘12 7[‘i8 1024
Allocated Cache Space (KB)

Figure 10: Utilizations generated under different LLC allocations

for three example tasks.

scaling factor to C} that exponentially increases with the
minimum of the ICAS and LLC space. The actual scaling
factors employed were selected to reflect measurement data.

Task ICASs are deduced using the Load Time parameter
in Tbl. 2. The two both hinge on a task’s cache footprint. Our
Load Time parameter was defined to reflect Obs. 1, which
showed that cache isolation can improve a task’s WCET
by up to 277%. In fact, in data available online [18], the
improvement was as much as 400%. For example, when
the Light Load Time distribution is assumed, LLC isolation
typically reduces WCETs by 20-50%, while when the Heavy
distribution is assumed, the reduction is typically 200-500%.
In addition, for all parameter combinations, tasks at Levels
A and B tend to be more insensitive to LLC space than those
at Level C. This reflects the underlying motivation for MC?
that Level-A and -B tasks will tend to be rather deterministic
fly-weight tasks and that Level-C tasks will tend to be more
complex (see Sec. 2).

Step 3: Generate C} by scaling C? to account for
shared DRAM banks. As seen in Fig. 5, the impact of
DRAM bank isolation on task execution times tended to
range from imperceptible to 20% under small LLC alloca-
tions. Based on these results, we uniformly choose Cf’ to be
[100, 130)% of C? to account for the lack of bank isolation.
Similar to the last step, this step is affected by the task ICAS
and LLC allocation.

Step 4: Generate C;! from C? based on known worst-
case shared-cache behavior. When sharing a cache, cross-
core interference may prevent a program from reusing any
data in any shared cache blocks, thus eliminating any benefit
from the LLC in the worst case. Therefore, we define C;L to
equal C? for the case when the allocated LLC space is zero.

Step 5: Generate all Level-B PETs from previously
generated Level-A PETs. Using the A-Inflation Factor in
Tbl. 2, all Level-B PETs can be computed from correspond-
ing Level-A PETs. This gives us all C? values.

Step 6: Generate C° and C to reflect expected
ACET:WCET ratios under cache isolation and varying
background workloads. ACET:WCET ratio trends will de-
pend on the given background workload, i.e., the total uti-
lization of all competing tasks. Based on WCET:ACET ratio
trends observed for benchmark and synthetic programs under
different background workload utilizations, we identify an
appropriate distribution from which to uniformly choose an

w
B

0%

w
N

20%

w
=}

40%

N
©

Reduction

60%

ACET Parameter Value (ms)
N
(=2}

80%

N
I

100%

0 256 512 768 1024
Allocated Cache Space (KB)

Figure 11: Comparison of C{ and C? for a generated task

ACET:WCET ratio for each task. For all tasks, these ratios
are chosen uniformly among a range of percentages. For
Level-C tasks, these ratios range over 20-40% for the light-
est background workloads, and over 30-60% for the heaviest.
For Level-A and -B tasks, these ratios range over 50-70%
for the lightest background workloads, and 80-100% for the
heaviest. This reflects our assumption that higher-criticality
tasks tend to be more deterministic in their execution than
Level-C tasks.

Step 7: Generate C? to reflect differences between
ACETs for a fully unmanaged system and ACETs for
a cache-isolated system. From Fig. 5 and Obs. 6, we see
that ACETs in an unmanaged cache gradually decline in a
linear fashion as the allocated LLC space increases, even
beyond the ICAS of the task. However, these ACETS gener-
ally remain higher than ACETs under cache isolation. When
the LLC allocation is zero, both ACETSs are the same, since
LLC management does not affect tasks bypassing the LLC.
To reflect this behavior, we generate C’f‘ as shown in Fig. 11.
On the right axis, we depict a scale showing the range of
CJ’s reduction in value as the allocated LLC space increases.
On this scale, C] is at 0% reduction under zero allocated
LLC space, and 100% under maximum allocated LLC space.
C? at maximum allocated LLC space for the Matrix pro-
gram would fall at approximately 50% on this scale. For
each generated task, we choose a value from 30-70% on this
scale for our generated C¥ at maximum LLC space. At zero
allocated LLC space, C¥ matches C. For all other LLC al-
location sizes, we interpolate values for C? linearly between
values generated for zero allocated LLC space and maximum
allocated LLC space.

From these steps, we now have all required PETs. We note
once again that this process produces a model for producing
PETs. As such, all claims resulting from our schedulability
experiments apply only within the context provided by this
model. Still, we have taken great pains to ensure that the
range of PETs generated by this model encompass those
that we have seen based on real measurement data, and that
trends among related PETs for the same task correspond to
those seen in our measurement data.

