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Abstract—The desire to support real-time applications on
multicore platforms has led to intense recent interest in
techniques for reducing memory-related hardware interfer-
ence. These techniques typically rely on mechanisms that
ensure per-task isolation properties with respect to cache and
memory accesses. In most prior work on such techniques, any
sharing of memory pages by different tasks is defined away,
as sharing breaks isolation. In reality, however, sharing is
common. In this paper, one source of sharing is considered,
namely, the usage of shared libraries. Such sharing can be
obviated by statically linking libraries, but this solution can
degrade schedulability by exhausting memory capacity. An
alternative approach is proposed herein that allows library
pages to be shared while preserving isolation properties. This
approach is presented in the context of the MC2 framework
and a schedulability-based evaluation of it is presented. Such
an evaluation must necessarily consider memory-capacity
limits. As a secondary contribution, this paper considers such
limits for the first time in the context of MC2.

I. Introduction
The use of multicore platforms in safety-critical domains
has been stymied by a problem that has been dubbed
the “one-out-of-m” problem [8]: when certifying the real-
time correctness of a system running on m cores, analysis
pessimism can easily negate the processing capacity of the
additional m− 1 cores. In effect, a system may be able to
utilize only “one core’s worth” of capacity even though m
cores are available. This problem has led to the common
practice in many settings of simply disabling all but one
core.

The roots of this problem can be traced to two
sources: undue task-provisioning pessimism, and exces-
sive interference and unpredictability in accessing shared
hardware. These issues are interrelated, and in resolving
them, many tradeoffs exist. In ongoing work, our group
has been exploring these tradeoffs in the context of a
scheduling framework called MC2 (mixed-criticality on
multicore) [7, 8, 12, 20, 24, 31], which supports both
mixed-criticality (MC) techniques for easing provisioning
pessimism [30] and mechanisms for managing shared-
hardware resources, particularly the shared last-level cache
(LLC) and DRAM memory.
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These hardware-management mechanisms rely on tech-
niques that ensure that tasks are isolated from one another
with respect to LLC and memory accesses. In reality,
however, tasks often share memory pages. This poses a
problem because sharing breaks isolation. In recent work,
we considered the implications of sharing as caused by the
usage of shared data buffers [7]. In this paper, we consider
another common source of sharing, the usage of shared
libraries.

Shared libraries. To deal with shared libraries in our prior
work, we assumed that they were always statically linked,
meaning that all needed libraries were replicated on a per-
task basis to eliminate any sharing. In the schedulability
studies that we conducted to evaluate the effects of hardware
management in MC2, this solution came “for free” because
we did not consider memory to be a constrained resource
when checking schedulability. In practice, however, the
combined memory footprint of all tasks and the operating
system (OS) obviously must fit within the provided physical
memory. Additionally, the available space might be further
constrained for other reasons. For example, many safety-
critical systems operate in different modes, so additional
tasks might occupy memory beyond those currently running.

Unfortunately, when memory is considered as a con-
strained resource, the wasteful practice of fully replicating
shared libraries can degrade schedulability significantly.
Evidence of this can be seen in Fig. 1, which gives a
portion of a plot that we consider only briefly here but in
more detail later. This plot is taken from an experiment
in which task systems were generated at random and
their schedulability checked under MC2. The curve labeled
“NI-IDL” is illustrative of those given in our prior work: it
was obtained without regard for memory limitations. The
curve labeled “NI-STC” was similarly obtained, except that
limits on memory capacity were accounted for in checking
schedulability, with static linking assumed for shared
libraries. As seen, the use of static linking significantly
degraded schedulability.

Contributions. The primary contribution of this paper is
to consider for the first time whether shared libraries can
be supported in systems that ensure hardware isolation
without inordinately degrading schedulability. We propose
an approach for doing so in the context of MC2 that
is an intermediate between the extremes of replicating978-1-5090-5269-1/17/$31.00 c©2017 IEEE
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Fig. 1: An example schedulability plot. The manner in which
such plots are interpreted will be made clear later. It suffices to
know at this point that curves that degrade to zero further to the
right indicate better schedulability.

libraries on a per-task basis and not replicating them at
all. The effectiveness of this approach is reflected by the
curve labeled “NI-SSH” in Fig. 1; this curve is similar
to the others, except that the proposed approach has been
applied. Our approach involves replicating shared libraries
and allowing only certain groups of tasks to share a given
replica.

To evaluate the proposed approach, we conducted a large-
scale overhead-aware schedulability study. Any such study
must necessarily consider memory-capacity limits when
checking schedulability. As such, the work in this paper
forced us to consider such limits for the first time in the
context of MC2. For technical reasons explained later, the
introduction of such limits gives rise to new viable options
for configuring LLC space and memory partitions in MC2

that would have been pointless to consider before. These
options have been included in our schedulability study.

Organization. In the following sections, we provide needed
background (Sec. II), describe our library-sharing approach
(Sec. III), consider the impacts of viewing memory as a
constrained resource (Sec. IV), present the above-mentioned
schedulability study (Sec. V), discuss related work (Sec. VI),
and conclude (Sec. VII).

II. Background
We begin by reviewing needed background material.

Task model. We consider real-time workloads specified
using the implicit-deadline periodic task model and assume
familiarity with this model. We specifically consider a task
system τ = {τ1, . . . , τn}, scheduled on m processors,1
where task τi’s period and worst-case execution time
(WCET) are denoted Ti and Ci, respectively. (We generalize
this model below when considering MC scheduling.) The
utilization of task τi is given by ui = Ci/Ti and the total
system utilization by

∑
i ui. If a job of τi has a deadline at

time d and completes execution at time t, then its tardiness
is max{0, t− d}. Tardiness should be zero for any job of
a hard real-time (HRT) task, and should be bounded by a
(reasonably small) constant for any job of a soft real-time
(SRT) task.

1We use the terms “processor,” “core,” and “CPU” interchangeably.
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Fig. 2: Scheduling in MC2 on a quad-core machine.

Mixed-criticality scheduling. The roots of most recent
work on MC scheduling can be traced to a seminal paper by
Vestal [30]. For systems where tasks of differing criticalities
exist, he proposed adopting less-pessimistic execution-time
assumptions when considering less-critical tasks. More
formally, in a system with L criticality levels, each task
has a provisioned execution time (PET)2 specified at every
level, and L system variants are analyzed: in the Level-`
variant, the real-time requirements of all Level-` tasks are
verified with Level-` PETs assumed for all tasks (at any
level). The degree of pessimism in determining PETs is
level-dependent: if Level ` is of higher criticality than Level
`′, then Level-` PETs will generally exceed Level-`′ PETs.
For example, in the systems considered by Vestal [30],
observed WCETs were used to determine PETs for tasks
at lower levels, and such times were inflated to determine
PETs at higher levels.

MC2. Vestal’s work led to a significant body of follow-up
work (see [6] for an excellent survey). Within this body
of work, MC2 was the first MC scheduling framework
for multiprocessors (to our knowledge) [24]. MC2 was
originally designed in consultation with colleagues in the
avionics industry to reflect the needs of systems of interest
to them. It is implemented as a LITMUSRT [23] plugin and
supports four criticality levels, denoted A (highest) through
D (lowest), as shown in Fig. 2. Higher-criticality tasks are
statically prioritized over lower-criticality ones. Level-A
tasks are partitioned and scheduled on each core using a
time-triggered table-driven cyclic executive.3 Level-B tasks
are also partitioned but are scheduled using a rate-monotonic
(RM) scheduler on each core.3 On each core, the Level-A
and -B tasks are required to have harmonic periods and
commence execution at time 0 (this requirement can be
relaxed slightly [24]). Level-C tasks are scheduled via a
global earliest-deadline-first (GEDF) scheduler.3 Level-A
and -B tasks are HRT, Level-C tasks are SRT, and Level-
D tasks are non-real-time. A major thesis underlying the
design of MC2 is that Levels A and B should be mostly
comprised of quite deterministic “fly-weight” tasks with
rather low utilizations; less-deterministic computationally

2We use “PET” instead of “WCET” because under MC2, some tasks
are SRT, and hence may not be provisioned on a worst-case basis.

3Other per-level schedulers optionally can be used, and Level-C tasks
can be defined according to the sporadic task model. These options, and
other considerations, such as slack reallocation, schedulability conditions,
and execution-time budgeting are discussed in prior papers [12, 24, 31].
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Fig. 3: Quad-core ARM Cortex A9.

intensive tasks of higher utilization would likely be assigned
to Level C.

MC2 with hardware management. In recent work [20],
we developed a new MC2 implementation that provides
techniques for managing the LLC and DRAM memory
banks. We briefly describe these techniques here. Our
description is with respect to the machine shown in Fig. 3,
which is the hardware platform assumed throughout this
paper. This machine is a quad-core ARM Cortex A9
platform. Each core on this machine is clocked at 800MHz
and has separate 32KB L1 instruction and data caches.
The LLC is a shared, unified 1MB 16-way set-associative
L2 cache. The LLC write policy is write-back with write-
allocate. 1GB of off-chip DRAM is available, partitioned
into eight 128MB banks.

In our prior work on MC2 hardware management [20],
we assumed Level D is not present, as it has no impact on
the isolation guarantees or schedulability of tasks at higher
levels (and Level D is afforded no real-time guarantees).
We will continue to assume this for now, but when we
consider the impact of memory constraints later, we will
assume that Level D is in fact present because it consumes
DRAM space.

In the MC2 variant that provides hardware management,
rectangular areas of the LLC can be assigned to certain
groups of tasks. This is done by using page coloring to
allocate certain subsequences of sets (i.e., rows) of the LLC
to such a task group, and hardware support in the form
of per-CPU lockdown registers to assign certain ways (i.e.,
columns) of the LLC to the group. (Please see [20] for more
detailed descriptions of these LLC allocation mechanisms.)
Additionally, by controlling the memory pages assigned to
each task, certain DRAM banks can be assigned for the
exclusive use of a specified group of tasks. The OS can
also be constrained to access only certain LLC areas and/or
DRAM banks.

Fig. 4 depicts the main allocation strategy for the LLC
and DRAM banks considered in our prior work [20]. This
strategy ensures strong isolation guarantees for higher-
criticality tasks, while allowing for fairly permissive hard-
ware sharing for lower-criticality tasks. DRAM allocations
are depicted at the bottom of the figure, and LLC allocations
at the top. As seen, Level C and the OS share a subsequence
of the available LLC ways and all LLC colors. (On
the considered platform, each color corresponds to 128
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Fig. 4: LLC and DRAM bank allocation. Note that the Level-A
and -B LLC areas for each core can overlap. LLC boundaries
indicated by double lines are configurable parameters.

cache sets.) Level-C tasks (being SRT) are assumed to be
provisioned on an average-case basis. Accordingly, LLC
sharing with the OS should not be a major concern. The
remaining LLC ways are partitioned among Level-A and
-B tasks on a per-CPU basis. That is, the Level-A and
-B tasks on a given core share a partition. Each of these
partitions is allocated one quarter of the available colors.
This scheme ensures that Level-A and -B tasks do not
experience LLC interference due to tasks on other cores
(spatial isolation). Also, Level-A tasks (being of higher
priority) do not experience LLC interference due to Level-B
tasks on the same core (temporal isolation).

The specific number of LLC ways allocated to the
Level-C/OS partition and to the per-core Level-A and -
B partitions is a tunable parameter that can be determined
on a per-task-set basis using optimization techniques based
on linear programming presented in a prior paper [8]. These
optimization techniques seek to minimize a task set’s Level-
C utilization while ensuring schedulability at all criticality
levels.

The MC2 implementation just described does not provide
management for L1 caches, translation lookaside buffers
(TLBs), memory controllers, memory buses, or cache-
related registers that can be a source of contention [29].
However, we assume a measurement-based approach to
determining PETs, so such unconsidered resources are
implicitly considered when PETs are determined. We
adopt a measurement-based approach because work on
static timing analysis tools for multicore machines has not
matured to the point of being directly applicable. Moreover,
measurement-based methods for determining PETs are often
used in practice.

Libraries and linking. In this work, we introduce support
for shared libraries to the version of MC2 described in
the previous paragraphs. In general, programs using both
shared and non-shared libraries will not contain definitions
of library-provided functions and data in their source code,
but will instead refer to them by name. In a post-compilation
procedure known as linking, function and variable names
are then used to locate library-provided implementations,
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Fig. 5: Memory usage comparison of static linking and dynamic
linking.

which are then used to produce the fully functioning final
program. Using libraries in this way can eliminate the need
to recompile commonly used functions, as library code
can be compiled once and left unchanged as a program
is developed. The standard library for the C programming
language is a classic example of a library in widespread use,
and contains commonly used functions including printf
and strnlen.

In Linux and other modern operating systems, libraries
containing compiled code may be either static libraries or
shared libraries. Static and shared libraries differ in both
how they are allocated in memory and the time at which
linking occurs.4

Static libraries. Compiled code and data from static
libraries are merged into a complete executable program
file in a process called static linking. On systems such as
Linux, this means that page frames in physical memory are
needed for both the base program and any content copied
from static libraries. If the same library (e.g., the C standard
library) is used by many or all programs, many copies of
the library code are created, increasing physical memory
consumption.

Shared libraries. References to shared libraries are re-
solved using dynamic linking. Dynamic linking occurs either
at load time, before a task (i.e., process) begins execution,
or at runtime when a library is first referenced. Dynamic
linking requires the shared library to be mapped into the
task’s virtual address space. Unlike under static linking,
where library copies necessarily reside in local memory, the
read-only portions of shared libraries such as executable
code can be shared between many processes. So, while
shared libraries may increase a single process’ memory
requirements, they still reduce memory requirements of the
overall system.

Memory usage comparison. Even though tasks using
static libraries may individually have smaller memory
footprints, in aggregate the use of dynamic libraries typically
saves memory. To illustrate the potential memory savings
provided by shared libraries, we will refer to Fig. 5 and

4During the initialization procedure for real-time tasks in LITMUSRT,
the mlockall() function is invoked to allocate and map page frames
for all program and library virtual addresses, populate their content, and
pin them in memory.

Address KB RSS Mode Mapping
00008000 960 960 r-x ferret
000f8000 12 12 rw- ferret
000fb000 500 500 rw- [ anon ]
76f12000 528 528 rw- [ anon ]
7ee0c000 620 256 rw- [ stack ]
7efc1000 4 4 r-x [ anon ]
ffff0000 4 0 r-x [ anon ]
total 2628 2260

(a) Static linking.

Address KB RSS Mode Mapping
00008000 136 136 r-x ferret*
00031000 4 4 r-- ferret
00032000 4 4 rw- ferret
00033000 488 488 rw- [ anon ]
76b49000 520 520 rw- [ anon ]
76bcb000 872 872 r-x libc-2.19.so*
76cac000 8 8 r-- libc-2.19.so
76cae000 4 4 rw- libc-2.19.so
76caf000 12 12 rw- [ anon ]
76cb2000 100 100 r-x libgcc_s.so.1*
76cd2000 4 4 rw- libgcc_s.so.1
76cd3000 396 396 r-x libm-2.19.so*
76d3d000 4 4 r-- libm-2.19.so
76d3e000 4 4 rw- libm-2.19.so
76d3f000 296 296 r-x libjpeg.so.7.0.0*
76d90000 4 4 r-- libjpeg.so.7.0.0
76d91000 4 4 rw- libjpeg.so.7.0.0
76d9e000 152 152 r-x libgslcblas.so.0.0.0*
76dcb000 4 4 r-- libgslcblas.so.0.0.0
76dcc000 4 4 rw- libgslcblas.so.0.0.0
76dcd000 1396 1396 r-x libgsl.so.0.17.0*
76f31000 8 8 r-- libgsl.so.0.17.0
76f33000 56 56 rw- libgsl.so.0.17.0
76f41000 92 92 r-x ld-2.19.so*
76f59000 28 28 rw- [ anon ]
76f60000 4 4 r-- ld-2.19.so
76f61000 4 4 rw- ld-2.19.so
7ecce000 620 256 rw- [ stack ]
7eecf000 4 4 r-x [ anon ]
ffff0000 4 0 r-x [ anon ]
total 5236 4868

* This mapping can be shared by several tasks.

(b) Dynamic linking.

TABLE I: Task memory map with (a) static vs. (b) dynamic
linking.

Tbl. I. Fig. 5 shows total memory usage of multiple
instances of the ferret program from the PARSEC
benchmark suite [5], and Tbl. I shows memory regions
reported by the pmap tool for the ferret program. The
first column shows the virtual address of each allocated
memory region, the second column shows the size of the
allocated virtual memory in KB, and the third column
shows the size of the allocated physical memory, called
the resident set size (RSS), in KB. The fourth column
shows access permissions: read, write, and execute. The
last column indicates a file name for file-backed mapping,
[ anon ] for non-file-backed (“anonymous”) allocations,
or [ stack ] for the program stack. Tbl. I(a) shows
the simpler memory map for a statically linked version
of ferret, and Tbl. I(b) shows the memory map when
shared libraries are used instead. As seen in Fig. 5, if five
or more instances of the ferret program are running in
a system, then dynamic linking saves memory by sharing
the libraries listed in Tbl. I(b).

In our previous work [7, 20], memory was assumed to
be an unconstrained resource when checking schedulability.
In real systems, however, memory is a constrained resource,



especially in application domains with the need to support
multiple modes of operation. For example, current avionics
software can have over a dozen operating modes, and
envisioned unmanned aircraft could require many more.
As an example, consider a system with 20 modes and 25
distinct tasks per mode.5 Assuming the allocations shown
in Tbl. I for each task, the total memory usage would be
1103.52 MB (2260 KB · 25 · 20) with static linking and
700.63 MB (1428 KB · 25 · 20 + 3440 KB) with dynamic
libraries. Thus, assuming the target hardware platform is
that shown in Fig. 3, static linking would not be tenable,
because that platform provides only 1GB of DRAM.6

III. Implementation
Statically linked programs contain non-shared copies of
library code in memory. To save memory, we propose
an alternative strategy, which we refer to as selective
sharing, that enables us to take advantage of dynamic
linking’s memory savings. Informally, selective sharing
requires regulating “who” may share “what” with “whom.”
In devising the selective-sharing approach, our major
objective was to reduce the system’s memory footprint while
preserving all pre-existing isolation properties of MC2. The
schedulability improvements afforded by selective sharing
when DRAM constraints are considered are discussed in
Sec. IV.

We begin this section by describing how unrestricted
shared library usage breaks hardware isolation. We follow
this with a description of selective sharing and compare
several implementation strategies. We note that any im-
plementation of selective sharing will yield the same
schedulability benefits, so the discussed approaches only
differ in their relative ease-of-implementation.

Hardware isolation with shared libraries. To see why
shared libraries are problematic when providing hardware
isolation, consider Fig. 6, which depicts the virtual address
spaces for two Level-A tasks, τA0 and τA1 , on a dual-core
machine with four DRAM banks, each of which contain 32
pages of physical memory. This is a simpler machine than
our Cortex-A9 test platform shown in Figs. 3 and 4, but it
is sufficient to illustrate the effects of hardware interference.
In Fig. 6, physical memory pages are referred to by page
frame numbers (PFNs), and the PFNs in each row of a
DRAM bank correspond to a single color in the LLC.

Fig. 6 (a) shows an example virtual-to-physical address
mapping of statically linked programs before our isolation
techniques are applied. The figure shows task τA0 executing
on CPU 0 and task τA1 executing on CPU 1. In Fig. 6 (a),
these tasks can use arbitrary page frames, as represented
by the lines connecting virtual-memory regions to arbitrary
DRAM regions. This can result in LLC or bank interference

5This is a simple example used to illustrate a point; it does not consider
the OS and the fact that different modes may have tasks in common.

6Though not strictly required, it is desirable in avionics systems for all
tasks of all modes to be memory-resident if possible, to avoid unexpected
mode-transition delays.
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(a) Unmanaged LLC and DRAM with static linking.
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(c) Hardware isolation with shared libraries.
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(d) Hardware isolation with selective sharing.
Fig. 6: Virtual address space and mappings to page frames and
LLC under MC2.



if the two tasks attempt to access the same DRAM bank
or pages mapped to the same LLC region.

In our prior work on MC2 with hardware management,
we provided hardware isolation by remapping page frames
[20]. This remapping was realized by introducing a page-
coloring system call to MC2 that each real-time task invokes
in order to properly color its pages (in accordance with the
scheme depicted in Fig. 4). After the system call completes,
the task only uses specific LLC areas and DRAM banks.
Fig. 6 (b) illustrates this: task τA0 uses entirely separate
DRAM banks and page colors from task τA1 . Now, the two
tasks can run concurrently without having to guard against
interferring with one another in the LLC or DRAM banks.

However, as we discussed in Sec. II, this approach
requires static linking and consumes more DRAM space,
leading to degraded schedulability when memory is consid-
ered as a constrained resource. If we wish to save memory
by allowing shared libraries, then the mechanisms used
previously for providing hardware isolation with static
linking are no longer sufficient. In particular, as illustrated
in Fig. 6 (c), non-shared page frames can still be isolated,
but pages belonging to shared libraries are accessible to
any task that uses the library, even tasks on different CPU
cores. (e.g., invocations of printf() by the two tasks
under consideration map to the same DRAM bank). For
this reason, we disallowed shared pages in our prior work.

Selective sharing. Selective sharing preserves the notion
of isolation provided by MC2 while more efficiently utiliz-
ing memory by introducing per-partition library replicas.
Specifically, up to m+2 replicas are created per library,
where m is the number of cores: one per-core copy is
shared by all Level-A and -B tasks running on that core,
another copy is shared by Level-C tasks on all cores, and
an additional copy is used by non-real-time background
services. We replicate only the shared read-only sections of
a library, which hold both instructions and read-only data.
The writable data sections of shared libraries are private,
and therefore handled along with other private pages by
the page-coloring system call from our prior work.

Fig. 6 (d) illustrates the impact of selective sharing. In
this particular example, a replica of each shared library
exists for each CPU and is allocated in the CPU’s DRAM
partition. As seen in Fig. 6 (d), a library loaded by task τA0
will be allocated in Bank 0, and a library loaded by task τA1
will be allocated in Bank 1. Furthemore, the allocations will
use pages of different colors in order to map to different
LLC regions. This ensures that MC2’s isolation properties
are maintained.

Having described the concept of selective sharing, it
remains to discuss whether it can be efficiently imple-
mented. There are actually several possible implementation
strategies, three of which we discuss next. These strategies
vary in implementation complexity, but all require some
kernel support for providing isolation in DRAM banks and
the LLC.

Creating on-disk replicas of shared libraries. The sim-
plest way to create per-partition library replicas is to use
Linux’s LD_LIBRARY_PATH environment variable, which
adds a new list of directories the dynamic linker searches for
shared libraries before it searches the default directory list.
To use this approach, a user must create copies of shared
libraries on disk and place them in separate directories.
Then, before each real-time task is created, the user must set
LD_LIBRARY_PATH for each specific task so that it refers
to the set of shared libraries corresponding to its criticality
level and core assignment (if it is a Level-A or -B task).
This approach has the advantage of requiring less kernel
support (kernel support is still required to implement page
coloring), but it requires nontrivial maintenance, disk usage,
and configuration effort by the user. These disadvantages
become more pronounced if a large number of shared
libraries are in use.

Modifying the dynamic linker to provide selective
sharing. A modified dynamic linker can potentially provide
selective sharing while alleviating some of the maintenance
difficulties associated with on-disk replicas. The dynamic
linker is responsible for mapping shared libraries into
each process’s address space, and typically does so by
directly memory-mapping shared library files. A dynamic
linker capable of selective sharing would instead need to
allocate separate regions of shared memory for each library
replica, based on the current task’s criticality level and core
assignment (if it is a Level-A or -B task).

While this approach would be easier to use than on-
disk replication, it poses greater implementation challenges.
This approach would not only require modifying the
code comprising the GNU dynamic linker,7 but would
still require more kernel support than on-disk replicas
using LD_LIBRARY_PATH. Specifically, it would require
a memory-allocation system capable of providing a page
from a specific allocation pool to the dynamic linker, and the
new allocation system must not interfere with existing MC2

code for coloring non-shared pages. Due to this reason, and
our group’s relative unfamiliarity with the GNU dynamic
linker code base, we did not attempt to implement this
approach. Even so, we believe that an implementation in
this manner is possible.

A transparent kernel-level selective sharing implemen-
tation. The final approach we discuss is transparent to users
and is of similar difficulty to, or easier than, dynamic linker
modification. This kernel-only approach requires extending
the page-coloring system call from our previous work on
MC2 in order to specially handle shared-library pages. The
final result is a system call which identifies, replicates, and
migrates shared-library pages to the correct partitions in
physical memory, in addition to maintaining previous MC2

functionality.

7The dynamic linker used by most Linux distributions is provided by
GNU libc, and consists of several thousand lines of code.



The Linux kernel offers built-in page migration functions
that are capable of safely relocating physical pages.8 We
were able to use these functions in previous work to assist
with coloring non-shared memory, but unfortunately the
default behavior of these functions makes them unusable
for remapping shared pages. We worked around this
limitation by tracking shared-library pages in a separate
data structure and manually overriding the kernel’s page-
migration behavior when necessary. Beyond userspace
transparency and disk-space savings, this approach has
the advantage of not changing existing system behavior:
only programs that invoke the system call are affected. We
note again that, without changing Linux’s existing memory-
allocation system, kernel modification for migrating shared
pages to provide MC2’s isolation properties is still required
for any approach to library replication. The complete code
for providing kernel-level selective sharing, page coloring,
and the associated userspace library is available online.9

Memory footprint statistics. To illustrate the impact of
selective sharing on DRAM use, we created a simple task
system, using publicly available benchmark programs in
the Data Intensive Systems (DIS) stressmark suite [25] and
the PARSEC benchmark suite [5] and analyzed DRAM
consumption. Tbl. II presents the RSS of the considered
benchmark programs when libraries were non-shared (i.e.,
linked statically) and selectively shared (i.e., linked dynam-
ically). This data was computed assuming one instance of
each of tasks τ1, . . . , τ10 is assigned to Levels A and B on
each core and one instance of each of tasks τ11 and τ12 is
assigned to Level C, on the hardware platform shown in
Figs. 3 and 4. This task system requires 11.7% less memory
if selective sharing is used. The relative impact of selective
sharing increases if a greater opportunity for sharing exists.
For example, if we were to increase to five instances of
each of τ1, . . . , τ10 per core and five instances of each of
τ11 and τ12, then memory consumption would be reduced
by 22.9% compared to static linking.

While these results demonstrate that our techniques can
improve efficiency in DRAM use, understanding the benefits
in a holistic sense requires examining impacts on overall
schedulability. To assess such impacts, we conducted a
large-scale overhead-aware schedulability study. Before
discussing the results of this study, we first delve into
some issues that arose when introducing the effects of
memory-capacity limits on schedulability.

IV. Impact of Introducing Memory Con-
straints

Understanding the impacts of different methods for sup-
porting shared libraries in MC2 requires an understanding
of the limitations on available DRAM space on our studied
platform. In this section, we provide more detail regarding
this issue. We also examine DRAM and LLC allocation

8https://www.kernel.org/doc/Documentation/vm/page migration
9https://wiki.litmus-rt.org/litmus/Publications

Task Program Name Non-Shared Selectively Shared
Private Pages Shared Pages

τ1 field 1456 KB 1136 KB

4920 KB

τ2 update 2284 KB 1964 KB
τ3 matrix 1936 KB 1600 KB
τ4 transitive 680 KB 360 KB
τ5 neighborhood 1208 KB 852 KB
τ6 pointer 2284 KB 1964 KB
τ7 blackscholes 700 KB 340 KB
τ8 ferret 2260 KB 1428 KB
τ9 swaptions 1064 KB 392 KB
τ10 x264 1368 KB 348 KB
τ11 fluidanimate 10328 KB 9720 KB 2144 KB
τ12 freqmine 23824 KB 23188 KB

TABLE II: DRAM consumption of an example task system
assuming non-shared and selectively shared libraries.

techniques disregarded in our prior work. These techniques
break certain isolation guarantees and thus were pointless
to consider earlier. However, as we will show, these
techniques provide advantages in DRAM space allocation
and so are worth considering now since we are viewing
the available DRAM space as a constrained resource in
this work.

Cortex A9 DRAM allocation. Fig. 7 (a) shows a more
detailed view of the DRAM allocation scheme assumed
in our prior work [20], as depicted earlier in Fig. 4.
Levels A and B are bank-partitioned from other cores to
avoid cross-core contention in bank access at the highest
criticality levels. Additionally, bank interleaving, which
spreads contiguous pages across multiple banks, is disabled.
This is because, under bank interleaving, each bank only
contains two page colors, which creates dependencies
between LLC allocation and bank allocation. When bank
interleaving is disabled, each bank has pages of all 16
colors, which allows banks and colors to be allocated
independently.

Unfortunately, with DRAM now being viewed as a
constrained resource, a disadvantage of disabling bank
interleaving is exposed: because each Level-A/B area of
the LLC corresponds to one quarter of the available colors
(refer to Fig. 4), only one quarter of the pages in each
Level-A/B bank can be allocated (refer to Fig. 7 (a)). One
way to reclaim this lost DRAM space while maintaining
LLC isolation is to enable bank interleaving and assign
to the Level-A/B subsystem on each core an LLC area
corresponding to the colors of the designated bank for that
core. Fig. 7 (b) depicts the resulting DRAM allocations and
Fig. 8 shows the corresponding LLC layout. In this paper,
we consider this interleaved approach as an alternative to
the non-interleaved approach considered in our prior work.

The new interleaved approach being considered here
comes at a cost. As shown in Fig. 7 (b), the OS is no
longer restricted to DRAM banks shared with Level C.
Specifically, the OS claims the first several hundred pages
of physical memory at boot time.10 These pages are used
for unmovable memory, including the kernel image and
the area reserved for ZONE_DMA memory used by certain

10This is one of the reasons why the Level-C/OS DRAM banks in
Fig. 7 (a) are not contiguous.
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Fig. 7: Page allocation in DRAM banks.

hardware devices. While these pages are relegated to Bank 0
when interleaving is disabled, they are spread across all
banks when interleaving is enabled. As a result, interleaving
eliminates bank isolation from the OS at Levels A and B.
Additionally, because Level C is now color partitioned in
the LLC (refer to Fig. 8), the OS (which has access to
all page colors) can no longer be restricted to the Level-C
LLC partition. In order to ensure that Levels A and B are
isolated from the OS in the LLC, we assume that under
the interleaved scheme, the OS simply bypasses the LLC.

Another way to maintain OS isolation in the LLC is to
provide the OS with a subset of the LLC ways. Additionally,
other viable approaches may exist for reclaiming unused
DRAM space. However, to keep the study presented herein
at a manageable level, it is not possible to analyze every
possible variant of our basic allocation schemes. We defer
a full consideration of all possible variants to future work.

From the above discussion, it should be clear that both
allocation schemes under consideration have advantages
and disadvantages. To better understand the tradeoffs
between them, we included both in our overhead-aware
schedulability study, which is discussed in Sec. V.

Support for modes and Level D. To this point, we have
ignored Level D. Level D can be incorporated into both
considered allocation schemes by requiring Level-D tasks to
execute within the same DRAM banks and LLC area(s) as
Level-C tasks. This approach has no major implications with
respect to any isolation properties afforded.11 With respect
to schedulability, however, there is one impact: the available
DRAM capacity for Level C is reduced. Further reductions

11Introducing Level D would likely have little effect on Level-C tasks’
Level-C PETs, which are based on the average case (recall Sec. II).
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Fig. 8: Interleaved LLC allocation.

in capacity might occur at all levels, due to the need to
support multiple modes, as discussed at the end of Sec. II.
Because of these sources of DRAM capacity reduction, in
the experiments presented in Sec. V, we consider scenarios
in which the full capacity of DRAM might not be available.

With respect to mode changes, Fig. 7 (a) suggests an
interesting possibility to explore in future work: using the
unallocatable DRAM space in Banks 3–6 to support tasks
of other modes. However, each mode would then have a
different color allocation for its Level-A and -B tasks on
each core. Producing such an allocation could be difficult,
because in reality, different modes typically have some tasks
in common. Instead of delving into such complex issues in
this paper, we simply assume that under the non-interleaved
scheme, all modes must share the same per-core allocation
of colors—or equivalently, when analyzing a given task
system for schedulability, some fraction of its allocated
DRAM space may simply be “lost” due to tasks of other
modes.12

V. Evaluation
To assess the efficacy of selective sharing, we evaluated
the schedulability of millions of randomly generated task
systems under the MC2 variants listed in Tbl. III. In
denoting these variants, the prefix “I” (resp., “NI”) de-
notes that the interleaved (resp., non-interleaved) memory-
allocation scheme was used, as depicted in Fig. 7 (b)
and Fig. 8 (resp., Fig. 7 (a) and Fig. 4). The suffix used
indicates how libraries were dealt with: “STC” denotes
statically linked libraries, “SSH” denotes selectively shared
libraries (as proposed herein), and “IDL” (ideal) denotes
viewing memory as an unconstrained resource (as we did
in our prior work). In addition to these MC2 variants,
we considered the HRT uniprocessor earliest-deadline-first
scheduler, denoted U-EDF. This reflects current industry
practice for eliminating shared-hardware interference by
disabling all but one core. Under U-EDF, no DRAM
capacity constraints were assumed.

12Issues related to mode-change semantics are beyond the scope of this
paper. Mode changes are being considered here only with respect to lost
DRAM capacity due to having to support tasks required in other modes.



DRAM & Linking DRAM-Aware DRAM-Oblivious

Assumptions Static Sel. Shared DRAM Constraints Ignored

Interleaved I-STC I-SSH I-IDL

Non-Interleaved NI-STC NI-SSH NI-IDL

TABLE III: Considered MC2 variants.

Under the “STC” and “SSH” schemes, constraints on
DRAM memory were considered. For these schemes, we
calculated the total number of DRAM pages available
to real-time tasks in MC2 on our considered ARM plat-
form after accounting for pages used by the OS. For
the I-STC and I-SSH schemes, Levels A and B have
approximately 25,000 pages allocated per core, and Level
C has approximately 100,000 pages allocated in total. For
the NI-STC and NI-SSH schemes, Levels A and B have
approximately 8,000 pages allocated per core, and Level C
has approximately 73,000 pages allocated in total. Under
the I-SSH and NI-SSH schemes, a task system’s DRAM
consumption was calculated assuming that all libraries are
selectively shared, as described in Sec. III.13

Task-system generation. We generated task systems at
random by extending the process used in our prior work [20]
to account for DRAM consumption. As explained in
detail in [20], PETs were determined at Level C (resp.,
Level B) based on measured average-case (resp., worst-
case) execution-time data; Level-A PETs were obtained by
applying a 50% inflation factor to Level-B PETs.

Task systems were randomly generated by using seven
uniform distributions to choose task and task-system
parameters. The specific distributions used were selected
from the per-distribution choices listed in Tbl. IV. These
distributions are defined with respect to the U-EDF scheme.
All combinations of these choices were considered. These
distributions determine the criticality utilization ratio (i.e.
the fraction of the overall utilization assigned to each
criticality level), task periods, task utilizations, and the
maximum LLC reload time after a preemption or migration
(specified as a fraction of overall task execution time). At a
high level, our overall experimental framework refines the
following step-wise process used in our prior work [20]:
Step 1: Select seven specific distributions from among the
distribution categories listed in Tbl. IV.
Step 2: Using the selected distributions from the first four
categories, generate task-system parameters under U-EDF.
Step 3: Based on the generated U-EDF PETs, generate
PETs for the MC2 schemes. This process is informed by
micro-benchmark data, as discussed at length in [20].
Step 4: Adjust the generated task parameters to account
for relevant overheads. As discussed in detail in [20], the
actual overhead values applied are based on measured data.

13To keep our study manageable, we examined the two extremes of
always using static linking and always using selective sharing. In practice,
some combination of the two might result in the best memory utilization.

Category Choice Level A Level B Level C

A-Heavy [50, 70) [10, 30) [10, 30)
B-Heavy [10, 30) [50, 70) [10, 30)

1: Criticality C-Heavy [10, 30) [10, 30) [50, 70)
Utilization AB-Mod. [35, 45) [35, 45) [10, 30)
Ratios AC-Mod. [35, 45) [10, 30) [35, 45)

BC-Mod. [10, 30) [35, 45) [35, 45)
All-Mod. [35, 45) [35, 45) [35, 45)

2: Period Short {3, 6} {6, 12} [3, 33)
(ms) Long {48, 96} {96, 192} [50, 500)

3: Task Light [0.001, 0.03) [0.001, 0.05) [0.001, 0.1)
Utilization Heavy [0.1, 0.3) [0.2, 0.4) [0.4, 0.6)

4: Max Light [0.01, 0.1) [0.01, 0.1) [0.01, 0.1)
Reload Time Heavy [0.25, 0.5) [0.25, 0.5) [0.25, 0.5)

5: % DRAM Small 10
Reserved for Moderate 40
Task Set Large 80

Light [0.5, 2) [0.5, 2) [1, 4): 0.75
6: Priv. Page [5, 10): 0.25
Count (SSH) Heavy [2, 5) [2, 5) [3, 6): 0.75
in Hundreds [10, 70): 0.25
7: Priv. Page Light [80, 150) [80, 150) [100, 300)
Count Inc. Heavy [150, 250) [150, 250) [300, 500)

TABLE IV: Task-set parameters and distributions. In Category 6,
last column, I:P denotes that interval I is selected with probability
P .

Name Size in Kilobytes

libc 872
ld 92
librt 20
libpthread 64
libm 396

Name Size in Kilobytes

libstdc++ 608
libjpeg 296
libgslcblas 152
libgsl 1396
libgcc s 100

TABLE V: The size of the code segments of considered libraries
under selective sharing.

Step 5: For each task, assign linked libraries from the
list in Tbl. V. These are libraries used by the benchmark
programs listed in Tbl. II. The first four libraries, which
are shared by all benchmark programs under MC2, were
assigned to all tasks. Libm was randomly assigned to
Level-A and B tasks. The remaining libraries are used by
computationally intensive benchmark programs and were
only assigned to Level-C tasks. To each Level-C task, we
randomly assigned two to six libraries from the last six
libraries listed.
Step 6: Assign Level-A and -B tasks to cores using a
worst-fit decreasing heuristic as discussed in [20].
Step 7: Determine the DRAM consumption of the task
system under the “STC” and “SSH” schemes. This step
is described in detail in an appendix. (The distributions in
Category 6 and 7 are used here.)
Step 8: Test the schedulability of the resulting task system
under U-EDF and each MC2 scheme in Tbl. III. This step
is also described in detail in an appendix.

The distributions in Tbl. IV were defined to enable the
systematic study of different factors impacting schedulabil-
ity, such as MC analysis, shared-libary usage, and DRAM
constraints. Moreover, the distribution choices in Tbl. IV
were selected in a way to strike a balance between having
a manageable study and covering a wide range of choices.
Additionally, much of the task-system generation process
is based on actual measurement data.

We denote each combination of distribution choices



U-EDF [1] NI-STC [2] NI-SSH [3] NI-IDL [4] I-STC [5] I-SSH [6] I-IDL [7]

(a)

[1]

[2]
[3]

[5,6,7] [4]

(a) (C-Heavy, L., H., L., S., L., H.)

[1]

[2,3,4]

[5,6,7]

(b) (C-Heavy., L., H., L., L., L., L.)

[1]

[2]

[4]
[5,6,7]

[3]

(c) (B-Heavy, L., H., H., S., L., H.)

Fig. 9: Representative schedulability plots.

using a tuple notation. For example, (C-Heavy, Long, Heavy,
Light, Moderate, Heavy, Light) denotes using the C-Heavy,
Long, Heavy, etc., distribution choices in Tbl. IV. We call
such a combination a scenario. We considered all possible
such scenarios, and for each task-system utilization in each
scenario, we generated enough task systems to estimate
mean schedulability to within ±0.05 with 95% confidence
with at least 100 and at most 2,000 task systems.

Schedulability results. In total, we evaluated the schedula-
bility of over five million randomly generated task systems,
which took roughly 25 CPU-days of computation. From this
abundance of data, we generated 672 schedulability plots,
of which three representative plots are shown in Fig. 9. The
full set of plots is available online [19].

Each schedulability plot corresponds to a single sce-
nario. To understand how to interpret these plots, consider
Fig. 9(a). In this plot, the circled point indicates that 64%
of the generated task systems with U-EDF utilizations of
3.3 were schedulable under the NI-STC scheme. Note that,
because the x-axis represents system utilizations under the
single-core HRT U-EDF scheme, it is possible under MC2

to support systems with a U-EDF utilization exceeding four,
as MC provisioning and hardware management decrease
PETs.

We now state several observations that follow from the
full set of collected schedulability data. We illustrate these
observations using the data presented in Fig. 9.
Obs. 1. Schedulability under I-STC was better than under
NI-STC in 61% of cases. Conversely, schedulability under
NI-SSH was better than under I-SSH in 54% of cases.

This observation is supported by insets (a) and (c) of
Fig. 9. Under the “STC” schemes, DRAM is more of a
limiting resource (since static linking wastes space), so
the DRAM loss illustrated Fig. 7 (a) for non-interleaved
memory becomes a liability. Under the “SSH” schemes,
DRAM is a less-constraining resource, so the virtues of
using non-interleaved memory usually win out (it is these
virtues that caused us to only consider this possibility in
our prior work).
Obs. 2. Schedulability loss under I-STC (resp., NI-STC)
was non-negligible (at least 10% of one core’s capacity
compared to an “IDL” allocation) in 27% (resp., 61%) of
scenarios.

Fig. 9 (b) shows a scenario with negligible loss. In
scenarios with light memory consumption or large DRAM
reservations, schedulability was rarely impacted by DRAM
capacity.
Obs. 3. For scenarios with non-negligible schedulability
loss under I-STC (resp., NI-STC), I-SSH (resp., NI-SSH)
regained on average 43% (resp., 36%) of schedulability
lost under I-STC (resp., NI-STC).

Such regained schedulability can be seen in insets (a)
and (c) of Fig. 9. (Note that it is unreasonable to expect
most of the loss to be consistently regained, because the
“IDL” schemes may deem systems to be schedulable whose
memory footprints will not even fit into DRAM regardless
of libraries.) From these and similar scenarios, we conclude
that selective sharing, as proposed in this paper, can result
in significant schedulability gains.

Given the nature of our study, the observations above
naturally hinge on our experimental setup. However, we
have taken great pains to ensure that a wide range of
potential system configurations were considered.

VI. Prior Related Work
This work follows a long line of research examining
shared-resource contention in real-time systems [21]. Prior
efforts have focused on issues such as cache partition-
ing [3, 13, 17, 32], DRAM controllers [4, 14, 15, 22], and
bus-access control [1, 2, 9, 10, 11, 27]. Other work has
focused on reducing shared-resource interference when per-
core scratchpad memories are used [28], accurately predict-
ing DRAM access delays [16], throttling lower-criticality
tasks’ memory accesses [34], allocating memory [33],
and enhancing the temporal isolation by managing shared
pages [18]. In one of these papers [18], the management
of shared pages to prevent timing penalties caused by the
eviction of shared pages is considered, but that work does
not consider interference due to contention for shared-
hardware resources.

To our knowledge, we are the first to consider in
detail the unique impact that sharing memory has on
hardware isolation under the notion of MC scheduling
espoused by Vestal [30], which was proposed with the
express intent of achieving better platform utilization.
Several of the aforementioned papers do target MC sys-
tems [4, 9, 10, 11, 14, 15, 22, 26, 34], but only peripherally



touch on the issue of achieving better platform utilization,
if at all. Also, most of them focus on hardware design. One
of these papers [1] considers systems in which tasks share
data, but does not consider the specific impact this has
on hardware isolation. Hardware isolation under Vestal’s
notion of MC scheduling is the subject of five prior MC2-
related papers by our group [7, 12, 20, 24, 31]. One of
these papers [20] was reviewed in detail in Sec. II; we
refer the reader to [20] for an overview of the remaining
three [12, 24, 31].

Issues related to problems caused by sharing in the
context of MC2 were also considered in a prior paper by
our group [7], but that work dealt with sharing that arises
from the usage of shared data buffers. That source of sharing
introduces very different concerns than do shared libraries.
First, shared data buffers introduce read/write sharing, while
shared libraries introduce read-only sharing. Second, it is
not possible to completely eliminate shared pages due to
the usage of shared data buffers. Thus, in some sharing
scenarios (e.g., sharing between a Level-A task and a
Level-C task), the isolation properties afforded by MC2 are
fundamentally compromised. As a result, [7] mainly focuses
on techniques that ameliorate (rather than entirely eliminate)
the detrimental impacts of data sharing. In contrast, as we
have seen, shared libraries can be supported under MC2

without violating any of MC2’s isolation properties. Finally,
the major issue with shared libraries is schedulability loss
due to memory-capacity constraints when libraries are
replicated. Such constraints were not considered at all in [7].
Indeed, shared pages due to the usage of shared data buffers
cannot be elminated through replication or any other means.

VII. Conclusion
Most proposed approaches for controlling cross-core in-
terference on multicore platforms rely on techniques
that isolate tasks with respect to memory-related shared-
hardware accesses. In practice, however, tasks commonly
share memory pages. Thus, for any management approach
to have practical impact, the issue of sharing, which directly
breaks isolation, must be addressed. In a recent paper [7],
we examined this issue as it pertains to shared data buffers.
In this paper, we have examined it with respect to shared
libraries.

Shared libraries are an issue because memory is a
constrained resource. Thus, devising an approach for han-
dling libraries prompted us to consider the schedulability-
related impacts of memory limits in our work on MC2

for the first time. Such a consideration led us to examine
alternative approaches for allocating DRAM and LLC space
that were pointless to consider before. We evaluated the
considered allocation approaches via a large-scale overhead-
aware schedulability study. In this study, our approach for
dealing with shared libraries often improved schedulability
significantly.

The results of this paper suggest many avenues for
further research. First, to simplify the presentation in this

paper, we chose to consider an earlier variant of MC2 that
preceded that which supports shared data buffers [7]. In
future work, we intend to extend the study presented herein
by considering such buffers in addition to libraries. Second,
alternative strategies for allocating DRAM and LLC space
were mentioned in Sec. IV. We intend to evaluate all of
these strategies in future work. Finally, we have noted
several times that the need to support multiple modes can
further constrain memory. Adding support for mode-change
protocols to MC2 is actually a non-trivial issue that warrants
further study.
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Appendix: Additional Details Concerning the
Task-System Generation Process
In this appendix, we provide further details concerning
Steps 7 and 8 of the task-system generation process
described in Sec. V.

Step 7: To determine the DRAM consumed by a task
system at Level C and with respect to each Level-A/B
bank, we first must calculate the DRAM consumption for
private (i.e., non-shared) pages of tasks. For each task, we
choose a private-page count from the selected distribution
under Category 6. This is the private-page count under the
“SSH” schemes. The distributions chosen reflect private-
page counts for the considered benchmark tasks in Tbl. II
when all libraries are selectively shared. In keeping with our
thesis that Levels A and B consist mostly of “fly-weight”
tasks (refer to Sec. II), page-count distributions for Level-
A and -B tasks yield smaller page counts than those for

Level-C tasks.
We add an additional number of private pages under

the “STC” schemes. The page-count increase for a task
is chosen from the selected distribution in Category 7.
Page-count increases under static linking for the benchmark
programs in Tbl. II are within the range [80, 260). Category-
7 distributions were designed to encompass this range. Real-
world systems may use more library functions than used
in our benchmark programs, which could lead to greater
static-linking overheads. To account for this possibility,
we actually allow page-count increases up to 500. To
ensure that the page-count increase for a task is reasonable,
we adjust the increase to be no greater than 90% of the
combined size of all libraries linked to the task.

Note that the maximum LLC reload time after a
preemption or migration is dependent on the number of
addresses a task uses. We adjust the max LLC reload time
of each task to be no greater than the time required to load
into the LLC all addresses the task consumes in DRAM.

The total DRAM consumed by a task system in a given
core’s Level-A/B DRAM bank is the DRAM consumed
by all Level-A/B tasks assigned to that core plus, under
the “SSH” schemes, the DRAM consumed by any libraries
selectively shared by such tasks on that core. The DRAM
consumed by Level C across all Level-C banks is the
DRAM consumed by all Level-C tasks plus, under the
“SSH” schemes, the DRAM consumed by libraries selec-
tively shared at Level C.

Step 8: For the MC2 schemes, we adapted the optimiza-
tion scheme presented by us previously [8, 20], which
involves solving a mixed-integer linear programs (MILP),
to determine LLC allocations while ensuring that all MC2

schedulability conditions (defined in [24]) are met.14 We
added constraints to these schedulability conditions that
ensure that DRAM capacity constraints are met. These
constraints are applicable to the schemes denoted “DRAM-
Aware” in Tbl. IV.

For these schemes, if the DRAM consumed in a Level-
A/B bank or at Level C exceeds the DRAM reserved for
the task system in any bank or at Level C, then we deem
the system as unschedulable under that scheme. Reserved
DRAM is the portion of available DRAM that can be
allocated to the task system. Some portion of DRAM may
be unavailable due to space required to support Level-D
tasks or tasks specific to alternate modes. The percentage
of DRAM reserved is selected from Category 5 in Tbl. IV.
For example, if 40% is selected, then under non-interleaved
schemes, the DRAM consumption of generated Level-A
and -B tasks on Bank 3 must be at most 40% of the 8,000
pages (refer to the discussion at the beginning of Sec. V)
allocated to Levels A and B on Bank 3.

14Our MILP techniques are described at length in prior work [8, 20].
We refer the reader to these sources for additional information. The
modifications we have made in this work are minor. As discussed in these
earlier publications, the MILPs of interest take little time to solve.


