
An Evaluation of the NVIDIA TX1 for Supporting
Real-time Computer-Vision Workloads

Nathan Otterness1, Ming Yang1, Sarah Rust1, Eunbyung Park1,
James H. Anderson1, F. Donelson Smith1, Alex Berg1, and Shige Wang2

1Department of Computer Science, University of North Carolina at Chapel Hill 2General Motors Research

Abstract—Autonomous vehicles are an exemplar for
forward-looking safety-critical real-time systems where sig-
nificant computing capacity must be provided within strict
size, weight, and power (SWaP) limits. A promising way
forward in meeting these needs is to leverage multicore
platforms augmented with graphics processing units (GPUs)
as accelerators. Such an approach is being strongly advo-
cated by NVIDIA, whose Jetson TX1 board is currently a
leading multicore+GPU solution marketed for autonomous
systems. Unfortunately, no study has ever been published
that expressly evaluates the effectiveness of the TX1, or any
other comparable platform, in hosting safety-critical real-time
workloads. In this paper, such a study is presented. Specifi-
cally, the TX1 is evaluated via benchmarking efforts, black-
box evaluations of GPU behavior, and case-study evaluations
involving computer-vision workloads inspired by autonomous-
driving use cases. Autonomous vehicles are an exemplar
for forward-looking safety-critical real-time systems where
significant computing capacity must be provided within strict
size, weight, and power (SWaP) limits. A promising way
forward in meeting these needs is to leverage multicore
platforms augmented with graphics processing units (GPUs)
as accelerators. Such an approach is being strongly advo-
cated by NVIDIA, whose Jetson TX1 board is currently a
leading multicore+GPU solution marketed for autonomous
systems. Unfortunately, no study has ever been published
that expressly evaluates the effectiveness of the TX1, or any
other comparable platform, in hosting safety-critical real-time
workloads. In this paper, such a study is presented. Specifi-
cally, the TX1 is evaluated via benchmarking efforts, black-
box evaluations of GPU behavior, and case-study evaluations
involving computer-vision workloads inspired by autonomous-
driving use cases.

I. Introduction
Safety-critical embedded systems are undergoing an evolu-
tion towards greater autonomy. This evolution is perhaps
best exemplified by current trends in the automotive
industry. In the coming years, vehicles are expected to
support continually increasing decision-making abilities,
ultimately resulting in fully autonomous vehicles that

Work supported by NSF grants CPS 1239135, CNS 1409175, CPS
1446631, and CNS 1563845, AFOSR grant FA9550-14-1-0161, ARO
grant W911NF-14-1-0499, and funding from General Motors.

operate themselves in all traffic conditions with no human
intervention.

The push towards full autonomy will not be easy because
it will require resolving two conflicting realities. On the one
hand, increased autonomy will require significant computing
capacity. On the other hand, the need for efficient designs
will give rise to strict limits on both monetary cost and
size, weight, and power (SWaP). The latter reality seriously
impinges upon the former.

Given this dilemma, the choice of hardware platform
to utilize in autonomous vehicles is not straightforward.
One choice that is receiving considerable attention today is
the usage of energy-efficient multicore platforms equipped
with graphics processing units (GPUs) that can speed
mathematical computations inherent to signal processing,
image processing, motion planning, etc. Indeed, various
GPU manufacturers have taken note of the emerging
market with respect to autonomous vehicles and have begun
to offer GPU-augmented multicore platforms specifically
catered to embedded use cases. Perhaps the most prominent
such platform today is NVIDIA’s Jetson TX1, which is
marketed as “The embedded platform for autonomous
everything” [24].

Despite this marketing slogan, no published study exists
that expressly evaluates the effectiveness of the TX1, or any
other comparable energy-efficient embedded GPU platform,
in hosting safety-critical real-time workloads. Worse yet,
little documentation is provided about the TX1, including
DRAM organization or GPU scheduling. This is a serious
concern, because safety-critical systems require certified
system designs. How can certification be possible if the
characteristics of the underlying hardware platform that
impact predictable execution are not well understood?

Motivated by this question, we present in this paper
an evaluation of the TX1 carried out using black-box
experimentation and public documentation. Our evaluation
of the TX1 is a first step in a broader project, the goal
of which is to evaluate the efficacy of various proposed
hardware platforms for enabling autonomous driving.

a) Basic TX1 overview. Before describing the nature of
our evaluation, and some of our conclusions, we first present978-1-5090-5269-1/17/$31.00 c©2017 IEEE

a brief overview of the TX1 (more details are provided
later).

As seen in Fig. 1, the Jetson TX1 is a single-board
computer containing a quad-core 64-bit ARM CPU, 4 GB
of DRAM memory, and an integrated GPU. As explained
in more detail in Sec. II-A, integrated GPUs share DRAM
memory with the host CPU platform, in contrast to discrete
GPUs, which have private DRAM memory. Integrated
GPUs are the de facto choice in embedded applications
where SWaP is a concern. The TX1’s monetary cost is
quite modest, approximately 600 USD.

b) Contributions. Our ultimate conclusions regarding the
TX1’s usefulness in safety-critical systems are based on
case-study experiments in which achievable frame rates
were measured for computer-vision workloads motivated
by autonomous driving. Our focus on computer vision is jus-
tified by the fact that sensing through cameras is commonly
used to realize semi-autonomous features in production
vehicles today. Furthermore, similar computations must be
supported under other sensing methods, such as LIDAR.

In order for these case studies to be meaningful, it is
important for the TX1’s GPU to be managed in a way that
is reasonable for a safety-critical application. Thus, before
presenting our case-study experiments, we first present
results obtained by running benchmarks that seek to resolve
openly configurable GPU management options.

The first option that we consider is a feature inherent
in integrated GPUs called zero-copy memory. Zero-copy
memory eliminates the need for copying data to and from
DRAM associated with the GPU, instead allowing both
CPU and GPU components of GPU-using programs to
share memory space. Conventional GPU-using programs,
which are written using NVIDIA’s CUDA API, function
as if the GPU is discrete and the zero-copy option is
not available, but this may not be the best choice for an
integrated platform like the TX1. While it ostensibly would
be preferable to utilize zero-copy memory, our benchmark
experiments reveal that the situation regarding zero-copy
memory is more nuanced.

Another option that we consider is whether GPU co-
scheduling should be allowed, i.e., whether different tasks
should be able to access the GPU concurrently. In most
prior work on real-time GPU management, co-scheduling
is forbidden due to concerns that concurrent accesses
may adversely interfere with each other. However, on a
single-board platform with a single, less-capable GPU,
co-scheduling may be desirable if GPU computations
commonly use only a fraction of its computational capacity,
leaving it consistently underutilized. To elucidate this issue,
we conducted additional benchmark experiments where
different GPU computations were concurrently launched
by different tasks. These experiments show that some
co-scheduling might be preferable but is also unlikely

Fig. 1: Jetson TX1 architecture.

to provide benefits beyond what existing real-time GPU
management systems already offer.

Informed by these benchmarks, we conducted case-
study experiments in which different computer-vision
computations had to be supported simultaneously on the
TX1. We are interested in supporting multiple computations
because any realistic autonomous-driving framework would
have to multiplex the processing from different sensor
feeds at the same time. The specific computations that we
considered were the CaffeNet image-classification system
and a road-sign recognition application. Across all of our
experiments, these computations typically were able to
sustain frame rates in the range of [20, 30] frames per
second. While impressive for an embedded device, these
rates still may not be high enough for autonomous-driving
use cases, especially when worst-case provisioning must
be used.

c) Organization. In rest of the paper, we discuss relevant
background information in Sec. II, describe our benchmarks
in Sec. III, present the results of our benchmark experiments
in Secs. IV and V, discuss our case study experiments in
Sec. VI, comment on future work in Sec. VII, and conclude
in Sec. VIII.

II. Background
In this section, we provide needed background on the
NVIDIA Jetson TX1 and GPU programming fundamentals
using NVIDIA’s CUDA API. We also discuss prior related
work on real-time GPU management frameworks.

A. The NVIDIA Jetson TX1
As illustrated in Fig. 1, the TX1 employs an SOC (system-
on-chip) design that incorporates a quad-core 1.91 GHz
64-bit ARM A57 processor and an integrated Maxwell
GM20B GPU. The CPUs share a 2-MB L2 cache. The GPU
has 256 cores configured on two streaming-multiprocessor
(SM) controllers, has a 256-KB L2 cache, and provides up
to 512 32-bit GFLOPS. The TX1 is a “big-little” platform

in which an additional lower power, lower performance
quad-core ARM A53 is provided on chip, but is not directly
accessible to software and is only activated in low-power
modes. The ARM CPUs and the GPU share 4 GB of
1600-MHz DRAM memory partitioned into 32 banks.

The TX1 features an integrated GPU. Such a GPU tightly
shares DRAM memory with CPU cores, typically draws
between 5 and 15 watts, and requires minimal cooling and
additional space. The alternative to an integrated GPU is a
discrete GPU. Discrete GPUs are packaged on adapter cards
that plug into a host computer bus, have their own local
DRAM memory that is completely independent from that
used by CPU cores, typically draw between 150 and 250
watts, need active cooling, and occupy substantial space.

B. CUDA Programming Fundamentals

The following is a high-level description of CUDA, the
API for GPU programming provided by NVIDIA.

A GPU is fundamentally a co-processor that performs
operations requested by CPU programs. CUDA programs
use a set of C or C++ library routines to request GPU
operations that are implemented by a combination of
hardware and device-driver software. The typical structure
of a CUDA program is as follows: (i) allocate GPU-local
(device) memory for data; (ii) use the GPU to copy data
from host memory to GPU device memory; (iii) launch
a program, called a kernel, to run on the GPU cores to
compute some function on the data; (iv) use the GPU to
copy output data from device memory back to host memory;
(v) free the device memory. When invoking a CUDA kernel,
the programmer specifies the number of GPU threads to
use during the kernel’s execution and how the threads
are organized into groups called thread blocks. Having
multiple threads executing the kernel enables the significant
parallelism afforded by GPUs to be exploited. Kernel
launches are always asynchronous, requiring the invoking
CPU process to explicitly wait for them to complete.

On integrated GPUs, CUDA provides a zero-copy option
where programs can simply pass a pointer to shared memory
where data used by a kernel is located—that is, explicit
copying from CPU-local memory to GPU-local memory is
avoided. CUDA also supports a different memory-access
mechanism, called unified memory, on both discrete and
integrated GPUs. Unified memory is similar to zero-copy
memory, as a single memory pointer can be used in both
CPU and GPU code. The difference between unified and
zero-copy memory appears during kernel execution, where,
in the case of unified memory, the GPU driver transparently
transfers data on-demand between CPU-local memory and
GPU-local memory.

CUDA operations pertaining to a given GPU are ordered
by associating them with a stream. By default, there is
a single stream for all programs that share a GPU, but
multiple streams can be optionally created. Operations in

a given stream are executed in FIFO order, but the order
of execution across different streams is determined by the
GPU scheduling in the device driver. Tasks from different
streams may even execute concurrently or out of request
order.

Programmers can think of a GPU as being abstractly
composed of one or more copy engines (CEs) that imple-
ment transfers of data between host memory and device
memory, and an execution engine (EE) (consisting of many
parallel processors) that executes GPU kernels. The TX1
has a single CE. EEs and CEs operate concurrently. When
there are multiple streams, kernels and copy operations from
different streams can also operate concurrently depending
on the GPU hardware. To the best of our knowledge,
complete details of kernel attributes and policies used by
NVIDIA to schedule kernels and copy operations is not
available.

C. Related Work

The black-box nature of GPU programming has limited
both the scheduling and analysis techniques available for
real-time GPU usage. As a result, much prior work treats
a single GPU as an atomic entity—a real-time task locks
an entire GPU, or individual EEs or CEs, for the duration
of any GPU computation. Such an approach is taken in
TimeGraph [14], RGEM [13], GPUSync [9], and several
other frameworks [28, 29, 30, 33]. The viewpoint taken in
all of this work is that GPU co-scheduling must be avoided
because concurrently executing kernels might adversely
interfere with each other. However, we are aware of no work
directed at real-time systems in which such interference is
actually demonstrated or its effects quantified.

In a precursor to this paper, our group conducted an
investigation of the high-level effects of uncontrolled co-
scheduling on the execution times of a variety of image-
processing benchmarks [26]. We conducted this work
using both the NVIDIA TX1 and TK1 (a similar, but
weaker, single-board computer). This work found that
unmanaged co-scheduling can lead to improved average-
case performance. However, we did not examine in depth
how this benefit is achieved or what the limitations of it
are.

Work has also been directed at splitting GPU tasks into
smaller sub-tasks to approximate preemptive execution or
improve utilization [3, 13, 19, 35]. A framework called
Kernelet [34] falls into this category, but is of particular
interest to us due to the fact that GPU co-scheduling
is considered in order to improve utilization. Kernelet,
however, requires heavy instrumentation and does not
consider co-scheduling unmodified workloads. Additionally,
the developers of Kernelet do not provide an in-depth
investigation into the GPU’s actual behavior or interference
effects during co-scheduling, which, in fairness, was not
one of their main objectives. Others have published further

techniques for managing or evaluating GPU hardware
resources, including the cache [20, 21, 31] and direct I/O
communication [2].

In addition to GPU management techniques, a significant
body of work has been directed at timing analysis for
GPU workloads. These have included statistical techniques
applied to measurements obtained on hardware [6, 7, 8],
techniques for estimating worst-case performance using
formal models [4, 5], and one recent work that used
simulation to identify and remedy performance bottlenecks
[12].

III. Benchmark Programs
In our experiments, we made use of a variety of benchmark
workloads, which are summarized in this section. During
all of our experiments, each instance of a benchmark was
pinned to a single CPU core, performed memory copies
asynchronously, and was configured to block while waiting
to synchronize with the GPU. For benchmarks requiring
image inputs, we pre-loaded the input data into memory
before beginning measurements. Unless otherwise noted,
all of our benchmarks used CUDA version 8.0.

a) Synthetic benchmarks. We used two synthetic bench-
marks for the purpose of measuring GPU performance. We
have made the source code for these benchmarks available
online.1

• Random Memory Walk: Creates 64 CUDA threads,
grouped into two blocks of 32 threads each, that access
256 MB of GPU memory in a random pattern. Each
thread begins at a different offset in the random walk.
This benchmark can be configured to place the array
in zero-copy, unified, or traditional GPU memory. It
was created to measure memory performance with as
little cache benefit as possible.

• In-Order Memory Walk: Identical to the random
memory walk, but accesses the array of memory in
order, with the different threads spaced equally across
the array. In contrast to the random memory walk, this
benchmark was created to compare performance with
full caching benefits.

b) Image-processing benchmarks. We considered three
benchmarks that carry out image-processing tasks using
the GPU. Stereo Disparity was adapted from the CUDA
samples distributed by NVIDIA [23]. CaffeNet is part of
the Caffe framework, an open-source tool available online.2

• Stereo Disparity (SD): Extracts 3D depth information
from 2D images taken with a stereo camera. The input
consists of left and right 640× 533 color images; the
output is a 640× 533 grayscale image.

1SD is available at https://github.com/yalue/PeriodicTaskReleaser. The
memory-walk benchmarks are available at https://github.com/Sarahild/
CudaMemoryExperiments.

2https://github.com/BVLC/caffe.

• CaffeNet: A neural network trained to classify images
based on AlexNet [18], and running under the Caffe
deep learning framework [10]. The input to this
benchmark is one or more images, and the output
is a list of classification probabilities.

• Road-Sign Recognition: This is an application in-
tended for use in semi-autonomous cars. It identifies
road signs in streams of images. (This is proprietary
code made available by an industry partner.)

IV. Memory Considerations
GPU applications for autonomous vehicles need to quickly
retrieve data from sensors or storage, and also quickly
transfer data to or from GPU memory. In conventional
CUDA programs, memory is explicitly copied from the
CPU to the GPU portions of DRAM and vice versa. On
integrated GPUs like the TX1, the CPU and GPU have
unified DRAM memory, giving CUDA programs a wider
range of mechanisms to retrieve data from the GPU, or
to transfer data to it. Before describing our experimental
methods, we first give an overview of the different memory-
transfer methods available to CUDA programs.

a) Traditional memory. Conventional CUDA programs
use traditional memory to store and access memory, where
data must be explicitly copied from CPU to GPU portions
of DRAM. The GPU may be able to perform additional
optimizations using traditional memory, but the time to copy
large amounts of the same data between the CPU and GPU
memory, in addition to greater programming complexity,
can be a drawback.

b) Zero-copy memory. With zero-copy memory, the CPU
and the GPU can access the same memory area, avoiding
GPU memory allocations and data copies between CPU
and GPU memory. In practice, this advantage may be offset
by claims that zero-copy memory accessed by the GPU
bypasses all caching. Strangely enough, there seems to
be no mention of this in official CUDA documentation,
but older presentations and forum posts by NVIDIA staff
members have indicated that this is the case, due to their
consistency model and concerns about maintaining cache
coherence [15, 27].

c) Unified memory. As mentioned in Sec. II-B, unified
memory is similar to zero-copy since they both use the same
memory pointer between the CPU and GPU, but in reality
it presents somewhat of a hybrid between the simplified
programming of zero-copy memory and the caching benefits
of traditional memory. This is achieved by the GPU driver
transparently transferring memory on-demand between the
CPU and GPU, whenever buffers are accessed [17].

d) Evaluation of memory transfer mechanisms. Our
first set of experiments used the random and in-order mem-
ory walk benchmarks described in Sec. III. We designed

CUDA 7.0 CUDA 8.0
Memory type Min Max Mean σ Min Max Mean σ

Traditional 238.1 411.5 245.1 4.4 671.0 684.7 679.3 3.3
Zero-copy 676.3 677.0 676.5 0.1 671.9 684.7 680.2 3.3

Unified 686.0 702.2 686.2 0.1 671.9 690.6 680.1 3.3

TABLE I: Best-, worst-, and average-case times (in ms) for the
random walk benchmark for CUDA 7.0 and 8.0.

CUDA 7.0 CUDA 8.0
Memory type Min Max Mean σ Min Max Mean σ

Traditional 4.4 7.8 4.4 0.1 3.1 3.2 3.1 0.0
Zero-copy 48.1 77.5 75.9 4.8 3.1 3.2 3.2 0.0

Unified 4.4 4.6 4.4 0.0 3.1 3.2 3.2 0.0

TABLE II: Best-, worst-, and average-case times (in ms) for the
in-order walk benchmark for CUDA 7.0 and 8.0. The σ values
under CUDA 8.0 are all less than 0.006 ms, and approximately
0.01 ms under CUDA 7 with Unified memory.

these synthetic benchmarks to facilitate switching between
memory transfer mechanisms, which would have required
significant code modifications in our image-recognition
programs. Additionally, using memory-focused benchmarks
allowed us to better isolate memory activity by eliminating
other non-memory-related computations.

Execution times were recorded on the GPU for each
block of 32 threads. Each thread performs a constant number
of steps (approximately 256,000) in the random or in-order
walk within a single measurement. Recording time on
the GPU itself avoids potential inaccuracies present when
timing entire kernels, which is the granularity provided by
NVIDIA’s standard debugging tools. Times were measured
by reading the GPU’s globaltimer register, which
maintains a 64-bit count of nanoseconds.

e) Differences between CUDA versions. We initially
conducted these experiments using CUDA version 7.0 on
Linux for Tegra (L4T)3 version 24.1. Upon updating our
system to CUDA 8.0 and L4T 24.2, we observed significant
changes in all of our measurements. Tbls. I and II show
the results of our memory benchmarks.
Obs. 1. Random traditional memory accesses are slower
under CUDA 8.0 compared to CUDA 7.0.

This observation is supported by Tbl. I. The most
surprising change due to transitioning from CUDA 7.0 to
8.0 was that the newer version of CUDA caused traditional
memory to become around three times slower in the random
walk.
Obs. 2. Under CUDA 8.0, unified and zero-copy memory
perform nearly identically, which was not the case under
7.0.

This observation is supported by Tbl. II and by Figs.
2 and 3, which provide cumulative distribution functions
(CDFs) based on recorded kernel times for the walk through
the array. Under CUDA 7.0, unified memory was slower
than zero-copy memory during the random walk, but as

3Linux for Tegra is NVIDIA’s official build of the Linux kernel and
root file system for the TX1.

4.35 18.98 33.60 48.23 62.86 77.48
In-order walk time (ms)

0

20

40

60

80

100

%
 <

=
 x

Traditional memory

Unified memory

Zero-copy memory

Fig. 2: CDFs of memory access times during the in-order walk
benchmark under CUDA 7.0. Note: traditional and unified memory
overlap.

3.1240 3.1386 3.1532 3.1678 3.1824 3.1970
In-order walk time (ms)

0

20

40

60

80

100

%
 <

=
 x

Traditional memory

Unified memory

Zero-copy memory

Fig. 3: CDFs of memory access times during the in-order walk
benchmark under CUDA 8.0. Note: zero-copy and unified memory
overlap.

fast as traditional memory during the in-order walk. Under
CUDA 8.0, in-order zero-copy memory accesses see a
significant improvement, even though zero-copy memory
was earlier claimed to bypass the cache. We speculate
that the changes in memory performance from CUDA 7.0
to CUDA 8.0 are the result of optimizing for a use case
that emphasizes sequential (streaming) memory accesses at
the price of incurring some performance degradation for
arbitrary access patterns.

f) Data transfer times. Applications using zero-copy
memory do not need to explicitly transfer data to the GPU.
This leads to a potential trade-off between memory access
times under zero-copy memory and increased data transfer
times under traditional memory because of copy times. We
conducted a short experiment to measure the CPU-GPU
data transfer rate on the TX1 to obtain an estimate of when
this trade-off may favor using one method over the other.
Our experimental setup was very simple: we copied data
ranging from 1 KB to 1GB from the CPU to the GPU. The
data transfer times were obtained from NVIDIA’s nvprof
tool.

In this experiment, we found that it is possible to transfer
about 8 megabytes of data per millisecond using traditional
GPU memory on the TX1. Most of our benchmarks have
rather small input sizes: the combined size of SD’s 640×533

color image inputs is 2.6MB, and CaffeNet’s 256 × 256
inputs are even smaller. Therefore, we believe that data
transfer times are unlikely to play a significant role in
the overall time of our subsequent experiments, where the
entire cycle of reading input, performing computation, and
producing outputs usually takes between 15-30 millisec-
onds.

g) Conclusions regarding memory-management best
practices. Based on our results, using traditional memory
under CUDA 8.0 will not adversely affect performance
when compared to unified or zero-copy memory, unless
data transfer times dominate memory access times. More
importantly, our experiments revealed that CUDA version
changes can alter behavior as fundamental as memory
access. For safety-critical systems, it is therefore necessary
that all analysis and development be carried out under a
single version of CUDA.

V. GPU Scheduling
As discussed in Sec. II, the overarching trend in real-time
GPU management has been to provide exclusive GPU
access to only one CPU program at a time [9, 13, 14,
28, 29, 30, 33]. This approach has been motivated by the
closed-source and undocumented nature of GPU hardware
and drivers, meaning the only mechanism sure to guarantee
non-interference between GPU workloads was to eliminate
the possibility entirely. While this may be reasonable on a
multi-GPU system, more justification is required for any
utilization loss on the single-GPU TX1. Towards this end,
we performed a black-box examination of GPU scheduling
on the TX1.

Our examination involved co-scheduling image-
processing benchmarks and recording timing information.
For simplicity, the results shown below primarily involve
experiments conducted using the SD benchmark, but
similar results were obtained with other benchmarks. These
benchmarks were described earlier in Sec. III. In brief, our
experiments found that co-scheduling is likely to be mildly
beneficial to the overall runtime of a system, and unlikely
to experience some forms of hardware interference, but is
also limited in its capacity to improve system utilization.

a) GPU scheduling hierarchy. Fig. 4 depicts how GPU
work is subdivided and scheduled, and is labeled with
specific time ranges. This figure shows which portions
of two co-scheduled CUDA programs may be active at a
given time. At the top level of the hierarchy are CUDA
programs, containing both CPU and GPU portions. For
our benchmarks, we use total time to denote the time
required for an entire CUDA program, starting from the
beginning of the initial CPU computation and ending with
the completion of the final CPU computation. By definition,
total time includes any time spent executing or waiting for
GPU work. CPU and GPU execution may overlap within a

Time

CPU

CUDA
Kernel

Thread
Block

CPU

CUDA
Kernel

Thread
Block

CUDA
Program 1

CUDA
Program 2

Total time

Kernel time

Block time

Fig. 4: Diagram illustrating the relation between CUDA programs,
kernels, and thread blocks for two co-scheduled programs.

single CUDA program, even though this is not represented
in Fig. 4. In our benchmarks, total time refers to a single
invocation of the benchmark code (e.g., the processing of
one image) rather than the entire lifetime of the CUDA
program.

The second level of the hierarchy in Fig. 4 is the CUDA
kernel. One or more kernels may be invoked during the
course of a CUDA program. Kernel time starts when a
single kernel is submitted to some level of the black-box
GPU kernel-scheduling queue and ends when all threads
have completed and the driver unblocks the CPU waiting to
synchronize with the GPU. Kernel times can be measured
using NVIDIA’s nvprof tool. In this work, we use “kernel
time” to specifically refer to the time required by a single
CUDA kernel, as denoted in Fig. 4. We call the sum of
all kernel times for one CUDA program total kernel time
instead.

The smallest unit of scheduling depicted in Fig. 4 and
considered herein is the thread block. Recall from Sec. II-B
that the number of GPU threads for each CUDA kernel
and their grouping into blocks is specified at runtime and
is user-controlled. In our image-processing benchmarks,
thread blocks are used to logically subdivide threads among
different chunks of input data. In GPU scheduling, however,
thread blocks are not merely a means for the programmer
to organize threads into groups; as shown in Fig. 4, thread
blocks are treated as units of work to be scheduled. We
call the runtime of a single thread block block time. In our
experiments, block times were measured on the GPU by
recording the value of the globaltimer register at the
start and end of each thread block.

b) Performance impact of uncontrolled co-scheduling.
Our first experiment was devised to evaluate how much of
a benefit GPU co-scheduling can produce on the TX1. In
this experiment, we ran up to four concurrent instances of
the SD benchmark. Each instance was pinned to a separate
CPU core, had all of its pages locked into physical memory,
and ran for as many iterations as possible for 10 minutes.
In this experiment, we measured total time (as defined

10.23 17.32 24.41 31.51 38.60 45.69
Stereo Disparity time (ms)

0

20

40

60

80

100

%
 <

=
 x

In isolation

vs. 1 instance

vs. 2 instances

vs. 3 instances

4 * isolation

Fig. 5: CDFs of total time for SD with up to four co-scheduled
SD instances. The WCET for the “4 * isolation” curve is 110 ms.

above), in order to capture all possible benefits due to
co-scheduling.
Obs. 3. GPU co-scheduling can lead to reduced total time,
compared to sequentially executing the co-scheduled tasks.
Obs. 4. Total times with GPU co-scheduling are still
significantly longer than total times in isolation.

These observations are supported by Fig. 5, which
provides CDFs based on recorded total times for a single
instance of SD executing alongside a varying number of SD
competitors. The “In isolation” curve corresponds to the
case in which no competitors exist, and the subsequent
curves correspond to cases where one, two, or three
competitors exist. The “4 * isolation” curve is not a real
measurement, but was obtained by scaling up the isolation
curve by a factor of four. It is included to provide a rough
estimate of the time necessary to complete four instances
if all four benchmarks were forced to run sequentially. In
the co-scheduling case, the total time necessary for four
instances to complete is represented by the “vs. 3 instances”
curve, which represents the time a single instance takes to
complete when running concurrently with three competitors.
The difference in median times between these two curves
leads to Obs. 3: we can save approximately 10 milliseconds
on average by co-scheduling. The measured worst-case
execution time (WCET) shows an even greater benefit due
to co-scheduling: approximately 70 milliseconds can be
saved.

On the other hand, as stated in Obs. 4, total times
appear to scale almost linearly on average, with the median
total time increasing by about 7 milliseconds with each
additional competing instance. This implies that there is
still a significant amount of resource contention between
co-scheduled workloads, but further experimentation is
needed to determine exactly which resources are a source
of contention.

In prior work, we carried out a larger variety of similar
experiments, and the results shown in Fig. 5 agree with our
previous findings [26]. Given these results, one may ask
if co-scheduling should ever be avoided? In response, we

9.39 14.76 20.14 25.51 30.88 36.25
Stereo Disparity kernel time (ms)

0

20

40

60

80

100

%
 <

=
 x

In Isolation

vs. 1 instance

vs. 2 instances

vs. 3 instances

Fig. 6: CDFs of kernel time with up to four co-scheduled SD
instances.

first stress that our experiments only covered a small subset
of infinitely many possible workloads, and we refer to our
prior work for specific examples where co-scheduling may
be undesirable [26], especially with so little information
on internal policies.

c) The impact of co-scheduling on kernel times. The
results in prior paragraphs established that co-scheduling
can be beneficial in some cases, but gave no indication
of the root cause for the increasing total times during
co-scheduling. The next step in our examination of the
scheduling hierarchy in Fig. 4 involved measuring kernel
times in the presence of co-scheduling.
Obs. 5. Co-scheduling affects kernel times similarly to
total times.

Obs. 5 is supported by the kernel-time CDFs shown in
Fig. 6. Like total times, kernel times still expanded in the
presence of co-scheduling, but not to the point where any
benefit of co-scheduling no longer exists. The kernel-time
CDFs are less distinct and more noisy than the total-time
CDFs, but we have no way to control where individual
kernels actually overlapped on the GPU. It is likely that
some kernels, even with concurrent benchmarks, were able
to use the GPU with little to no competition, leading to the
tighter grouping of curves in Fig. 6. The results discussed in
the remainder of this section both strengthen this conjecture
and explain the reason why kernel times, like total times,
still exhibit slowdown in the presence of competition.

d) The impact of co-scheduling on block times. Since
total times and kernel times were both inflated by co-
scheduling, we decided to investigate the next lower level
in the scheduling hierarchy: block times. This experiment
followed an identical setup to the total-time and kernel-time
experiments, with the sole difference that the CPU portion
of the program logged the block times recorded on the
GPU.4

4The SD kernel was instrumented to record block times for all
experiments but they were not written to logs when measuring total
time to avoid additional overheads.

0.01968 0.03738 0.05507 0.07277 0.09046 0.10816
Stereo Disparity block time (ms)

0

20

40

60

80

100

%
 <

=
 x

In isolation

vs. 1 instance

vs. 2 instances

vs. 3 instances

Fig. 7: CDFs of block time with up to four co-scheduled SD
instances.

Obs. 6. Block times are minimally affected by co-
scheduling.

This observation is supported by the block-time CDFs
given in Fig. 7. This figure shows that block times are
virtually unaffected by co-scheduling. Especially striking
is the fact that the median block time, approximately 70
microseconds, was indistinguishable among all scenarios.
We already observed that kernel times increase when co-
scheduling is introduced (see Fig. 6). Nominally, kernel
time should be the sum of all block times, but if block
times do not change under co-scheduling, how can kernel
times change? We can only conclude that the majority of
the slowdown due to co-scheduling is due to inter-block
scheduling delays. We examined this in detail in our next
experiment.

e) Block scheduling behavior. To shed light on the
behavior of the GPU scheduler, we conducted an additional
experiment in which actual scheduling timelines were
recorded. Rather than recording block durations, we instead
recorded the start and end time of each block. We present
only results where four instances of SD were co-scheduled,
but we observed similar effects regardless of the collection
of benchmarks for which we conducted this experiment.
After obtaining measurements, we looked for an interval of
time where kernel times from the four programs overlapped,
and then generated a timeline of active blocks in this
particular interval.

Fig. 8 contains plots of the active number of blocks
for four co-scheduled processes in a time interval when
all four processes have active kernels. Similarly to Fig. 7,
block start and end times were recorded from the GPU’s
globaltimer register. We used the nvprof tool to
confirm that Fig. 8 contains a single kernel for each of the
programs, so any activity in this figure is due to inter-block
scheduling, and not kernels starting or ending.
Obs. 7. Co-scheduled GPU programs from different pro-
cesses are not truly concurrent, but are multiprogrammed
instead.

This observation is supported by Fig. 8, which shows
that even though multiple blocks from a single kernel are

0
4
8

12
16

#
 b

lo
ck

s,
p
ro

ce
ss

 1

0
4
8

12
16

#
 b

lo
ck

s,
p
ro

ce
ss

 2

0
4
8

12
16

#
 b

lo
ck

s,
p
ro

ce
ss

 3

673.31 677.36 681.42 685.48 689.54 693.60
Time (ms)

0
4
8

12
16

#
 b

lo
ck

s,
p
ro

ce
ss

 4

Fig. 8: Timeline of block assignments to the GPU.

scheduled concurrently, blocks from different kernels never
overlap. SD uses blocks containing 256 threads, so up to
4096 threads were in some phase of execution at any given
time.5

We conducted other experiments with different com-
binations of CUDA programs, but we always observed
identical block-scheduling behavior to that shown in Fig. 8
(the alignment of blocks as depicted in Fig. 4 also
reflects this). If we assume this is always the case, then
we can conclude that co-scheduled GPU workloads will
never result in improved GPU kernel execution times. Put
another way, if GPU computations can not overlap, then
improvements to total time under co-scheduling can only
be due to overlapping GPU and CPU computations, or
non-measurable GPU driver activity. This is likely still
beneficial to overall utilization, but existing real-time GPU
management systems already feature the ability to overlap
CPU and GPU execution [9] while offering more control
than the version of co-scheduling discussed here.

f) Conclusions about GPU co-scheduling. It may be
worthwhile to consider co-scheduling specific sets of CUDA
programs on the GPU. While this may lead to slower
or less predictable total times in individual programs, we
observed no cases where the co-scheduled WCET exceeded
the sum of the WCETs in isolation. On the other hand,
our observations show that co-scheduling never caused true
concurrent execution on the GPU. This implies that any
benefit from co-scheduling is due solely to overlapping
CPU-GPU computations or reduced queueing time in the
GPU driver’s kernel-scheduling queue.

VI. Case Study: Image-Processing Tasks
Our earlier experiments revealed that traditional GPU mem-
ory should still be used on the TX1, and that co-scheduling
can be considered to improve utilization, however only to

52,048 is the maximum number of threads concurrently schedulable on
one of the two SMs in the TX1. In future work, we may investigate even
smaller units of scheduling, called warps, in order to gain insight about
how individual threads within blocks are scheduled.

a limited extent. Still, these results are meaningless if the
TX1 is incapable of predictably sustaining an autonomous-
vehicle workload in the first place. We addressed this final
point by running workloads performing computer-vision
tasks, which are fundamental to camera-based autonomous
vehicle navigation. Our benchmarks for these experiments
included both CaffeNet and the sign-recognition workload
described in Sec. III.

In our experiments, we focused on achieving 30 frames
per second under the assumption that this rate will be easily
provided by common cameras. We intended this merely as
an easy point of reference for our benchmarks rather than
as a requirement for autonomous driving. It is possible that
real-life autonomous or semi-autonomous driving systems
require either lower or higher frame rates, and specifics
probably differ between vehicle manufacturers.

a) Sign-recognition performance. In this experiment, we
ran up to three co-scheduled sign-recognition instances. We
recorded both total times and kernel times experienced by
a single instance in each scenario.
Obs. 8. Up to two instances of the sign-recognition task
can reliably process 30 frames per second.

Fig. 9 supports this observation. We justify our claim
of reliability based on the observed WCET with a single
competitor being under 33 milliseconds. The median time
per frame is sufficient for 30 frames per second even with
three co-scheduled instances, but the WCET is higher in
this case. The good co-scheduling results for the sign-
recognition benchmark are probably due to its relatively
short kernel times which, unlike our other benchmarks,
account for less than half of the total time and therefore
are more likely to overlap with CPU time from other co-
scheduled instances.

Overall, sign recognition performed fairly well on the
TX1, even in the presence of some competition. This,
however, is only one of several image-processing tasks that
must be carried out in an autonomous driving scenario. In
order to consider more general-purpose image classification
(such as pedestrian detection), we also evaluated the
CaffeNet benchmark’s performance.

b) CaffeNet performance. CaffeNet has a much higher
memory requirement than sign recognition, preventing us
from co-scheduling multiple instances of it. However, Caf-
feNet has a different mechanism for controlling parallelism:
it can be configured to classify more than one image at
once. The parameter controlling this is called batch size:
with a batch size of k, k images are processed at once.
Like co-scheduling, parallelism can be increased to improve
throughput at the expense of latency by increasing batch
size.

In an automotive use case, an increased batch size will
only be useful if there are multiple image inputs arriving
simultaneously. Were only a single input stream available,

0.00 7.93 15.85 23.78 31.70 39.63
Sign Recognition time (ms)

0

20

40

60

80

100

%
 <

=
 x

Kernel, in isolation

Kernel, vs. 1 instance

Kernel, vs. 2 instances

Total, in isolation

Total, vs. 1 instance

Total, vs. 2 instances

Fig. 9: CDFs of both kernel and total times for up to three co-
scheduled sign-recognition instances.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Batch size

0

50

100

150

200

250

300

350

400

E
xe

cu
ti

o
n

 t
im

e
 (

m
se

c.
)

Total execution time per batch

Average
Worst

0

5

10

15

20

25

C
o
e
ff

ic
ie

n
t

o
f

V
a
ri

a
ti

o
n

 (
%

)

Fig. 10: Total execution time per batch (response time per image)
with different batch sizes of CaffeNet, along with the coefficient
of variation.

one would need to wait for multiple frames to fill up an
entire “batch” before any could be processed—potentially
an unacceptable latency penalty. However, an autonomous
vehicle is likely to have at least front and rear cameras, and
possibly even more. We therefore conducted experiments
to quantify the latency/throughput tradeoff in CaffeNet on
the TX1. These experiments cycled through a dataset of
2,400 images until 1,200 iterations of several batch sizes
were completed.
Obs. 9. CaffeNet on the TX1 can reliably support 30
frames per second if the batch size is at most two.

This observation is supported by the results presented
in Fig. 10, and shown in more detail for a batch size of
two in Fig. 11. In both of these plots, the WCET for a
batch time of two is shown to be 29.9 ms. Unlike our
other benchmarks, CaffeNet invokes many different CUDA
kernels per iteration, so this figure includes total kernel
time, the sum of all kernel times, in addition to total time,
the per-iteration time including CPU and GPU operations.

As a final experiment, we tested the performance of both
CaffeNet and sign recognition while co-scheduled.

24.906 25.907 26.908 27.910 28.911 29.912
CaffeNet time (ms)

0

20

40

60

80

100

%
 <

=
 x

Total kernel time Total time

Fig. 11: CDFs of total kernel time and total time for CaffeNet
with a batch size of two.

0.00 8.48 16.97 25.45 33.93 42.42
Co-scheduled CaffeNet and Sign Recognition time (ms)

0

20

40

60

80

100

%
 <

=
 x

Sign Rec., kernel

CaffeNet, total kernel

Sign Rec., total

CaffeNet, total

Fig. 12: CDFs of the kernel times and total times running CaffeNet
and sign-recognition tasks.

c) Co-scheduling mixed image-processing tasks. In this
final experiment, we concurrently executed both CaffeNet,
processing a batch size of two images, and a single instance
of the sign-recognition benchmark.

Obs. 10. Neither sign recognition nor CaffeNet is able to
maintain 30 frames per second while co-scheduled with
the other.

Fig. 12 supports this observation. Both benchmarks
have WCETs of approximately 40 ms, giving a worst-
case frame rate of 24 frames per second. CaffeNet is also
no longer even able to support 30 frames per second with
its median performance. Given that the benchmarks were
able to sustain little more than 30 frames per second in
isolation, our analysis in Sec. V makes it is unsurprising
that this is no longer achievable for either benchmark while
co-scheduled, especially in the case of CaffeNet, which has
little potential for co-scheduling due to its large proportion
of kernel time.

d) Case-study conclusions. The TX1 has a limited ability
to support reasonable frame rates for the image-processing
tasks considered here. Both sign recognition and CaffeNet
were capable of predictable 30 frames-per-second perfor-
mance in isolation, but even running the two together
reduced the frame rate to about 24 per second.

VII. Future Work
Official NVIDIA sources actually document that separate
processes are generally unable to concurrently perform
computations on a single GPU, but this restriction does
not apply to multiple threads within a single address space.
For some platforms, NVIDIA provides a tool called the
Multiprocessor Service (MPS). MPS receives GPU tasks
from multiple processes and launches them within the
context of a single process [22]. Unfortunately, MPS is
not supported on the TX1, so this option was unavailable
to us. Without MPS, running workloads from a single
address space requires potentially nontrivial modifications
to combine all GPU-using tasks into an executable capable
of launching each task as a thread. Furthermore, using a
single address space (even with MPS) is likely a poor choice
for a safety-critical system, because other CPU threads or
GPU kernels would not be isolated from other potentially
faulty threads and kernels. Even so, we hope to repeat
our study of GPU co-scheduling within the context of a
single address space because it could still be useful to
improve utilization for formally verified or less-intensive,
low-priority GPU calculations.

Our eventual goal is to produce a real-time GPU
management system supporting GPU co-scheduling, but
still capable of minimizing hardware interference between
concurrent GPU computations. We envision that hardware
isolation for GPUs will take a similar form to imple-
mentations for CPUs, where careful memory allocation
reduces or eliminates DRAM or cache interference (e.g.
[1, 11, 16, 32]). Unfortunately, this will require either
further hardware documentation or significant black-box
reverse engineering efforts to proceed.

Finally, we hope to expand our work to cover a wider
variety of hardware platforms. NVIDIA’s upcoming Drive
PX 2 [25] is a single-board computer with several times the
computing capacity of the TX1, including two GPUs along
with more DRAM and CPUs. Like the TX1, the Drive PX
2 is marketed towards the safety-critical embedded market,
but will certainly exhibit different performance characteris-
tics. Additionally, a multi-GPU embedded platform requires
answering the interesting question of how to best assign
tasks to GPUs.

VIII. Conclusion
GPU-augmented embedded platforms are being marketed
towards safety-critical systems, without manufacturers
providing information fundamental to real-time correctness.
Given its marketing, we focused on the NVIDIA Jetson TX1
as an exemplar of this class of systems, and evaluated its
ability to host safety-critical applications using only black-
box experiments and publicly available documentation.

We began by examining one of the most distinctive
aspects of an integrated GPU: its shared DRAM. We

concluded that utilizing zero-copy memory is unlikely to
provide a performance benefit, but more importantly found
that even basic memory-access behavior can significantly
change, and not always beneficially, due to changes in
CUDA.

Next, we evaluated co-scheduling as a mechanism to
improve GPU utilization. We found that even though
CUDA kernels from separate processes may appear to run
concurrently, actual execution on the GPU is handled via
multiprogramming. This implies that co-scheduling may
not cause quite so much shared-resource interference that
it must be entirely prevented, as in existing real-time GPU-
management systems[9, 13, 14, 28, 29, 30, 33], and may
be a viable option for improving utilization as long as it is
carefully evaluated for individual use cases.

Finally, we found that both CaffeNet and sign recognition
can run at approximately 30 frames per second on the TX1
in isolation. When applying our findings related to co-
scheduling, we concluded that these tasks should be able
to continue running predictably at approximately 24 frames
per second while co-scheduled. In a safety-critical domain,
however, “should be able” is an insufficient conclusion.

Ideally, future work in this area will be accompanied by
greater openness in hardware and software. Even without
such openness, we believe this work must continue, because
without input from the real-time community, GPU and
automobile manufacturers will continue to place customers’
safety in the care of unverifiable, black-box hardware and
software.

a) Acknowledgment: We are grateful to Lars Nyland of
NVIDIA for helpful discussions.

References
[1] S. Altmeyer, R. Douma, W. Lunniss, and R.I. Davis. Evaluation of

cache partitioning for hard real-time systems. In ECRTS ’14.
[2] J. Aumiller, S. Brandt, S. Kato, and N. Rath. Supporting low-latency

CPS using GPUs and direct I/O schemes. In RTCSA ’12.
[3] C. Basaran and K. Kang. Supporting preemptive task executions

and memory copies in GPGPUs. In ECRTS ’12.
[4] K. Berezovskyi, K. Bletsas, and B. Andersson. Makespan computa-

tion for GPU threads running on a single streaming multiprocessor.
In ECRTS ’12.

[5] K. Berezovskyi, K. Bletsas, and S. Petters. Faster makespan
estimation for GPU threads on a single streaming multiprocessor.
In ETFA ’13.

[6] K. Berezovskyi, F. Guet, L. Santinelli, K. Bletsas, and E. Tovar.
Measurement-based probabilistic timing analysis for graphics pro-
cessor units. In ARCS ’16.

[7] K. Berezovskyi, L. Santinelli, K. Bletsas, and E. Tovar. WCET
measurement-based and extreme value theory characterisation of
CUDA kernels. In RTNS ’14.

[8] A. Betts and A. Donaldson. Estimating the WCET of GPU-
accelerated applications using hybrid analysis. In ECRTS ’13.

[9] G. Elliott, B. Ward, and J. Anderson. GPUSync: A framework for
real-time GPU management. In RTSS ’13.

[10] R. Girshic, J. Donahue, T. Darrell, and J. Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation.
In CVPR ’14, pages 580–587.

[11] J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA: A
predictable cache-aware memory allocator. In ECRTS ’11.

[12] A. Horga, S. Chattopadhyayb, P. Elesa, and Z. Peng. Systematic
detection of memory related performance bottlenecks in GPGPU
programs. In JSA ’16.

[13] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar. RGEM: A responsive GPGPU execution model for
runtime engines. In RTSS ’11.

[14] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. TimeGraph:
GPU scheduling for real-time multi-tasking environments. In
USENIX ATC ’11.

[15] kayccc. Regarding usage of zero copy on tx1 to
improve performance. NVIDIA Forums. Online at
https://devtalk.nvidia.com/default/topic/922626/jetson-tx1/
regarding-usage-of-zero-copy-on-tx1-to-improve-performance/.

[16] H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach
for practical OS-level cache management in multi-core real-time
systems. In ECRTS ’13.

[17] Y. Kini. CUDA on mobile. Online at http://on-demand.gputechconf.
com/gtc/2016/presentation/s6384-yogesh-kini-nvidia-cuda.pdf.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural
Information Processing Systems, pages 1097–1105, 2012.

[19] H. Lee and M. Abdullah Al Faruque. Run-time scheduling framework
for event-driven applications on a GPU-based embedded system. In
TCAD ’16.

[20] A. Li, G. van den Braak, A. Kumar, and H. Corporaal. Adaptive
and transparent cache bypassing for GPUs. In SIGHPC ’15.

[21] X. Mei and X. Chu. Dissecting GPU memory hierarchy through
microbenchmarking. In TPDS ’16.

[22] Multi-process service. Online at https://docs.nvidia.com/deploy/pdf/
CUDA Multi Process Service Overview.pdf.

[23] NVIDIA. Cuda sample programs. Online at http://docs.nvidia.com/
cuda/cuda-samples.

[24] NVIDIA. Embedded systems solutions from nvidia. Online at
http://www.nvidia.com/object/embedded-systems.html.

[25] NVIDIA. Self-driving vehicles development platform. Online at
http://www.nvidia.com/object/drive-px.html.

[26] N. Otterness, V. Miller, M. Yang, J. Anderson, F.D. Smith, and
S. Wang. GPU sharing for image processing in embedded real-time
systems. In OSPERT ’16.

[27] A. Rao. Compute with tegra K1. Online at
http://on-demand.gputechconf.com/gtc/2014/video/S4906-mobile-
compute-tegra-K1.mp4.

[28] U. Verner, A. Mendelson, and A. Schuster. Batch method for efficient
resource sharing in real-time multi-GPU systems. In ICDCN ’14.

[29] U. Verner, A. Mendelson, and A. Schuster. Scheduling periodic
real-time communication in multi-GPU systems. In ICCCN ’14.

[30] U. Verner, A. Mendelson, and A. Schuster. Scheduling processing
of real-time data streams on heterogeneous multi-GPU systems. In
SYSTOR ’12.

[31] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos.
Demystifying GPU microarchitecture through microbenchmarking.
In ISPASS ’10.

[32] M. Xu, S. Mohan, C. Chen, and L. Sha. Analysis and implementation
of global preemptive fixed-priority scheduling with dynamic cache
allocation. In RTAS ’16.

[33] Y. Xu, R. Wang, T. Li, M. Song, L. Gao, Z. Luan, and D. Qian.
Scheduling tasks with mixed timing constraints in GPU-powered
real-time systems. In ICS ’16.

[34] J. Zhong and B. He. Kernelet: High-throughput GPU kernel
executions with dynamic slicing and scheduling. IEEE Transactions
on Parallel and Distributed Systems, 25:15221532, 2014.

[35] H. Zhou, G. Tong, and C. Liu. GPES: A preemptive execution
system for GPGPU computing. In RTAS ’15.

