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Abstract—In prior work, a number of asymptotically optimal
suspension-based real-time locking protocols have been presented
for job-level fixed priority (JLFP) schedulers, where job priorities
do not change. However, the optimality proofs for these lock-
ing protocols break down under non-JLFP scheduling, where
job priorities can vary. In fact, the problem of designing an
asymptotically optimal real-time locking protocol for general
non-JLFP scheduling has remained open. This paper closes this
problem by presenting the non-JLFP locking protocol (NJLP), the
first asymptotically optimal suspension-based real-time locking
protocol for non-JLFP schedulers.

I. INTRODUCTION

Real-time scheduling algorithms can generally be classified
into two categories: those that maintain fixed job priorities
and those that allow job priorities to change. The former
category, known as job-level fixed priority (JLFP) schedulers,
includes algorithms like the global earliest-deadline-first (G-
EDF) and global fixed-priority (G-FP) schedulers. The latter
category, known as non-JLFP schedulers, includes algorithms
such as the PD2 P-fair scheduler [3], the earliest-deadline-zero-
laxity (EDZL) scheduler [12], and the earliest-eligible-virtual-
deadline-first (EEVDF) scheduler [19], which has recently
been incorporated into the Linux kernel.

In addition to non-JLFP schedulers, various scheduling tech-
niques used in conjunction with JLFP schedulers also allow
job priorities to change, thus emulating the behavior of non-
JLFP schedulers. These techniques include job splitting [15],
where a job is divided into multiple sub-jobs with different
priorities, and server-based scheduling [20], where jobs can
change priorities when migrating between servers.

Benefits of non-JLFP schedulers. Non-JLFP schedulers and
scheduling techniques, which we henceforth collectively refer
to as non-JLFP scheduling, can improve the schedulability of
task systems by relaxing job priority restrictions. For instance,
the non-JFLP PD2 P-fair scheduler is optimal for scheduling
implicit-deadline sporadic tasks on multiprocessors [3]. Addi-
tionally, global EDZL has been shown to strictly dominate the
comparable JLFP scheduler G-EDF in terms of schedulability
[12], meaning that there exist task sets schedulable by global
EDZL and not by G-EDF, but not vice versa. Additionally,
utilizing non-JLFP scheduling techniques such as job splitting
can enable lower job response times [15].
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Supporting shared resources. Real systems typically have
shared resources such as shared data structures or hardware
devices that require mutually exclusive (mutex) access. Mutex
sharing can be realized by using suspension-based real-time
locking protocols. Under such a protocol, a job that requests an
unavailable resource is suspended until its request can be satis-
fied. If a suspended job has sufficient priority to be scheduled,
it incurs priority-inversion blocking (pi-blocking). Pi-blocking
impinges on schedulability by delaying job completions. As
such, the worst-case pi-blocking that can be experienced by a
job when it requests a resource is commonly used as a metric
in comparing real-time locking protocols. In this paper, we
consider this metric in the context of suspension-oblivious (s-
oblivious) schedulability analysis, where pi-blocking time is
analytically treated as execution time.

Optimal pi-blocking results under JLFP scheduling. Un-
der JLFP scheduling, optimality results for real-time locking
protocols are well known. Assuming s-oblivious analysis, any
m-processor mutex locking protocol under a JLFP scheduler is
subject to a pi-blocking lower bound of Ω(m) request lengths
[2], [7]. Moreover, numerous locking protocols have been
proposed for which maximum pi-blocking is O(m) request
lengths [7]–[9], making them asymptotically optimal.

Locking under non-JLFP scheduling. In contrast, no op-
timality results have been established for real-time locking
under non-JLFP scheduling. Indeed, the optimality proofs for
prior protocols [7]–[9] depend crucially on having fixed job
priorities. Thus, these optimal locking protocols for JLFP
scheduling are not necessarily optimal for non-JLFP schedul-
ing. While some prior work on locking under specific non-
JLFP schedulers exists [15], [16], those works do not yield
pi-blocking optimality results. Thus, the problem of design-
ing an asymptotically optimal locking protocol for non-JLFP
schedulers remains open.

Contributions. In this paper, we close this problem. We do so
by first establishing a pi-blocking lower bound for any locking
protocol under non-JLFP scheduling of Ω(m+m(Hn−Hm))
request lengths, where Hi denotes the ith harmonic number.
This result shows that it is pointless to try to design a generally
applicable mutex locking protocol to be used in the considered
context with asymptotically better pi-blocking because no such
protocol exists. Next, we introduce the non-JLFP locking
protocol (NJLP), and prove that it is asymptotically optimal



under non-JLFP scheduling. The existence of this protocol has
the side effect of showing that our lower bound is asymptoti-
cally tight. The NJLP is not merely of theoretical interest. To
demonstrate this, we present the results of an overhead-award
schedulability study, where said overheads under the NJLP
were measured in an actual implementation of it. In this study,
usage of the NJLP resulted in comparable and often better
schedulability than a protocol that is simpler but not optimal.

Organization. In the following sections, we establish these
results by first providing necessary background information
(Sec. II), and by then presenting our pi-blocking lower-
bound proof (Sec. III), the NJLP and its pi-blocking analysis
(Sec. IV), and our experimental evaluation of it (Sec. V).

II. SYSTEM MODEL AND BACKGROUND

We consider a task system composed of n sporadic tasks
τ1, τ2, ..., τn executing on m identical processors where n >
m.1 Each task τi releases a series of jobs Ji,1, Ji,2, ... and
is characterized by its period Ti, worst case execution time
(WCET) Ci, and relative deadline Di. In this paper, we
consider constrained deadline tasks, where each Di ≤ Ti. We
denote the release time of a job Ji,j as ri,j and its completion
time as fi,j . We assume time to be continuous. After a job
Ji,j is released at time ri,j , we say that Ji,j is pending until
it completes at time fi,j . A pending job is either ready to be
scheduled, or suspended, where it cannot be scheduled.

Scheduling. We consider jobs scheduled under a clustered
scheduler, where each job is assigned to one of m/c clusters,
each containing c processors.2 For notational brevity, we
assume that c divides m. In clustered scheduling, a job is
scheduled when its priority is among the c highest in its
cluster. Jobs are free to migrate among processors in the
same cluster, but may not migrate across clusters. Since
partitioned scheduling (resp. global scheduling) is a special
case of clustered scheduling with c = 1 (resp. c = m), our
work is applicable to both partitioned and global schedulers.
We assume non-JLFP scheduling, as defined next.

Definition 1. Under non-JLFP scheduling, the priority of a
job Ji,j can change at any time t in the time interval [ri,j , fi,j).

Example schedulers that satisfy Def. 1 are PD2 P-fair [3]
and EEVDF [19] (replaced the Completely Fair Scheduler as
the main scheduler in Linux in version 6.6 [13]). Additionally,
certain scheduling techniques used alongside JLFP schedulers
can also be classified as non-JLFP scheduling under Def. 1.
Examples of such techniques include job splitting [15], which
divides a job into sub-jobs with different priorities, and select
server-based scheduling techniques [20], which allow jobs to
change priorities when migrating between servers.

Resource model. We consider a set of q resources ℓ1, ℓ2, ..., ℓq
where each resource ℓ allows for mutex access, i.e., ℓ can be

1We assume n > m to simplify notation. However, our analysis in Sec. III
and Sec. IV can be trivially extended to include the case where n ≤ m.

2While our work can apply to schedulers with differing cluster sizes, we
assume equal cluster sizes to simplify notation.

Time

J1

J2

J3

pi-blocked

pi-blocked

CPU-0 Execution

CPU-0 With Resource

CPU-1 Execution

CPU-1 With Resource

Suspension

Release

Deadline

Completion

Fig. 1: A schedule of the three jobs in Ex. 1 that illustrates when
jobs are pi-blocked.

held by at most one job at a time. Each job Ji,j contains
Ni,ℓ requests for resource ℓ. For each request R, we let J(R)
denote the job that contains R and L(R) denote the length of
R’s resource access. When R is issued, J(R) suspends until
it is allowed exclusive access to ℓ, upon which R becomes
satisfied. When J(R) relinquishes exclusive access to ℓ, we
say that R completes. R is active from the time it was issued
until the time it completes. We let Lℓ denote the maximum
length of any request’s resource access for ℓ. Additionally, we
do not allow a job to request more than one resource at a time.

Priority-inversion blocking. Priority-inversion blocking (pi-
blocking) occurs when a job cannot be scheduled despite
having sufficient priority. This occurs when a job issues a
request for a resource that cannot be immediately satisfied and
suspends. Formally, the definition of pi-blocking is dependent
upon the type of schedulability analysis used. For suspension-
based locks, such analysis can either be suspension-oblivious
or suspension-aware [7]. In this paper, we focus on the former,
where job suspensions are analytically treated as job execution.
Thus, we use the pi-blocking definition in [7].

Definition 2. Under s-oblivious schedulability analysis, a job
Ji,j incurs pi-blocking at time t if Ji,j is pending but not
scheduled and fewer than c higher-priority jobs are pending
in Ji,j’s cluster.

Under Def. 2, an unscheduled job is pi-blocked if it is
among the c highest-priority pending jobs in its cluster. This
is demonstrated by the following example depicted in Fig. 1.

Example 1. Consider three jobs, J1, J2, J3, sharing one
resource scheduled on a cluster of two processors (c = 2).
In the schedule of the three jobs depicted in Fig. 1, Ji has the
ith highest priority in the cluster. When J1 suspends, it cannot
be scheduled despite being the highest-priority job in the
cluster. Therefore, J1 incurs pi-blocking while it is suspended.
Meanwhile, when J3 suspends, it is only pi-blocked if there
are fewer than c = 2 higher-priority pending jobs. Therefore,
J3 is only pi-blocked when J2 completes, leaving J3 with only
one higher-priority pending job in the cluster.

Under s-oblivious schedulability analysis, the pi-blocking
experienced by a job due to a locking protocol can be
accounted for by inflating job execution times.
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Progress mechanisms. A real-time locking protocol must
limit the pi-blocking experienced by a job. To this end, if a
resource ℓ is held by some job Ji,j that is causing other jobs
to be pi-blocked, Ji,j must make progress on the completion
of its request. However, since Ji,j may not have sufficient
priority to be scheduled, a progress mechanism must be used
alongside the locking protocol to ensure that Ji,j is scheduled.
Such a mechanism must ensure the following property.

Property 1. Let W (R) denote the set of requests waiting on
the completion of request R. If R is satisfied at time t, and
there exists a request R′ ∈ W (R) where J(R′) is pi-blocked,
then J(R) is scheduled.

Many progress mechanisms have been proposed for locking
protocols under JLFP scheduling [8], [10], [18]. In this paper,
we consider two progress mechanisms that are easily adaptable
for use with locking protocols under non-JLFP scheduling.
The first is migratory priority inheritance, where the resource-
holding job is scheduled “in place” of a suspended job that
has sufficient priority to be scheduled.

Definition 3. Under migratory priority inheritance, whenever
request R is satisfied but J(R) is ready but not scheduled,
and there exists a job J(R′) where R′ ∈ W (R) such that
J(R′) has sufficient priority to be scheduled, J(R) migrates
to J(R′)’s cluster and assumes J(R′)’s priority. After R
completes, J(R) migrates back to its original cluster [10].

Migratory priority inheritance allows for a suspended job to
ensure the progress of a resource-holding job from a different
cluster, which makes it a suitable progress mechanism for a
locking protocol under clustered scheduling. However, having
to migrate jobs from cluster to cluster may cause migratory
priority inheritance to incur large overheads [10].

In contrast, priority inheritance allows a resource-holding
job to make progress by inheriting the priority of a suspended
job. This mechanism can guarantee the progress of a resource-
holding job under global scheduling (but not necessarily
clustered scheduling), and it has lower overheads than mi-
gratory priority inheritance. Under global scheduling, priority
inheritance works as follows.

Definition 4. Under priority inheritance, if request R is
satisfied, J(R) is ready but not scheduled, and there exists a
job J(R′) where R′ ∈ W (R) such that J(R′) has sufficient
priority to be scheduled, then J(R) inherits the priority of the
highest-priority job that has issued a request in W (R).

Demonstrating asymptotically optimal pi-blocking. To
demonstrate that the maximum pi-blocking due to a locking
protocol is asymptotically optimal under non-JLFP scheduling,
we must first determine a lower bound on the maximum pi-
blocking due to a single resource request that is applicable to
any locking protocol under non-JLFP scheduling. We refer to
this lower bound as a pi-blocking lower bound under non-
JLFP scheduling. Since no locking protocol can achieve a
lower maximum per-request pi-blocking bound than this lower

bound, a locking protocol that ensures a maximum per-request
pi-blocking bound that is asymptotically equivalent to the
lower bound is asymptotically optimal.

III. LOWER BOUND

In this section, we derive a lower bound on the maximum
pi-blocking of any suspension-based mutex locking protocol;
this amount of pi-blocking occurs in a schedule as allowed
by global non-JLFP scheduling.3 To quantify our pi-blocking
lower bound, we first require the notion of harmonic numbers.

Definition 5. The ith harmonic number, denoted as Hi, is
given by Hi =

∑i
x=1

1
x

We establish a pi-blocking lower bound of Ω(m+m(Hn−
Hm)) request lengths. We do this by demonstrating the exis-
tence of a pathological task set and series of priority changes
such that some job must incur Ω(m + m(Hn − Hm)) pi-
blocking per resource request under an arbitrary suspension-
based mutex locking protocol in a particular schedule allowed
by global non-JLFP scheduling. We detail our pathological
task set and priority changes in Sec. III-A and provide our
lower bound proof in Sec. III-B.

A. Pathological Task Set and Schedule

We let Γ = {τ1, τ2, ..., τn} be our pathological task set of n
tasks to be globally scheduled on m processors. Each τi ∈ Γ
has an implicit deadline (Di = Ti), a WCET of 1 (Ci = 1),
and some sufficiently large period Ti = T such that Γ is
schedulable under any non-JLFP scheduling method.

Release and request times. For our lower-bound proof in
Sec. III-B, we need only to analyze the first job of each task.
This is due to our construction of Γ, which causes the behavior
of subsequent jobs of a task to mirror that of the first. Thus,
we focus only on the release and request issuance times of
each task’s first job, given by the following rules.

L1. For each τi ∈ Γ, Ji,1 is released at t = 0.
L2. Upon release, Ji,1 immediately issues a request
Ri for resource ℓ with a request length L(Ri) = 1.

To aid in the pi-blocking lower-bound analysis in Sec. III-B,
we order the requests of each Ji,1 by the time they become
satisfied in the considered arbitrary locking protocol.

Definition 6. Let Ri denote the ith request to become satisfied
among {Rx | τx ∈ Γ} by the considered locking protocol. We
denote the time Ri becomes satisfied as ti.

Since at most one request can be satisfied at any time under
a mutex locking protocol, Rule L2 and Def. 6 ensure the
following property.

Property 2. ti+1 ≥ ti + 1 for i ∈ [1, n).

Additionally, due to Def. 6, we can determine the status of
a request Rj at ti. For example, if j < i, then since resource

3We analyze global scheduling to avoid cumbersome notation. The proof
that our asymptotic bound holds under clustered scheduling is given in the
appendix [21].
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Fig. 2: Example schedule of Γ in the time interval [t1, tn). Red
indicates times when the job of the satisfied request can be scheduled
and blue indicates times when a job is pi-blocked by Rule L3.

ℓ only allows mutex access, Rj must be complete when Ri

becomes satisfied at ti. Conversely, if j > i, then Rj will
become satisfied at tj , thus it is unsatisfied at ti. This leads
to the following lemma.

Lemma 1. If j > i, then J(Rj) is suspended in the time
interval [ti, ti+1).

Proof. By Def. 6, Rj is unsatisfied until tj . Since j > i, Rj

is unsatisfied in the time interval [ti, ti+1). Therefore, J(Rj)
is suspended in [ti, ti+1).

Pathological priority changes. To ensure that Ω(m+m(Hn−
Hm)) pi-blocking occurs under non-JLFP scheduling, a series
of orchestrated job priority changes must occur. We describe
these priority changes using Rules L3 and L4, given below.

L3. In each time interval [ti, ti+1) where i ∈ [n −
m,n), J(Rj)’s priority where j ∈ (i, n] becomes
the (j − i)th highest among all pending jobs.

We illustrate the effects of Rules L1 to L3 on the schedule
of our task set Γ in the following example, depicted in Fig. 2.

Example 2. Consider the pathological task set Γ =
{τ1, τ2, τ3, τ4, τ5, τ6} globally scheduled on two processors.
In this scenario, n = 6 and c = m = 2. By Rules L1 and L2,
R1 to R6 are issued simultaneously at t = 0. Due to Def. 6,
request Ri becomes satisfied at ti, and must be complete by
ti+1 when Ri+1 becomes satisfied. This pattern is illustrated
in Fig. 2, where jobs with satisfied requests are colored red.
Rule L3 begins taking effect at tn−m = t4. In [t4, t5), J(R5)
obtains the highest priority, and J(R6) obtains the 2nd highest
priority. Since both jobs are suspended due to Lem. 1, both
jobs are pi-blocked in [t4, t5) according to Def. 2. Similarly,
in the time interval [t5, t6), only J(R6) is pi-blocked. Jobs
pi-blocked due to Rule L3 are colored blue in Fig. 2.

From Ex. 2, we see that Rule L3 ensures all jobs of
unsatisfied requests are pi-blocked for an equal amount of time
in each time interval [ti, ti+1) where i ∈ [n−m,n).

s0
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s2

s3

s4

s5

s6

s7

s8

s9

Time

J(R1)

J(R2)

J(R3)

J(R4)

J(R5)

J(R6)

I1,0 I1,1 I1,2 I1,3 I1,4

Fig. 3: Example schedule of Γ in the time interval [t1, t2) subdivided
into n− i sub-intervals I1,0 to I1,4. Green indicates the time when a
job is pi-blocked by Rule L4 and is labeled by the slot the job fills.

Lemma 2. Under global scheduling and Rule L3, in each
time interval [ti, ti+1) where i ∈ [n − m,n), J(Rj) where
j ∈ (i, n] is pi-blocked for ti+1 − ti time units.

Proof. Under the conditions of the lemma, j−i ∈ [1,m]. Thus,
by Rule L3, each job J(Rj) where j ∈ (i, n] is one of the m
highest-priority pending jobs in [ti, ti+1). Additionally, from
Lem. 1, each J(Rj) where j ∈ (i, n] is suspended, and thus
unable to be scheduled in [ti, ti+1). Under global scheduling,
m = c, therefore by Def. 2, each J(Rj) is pi-blocked for
ti+1 − ti time units in each [ti, ti+1).

L4. For any integers i ∈ [1, n−m) and k ∈ [0, n−i),
in each time interval

Ii,k =

[
ti +

k(ti+1 − ti)

n− i
, ti +

(k + 1)(ti+1 − ti)

n− i

)
,

the hth highest-priority pending job where h ∈
[1,m] is job J(Rj), where j = i + 1 + (h − 1 +
km mod n− i).

Rule L4 ensures that all unsatisfied requests are pi-blocked
for an equal amount of time in each time interval [ti, ti+1)
where i ∈ [1, n − m). This is done by dividing the interval
[ti, ti+1) into n − i sub-intervals (Ii,0, Ii,1, ..., Ii,n−i−1) of
equal length. In each sub-interval Ii,k, there are m “slots” for
jobs to become one of the m highest-priority pending jobs. The
mod operator in Rule L4 ensures that the m jobs out of the set
of jobs with unsatisfied requests fill these m slots cyclically.
We formally define what it means to fill a slot below.

Definition 7. In each time interval [ti, ti+1) where i ∈ [1, n−
m), we denote the slot for the hth highest-priority pending
job in Ii,k as sh−1+km. We say that J(Rj) fills slot sx in Ii,k
iff j = i+ 1 + (x mod n− i).

We illustrate the behavior of Rule L4 and how slots are
filled in the following example depicted in Fig. 3.

Example 3. Consider the same task set as in Ex. 2. Thus,
n = 6 and c = m = 2. Here we focus on the pi-blocking of
J(R2) to J(R6) in the time interval [t1, t2).
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According to Def. 7, when i = 1 and k = 0, the slot for the
highest-priority job (h = 1) in I1,0 is s0. By Rule L4, J(R2)
fills s0 and becomes the highest-priority job in I1,0. This is
because the equation for j in Rule L4 evaluates to 2 when
h = 1. Meanwhile, the slot for the second highest-priority job
(h = 2) in I1,0 is s1 and is filled by J(R3). This means that
under Def. 2, J(R2) and J(R3) are pi-blocked for (t2−t1)/5
time units in I1,0. When k = 1, by Def. 7, s2 and s3 are slots
for the c = 2 highest-priority pending jobs in I1,1. These two
slots are filled by J(R4) and J(R5) due to Rule L4, implying
that J(R4) and J(R5) are pi-blocked for (t2 − t1)/5 time
units in I1,1. When k = 2, similarly, J(R6) and J(R2) fill
slots s4 and s5 and are pi-blocked for (t2−t1)/5 time units in
I1,2. This pattern then continues according to Fig. 3 until t2.
We can see that in the time interval [t1, t2), each job J(Rj)
where j > i (job of unsatisfied requests) is pi-blocked for a
total of 2(t2 − t1)/5 time units.

To prove that Rule L4 ensures all unsatisfied requests are
pi-blocked equally in each time interval [ti, ti+1), we focus
on the number of times a job J(Rj) fills a slot for one of
the m highest-priority pending jobs in [ti, ti+1). We begin by
analyzing the properties of slots in each Ii,k.

Definition 8. For each interval Ii,k where i ∈ [1, n−m), let
Sk = {sh−1+km | h ∈ [1,m]} be the set of slots for the m
highest-priority pending jobs in Ii,k.

Lemma 3. For i ∈ [1, n−m), a job J(Rj) fills at most one
slot in each Sk.

Proof. Suppose to the contrary and J(Rj) fills at least two
slots in Sk, say, sx and sy where x ̸= y. By Def. 7, j =
i+ 1+ (x mod n− i) and j = i+ 1+ (y mod n− i). Since
x ̸= y, due to the mod operator, the difference between x and
y must be at least n − i. However, by Def. 8, the indices of
sx ∈ Sk and sy ∈ Sk can differ by at most m. Since the
lemma assumes i ∈ [1, n−m), we have n− i > m, so sx and
sy cannot both be in Sk. Contradiction.

Next, we show that a job J(Rj) filling a slot in Sk

corresponds to J(Rj) being pi-blocked in Ii,k.

Lemma 4. Under global scheduling, for i ∈ [1, n−m), j > i,
and k ∈ [0, n− i), J(Rj) is pi-blocked in Ii,k iff J(Rj) fills
a slot in Sk.

Proof. First we show that if J(Rj) fills a slot in Sk, then
J(Rj) is pi-blocked in Ii,k. Since J(Rj) fills a slot in Sk,
then by Defs. 7 and 8, j = i+1+(h−1+kmmod n−i) where
h ∈ [1,m]. This is the exact condition for j in Rule L4 for
J(Rj) to become the hth highest-priority pending job in Ii,k.
Thus, J(Rj) is among the m highest-priority pending jobs in
Ii,k. Because the lemma assumes j > i, J(Rj) is suspended
in [ti, ti+1) by Lem. 1. Since the lemma also assumes k ∈
[0, n−i), by the definition of Ii,k in Rule L4, Ii,k ⊂ [ti, ti+1),
implying that J(Rj) is suspended in Ii,k. Therefore, since
J(Rj) is suspended but is one of the m = c highest-priority
pending jobs in Ii,k, by Def. 2, J(Rj) is pi-blocked in Ii,k.

S0 S1 S2

n− i

Sn−i−3 Sn−i−2 Sn−i−1

Fig. 4: A number line containing the set of slots for the m highest-
priority pending jobs in [ti, ti+1). The indices of slots filled by a job
J(Rj) are marked in red. Since for consecutive values of z, f(z)
differs by n− i, there are m values of z where f(z) ∈ [0,m(n− i)).

We now show that if J(Rj) is pi-blocked in Ii,k, then it
fills a slot in Sk. If J(Rj) is pi-blocked in Ii,k, then by Def. 2,
J(Rj) is one of the m highest-priority pending jobs in Ii,k.
Thus, from Rule L4, j = i+1+(h−1+km mod n−i) where
h ∈ [1,m]. By Defs. 7 and 8, J(Rj) fills a slot in Sk.

From Rule L4, the time interval [ti, ti+1) is composed of
the sub-intervals Ii,k where k ∈ [0, n− i). Thus, with Lem. 3
and 4, we see that if each job fills a slot in an equal number of
sets Sk where k ∈ [0, n−i), then these jobs will be pi-blocked
for an equal number of time intervals Ii,k in [ti, ti+1).

Lemma 5. For i ∈ [1, n−m), a job J(Rj) where j > i fills
a total of m slots in

⋃n−i−1
k=0 Sk.

Proof. For notational brevity, let S =
⋃n−i−1

k=0 Sk. Def. 8
implies that a slot sx where x ∈ [km,m+km) is in Sk. Thus,
it can be verified that S = {sx | x ∈ [0, (n − i)m)}. Fig. 4
illustrates the sets of slots comprising S on a number line. We
now want to show that J(Rj) fills m slots in S. By Def. 7,
J(Rj) fills slot sx if j = i + 1 + (x mod n − i). From the
mod operator, J(Rj) fills slot sx if there exists some integer z
where j−i−1+z(n−i) = x. Letting f(z) = j−i−1+z(n−i),
we see that each value of z where f(z) = x ∈ [0, (n − i)m)
is a slot in S. Thus, we want to show that there are m values
of z where f(z) ∈ [0, (n− i)m). These values are illustrated
in Fig. 4.

For consecutive values of z, f(z) differs by n − i. Thus,
the number of values of z where f(z) ∈ [0, (n − i)m) is
equivalent to the number of integers contained in the interval
[0,m). Since the number of integers contained in [0,m) is m,
there are m values of z where f(z) ∈ [0, (n− i)m).

Finally, the fact that all jobs of unsatisfied requests are pi-
blocked for an equal amount in time interval [ti, ti+1) follows
directly from Lems. 3 to 5.

Lemma 6. Under global scheduling, in each time interval
[ti, ti+1) where i ∈ [1, n − m), J(Rj) where j > i is pi-
blocked for m(ti+1−ti)

n−i time units.

Proof. Lems. 3 and 5 imply that there are m values of k ∈
[0, n − i) where J(Rj) fills a slot in Sk. By Lem. 4, J(Rj)
where j > i is pi-blocked in Ii,k for m values of k ∈ [0, n−i).
From Rule L4, since each time interval Ii,k where k ∈ [0, n−i)
is in [ti, ti+1) and is of length ti+1−ti

n−i , the lemma follows.

B. Lower-Bound Proof

In this section, we show that for our pathological task set
Γ, the priority changes of which are possible under non-JLFP
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scheduling, some job must experience per-request pi-blocking
of Ω(m + m(Hn − Hm)) time units under the considered
(arbitrary) locking protocol. As such, there exist situations
where Ω(m+m(Hn −Hm)) pi-blocking is unavoidable.

We begin by focusing on the pi-blocking of J(Rn).

Lemma 7. J(Rn) is pi-blocked for

n−m−1∑
i=1

m(ti+1 − ti)

n− i
+

n−1∑
i=n−m

ti+1 − ti (1)

time units in the time interval [t1, tn).

Proof. We prove the lemma by examining the amount J(Rn)
is pi-blocked in the time intervals [t1, tn−m) and [tn−m, tn).
From Lem. 6, J(Rn) is pi-blocked for m(ti+1−ti)

n−i time units in
each time interval [ti, ti+1) where i ∈ [1, n −m). Therefore,
in [t1, tn−m), J(Rn) is pi-blocked for

∑n−m−1
i=1

m(ti+1−ti)
n−i

time units. After tn−m, by Lem. 2, J(Rn) is pi-blocked for
ti+1 − ti time units in each time interval [ti, ti+1) where i ∈
[n−m,n). Thus, from tn−m to tn, J(Rn) is pi-blocked for∑n−1

i=n−m ti+1 − ti time units.

Since we can obtain a lower bound for each ti+1−ti term in
(1) due to Prop. 2, we can use Lem. 7 to obtain the following
pi-blocking lower bound under non-JLFP scheduling.

Theorem 1. Under any mutex locking protocol, there exists a
task set for which some job experience per-request pi-blocking
of Ω(m+m(Hn −Hm)) time units in a schedule allowed by
non-JLFP scheduling.

Proof. Consider the pathological task set Γ under global
non-JLFP scheduling. By Def. 1, job priorities can change
according to Rules L3 and L4 under non-JLFP scheduling.
Thus, by Lem. 7 and Prop. 2, J(Rn) is pi-blocked for a
minimum of

n−m−1∑
i=1

m

n− i
+

n−1∑
i=n−m

1 (2)

time units in the time interval [t1, tn). By Def. 5, the first term
of (2) is equal to m(Hn−1 − Hm). Additionally, the second
term of (2) is equal to m. Therefore, J(Rn) is pi-blocked for
at least m+m(Hn−1 −Hm) time units in [t1, tn + 1). Since
n > m, Hn < 1, which implies that Ω(m + m(Hn − Hm))
lower-bounds the per-request pi-blocking of a job.

IV. THE NJLP

In this section, we present the non-JLFP locking protocol
(NJLP), a suspension-based mutex locking protocol that is
asymptotically optimal under non-JLFP scheduling. We de-
scribe the protocol in Sec. IV-A, and establish its asymptoti-
cally optimality in Sec. IV-B.

A. The NJLP

To describe the operation of the NJLP, we first formally
quantify the total time a job is pi-blocked due to one of its
resource requests. We begin by considering the time instants
when requests for a resource ℓ become satisfied.

Definition 9. Let Ri be the ith request for resource ℓ to
be satisfied. We denote the time Ri becomes satisfied as the
satisfaction point ti.

Accumulated pi-blocking. Between two satisfaction points
ti and ti+1, the job of any unsatisfied request R for ℓ is
suspended, and therefore can be pi-blocked under Def. 2.

Definition 10. Let ∆i(R) be the pi-blocking duration incurred
by a request R in the interval [ti, ti+1).

From the time J(R) issues R until the time R becomes
satisfied, J(R) can accumulate pi-blocking due to R. We
denote the pi-blocking accumulated by J(R) due to R from
its issuance to some satisfaction point ti as the accumulated
pi-blocking of J(R) at ti. Formally, we have the following.

Definition 11. For a request R issued in [ti, ti+1), let E(R) =
i. The Accumulated pi-blocking (APB) of J(R) at satisfaction
point tk is given by Bk(R) where Bk(R) =

∑k−1
j=E(R) ∆j(R)

if k ≥ E(R) + 1 and Bk(R) = 0 otherwise.

NJLP rules. For each resource, ℓ, the NJLP consists of a
single priority queue PQℓ of unsatisfied requests. At each
satisfaction point ti, PQℓ ensures that requests are ordered
by the APB of their jobs with the head of PQℓ having the job
with the highest APB. The rules of the NJLP are as follows.

R1. When a job Ji,j issues a request R for resource
ℓ at time t, if there are no active requests for ℓ at t,
then R immediately becomes satisfied. Otherwise,
R is added to PQℓ. All jobs with requests in PQℓ

are suspended.
R2. When a request for ℓ completes, the request
at the head of PQℓ, R, is removed from PQℓ and
becomes satisfied, and J(R) is resumed.

Since a request R completes when J(R) executes for at
most the request length L(R) after R becomes satisfied, it is
evident that Rule R2 ensures the following property.

Property 3. J(Ri) can execute for at most L(Ri) time units
in [ti, ti+1).

Progress mechanism. To ensure that jobs of satisfied re-
quests can make progress, and to ensure that jobs expe-
rience bounded pi-blocking, we use the migratory priority
inheritance progress mechanism alongside the NJLP. However,
under global scheduling, priority inheritance can be used as a
substitute to reduce overheads. Since both mechanisms ensure
Prop. 1, and the set of requests waiting for the completion of
the satisfied request is PQℓ, we have the following corollary
of Prop. 1.

Corollary 1. At time t, if request R is satisfied, and there
exists a request R′ ∈ PQℓ where J(R′) is pi-blocked, then
J(R) is scheduled.

Using Cor. 1, we can show that the progress mechanism
ensures that between successive satisfaction points, an unsat-
isfied request can be pi-blocked for at most Lℓ time units.
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Timet1 tα tα+1 tω

Bi(Ri)

2mLℓ

Fig. 5: Plot of Bi(Ri) for i ∈ [1, ω). The red line indicates the
point where Bi(Ri) reaches 2mLℓ. Note that B1(R1) = 0 as R1

is the first request to be satisfied for resource ℓ. We see that after tα,
Bi(Ri) ≥ 2mLℓ.

Lemma 8. For each request R for resource ℓ and any
satisfaction point ti, ∆i(R) ≤ Lℓ.

Proof. Suppose not, and ∆i(R) > Lℓ, then by Def. 10, J(R)
is pi-blocked for more than Lℓ time units in [ti, ti+1). Since
J(R) is pi-blocked, Def. 2 implies that it is suspended. When
J(R) becomes suspended, R is added to PQℓ by Rule R1.
Therefore, by Cor. 1, J(Ri) is scheduled for more than Lℓ

time units in [ti, ti+1). Since Lℓ is the maximum length of
any request for ℓ, we have a contradiction with Prop. 3.

B. Maximum Pi-blocking Under NJLP

To derive the maximum pi-blocking under the NJLP, we
focus on the worst-case pi-blocking experienced by a job due
to a request of interest R∗. In our analysis, we let tω denote the
satisfaction point where R∗ becomes satisfied. Since J(R∗)
only suspends until R∗ becomes satisfied at tω , the pi-blocking
of J(R∗) due to R∗ is maximal at tω . To compute the
maximum pi-blocking of J(R∗) at tω , we begin by examining
the pi-blocking of J(R∗) at some earlier satisfaction point
where the pi-blocking of J(R∗) can be bounded.

Definition 12. Let tα be the last satisfaction point at or before
tω where Bα(Rα) < 2mLℓ.

Def. 12 is defined such that at tα, the job of the satisfied
request has an APB less than 2mLℓ. A plot of Bi(Ri) for each
ti from t1 to the point when R∗ becomes satisfied is illustrated
in Fig. 5. From Fig. 5, we see that if Bω(Rω) > 2mLℓ, then
tα < tω , and tα = tω otherwise. From Def. 12, we can see that
the APB of J(R∗) is less than 2mLℓ at tα. This is because
if Bα(R∗) > 2mLℓ (can only occur if R∗ is issued before tα
by Def. 11), then Bα(Rα) > 2mLℓ due to Rule R2. Using
this, if we can upper-bound the time difference between tω
and tα, we can also upper-bound the APB of J(R∗) at tω .

Properties of total APB. We can upper-bound the time
difference between tω and tα by examining the total APB of
all jobs with requests in PQℓ and how it changes over time.

Definition 13. For each satisfaction point ti, let Qi be the set
of requests in PQℓ at ti.

Since there can be at most n pending jobs, and each job
has at most one incomplete request, we have the following.

Property 4. At each selection point ti, |Qi| < n.

Using Def. 13, we formally define the total APB as follows.

Timeti bk1 bk2 bk3 ti+1

Job 1

Job 2

Fig. 6: Example timeline of [ti, ti+1) on a systems with m = 2
processors. At each time instant, at most m jobs can be among the
c highest-priority pending jobs in their cluster. Green indicates times
when a job whose request is in S is one of those m = 2 jobs (labeled
Job 1 and Job 2). Since the total duration of all bkj intervals is at
most Lℓ, jobs with requests in S are pi-blocked for at most mLℓ

time units in [ti, ti+1).

Definition 14. For each satisfaction point ti, let TB i =∑
R∈Qi

Bi(R) denote the total APB of all jobs whose requests
are in PQℓ at ti.

From Def. 11 and 14, we can see that changes in the total
APB are dependent on the pi-blocking experienced by jobs
between satisfaction points. Therefore, to examine the change
in total APB, we first show the following.

Lemma 9. For any set S of requests for resource ℓ and
satisfaction point ti,

∑
R∈S ∆i(R) ≤ mLℓ.

Proof. Let bk = {bk1, bk2, ...} be the set of time intervals in
[ti, ti+1) when a job whose request is in S is pi-blocked. We
additionally let |bkj | denote the duration of bkj . Each bkj is
marked on the timeline in Fig. 6. Since a job J(R) where R ∈
S is pi-blocked in each bkj , by Def. 2, J(R) is suspended,
and therefore R is in PQℓ due to Rule R1. Therefore, by
Cor. 1, J(Ri) is scheduled for |bkj | time units in bkj . By
Prop. 3, J(Ri) cannot be scheduled for more than Lℓ time
units in [ti, ti+1). Thus,

∑
bkj∈bk |bkj | ≤ Lℓ. Since there are

m/c clusters and each cluster can have at most c jobs with
the c highest priorities, at most m jobs can be among the
c highest-priority pending jobs in their cluster at any time.
Therefore, by Def. 2, in each bkj , jobs are pi-blocked for a
total of at most m|bkj | time units. Fig. 6 illustrates this. Thus,
in [ti, ti+1), jobs with a request in S are pi-blocked for a total
of at most

∑
bkj∈bk m|bkj | ≤ mLℓ time units. The lemma

follows from Def. 10.

Using Lem. 9, we can upper-bound the total APB change
across subsequent satisfaction points.

Lemma 10. For each pair of satisfaction points ti−1 and ti,
TB i − TB i−1 ≤ mLℓ −Bi(Ri)

Proof. At ti, by Def. 9, Ri becomes satisfied, and by Rule R2,
is removed from PQℓ. Additionally, by Rule R1, all requests
issued in [ti−1, ti) are in PQℓ at ti. Therefore, Qi = Qi−1 ∪
S − Ri where S is the set of requests issued in [ti−1, ti).
Hence, by Def. 14, we have TB i − TB i−1 = ∑

R∈Qi−1

Bi(R)−Bi−1(R)

+

(∑
R∈S

Bi(R)

)
−Bi(Ri).

(3)
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Fig. 7: Plot of the possible total APB at satisfaction points. The red
line indicates the upper bound on the total APB in Lem. 11. The
slope of the blue line indicates the rate of decrease for total APB
after tα, given in Lem. 10. The region where total APB values are
valid is shaded.

From Def. 11, each Bi(R)−Bi−1(R) term in the first summa-
tion equals ∆i−1(R). Also, since all requests in S are issued
at or after ti−1, by Def. 11, each term in the second summation
equals ∆i−1(R). We therefore have TB i − TB i−1 = ∑

R∈Qi−1∪S

∆i−1(R)

−Bi(Ri). (4)

By Lem. 9, the first summation is at most mLℓ. Therefore,
we have TB i − TB i−1 ≤ mLℓ −Bi(Ri).

Due to Lem. 10, we can also upper-bound the total APB.

Lemma 11. TB i ≤ nmLℓ.

Proof. Suppose to the contrary, and let tx be the first satisfac-
tion point where TBx > nmLℓ.4 Since TBx−1 ≤ nmLℓ, we
have TBx > TBx−1, which by Lem. 10 implies

Bx(R
x) < mLℓ. (5)

However, by Prop. 4, |Qx| < n. Thus, since TBx > nmLℓ,
by Def. 14 and the pigeonhole principle, at least one request
R ∈ Qx satisfies Bx(R) ≥ mLℓ. Since Rule R2 selects the
request with the highest APB to become satisfied, Bx(Rx) ≥
Bx(R) ≥ mLℓ. This contradicts (5)

Using the conditions for the total APB established in
Lems. 10 and 11, we can determine the latest possible time of
tω in the following lemma, whose logic is depicted by Fig. 7.

Lemma 12. R∗ is, at the latest, the nth request to be satisfied
after tα. In other words, ω − α ≤ n.

Proof. By Def. 12, for each ti where i ∈ (α, ω], Bi(Ri) ≥
2mLℓ. Thus, by Lem. 10, for i ∈ (α, ω], TB i − TB i−1 ≤
−mLℓ. Now consider

ω∑
i=α+1

TB i − TB i−1. (6)

4This is only possible when x > 1. This is because, due to Def. 11, for a
request R, Bx(R) > 0 only when x > E(R) and E(R) ≥ 1.

Since each TB i − TB i−1 is at most −mLℓ, (6) is at most
−(ω−α)mLℓ. Additionally, by cancelling out like terms, (6)
equals TBω − TBα. Therefore,

TBω − TBα ≤ −(ω − α)mLℓ

TBω ≤ nmLℓ − (ω − α)mLℓ (By Lem. 11)
TBω ≤ (n− (ω − α))mLℓ.

Now suppose the lemma is false, and ω−α > n. This would
imply that TBω < 0. Since Defs. 10, 11, and 14, imply that
TBω ≥ 0, we have a contradiction.

Determining maximum pi-blocking. Having upper-bounded
the latest time that R∗ can become satisfied in Lem. 12, we
proceed to determine the maximum pi-blocking of J(R∗) due
to R∗. We begin by examining the last requests to become
satisfied before R∗.

Definition 15. Let Ωi denote the set of requests that become
satisfied at each satisfaction point tj where j ∈ [i, ω].

Notice that by Def. 15, R∗ is the only element in Ωω . This
implies that at tω , the average APB of jobs for all requests
in Ωω is equal to the APB of J(R∗) at tω . Therefore, to
determine the maximum pi-blocking of J(R∗), we examine
the increase in average APB from tα to tω .

Definition 16. At ti, the average APB of jobs whose requests
are in Ωi is given by AVG i =

∑
R∈Ωi

Bi(R)/|Ωi|.

Lemma 13. At satisfaction point tα, AVGα < 2mLℓ.

Proof. Suppose to the contrary that AVGα ≥ 2mLℓ. Then,
there exists a request R ∈ Ωα where Bα(R) ≥ 2mLℓ.
Bα(R) ≥ 2mLℓ implies by Def. 11 that R is issued, and
therefore enters PQℓ by Rule R1 before tα. Since Rule R2
selects the request with the highest APB at tα to become
satisfied, Bα(Rα) ≥ Bα(R) ≥ 2mLℓ. However, since Def. 12
implies Bα(Rα) < 2mLℓ, we have a contradiction.

Lemma 14. At satisfaction point tω , AVGω < Lℓ(2m +∑ω
i=α+1 min(1, m

ω−i+1 )).

Proof. Consider X =
∑ω

i=α+1(AVG i − AVG i−1). By ex-
panding out the summation and cancelling like terms, X =
AVGω − AVGα. From Lem. 13, AVGα < 2mLℓ, so

AVGω < 2mLℓ +X. (7)

To determine the value of X , we first examine AVG i −
AVG i−1 for i ∈ (α, ω]. From Def. 16, we have AVG i −
AVG i−1 =∑

R∈Ωi

Bi(R)/|Ωi| −
∑

R∈Ωi−1

Bi−1(R)/|Ωi−1|.

From Def. 15, we have Ωi−1 = Ωi∪{Ri−1}. This also implies
that |Ωi| < |Ωi−1|. Thus, AVG i − AVG i−1 <

1

|Ωi|

(( ∑
R∈Ωi

Bi(R)

)
−

(
Bi−1(Ri−1) +

∑
R∈Ωi

Bi−1(R)

))
.
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By Def. 11, we can see that subtracting the second summation
from the first results in

∑
R∈Ωi

∆i(R), which by Lem. 9 is at
most mLℓ. This implies that AVG i − AVG i−1 < mLℓ/|Ωi|.
However, due to Lem. 8, ∆i(R) ≤ Lℓ for each R ∈ Ωi.
This implies that AVG i − AVG i−1 ≤ Lℓ. Therefore, each
AVG i −AVG i−1 ≤ min(1,m/|Ωi|)Lℓ, which implies that

X ≤
ω∑

i∈α+1

min(1,m/|Ωi|)Lℓ. (8)

By substituting (8) into (7), we have AVGω < Lℓ(2m +∑ω
i∈α+1 min(1,m/|Ωi|)). Since Def. 15 implies that |Ωi| =

ω − i+ 1, the lemma follows.

Since J(R∗) resumes from suspension by Rule R2 after R∗

is satisfied at tω , J(R∗) cannot be pi-blocked due to R∗ after
tω . Therefore, the upper-bound of AVGω in Lem. 14, can be
used to compute the maximum pi-blocking under NJLP.

Theorem 2. Under the NJLP, J(R∗) is pi-blocked for less
than (3m− 2 +m(Hn −Hm−1))Lℓ time units due to R∗.

Proof. By Def. 15, Ωω = {R∗}, implying by Def. 16 that
AVGω = Bω(R∗). By Lem. 14, Bω(R∗) < Lℓ(2m +∑ω

i=α+1 min(1, m
ω−i+1 )). Since ω − α ≤ n due to Lem. 12,

we have Bω(R∗) < Lℓ(2m+
∑n−1

i=0 min(1, m
n−i )), hence

Bω(R∗) < Lℓ

(
2m+

n−m∑
i=0

m

n− i
+

n−1∑
i=n−m+1

1

)
.

The first summation is equivalent to m(Hn−Hm−1), and the
second is equivalent to m − 1. Therefore Bω(R∗) < (3m −
1 +m(Hn −Hm−1))Lℓ. Thus, J(R∗) is pi-blocked for less
than (3m−1+m(Hn−Hm−1))Lℓ time units due to R∗.

From Thm. 2, we see that under the NJLP, each request
of a job causes less than (3m − 1 + m(Hn − Hm−1))Lℓ

time units of pi-blocking. Additionally, since (3m − 1 +
m(Hn − Hm−1))Lℓ = O(m + m(Hn − Hm)) (note that
mHm = mHm−1 + 1), the NJLP is asymptotically optimal,
by Thm. 1.

Theorem 3. Pi-blocking under the NJLP is asymptotically
optimal under non-JLFP scheduling.

Proof. Directly follows from Thm. 1 and 2.

V. IMPLEMENTATION AND EVALUATION

To evaluate the performance of the NJLP, we implemented
it using the priority-inheritance progress mechanism for the
global EDZL scheduler in LITMUSRT [11], a real-time ex-
tension of the Linux kernel.

NJLP implementation. Unlike other locking protocols such
as [7]–[9], where pi-blocking is merely of analytical interest,
under the NJLP, the pi-blocking of each job must be tracked
on-the-fly to correctly order requests in PQℓ. Apart from
tracking pi-blocking, Rules R1 and R2 in the NJLP can be
trivially implemented. From the definition of pi-blocking in
Def. 2, keeping track of each job’s pi-blocking under global

EDZL requires the OS to keep track of the m highest-priority
pending jobs. This is similar to the global EDZL scheduling
logic, which keeps track of the m highest-priority ready jobs
in order to assign them to the m available processors.

Duplicate scheduling logic. While the EDZL scheduling logic
closely resembles our desired mechanism to track pi-blocking,
it cannot be used to keep track of both the m highest-priority
pending jobs and the m highest-priority ready jobs, as these
two job sets can be different.

Example 4. Consider the set of pending jobs {J1, J2, J3, J4}
at time t on a two-processor system. Suppose that higher-
indexed jobs have a higher priority at t. Then, the m highest-
priority pending jobs at t are J3 and J4. Now suppose both
J3 and J4 have an unsatisfied request at t. Then, by Rule R1,
both J3 and J4 are suspended and therefore not ready. As a
result, the m highest-priority ready jobs at t are J1 and J2.

Due to scenarios like Ex. 4, we require two similar copies
of the scheduling logic, one to keep track of the m highest-
priority pending jobs, and the other to track the m highest-
priority ready jobs. As a result, tracking job pi-blocking on-
the-fly can double the overhead of the scheduling logic.

Non-optimal non-JLFP locking alternative. Since an imple-
mentation of the NJLP requires the OS to track pi-blocking,
the protocol may incur increased overheads. Thus, in certain
scenarios, a lower-overhead locking protocol with sub-optimal
pi-blocking under non-JLFP scheduling may be preferable
to the NJLP when considering the schedulability impacts
of both pi-blocking and overheads together. One such non-
optimal locking protocol is the (long) FMLP [4], which orders
unsatisfied requests using a FIFO queue of size n and uses
priority inheritance as a progress mechanism. Worst-case per-
request pi-blocking under the FMLP is Ω(n) request lengths,
which is sub-optimal. However, since the FMLP does not
need to track pi-blocking, it can exhibit lower overheads
compared to the NJLP. These properties make the FMLP an
ideal benchmark for our evaluation of the NJLP.

In the rest of this section, we first compare the theoretical
performance of the NJLP versus the FMLP in Sec. V-A. We
then evaluate the overheads of LITMUSRT implementations
of both protocols in Sec. V-B. Finally, we use our overhead
results in an overhead-aware schedulability study in Sec. V-C.

A. Theoretical Pi-Blocking Evaluation

In our first experimental evaluation, we compared the the-
oretical pi-blocking bound of the NJLP versus the FMLP
without considering overheads. This was done by examining
the pi-blocking bound of the NJLP (in Thm. 2) and the FMLP
(in [4]) across task systems with n ∈ [0, 64] scheduled on
systems with m ∈ {1, 2, 4, 8} processors. In this experiment,
each job makes one request for resource ℓ. Since the maximum
pi-blocking of both protocols are multiples of the longest per-
resource request length, Lℓ, we set Lℓ = 1. Our results are
shown in Fig. 8, which shows the difference between the pi-
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Fig. 8: Plot of the pi-blocking difference obtained from subtracting
the maximum pi-blocking due to the NJLP from the maximum pi-
blocking due to the FMLP. Red corresponds to the difference when
m = 8, green corresponds to m = 4, blue corresponds to m = 2,
and yellow corresponds to m = 1. For example, the darkened red
bar at n = 60 and m = 8 (with a height of around 20) indicates that
maximum pi-blocking is around 20 time units more under the FMLP
than under the NJLP when n = 60 and m = 8.

blocking bound due to the NJLP versus the FMLP. From this
figure, we can observe the following.

Observation 1. When n is greater than approximately 4m, the
NJLP resulted in lower maximum pi-blocking than the FMLP.

Obs. 1 shows that in systems with a moderate to high task
count n, the NJLP performs significantly better than the FMLP
in theory. This observation is unsurprising if we examine
the pi-blocking bounds of the two protocols. The pi-blocking
bound of the NJLP, given by Thm. 2 is O(m+m(Hn−Hm)).
Since the nth harmonic number can be approximated by ln(n),
the pi-blocking bound of the NJLP increases logarithmically
with n. On the other hand, the pi-blocking bound of the FMLP,
O(n), increases linearly with n. Clearly, as the number of tasks
increases, maximum pi-blocking under the FMLP will increase
faster than under the NJLP.

B. Overhead Evaluation

In Sec. V-A, we demonstrated that the NJLP theoretically
outperforms the FMLP under high resource contention. How-
ever, since implementing the NJLP necessitates tracking job
pi-blocking, the overhead of scheduling and releasing jobs will
inevitably increase. Therefore, in this subsection, we examine
(i) how tracking pi-blocking in the global EDZL scheduler
affects job release and scheduling overheads, and (ii) compare
the lock and unlock overheads in our implementation of the
NJLP and the FMLP.

We conducted our overhead evaluations using synthetic task
sets on a six-core 2.2 GHz Intel i7-8750H processor running
LITMUSRT. To ensure accurate and consistent measurements,

we disabled simultaneous multi-threading and dynamic power
and frequency scaling on the processor.

Task-set generation. To evaluate overheads across different
task-set sizes, we used Emberson et al.’s method [14] to gen-
erate task sets consisting of n = {10, 20, ..., 100} tasks with
a total utilization of 0.2. In each task set, the period of each
task was randomly selected from [10, 100]ms. Additionally, all
tasks were configured to share a single resource ℓ, with each
job of each task τi issuing Ni,ℓ = 1 request with a request
length equal to 1/10th of the task’s WCET, Ci. All tasks in
the generated task sets thrash both the cache and memory (as
described next) while executing.

Interference. To obtain overhead data under cache and mem-
ory interference, background tasks were created for each core.
Each background task and task in the generated task sets
accesses random memory pages in a tight loop. This causes
new memory pages to continuously cycle in and out of the
cache, thereby thrashing both the cache and memory.

For task sets of equal size, we recorded the maximum
observed overhead across 5 minutes of continuous execution,
where we measured over 100,000 samples for each type
of overhead (i.e., scheduling, release, lock, unlock). These
measurements are shown in Fig. 9. From this figure, we make
the following observation.

Observation 2. Scheduling overheads due to tracking pi-
blocking were at most 1.5 times the overhead without tracking
pi-blocking. Additionally, lock/unlock overheads of the NJLP
were also at most 1.5 times the overheads of the FMLP.

Obs. 2 indicates that while the overheads of using the NJLP
are larger than when using the FMLP, this difference is not
excessively large for our experimental setup. This indicates
that in certain scenarios, it may be possible for the lower pi-
blocking of the NJLP, demonstrated in Sec. V-A, to offset its
increased overhead.

C. Schedulability Study

To assess the practical viability of the NJLP, we conducted
an overhead-aware schedulability study using the overhead
measurements from Sec. V-B. Since we only have the overhead
measurements for a six-processor system, we only considered
systems with m = 6 in our schedulability study.

Taskset generation. We used a similar method of generating
task sets as prior locking-related schedulability studies [1], [5],
[6], [22]. Task sets were randomly generated with the number
of tasks n randomly selected from [2m, 25] (small), [4m, 50]
(medium), or [8m, 100] (large), and normalized utilization,∑n

i=1
Ci

Ti·m , in {0.2, 0.3, ..., 0.9}. Each task’s utilization was
generated using the method from [14], and its period is
selected randomly from [3, 33]ms (short), [10, 100]ms (mod-
erate), or [50, 500]ms (long). Each task was defined to have
an implicit deadline (Di = Ti), and its execution cost was
obtained by multiplying its utilization and period.

We considered systems with {1, 2, 3} number of shared
resources. Each task τi in a generated task set was configured
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(a) Relevant scheduling overheads.
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(b) Lock and unlock overheads.

Fig. 9: Comparison of the maximum observed overheads under the NJLP vs. the FMLP. Inset (a) compares the scheduling and job release
overheads of “Track,” a version of the global EDZL instrumented to track pi-blocking, and “Untrack,” a version of it that does no such
tracking. Inset (b) compares the lock/unlock overheads of the NJLP and the FMLP. We see that, counterintuitively, overheads sometimes
decrease with increasing task set sizes. Originally noted in [5], this often occurs as the scheduler is invoked more frequently due to a larger
number of tasks, causing kernel data structures to more likely remain cached between invocations.
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(c) Medium task set, short periods, short requests, 1 resource.
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(d) Medium task set, moderate periods, short requests, 1 resource.

Fig. 10: Results of our overhead-aware schedulability study.

to access a resource ℓ with probability p = 0.5. If τi
can access ℓ, it does so through Ni,ℓ ∈ {1, 2} requests.
We selected the maximum request length of each resource,
Lℓ, from two uniform distributions: [1, 100]µs (short) and
[5, 1280]µs (long). We denote each combination of task set
size, normalized utilization, task period, and request length, as
a scenario, and generated 1,000 task systems for each scenario.

Schedulability test. In our overhead-aware schedulability
study, we accounted for overheads by inflating task WCETs
by the worst-observed release, schedule, and context-switch
time according to the methods in [5]. Pi-blocking due to both
the NJLP and the FMLP was also accounted for by inflating
task WCETs (as in s-oblivious analysis) by the worst-observed
lock and unlock overhead. Using the inflated task WCETs, we
assessed the schedulability of each task set under global EDZL
using the utilization test in [17]. For each scenario, we assessed
acceptance ratios, which give the percentage of task systems
that were schedulable under each locking protocol. We present
a representative selection of our results in Fig. 10 and observe
the following. The totality of our results, containing 54 graphs,
can be found in the appendix [21].

Observation 3. The NJLP performed better for large task sets,
and the FMLP performed better for smaller task sets.

From Obs. 3 we can conclude that despite the higher
overheads in the NJLP implementation, its lower pi-blocking
allows a higher percentage of larger task sets to be scheduled
compared to the FMLP. However, for tasks with shorter
periods, scheduling events can occur more often, amplifying
the negative effects of overheads on schedulability. This leads
to the following, which is supported by Figs. 10c and 10d.

Observation 4. The NJLP performed better for tasks with
larger periods, and the FMLP performed better for tasks with
shorter periods.

Due to space constraints, a full experimental evaluation
of the NJLP that considers non-JLFP scheduling in contexts
other than EDZL, the impacts of clustered scheduling, etc.,
is beyond the scope of this paper. Nonetheless, the results in
this section do show that the issue of pi-blocking optimality
under non-JLFP scheduling is important to consider not only
for theoretical reasons, but for its practical implications.
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VI. CONCLUSION

In this paper, we presented an Ω(m + m(Hn − Hm)) pi-
blocking lower bound that is applicable to any suspension-
based locking protocol for non-JLFP-scheduled systems an-
alyzed using s-oblivious techniques. This result shows that
it is pointless to try to design a generally applicable mutex
locking protocol for such systems with asymptotically better pi-
blocking because no such protocol exists. We further showed
that this lower bound is asymptotically tight by presenting the
NJLP, the first asymptotically optimal mutex locking protocol
for non-JLFP scheduling. Additionally, we presented experi-
ments that suggest that pi-blocking optimality in non-JLFP-
scheduled systems is an issue that is not merely of theoretical
interest only. The paper opens up numerous avenues for further
research pertaining to non-JLFP scheduled systems, including
the design of locking protocols with overheads lower than the
NJLP, protocols for specific non-JLFP schedulers (e.g., ones
that change job priorities less frequently than in our lower-
bound proof), protocols that allow lock nesting, protocols for
k-exclusion and reader/writer synchronization, etc.
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APPENDIX

Here, we prove that the lower bound on maximum pi-
blocking achieved by the considered arbitrary suspension-
based mutex locking protocol under clustered non-JLFP
scheduling is Ω(m + m(Hn − Hm)). To achieve the maxi-
mum pi-blocking lower bound we partition Γ evenly among
the m

c clusters, each with c processors. To avoid notational
complexity, we assume that the n tasks in Γ can be evenly
partitioned among the m

c clusters. Thus, the set of tasks in
each cluster u, denoted by Γu, contains nu = cn

m tasks.

Congruency between clustered and global scheduling.
Under clustered scheduling, the schedule of Γu in the uth

cluster (which we henceforth refer to as cluster u) is identical
to the schedule of Γu under a global scheduler on a system
containing c processors. As such, by considering only jobs
and requests from the cluster u, we can borrow much of the
analysis in Sec. III. We therefore define Def. 6 and Rules L3
and L4 in the context of cluster u.

Definition 17. Let Ri,u be the ith request to become satisfied
on cluster u among {Rx | τx ∈ Γu} by the considered locking
protocol. We denote the time Ri,u becomes satisfied as ti,u.

Recall from Def. 6 that ti is the time that the ith request
becomes satisfied among {Rx | tx ∈ Γ}. Using this and
Def. 17, we give the following definition that aids in the
description of our modified Rules L3 and L4.

Definition 18. Let each t′0,u = 0 and let t′i,u where i ≥ 1
equal min(tm(i−1)/c+u, ti,u).

Priority change rules. Using Def. 18, we present our priority
change rules. The reason behind Def. 18 and Rules L3’ and
L4’ will become apparent later.

L3’ In each time interval [t′i,u, t
′
i+1,u) where i ∈

[nu − c, nu), J(Rj,u)’s priority, where j ∈ (i, nu],
becomes the (j − i)th highest among all pending
jobs.
L4’ For any integers i ∈ [0, nu−c) and k ∈ [0, nu−
i), in each time interval Ii,u,k =[
ti,u +

k(t′i+1,u − t′i,u)

nu − i
, ti,u +

(k + 1)(t′i+1,u − t′i,u)

nu − i

)
,

the hth highest priority pending job where h ∈ [1, c]
is job J(Rj,u), where j = i + 1 + (h − 1 +
kc mod nu − i).

We can see that Rules L3’ and L4’ come about by replacing
n with nu, m with c, Rj with Rj,u, and ti with t′i,u. Thus,
through a similar proof process, we can obtain the following.

Lemma 15. J(Rnu,u) in cluster u is pi-blocked for

nu−c−1∑
i=0

c(t′i+1,u − t′i,u)

nu − i
+

nu−1∑
i=nu−c

t′i+1,u − t′i,u (9)

in the time interval [t′0,u, t
′
nu,u).

To determine the minimum time in which J(Rnu,u) is pi-
blocked, we proceed to minimize (9). We begin letting L
denote the minimum value of each ti+1−ti. Since at most one
request can be satisfied at any time under a mutual exclusion
locking protocol, Rules L2 and Def. 18 ensure the following.

Property 5. Under mutual exclusion locking, L ≥ 1.

Additionally, the definition of L also implies the following.

Property 6. tmi/c+u − tm(i−1)/c+u = mL
c .

Ideal vs non-ideal scenarios. We denote the scenario when
each t′i,u = tm(i−1)/c+u where i ≥ 1 and each t′0,u = 0 as the
ideal scenario. Contrastingly, we call the scenario when some
t′i,u ̸= tm(i−1)/c+u or some t′0,u ̸= 0 as the non-ideal scenario.
In fact, we can show that in the ideal scenario, J(Rnm/c,m/c)
in cluster m/c experiences less pi-blocking compared to in
non-ideal scenarios. We demonstrate this by examining the
difference between each t′i+1,u − t′i,u term when under the
ideal and non-ideal scenarios. This difference, denoted as δi,u,
is formally defined as follows.

Definition 19. For each value of i ≥ 0 and u, let δi,u =
(t′i+1,u − t′i,u)− (tmi/c+u − tm(i−1)/c+u). Additionally, each
δ0,u = t′1,u − tu.

By substitution into (9), we can see that J(Rnu,u) in cluster
u is pi-blocked equal to the following in [t0,u, tnu,u).

ctu + δ0,u
nu

+

nu−c−1∑
i=1

c(tmi/c+u − tm(i−1)/c+u + δi,u)

nu − i

+

nu−1∑
i=nu−c

tmi/c+u − tm(i−1)/c+u + δi,u (10)

Using (10), we can demonstrate that the ideal scenario does
indeed result in the minimum pi-blocking for J(Rnm/c,m/c).

Lemma 16. Consider Γ under clustered scheduling where
job priorities satisfy Rule L3’ and L4’, J(Rnm/c,m/c) is pi-
blocked for at least

nm/c−c−1∑
i=0

mL
nm/c − i

+

nm/c−1∑
i=nm/c−c

mL
c

(11)

in the interval [t0,m/c, tnm/c,m/c)

Proof. WLOG, we assume that the last request to be satisfied
is on cluster m/c. This implies that Rnm/c,m/c becomes
satisfied at tn. We can write n = m/c · cn/m, thus since
nm/c = cn/m, we have t′nm/c,m/c = tn = tm/c(nm/c).

First, let x be an index where t′x,m/c ̸= tm(x−1)/c+m/c. By
Def. 18, tx,m/c < tmx/c, implying that tx,m/c = tmx/c−k for
some positive integer k. Since t′nm/c,m/c = tm/c(nm/c), we
have t′nm/c,m/c − t′x,m/c = (m/c(nm/c − x) + k)L. Thus, by

Def. 19 and Prop. 6, we have
∑nm/c−1

i=x δi,m/c = kL. On the
other hand, since t′0,m/c = 0 by Def. 18, we have t′x,m/c −
t′0,m/c = (mx/c − k)L. Thus, by Def. 19 and Prop. 6, we
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have
∑x−1

i=0 δi,m/c = −kL. We now consider the following
two cases: x ≤ nm/c − c− 1, and x ≥ nm/c − c.

Case 1. x ≤ nm/c − c− 1. In this case, we can see that

x−1∑
i=0

c · δi,m/c

nm/c − i
≥ −cxL

nm/c − x+ 1

nm/c−1∑
i=x

c · δi,m/c

nm/c − i
≥ cxL

nm/c − x

both hold. This implies that the sum of the two above
summations is at least zero.

Case 2. x ≥ nm/c − c. In this case, we can see that

x−1∑
i=0

c · δi,m/c

nm/c − i
≥ −cxL

nm/c−1∑
i=x

c · δi,m/c

nm/c − i
≥ cxL

both hold. Thus, the sum of the above two summations is also
at least zero. Hence, in both cases,

∑nm/c−1

i=0
c·δi,m/c

nm/c−i ≥ 0. By
examining (10), we see that this summation accounts for all
the delta terms. Thus, since this summation is at least zero,
J(Rnm/c,m/c) is pi-blocked for at least

ctm/c

nm/c
+

nm/c−c−1∑
i=1

c(tmi/c+m/c − tm(i−1)/c+m/c)

nm/c − i

+

nm/c−1∑
i=nm/c−c

tmi/c+m/c − tm(i−1)/c+m/c (12)

By Props. 5 and 6, (12) simplifies to (11).

Using this lemma, we can prove the following lower bound
on pi-blocking.

Theorem 4. There exists a task set where a job using any
mutual exclusion locking protocol and under clustered non-
JLFP scheduling can incur at least Ω(m + m(Hn − Hm))
pi-blocking.

Proof. Consider the pathological task set Γ under clustered
non-JLFP scheduling. From Def. 1, job priorities can change
according to Rules L3’ and L4’. Now, consider the pi-blocking
of J(Rnm/c,m/c) under a mutual exclusion locking protocol
when job priorities change according to Rules L3’ to L4’. Due
to Lem. 15 and Prop. 5, J(Rnm/c,m/c) is pi-blocked for at
least the value of (11) in the time interval [t0,m/c, tnm/c,m/c).
By multiplying both the numerator and denominator of each
term by m

c , and substituting nu by cn
m , we have

cn/m−c∑
i=0

m/c∑
j=1

mL
m
c (

cn
m − i)

+

cn/m−1∑
i=cn/m−c+1

m/c∑
j=1

mL
m

≥
cn/m−c∑

i=0

m/c∑
j=1

mL
n− m(i−1)

c − j
+

n−m/c∑
i=n−m+1

L

=
n−m∑
i=1

mL
n+m/c− i

+

n−m/c∑
i=n−m+1

L (13)

By Def. 5, the first term of (13) is equal to mL(Hn+m/c−1−
Hm). Additionally, the second term of (13) is equal to (m−
m/c)L. Therefore, J(Rn) is pi-blocked for at least ((m −
m/c) + m(Hn+m/c−1 − Hm))L in [t0,m/c, tnm/c,m/c). This
implies that J(Rn) is pi-blocked for at least ((m − m/c) +
m(Hn+m/c−1−Hm))L, which implies Ω(m+m(Hn−Hm)).
lower-bounds the pi-blocking of a job.
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(a) Large task set, short periods, short re-
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(b) Large task set, short periods, short re-
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(c) Large task set, short periods, short re-
quests, 3 resources.
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(d) Large task set, short periods, long re-
quests, 1 resource.
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(e) Large task set, short periods, long re-
quests, 2 resources.
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(f) Large task set, short periods, long re-
quests, 3 resources.
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(g) Large task set, medium periods, short
requests, 1 resource.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
normalized utilization

0.0
0.2
0.4
0.6
0.8
1.0

sc
he

du
la

bi
lit

y

NJLP
FMLP

(h) Large task set, medium periods, short
requests, 2 resources.
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(i) Large task set, medium periods, short
requests, 3 resources.
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(j) Large task set, medium periods, long re-
quests, 1 resource.
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(k) Large task set, medium periods, long
requests, 2 resources.
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(l) Large task set, medium periods, long re-
quests, 3 resources.
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(m) Large task set, long periods, short re-
quests, 1 resource.
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(o) Large task set, long periods, short re-
quests, 3 resources.
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(p) Large task set, long periods, long requests,
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(q) Large task set, long periods, long requests,
2 resources.
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(r) Large task set, long periods, long requests,
3 resources.

Fig. 11: Results of our overhead-aware schedulability study for large task sets.
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requests, 3 resources.
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(d) Medium task set, short periods, long re-
quests, 1 resource.
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(e) Medium task set, short periods, long re-
quests, 2 resources.
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(f) Medium task set, short periods, long re-
quests, 3 resources.
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(g) Medium task set, medium periods, short
requests, 1 resource.
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(h) Medium task set, medium periods, short
requests, 2 resources.
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(i) Medium task set, medium periods, short
requests, 3 resources.
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(j) Medium task set, medium periods, long
requests, 1 resource.
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(k) Medium task set, medium periods, long
requests, 2 resources.
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(l) Medium task set, medium periods, long
requests, 3 resources.
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(m) Medium task set, long periods, short
requests, 1 resource.
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(n) Medium task set, long periods, short re-
quests, 2 resources.
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(o) Medium task set, long periods, short re-
quests, 3 resources.
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(p) Medium task set, long periods, long re-
quests, 1 resource.
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(q) Medium task set, long periods, long re-
quests, 2 resources.
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(r) Medium task set, long periods, long re-
quests, 3 resources.

Fig. 12: Results of our overhead-aware schedulability study for medium task sets.
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quests, 3 resources.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
normalized utilization

0.0
0.2
0.4
0.6
0.8
1.0

sc
he

du
la

bi
lit

y

NJLP
FMLP

(d) Small task set, short periods, long re-
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quests, 2 resources.
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(g) Small task set, medium periods, short
requests, 1 resource.
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(h) Small task set, medium periods, short
requests, 2 resources.
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(i) Small task set, medium periods, short
requests, 3 resources.
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quests, 1 resource.
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(k) Small task set, medium periods, long
requests, 2 resources.
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(m) Small task set, long periods, short re-
quests, 1 resource.
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(o) Small task set, long periods, short re-
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(q) Small task set, long periods, long re-
quests, 2 resources.
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(r) Small task set, long periods, long requests,
3 resources.

Fig. 13: Results of our overhead-aware schedulability study for small task sets.
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