
EÆcient Pure-bu�er Algorithms for Real-time Systems�

James H. Anderson and Philip Holman

Department of Computer Science

University of North Carolina

Chapel Hill, NC 27599-3175

Phone: (919) 962-1757

Fax: (919) 962-1799

E-mail: fanderson,holmang@cs.unc.edu

July 2000

Abstract

We present several wait-free algorithms for implementing read/write bu�ers in real-time systems. Such

bu�ers are commonly used in situations where newly-produced data values take precedence over older data,

and hence older data can be overwritten. Each of our algorithms is a \pure-bu�er" algorithm. In a pure-

bu�er algorithm, several bu�ers are shared between the writer and reader processes, and a handshaking

mechanism is employed that ensures that a writer never writes into a bu�er that is concurrently being read

by some reader. Each of our algorithms is optimized by taking characteristics of quantum- and priority-based

schedulers into account. When used to implement a B-word bu�er that is shared across a constant number

of processors, the time complexity for reading and writing in each of our algorithms is O(B), and the space

complexity is �(B). These complexity �gures are obviously asymptotically optimal and are independent of

the number of writer and reader processes. In contrast, all previously-published pure-bu�er algorithms are

limited to one writer process and have time and space complexity that is at least linear in the number of

readers.

Keywords: Interprocess communication, priority scheduling, quantum scheduling, read/write bu�ers,

wait-free synchronization.

�Work supported by NSF grants CCR 9732916 and CCR 9972211.

1 Introduction

Shared read/write bu�ers are commonly used in real-time applications to exchange data values between producer

and consumer processes. Such a bu�er is de�ned by its size, the number of processes that can write into it, and

the number of processes that can read from it. A write operation on a read/write bu�er completely overwrites

the bu�er's previous contents, while a read operation returns the most recently-written value. Read/write

bu�ers are appropriate to use if more-recently-produced data is always of greater value than older data, which

is often the case when data values are time-sensitive.

In real-time systems, operations on read/write bu�ers are usually implemented using locks. When locks are

used, kernel support is needed to limit the impact of priority inversions. A priority inversion is said to occur when

a process is forced to block on a process of lower priority. Conventional mechanisms for dealing with priority

inversions [8, 22, 23, 24, 26] rely on the kernel to dynamically raise the priority of a lock-holding process so that

the duration of any priority inversion is bounded. This adds complexity to the kernel and complicates the job

of supporting dynamic process creation and removal. In addition, in multiprocessor systems, the blocking-time

estimates used to account for priority inversions in scheduling analysis can be prohibitively large.

In recent years, several researchers have investigated the use of wait-free shared-object algorithms as an

alternative to lock-based mechanisms in object-based real-time systems [3, 4, 5, 6, 7, 12, 13, 25]. In a wait-free

object implementation [20], operations must be implemented using bounded, sequential code fragments, with

no blocking synchronization constructs. Thus, a process never blocks while accessing a wait-free object, and

hence priority inversions cannot arise due to object accesses. In this paper, we present several new wait-free

implementations of read/write bu�ers that are highly optimized for use in real-time systems.

Related work. There has been a long history of work on wait-free bu�er algorithms. For historical reasons,

these bu�ers are usually referred to as atomic registers in the wait-free algorithms literature. In a series of papers,

it was shown that multi-writer, multi-reader, multi-bit atomic registers can be implemented in a wait-free manner

from single-writer, single-reader, single-bit atomic registers1 [1, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 27, 28, 30].

Directly implementing registers of the former type using registers of the latter type is quite hard, so most of these

papers focused only on a single dimension, such as showing that a multi-reader register could be implemented

from single-reader ones. In principle, these atomic register constructions could be used to implement read/write

bu�ers in a real-time system. However, actual systems provide synchronization primitives that are much stronger

than single-writer, single-reader, single-bit atomic registers. By using available primitives, much simpler and

more eÆcient algorithms can be derived.

Chen and Burns recently showed that, by using compare-and-swap and test-and-set ,2 it is possible to ef-

�ciently implement a one-writer wait-free bu�er [12, 13]. Their algorithm can be seen as a variant of several

1In fact, multi-writer, multi-reader, multi-bit atomic registers can be implemented in a wait-free manner from nonatomic single-

writer, single-reader, single-bit registers.
2Their algorithm is actually based on a consensus object and test-and-set. However, in most systems, the consensus object

would be implemented using compare-and-swap.

1

previous algorithms that do not use strong synchronization primitives [1, 11, 28, 30]. In the wait-free algorithms

literature, these algorithms are known as \pure-bu�er" algorithms. In a pure-bu�er algorithm, several bu�ers

are shared between the writer and reader processes, and a handshaking mechanism is employed that ensures

that a writer never writes into a bu�er that is concurrently being read by some reader. When used to implement

a B-word bu�er that may be read by R processes, Chen and Burns' algorithm requires R+2 bu�ers, and hence

its space complexity is �(RB). �(B) time is required to read the implemented bu�er, and �(R + B) time is

required to write it. These complexity �gures are listed in Table 1.

Other recent research on pure-bu�er constructions includes a nonblocking algorithm presented at RTCSA '99

by Tsigas and Zhang [29]. However, their algorithm is not wait-free and thus is of less relevance to our work

(in a nonblocking algorithm, operations can be unboundedly retried; such retries are not allowed in a wait-

free algorithm). Moreover, their algorithm is limited to systems in which there is at most one writer on each

processor, and each writer has the highest priority of any process on its processor.

Recent research at the University of North Carolina has shown that wait-free algorithms can be simpli�ed

considerably in real-time systems by exploiting the way that processes are scheduled for execution in such

systems [2, 3, 25]. In particular, if processes are scheduled by priority, then object calls by high-priority

processes automatically appear to be atomic to lower-priority processes executing on the same processor. In a

quantum-scheduled system, if an object call crosses a quantum boundary, then when it resumes, it will execute

nonpreemptively, assuming that it cannot cross multiple quantum boundaries (which would almost certainly be

the case, since most object calls are short in duration relative to the size of a scheduling quantum). These facts

can be exploited to obtain algorithms that have complexities that are a function of the number of processors in

the system, not the number of processes .

Most prior work on optimizing wait-free object implementations for use in real-time systems has been

directed towards the development of algorithmic techniques that can be generally applied to implement any

object. While it is important to have general-purpose object-sharing mechanisms, it is our belief that, in

most real-time applications, a small number of shared objects predominate; these include read/write bu�ers,

queues, priority queues, and perhaps linked lists. Thus, it would bene�t the real-time community to have

highly-optimized wait-free implementations of these particular objects.

Contributions of this paper. In this paper, we present several new wait-free algorithms for eÆciently

implementing read/write bu�ers in real-time systems. These algorithms are listed in Table 1. We present

algorithms for implementing bu�ers in both priority- and quantum-scheduled systems. In addition, while only

single-writer bu�ers have been considered in most previous work, we consider both single- and multi-writer

bu�ers. All of our algorithms are pure-bu�er algorithms based on compare-and-swap.

In Table 1, P denotes the number of processors across which the implemented bu�er is shared. In most

applications, one would expect P to be quite small. R and W denote the number of processes that may read

and write (respectively) the implemented bu�er, and B denotes the number of words in the bu�er. In all of

our algorithms, the time complexity for reading is comparable to Chen and Burns' algorithm, and the time

2

Processors/ Read Write Space

Algorithm Writers System Model Complexity Complexity Complexity

Chen & Burns P/1 Asynchronous �(B) �(R+B) �(RB)

Algorithm 1 P/W Priority-based O(B) �(P +B) �(PB)
Algorithm 2 P/1 Priority-based O(B) �(P +B) �(PB)
Algorithm 3 1/W Priority-based O(B) �(B) �(B)
Algorithm 4 1/1 Priority-based O(B) �(B) �(B)

Algorithm 5 P/W Quantum-based �(B) �(P +B) �(PB)
Algorithm 6 P/1 Quantum-based �(B) �(P +B) �(PB)
Algorithm 7 1/W Quantum-based �(B) �(B) �(B)
Algorithm 8 1/1 Quantum-based �(B) �(B) �(B)

Table 1: Wait-free read/write bu�er algorithms.

complexity for writing is better. In addition, all of our algorithms have better space complexity than their

algorithm. (As explained later, the actual space complexity of Algorithm 1 is �(PB + RB +WB), but the

�(RB+WB) term represents extra space that is common to all bu�ers in the system, so it is not listed in Table

1. In other words, the space required to implement M bu�ers is only �(MPB + RB +WB). Algorithms 2

through 5 also have extra space complexity terms that are common to all bu�ers.) If P is viewed as a constant,

which is reasonable for most systems, then the time complexity for reading and writing in each of our algorithms

is O(B), and the space complexity is �(B); these complexity �gures are obviously asymptotically optimal.

The rest of this paper is organized as follows. In Section 2, we present de�nitions and notation that will be

used in the remainder of the paper. Our algorithms for priority-scheduled systems are then given in Section 3,

and our algorithms for quantum-scheduled systems in Section 4. We conclude in Section 5.

2 Preliminaries

Each of our bu�er algorithms is de�ned by specifying a procedure that is invoked to read the bu�er, and one that

is invoked to write the bu�er. Each invocation of the read procedure (respectively, write procedure) is called a

read operation (respectively, write operation). The processes in the system are partitioned into a set of reader

processes and a set of writer processes . For our purposes, it suÆces to view each reader (writer) process as

consisting of an in�nite loop that repeatedly invokes the read (write) procedure. With this assumption, we are

simply abstracting away from the activities of these processes outside of bu�er accesses. Each of our algorithms

is designed for use in either a priority- or quantum-scheduled system. We make the following assumptions

regarding the manner in which processes are scheduled for execution on a processor.

Axiom 1: (Priority-based Scheduling) A process's priority does not change during a read or write operation. 2

Axiom 2: (Quantum-based Scheduling) The quantum is large enough to ensure that each process can be

preempted at most once within one read or write operation. 2

3

In many of our algorithms, single-word variables are used that have counter �elds, which are used to distin-

guish recently-written data from older data. We assume that the range of each counter is suÆcient to ensure

that it does not cycle during any read or write operation. Each counter ranges over f0; : : : ; 2k + 1g for some

k 2 N and is assumed to wrap around to zero when incremented beyond its range. Such variables are declared

using the following template.

template tagged(T): record tag : bounded integer; val : T

For example, a variable of type tagged(1::W+P+2) has a tag �eld that is a bounded integer, and a val �eld

that ranges over f1; : : : ;W + P + 2g.

Our algorithms also use compare-and-swap (CAS) operations. Such operations are denoted CAS(adr ; old ;new),

where adr is the address of a shared variable, old is a value to which this variable is compared, and new is a

new value to assign to the variable if the comparison succeeds. The CAS operation returns true if and only if

the comparison succeeds.

The following notational conventions will be adhered to in the remainder of the paper.

Notational Conventions: R denotes the number of reader processes, W the number of writer processes, and

B the number of words in the implemented bu�er. Unless stated otherwise, we let p, q, and r denote reader

processes, and v and w denote writer processes. Each of p, q, and r ranges over f1; : : : ; Rg, and each of v and

w ranges over f1; : : : ;Wg. We use subscripts to denote operations of reader and writer processes. For example,

ri denotes the i
th read operation of reader r.

We assume that each labeled statement in each algorithm is atomic. We also assume that all private variables

of a process retain their values between operations on the implemented bu�er by that process. Let S be a subset

of the statement labels in process p. Then, p@fSg holds if and only if the program counter for process p equals

some value in S. (Note that if s is a statement label, then p@fsg means that process p is enabled to execute

statement s, i.e., it hasn't executed statement s yet.)

We use s:p to denote the statement of process p with label s, and p:v to represent p's private variable v. We

use s:pi to denote the execution of statement s:p in the ith operation of process p. If s is a statement within a

for loop, then we denote its kth execution by operation pi as s[k]:pi. (For example, for Algorithm 1 in Figure

1, 36[k]:wi refers to the execution of statement 36 by wi with w:n = k.) In our correctness proofs, we often

consider the relative ordering of various statement executions. If statement execution s:pi precedes statement

execution s0:qj , then we write s:pi � s0:qj . 2

3 Priority-based Algorithms

In this section, we present several pure-bu�er algorithms for priority-based systems. We begin by presenting a

multi-writer algorithm that can be used in a multiprocessor system. We then show that this algorithm can be

simpli�ed considerably if there is only one writer or if used in a single-processor system.

4

3.1 Algorithm 1: Multi-writer Bu�er for Priority-based Multiprocessors

Our multi-writer algorithm for priority-based multiprocessors is shown in Figure 1. In this algorithm, a shared

bu�er is implemented using P +2 pure bu�ers, which we will call \slots" to avoid confusion. In contrast, Chen

and Burn's algorithm uses R+2 slots (and is also limited to only one writer). We reduce the number of required

slots by ensuring that there is only one active reader on any processor at any time. Thus, each writer only

needs to coordinate with at most P active readers at any time. To ensure that there is only one active reader

per processor, each reader process is required to help complete any read operation that it preempts.

A handshaking mechanism is used to ensure that a writer never writes into a slot that is being read by

some reader. This mechanism requires a total of P + 2 slots. This is because, due to preemptions, there

may be P active readers that are in the process of reading P distinct values that were written previously by

some writer. Each of these values may di�er from the last value written by the writer. The last-written value

cannot be immediately overwritten because this would temporarily leave the bu�er in a state in which the

most-recently-written value is unavailable. Thus, P + 2 slots are needed.

So that readers may help one another, the bu�er into which each reader saves the value that it reads is

shared, rather than private. Thus, R shared bu�ers are needed for helping, but these bu�ers can be used across

all shared bu�ers in the system. In other words, these R bu�ers are part of the system's overhead rather than

the bu�er 's overhead. We also assume that each writer stores the value it wants to write in an input bu�er that

can then be swapped with one of the slots of the implemented bu�er. Thus, W input bu�ers are needed. Once

again, however, these same W bu�ers can be used across all shared bu�ers in the system, so we do not consider

them as per-bu�er overhead.

Detailed description. We begin our detailed description of the algorithm by describing the shared variables

that are used. The P +2 slots along with each writer's input bu�er are stored in the In array. We assume that

each slot consists of B words. The Bufptr array indicates which P +2 of the slots in the In array are currently

part of the implemented bu�er. The variable Latest indicates the slot that holds the most-recently written

value. Each reader r has an output bu�er Out[r]. Each time r reads the implemented bu�er, the value it reads

is stored in Out[r]. If reader p helps reader r, then to ensure that p does not repeat steps already performed

by r or other processes, we maintain a count of the words already copied to Out[r]. This count is stored in

the shared variable Wdcnt [r]. Reader [k] is used to indicate the currently-active reader (if any) on processor k.

Reading [k] indicates the last slot read from by a reader on processor k.

A reader r on processor k performs a read operation by invoking the Read procedure. Within Read, r �rst

checks to see if there is a preempted read operation on processor k (statements 1-2). If there is a preempted

read, then Help-Read is called (statement 2). This routine is described below. After helping any preempted

read, r calls UpdateReading (statement 3), which attempts to copy the value of Latest to Reading [k]. r's call to

UpdateReading can fail to update Reading [k] only if either a writer updates Reading [k] (see statement 37) or if

r is preempted by another reader on processor k. In either case, Reading [k] points to a slot written \suÆciently

5

shared var

In: array[1..W+P+2][1..B] of wordtype;

Bufptr : array[1..P+2] of tagged(1..W+P+2);

Latest : tagged(1..P+2) initially (0,1);

Out : array[1..R][1..B] of wordtype;

Wdcnt : array[1..R] of 0..B initially 0;

Reader : array[1..P] of 0..R initially 0;

Reading : array[1..P] of tagged(0..P+2) initially (0,1)

private var

bf , cbf : 1..W+P+2; nbf : tagged(1..W+P+2);

next , n, val : 1..P+2; `: tagged(1..P+2);

bp: 0..P+2; rb: tagged(0..P+2);

inuse: array[0..P+2] of boolean;

wc: 0..B; rd : 0..R;

wd: wordtype; succ: boolean

initially In[1] = initial value ^ (8y: 1 � y � P+2: Bufptr [y] = (0; y)) ^ (8w: 1 � w �W : w:cbf := P + 2 + w)

procedure Read(rid ,myproc)

returns array[1..B] of wordtype

1: rd := Reader [myproc];

2: if rd 6= 0 then Help-Read(rd ,myproc) �;

3: UpdateReading(myproc);

4: Wdcnt [rid] := 1;

5: Reader [myproc] := rid ;

6: Help-Read(rid ,myproc);

7: return Out [rid]

procedure Help-Read(rd ,myproc)

8: bp := Reading [myproc].val ;

9: bf := Bufptr [bp].val ;

10: wc := Wdcnt [rd];

11: while Reader [myproc] = rd ^ wc > 0 do

12: wd := In[bf][wc];

13: if Reader [myproc] = rd then

14: Out [rd][wc] := wd

�;

15: Wdcnt [rd] := (wc + 1) mod (B + 1);

16: wc := Wdcnt [rd]

od;

17: Reader [myproc] := 0

procedure UpdateReading(myproc)

18: rb := Reading [myproc];

19: succ := CAS(&Reading [myproc]; rb; (rb:tag + 1; 0));

20: if :succ then

21: rb := Reading [myproc];

22: succ := CAS(&Reading [myproc]; rb; (rb:tag + 1; 0))

�;

23: if succ then

24: ` := Latest ;

25: CAS(&Reading [myproc], (rb.tag+1,0), (rb.tag+2,`.val))

�

procedure Write(wid)

26: ` := Latest ;

27: bp := FindNext();

28: nbf := Bufptr [bp];

29: if ` = Latest then

30: if CAS(&Bufptr [bp], nbf , (nbf .tag+1,cbf)) then

31: cbf := nbf .val

�;

32: CAS(&Latest , `, (`.tag+1,bp))

�

procedure FindNext() returns 1..P+2

33: for n := 1 to P do

34: rb := Reading [n];

35: val := Latest .val ;

36: if rb.val = 0 then

37: CAS(&Reading [n], rb, (rb.tag+1,val))

�

od;

38: for n := 1 to P+2 do

39: inuse[n] := false

od;

40: inuse[Latest .val] := true;

41: for n := 1 to P do

42: inuse[Reading [n].val] := true

od;

43: next := 1;

44: while inuse[next] ^ next < P+2 do

45: next := next + 1

od;

46: return next

W

W

W

R

R

R

R

��
��
��
��

��
��
��
��

��
��
��

��
��
��

Latest

P

Processor

1

Reader

Wdcnt
Reading

P

Processor

Bufptr

1

P+2

In

Out

cbf

R Reader Process

W Writer Process

Shared Variable

��
��
��
�� Private Variable

Tagged Variable

Refers To

LEGEND

Figure 1: Algorithm 1: Multi-writer bu�er for priority-based multiprocessors.

6

recent" by the time r returns from UpdateReading. After invoking UpdateReading, r updates Wdcnt [r] and

Reader [k] (statements 4-5) to indicate that it is now the active reader on processor k. Note that statement 5

e�ectively \announces" r's read on processor k | if r is preempted by another reader after this point, then it

will be helped. After updating Reader [k], r performs its own operation by invoking Help-Read (statement 6).

We now describe what happens when Help-Read is invoked by r. First, the state of the read being helped is

determined (statements 8-10). Let p be the reader r is helping (note that p could be r). r helps p by updating

Out [p] one word at a time (statement 14). If r �nds Reader [k] 6= r:rd at either statement 11 or 13, then r must

have been preempted by a higher-priority reader. In this case, by the time r resumes execution, p's operation

has been completed, so r can discontinue helping. Note that it is possible for r to be preempted by a higher-

priority reader q between its execution of statements 13 and 14, in which case its execution of statement 14

will overwrite a word of Out [p] already written by q. As the proof below shows (see invariant (I2)), the value

written to this word by r must be the same as its current value. Thus, this \late write" causes no harm. The

time complexity of a read operation is clearly dominated by the calls to Help-Read, which take O(B) time.

A writer w performs a write operation by invoking the Write procedure. It is assumed that w has already

copied the words it intends to write into In[w:cbf] before invoking the Write procedure. (Also, recall that, by

assumption, w:cbf retains its value between write operations of w.) w's write operation is performed in three

steps. First, FindNext is called to locate an unused slot to write to (statement 27). Then, w attempts to swap

Bufptr [w:bp] and w:cbf (statements 30 and 31), which has the e�ect of swapping w's input bu�er with the free

slot l returned by FindNext. If CAS at statement 30 fails, then another writer must have swapped its own input

value into slot l before w's attempt. Finally, Latest is updated to indicate that slot l holds the latest value

written to the bu�er (statement 32). Note that if the value of Latest changes between statements 26 and 29,

then w's operation has been \overwritten" by a concurrent write and thus there is no need to swap in slot l. A

concurrent write operation can also cause the CAS at statement 32 fail.

Within FindNext, w �rst reads Latest and then completes any stalled updates of Reading variables (state-

ments 34-37). Using a CAS at statement 37 ensures that w cannot write an out-of-date value into some Reading

variable in the event that it is itself preempted. In the rest of the FindNext procedure, w simply chooses a slot

index that di�ers from the current value of Latest and any Reading variable. Since FindNext has �(P) time

complexity, the time complexity of a write operation is �(P +B).

Correctness proof. We show that the algorithm is correct by proving two invariants, which are used to prove

that each operation is linearizable [14]. The �rst invariant shows that a writer process cannot write into a slot

being read by some reader. The second shows that readers cannot interfere with each other while helping.

invariant w@f32g ^ Latest = w:`) (8k : 1 � k � P : w:bp 6= Reading [k]:val) (I1)

Proof: Suppose, to the contrary, that

w@f32g ^ Latest = w:` ^ w:bp = Reading [k]:val (1)

7

holds at some state t. Let wj be the current operation of w at t. If no process updates Reading [k] between

34[k]:wj and state t, then because each writer chooses a slot that di�ers from Reading [k]:val , we have w:bp 6=

Reading [k]:val at t, which contradicts (1).

Otherwise, Reading [k] is updated between 34[k]:wj and state t, and the last statement to do so is

� 19:ri, 22:ri, or 25:ri, where ri is an operation of some reader r on processor k, or

� 37[k]:vl, where vl is an operation of some writer v.

However, if Reading [k] is last updated by 19:ri or 22:ri, then because these statements establish Reading [k]:val =

0, and because w:bp ranges over f1; : : : ; P +2g, we have w:bp 6= Reading [k]:val at state t, which contradicts (1).

The remaining statements to consider are 25:ri and 37[k]:vl. The reasoning is the same for each of these

statements, so we consider only 25:ri. In this case, we have 26:wj � 34[k]:wj � 25:ri � 32:wj . Consider the

relative ordering of 34[k]:wj and 24:ri. If 34[k]:wj � 24:ri, then we have 26:wj � 34[k]:wj � 24:ri. Because

Latest = w:` holds at t, the value of Latest does not change in the interval between 26:wi and state t. Let L

denote the value of Latest in this interval. Then, 25:ri clearly establishes Reading [k]:val = L:val , which also

holds at t. Because each writer chooses a slot that di�ers from the previous value of Latest , w:bp 6= L:val also

holds at t. However, this contradicts (1).

The remaining possibility is that 24:ri � 34[k]:wj holds. Because ri executed statement 24, the CAS at either

19:ri or 22:ri succeeded. Without loss of generality, assume the one at 22:ri succeeded. Because 24:ri � 34[k]:wj ,

we have 22:ri � 34[k]:wj � 25:ri. Now, either wj updates Reading [k] by performing a successful CAS at 37[k]:wj ,

or some other process updates Reading [k] between 22:ri and 37[k]:wj . In either case, the value of Reading [k]

is changed after 22:ri and before state t. Because Reading [k] is last updated by 25:ri, it must be the case the

Reading [k] is updated between 22:ri and 25:ri. Because Reading [k] is updated only by CAS operations that

increment its tag �eld, this implies that the CAS operation at 25:ri fails, which is a contradiction. 2

invariant q@f14g ^ r@f14g ^ q:rd = r:rd ^ q:wc = r:wc) q:w = r:w (I2)

Proof: Suppose, to the contrary, that

q@f14g ^ r@f14g ^ q:rd = r:rd ^ q:wc = r:wc ^ q:w 6= r:w

holds at some state t. Let qi and rj be the current operations of processes q and r, respectively, at state t.

Without loss of generality, assume that rj has higher priority than qi.

Because q:rd = r:rd holds at t, qi and rj are attempting to help the same operation, say pl, and hence

they are executing on the same processor, say processor k. Let b (respectively, c) denote the value of q:buf

(respectively, q:wc) at state t. Extending our notation for statement executions within for loops, let 12[b; c]:qi

denote the execution of statement 12 by qi with q:buf = b and q:wc = c (and similarly for 12[b; c]:rj). Then,

because q:wc = r:wc holds at t, and because qi and rj are helping the same operation, 12[b; c]:qi (respectively,

8

12[b; c]:rj) is the last execution of statement 12 by qi (respectively, rj) before state t. Moreover, because rj has

higher priority than qi, we have 12[b; c]:qi � 1:rj � � � � � 12[b; c]:rj . We claim that Reading [k] is not updated

between 12[b; c]:qi and 12[b; c]:rj . This is because each read operation helps any pending read operation before

invoking UpdateReading (and operation pl is pending within this interval), and because each writer can update

Reading [k] only if Reading [k]:val is zero (and it is nonzero while pl is pending).

Since q:w 6= r:w holds at t, In[b][c] must be updated by some process between 12[b; c]:qi and 12[b; c]:rj .

However, Reading [k] is not modi�ed between these two statement executions, so by (I2), this is impossible. 2

To be linearizable [14], it must be possible to de�ne a \linearization point" for each operation, which is some

statement execution during its execution. These linearization points de�ne a total order on operations. It is

required that each read operation return the most-recently written value according to this total ordering.

Consider a write operation wj . By (I1), wj cannot reuse any bu�er that is being read from by some reader.

It follows from this that the value that wj writes becomes available (atomically) if its CAS at statement 32

succeeds. If this CAS fails, then some other write operation vl must have succeeded in updating Latest during

wj 's execution. Such an operation vl may actually swap in wj 's input value (this could happen if vl's CAS at

statement 30 fails). In this case, wj can be linearized to the statement execution of vl that updates Latest (i.e.,

32:vl). If no overlapping write that updates Latest swaps in wj 's input value, then wj can be linearized to occur

immediately before some overlapping write.

Now, consider a read operation ri on processor k. Note that the read operations on processor k are applied

in the order in which they are announced (statement 5). (I1) and (I2) ensure that all return values are correctly

determined. Prior to announcing its operation, ri �rst calls UpdateReading (statement 3:r). While ri executes

UpdateReading, Reading [k] must be updated at least once (by r, or by another reader on processor k executing

statement 19, 22, or 25, or by a writer executing statement 37[k]). Because ri attempts to set Reading [k]:val to

zero a second time in UpdateReading if its �rst attempt fails, it can be shown that the last update of Reading [k]

prior to the execution of statement 5:ri (when ri announces its operation) is preceded by a read of Latest

(statement 24 or 35) that occurs during ri's execution. It is relatively easy to see that ri linearizes to this read

of Latest . From the results of this subsection, we have the following theorem.

Theorem 1: An R-reader, W -writer, B-word read/write bu�er can be implemented in a wait-free manner on

a P -processor priority-scheduled system with �(B) time complexity for reading, �(P +B) time complexity for

writing, and �(PB) per-bu�er space complexity. 2

3.2 Variations

If there is only one writer, Algorithm 1 can be simpli�ed. The resulting algorithm, Algorithm 2, is shown in

Figure 2. In Algorithm 2, the Write procedure has been shortened considerably. In particular, the comparison

at statement 29 in Algorithm 1 is no longer needed because in a single-writer system, it can never fail. Similarly,

the CAS operations at statements 30 and 32 can be reduced to simple assignments. However, even with these

9

shared var

Bu�er : array[1..P+2][1..B] of wordtype;

Latest : 1..P+2 initially 1;

Out : array[1..R][1..B] of wordtype;

Wdcnt : array[1..R] of 0..B initially 0;

Reader : array[1..P] of 0..R initially 0;

Reading : array[1..P] of 0..P+2 initially 1

private var

next , bf , n: 1..P+2; `: 1..P+2;

inuse: array[0..P+2] of boolean;

wc: 0..B; rd : 0..R; wd: wordtype;

in: array[1..B] of wordtype

initially Bu�er [1] = initial value

procedure Read(rid , myproc)

returns array[1..B] of wordtype

1: rd := Reader [myproc];

2: if rd 6= 0 then Help-Read(rd ,myproc) �;

3: UpdateReading(myproc);

4: Wdcnt [rid] := 1;

5: Reader [myproc] := rid ;

6: Help-Read(rid ,myproc);

7: return Out [rid]

procedure Help-Read(rd ,myproc)

8: bf := Reading [myproc];

9: wc := Wdcnt [rd];

10: while Reader [myproc] = rd ^ wc > 0 do

11: wd := Bu�er [bf][wc];

12: if Reader [myproc] = rd then

13: Out [rd][wc] := wd

�;

14: Wdcnt [rd] := (wc + 1) mod (B + 1);

15: wc := Wdcnt [rd]

od;

16: Reader [myproc] := 0

procedure UpdateReading(myproc)

17: Reading [myproc] := 0;

18: ` := Latest ;

19: CAS(&Reading [myproc], 0, `)

procedure Write(wid , in)

20: bf := FindNext();

21: for n := 1 to B do

22: Bu�er [bf][n] := in[n]

od;

23: Latest := bf

procedure FindNext() returns 1..P+2

24: ` := Latest ;

25: for n := 1 to P do

26: CAS(&Reading [n], 0, `)

od;

27: for n := 1 to P+2 do

28: inuse[n] := false

od;

29: inuse[`] := true;

30: for n := 1 to P do

31: inuse[Reading [n]] := true

od;

32: next := 1;

33: while inuse[next] ^ next < P+2 do

34: next := next + 1

od;

35: return next

R

R

R

R

R

W

���������
���������
���������
���������

Wdcnt

Reader

Reading

Processor

1

P

Out

P+2

Buffer

in Latest

Figure 2: Algorithm 2: Single-writer bu�er for priority-based multiprocessors.

optimizations, the writer is still doing more work than is necessary due to the copy-and-swap approach used

in Algorithm 1. Because there is no threat of interference by writers, the writer can simply copy its new value

directly into the unused object slot (see statements 20-23 of Algorithm 2). The elimination of swapping also

allows the slots to be directly referenced, which eliminates the need for the Bufptr array. In addition, with only

one writer, it becomes much easier to update the local Reading variable, so UpdateReading can be simpli�ed

considerably (see statements 17-19 of Algorithm 2).

Algorithm 1 can also be optimized to implement a multi-writer bu�er in a uniprocessor system. The

10

shared var

In: array[1..W+3][1..B] of wordtype;

Bufptr : array[1..3] of tagged(1..W+3);

Latest : tagged(1..3) initially (0,1);

Out : array[1..R][1..B] of wordtype;

Wdcnt : array[1..R] of 0..B initially 0;

Reader : 0..R initially 0;

Reading : 0..3 initially 1

private var

bf , cbf : 1..W+3; nbf : tagged(1..W+3); n: 1..B;

`: tagged(1..3); bp: 0..3; wc: 0..B; rd : 0..R;

wd: wordtype;

next : array[1..3][1..3] of 1..3 initially

"
2; 3; 2

3; 3; 1

2; 1; 1

#

initially In[1] = initial value ^ (8y: 1 � y � 3: Bufptr [y] = (0; y)) ^ (8w: 1 � w �W : w:cbf := 3 + w)

procedure Read(rid)

returns array[1..B] of wordtype

1: rd := Reader ;

2: if rd 6= 0 then Help-Read(rd) �;

3: UpdateReading();

4: Wdcnt [rid] := 1;

5: Reader := rid ;

6: Help-Read(rid);

7: return Out [rid]

procedure Help-Read(rd)

8: bp := Reading ;

9: bf := Bufptr [bp].val ;

10: wc := Wdcnt [rd];

11: while Reader = rd ^ wc > 0 do

12: wd := In[bf][wc];

13: if Reader = rd then

14: Out [rd][wc] := wd

�;

15: Wdcnt [rd] := (wc + 1) mod (B + 1);

16: wc := Wdcnt [rd]

od;

17: Reader := 0

procedure UpdateReading()

18: Reading := 0;

19: ` := Latest ;

20: CAS(&Reading , 0, `.val)

procedure Write(wid)

21: ` := Latest ;

22: bp := FindNext();

23: nbf := Bufptr [bp];

24: if ` = Latest then

25: if CAS(&Bufptr [bp], nbf , (nbf .tag+1,cbf)) then

26: cbf := nbf .val

�;

27: CAS(&Latest , `, (`.tag+1,bp))

�

procedure FindNext() returns 1..3

28: ` := Latest ;

29: CAS(&Reading , 0, `.val);

30: return next [Reading][`.val]

R

R

R

R

W

W

W

��
��
��
��

��
��
��

��
��
��

��
��
��
��

Bufptr

Latest
Reader

Reading

Out Wdcnt
In cbf

Figure 3: Algorithm 3: Multi-writer bu�er for priority-based uniprocessors.

11

shared var

Bu�er : array[1..3][1..B] of wordtype;

Latest : 1..3 initially 1;

Out : array[1..R][1..B] of wordtype;

Wdcnt : array[1..R] of 0..B initially 0;

Reader : 0..R initially 0;

Reading : 0..3 initially 1

private var

bf , `: 1..3; n: 1..B;

wc: 0..B; rd : 0..R; wd: wordtype;

in: array[1..B] of wordtype;

next : array[1..3][1..3] of 1..3 initially

"
2; 3; 2

3; 3; 1

2; 1; 1

#

initially Bu�er [1] = initial value

procedure Read(rid)

returns array[1..B] of wordtype

1: rd := Reader ;

2: if rd 6= 0 then Help-Read(rd) �;

3: UpdateReading();

4: Wdcnt [rid] := 1;

5: Reader := rid ;

6: Help-Read(rid);

7: return Out [rid]

procedure Help-Read(rd)

8: bf := Reading ;

9: wc := Wdcnt [rd];

10: while Reader = rd ^ wc > 0 do

11: wd := Bu�er [bf][wc];

12: if Reader = rd then

13: Out [rd][wc] := wd

�;

14: Wdcnt [rd] := (wc + 1) mod (B + 1);

15: wc := Wdcnt [rd]

od;

16: Reader := 0

procedure UpdateReading()

17: Reading := 0;

18: ` := Latest ;

19: CAS(&Reading , 0, `)

procedure Write(wid , in)

20: bf := FindNext();

21: for n := 1 to B do

22: Bu�er [bf][n] := in[n]

od;

23: Latest := bf

procedure FindNext() returns 1..3

24: ` := Latest ;

25: if Reading = 0 then

26: Reading := `

�;

27: return next [Reading][`]

R

R

R

R

W

���������
���������
���������
���������

in Latest
Buffer

Reading

Reader

Out Wdcnt

Figure 4: Algorithm 4: Single-writer bu�er for priority-based uniprocessors.

resulting algorithm, Algorithm 3, is shown in Figure 3. One obvious change here is the elimination of all

processor references. In addition, on a uniprocessor, only three slots are needed. Thus, in FindNext, a free slot

can be found in constant time using a simple table lookup. Such a lookup mechanism was also used by Chen

and Burns. Because readers are scheduled by priority, UpdateReading can be simpli�ed as before.

Algorithm 3 can be further simpli�ed if there is only one writer. The resulting algorithm, Algorithm 4, is

shown in Figure 4. In Algorithm 4, the CAS operation in FindNext has been replaced by a simple assignment.

This is possible because the writer can only detect stalled updates of Reading initiated by lower-priority readers

at statement 25 of Algorithm 4. Such readers cannot resume execution until the writer completes. Also, direct

copying has again replaced the swapping approach.

12

4 Quantum-based Algorithms

In this section, we present several pure-bu�er algorithms for quantum-based systems. As before, we begin

by presenting a multi-writer algorithm that can be used in a multiprocessor system. We then show that this

algorithm can be simpli�ed if there is only one writer or if used in a single-processor system.

4.1 Algorithm 5: Multi-writer Bu�er for Quantum-based Multiprocessors

Our multi-writer algorithm for quantum-based multiprocessors is shown in Figure 5. Unlike the previous priority-

based algorithms, our quantum-based algorithms allow a write operation to write into a slot being read by a

reader on its processor. Such read operations are retried. In essence, retries take the place of helping in our

priority-based algorithms. By Axiom 2, each operation will have to be retried at most once. The handshaking

mechanism of Algorithm 1 is used here to prevent write operations from interfering with remote readers. Because

there are P � 1 remote processors, P � 1 + 2 = P + 1 slots are needed, which is one less than before.

Detailed description. The shared variables used in Algorithm 5 are analogous to those used in Algorithm 1

except that we now have P + 1 slots instead of P + 2. (Note also that some of the shared variables used in

Algorithm 1 are no longer needed. This is mainly because there is no helping in Algorithm 5.) We also have

the same procedures in both algorithms.

Suppose that a reader r on processor k invokes the Read procedure. At statement 1, r invokes UpdateReading,

which attempts to copy the value of Latest to Reading [k]. UpdateReading is exactly the same as in Algorithm 1.

After invoking UpdateReading, Reading [k] points to a slot written \suÆciently recently," so its value can be

copied to r:out and returned. (Note that, because there is no helping, output bu�ers are now private variables.)

This is done in statements 4-6. At statement 7, r checks to see if the value of Reading [k] has changed. If

not, then r can safely return. If Reading [k] has changed, then r has been preempted by another process on its

processor. In this case, the previous steps are tried again (statements 8-12). We explain below why one retry

suÆces. It is easy to see that read operations complete in �(B) time.

The Write procedure is identical to that used in Algorithm 1. The FindNext procedure is also the same,

except that UpdateReading is invoked to update the Reading variable for the local processor. This is merely an

optimization that allows us to use P +1 slots instead of P +2. In particular, all readers and writers on the same

processor now update the local Reading variable in exactly the same way. With P + 2 slots, we could use the

same FindNext procedure as in Algorithm 1. As before, the time complexity of a write operation is �(P +B).

Note that in Algorithm 1, helping is used to prevent the interference of readers by other readers. Moreover,

the code that is executed to update the Reading variables prevents interferences by writers. In Algorithm 5, this

code is the same as before, except that local writers update the local Reading variable just like local readers.

Thus, a reader could potentially return an incorrect result only if repeatedly interfered with by local readers

and writers. However, by Axiom 2, there can be at most one such interference. This is why one retry suÆces.

13

shared var

In: array [1..W+P+1][1..B] of wordtype;

Bufptr : array [1..P+1] of tagged(1..W+P+1);

Reading : array [1..P] of tagged(0..P+1) initially (0,1);

Latest : tagged(1..P+1) initially (0,1)

private var

out : array [1..B] of wordtype; succ: boolean;

next , bp, val : 1..P+1; `: tagged(1..P+1);

cbf , rb: 1..W+P+1; nbf : tagged(1..W+P+1);

rbp: tagged(0..P+1); n: 1..max(B, P+1);

inuse: array [0..P+1] of boolean

initially In[1] = initial value ^ (8y: 1 � y � P+2: Bufptr [y] = (0; y)) ^ (8w: 1 � w �W : w:cbf := P + 1 + w)

procedure Read(out , myproc)

returns array [1..B] of wordtype

1: UpdateReading(myproc);

2: rbp := Reading [myproc];

3: if rbp.val 6= 0 then

4: rb := Bufptr [rbp.val].val ;

5: for n := 1 to B do

6: out [n] := In[rb][n]

od

�;

7: if rbp 6= Reading [myproc] _ rbp.val = 0 then

8: UpdateReading(myproc);

9: rbp := Reading [myproc];

10: rb := Bufptr [rbp.val].val ;

11: for n := 1 to B do

12: out [n] := In[rb][n]

od

�;

13: return out

procedure UpdateReading(myproc)

14: rb := Reading [myproc];

15: succ := CAS(&Reading [myproc]; rb; (rb:tag + 1; 0));

16: if :succ then

17: rb := Reading [myproc];

18: succ := CAS(&Reading [myproc]; rb; (rb:tag + 1; 0))

�;

19: if succ then

20: ` := Latest ;

21: CAS(&Reading [myproc], (rb.tag+1,0), (rb.tag+2,`.val))

�

procedure Write(myproc)

22: ` := Latest ;

23: bp := FindNext();

24: nbf := Bufptr [bp];

25: if ` = Latest then

26: if CAS(&Bufptr [bp], nbf , (nbf .tag+1,cbf)) then

27: cbf := nbf .val

�;

28: CAS(&Latest , `, (`.tag+1,bp))

�

procedure FindNext(myproc) returns 1..P+1

29: for n := 1 to P do

30: if n 6= myproc then

31: rbp := Reading [n];

32: val := Latest .val ;

33: if rbp.val = 0 then

34: CAS(&Reading [n], rbp, (rbp.tag+1,val))

�

35: else UpdateReading(myproc)

�

od;

36: for n := 1 to P+1 do

37: inuse[n] := false

od;

38: for n := 1 to P do

39: inuse[Reading [n].val] := true

od;

40: next := 1;

41: while inuse[next] ^ next < P+1 do

42: next := next + 1

od;

43: return next

R

R

R

R

W

W

W

W

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

1

P

Bufptr P

1

Processor

Processor
Reading

P+1

curbf

Latest

In

out

Figure 5: Algorithm 5: Multi-writer bu�er for quantum-based multiprocessors.

14

Correctness proof. The following invariant is analogous to (I1) of Algorithm 1.

invariant w@f28g ^ Latest = w:`) (8k : 1 � k � P : w:bp 6= Reading [k]:val) (I3)

Proof: Suppose, to the contrary, that

w@f28g ^ Latest = w:` ^ w:bp = Reading [k]:val (2)

holds at some state t. Let wj be the current operation of w at t. We begin by considering the case in which

k 6= w:myproc. In this case, wj executes statements 31[k] through 34[k]. If no process updates Reading [k]

between 31[k]:wj and state t, then because each writer chooses a slot that di�ers from Reading [k]:val , we have

w:bp 6= Reading [k]:val at t, which contradicts (2).

Otherwise, Reading [k] is updated between 31[k]:wj and state t, and the last statement to do so is

� 15:ui, 18:ui, or 21:ui, where ui is an operation of some reader or writer u on processor k, or

� 34[k]:vl, where vl is an operation of some writer v.

However, if Reading [k] is last updated by 15:ui or 18:ui, then because these statements establish Reading [k]:val =

0, and because w:bp ranges over f1; : : : ; P +1g, we have w:bp 6= Reading [k]:val at state t, which contradicts (2).

The remaining statements to consider are 21:ui and 34[k]:vl. Similar reasoning applies to both statements, so

we consider only 21:ui. In this case, we have 22:wj � 31[k]:wj � 21:ui � 28:wj . Consider the relative ordering

of 31[k]:wj and 20:ui. If 31[k]:wj � 20:ui, then we have 22:wj � 31[k]:wj � 20:ui. Because Latest = w:` holds

at t, the value of Latest does not change in the interval between 22:wi and state t. Let L denote the value

of Latest in this interval. Then, 21:ui clearly establishes Reading [k]:val = L:val , which also holds at t. By

updating its local Reading variable, a write ensures that the previous value of Latest is avoided when choosing

a new slot. Therefore, w:bp 6= L:val also holds at t. However, this contradicts (2).

The remaining possibility is that 20:ui � 31[k]:wj holds. Because ui executed statement 20, the CAS at

either 15:ui or 18:ui succeeded. Without loss of generality, assume the one at 18:ui succeeded. Because

20:ui � 31[k]:wj , we have 18:ui � 31[k]:wj � 21:ui. Now, either wj updates Reading [k] by performing a

successful CAS at 34[k]:wj , or some other process updates Reading [k] between 18:ui and 34[k]:wj . In either

case, the value of Reading [k] is changed after 18:ui and before state t. Because Reading [k] is last updated by

21:ui, it must be the case the Reading [k] is updated between 18:ui and 21:ui. Because Reading [k] is updated

only by CAS operations that increment its tag �eld, this implies that the CAS operation at 21:ui fails, which is

a contradiction.

In the remainder of the proof, we consider the case in which k = w:myproc. Reasoning as above, we have

that Latest = L holds throughout the interval after 22:wi and before state t. Because k = w:myproc, wi invokes

UpdateReading in this interval (statement 35:wi). By reasoning as above, if Latest = L holds throughout an

interval that includes a call to UpdateReading(k), then Reading [k]:val = L:val holds after the invocation of

15

UpdateReading and continues to hold while Latest = L. Because each writer selects a slot that di�ers from

Latest , this implies that w:bp 6= Reading [k]:val at state t, which contradicts (2). 2

We now argue that each operation is linearizable. Consider a write operation wj . By (I3), wj cannot reuse

any bu�er that is being read from by some reader. It follows from this that the value that wj writes becomes

available (atomically) if its CAS at statement 28 succeeds. If this CAS fails, then some other write vl must have

succeeded in updating Latest during wj 's execution. In this case, like in Algorithm 1, wj can be linearized to

occur either immediately before or after a write to Latest by some overlapping write operation.

By (I3) and Axiom 2, each read operation ri returns a value that was written by some write operation.

Arguing as in Algorithm 1, we can show that there must exist a state during ri's execution at which Latest

points to a slot whose value equals that returned by ri. (The argument here is nearly identical to that given for

Algorithm 1.) This implies that reads can be correctly linearized. From the results of this subsection, we have

the following theorem.

Theorem 2: An R-reader, W -writer, B-word read/write bu�er can be implemented in a wait-free manner on

a P -processor quantum-scheduled system with �(B) time complexity for reading, �(P + B) time complexity

for writing, and �(PB) per-bu�er space complexity. 2

4.2 Variations

When applied to implement a single-writer bu�er in a multiprocessor system, most of the optimizations used to

obtain Algorithm 2 from Algorithm 1 can be applied to Algorithm 5. The resulting algorithm, Algorithm 6, is

shown in Figure 6. As before, a direct copying approach is used instead of swapping. However, the optimizations

of UpdateReading in Algorithm 2 cannot be applied in a quantum-scheduled system, so it remains unchanged.

When applied to implement a mutli-writer bu�er in a uniprocessor system, Algorithm 5 can be reduced to a

surprisingly simple algorithm. The resulting algorithm, Algorithm 7, is shown in Figure 7. On a uniprocessor,

the call to UpdateReading at statement 35 in Algorithm 5 will always return the slot indicated by Latest .

Therefore, statements 36-42 in Algorithm 5 will simply choose a new slot that di�ers from Latest . Thus, in

Algorithm 7, the writer can simply alternate between two slots in successive operations. In addition, because

the order of the writes is �xed in this manner, the Reading and Latest variables can be merged into a single

variable, which is called Ver in Algorithm 7. When taken modulo-two, this merged variable gives the index of

the most-recently written slot. Hence, FindNext can be replaced by statements 10-13 and 18-20 in Algorithm 7.

Note that statements 18-20 are executed only if there is a preemption by another writer within statements

10-13. By Axiom 2, there can be at most one such preemption, so CAS operations are not needed in statements

10-13.

Algorithm 7 can be further simpli�ed to implement a single-writer bu�er. The resulting algorithm, Al-

gorithm 8, is shown in Figure 8. With just one writer, write operations cannot preempt each other. Thus,

statements 10-18 in Algorithm 7 are not necessary.

16

shared var

Bu�er : array [1..P+1][1..B] of wordtype;

Reading : array [1..P] of tagged(0..P+1) initially (0,1);

Latest : 1..P+1 initially 1

initially Bu�er [1] = initial value

private var

out : array [1..B] of wordtype;

in: array [1..B] of wordtype;

next , `, bf : 1..P+1; succ: boolean;

rb: tagged(0..P+1); n: 1..max(B, P+1);

inuse: array [0..P+1] of boolean

procedure Read(out , myproc)

returns array [1..B] of wordtype

1: UpdateReading(myproc);

2: rb := Reading [myproc];

3: if rb.val 6= 0 then

4: for n := 1 to B do

5: out [n] := Bu�er [rb.val][n]

od

�;

6: if rb 6= Reading [myproc] _ rb.val = 0 then

7: UpdateReading(myproc);

8: rb := Reading [myproc];

9: for n := 1 to B do

10: out [n] := Bu�er [rb.val][n]

od

�;

11: return out

procedure UpdateReading(myproc)

12: rb := Reading [myproc];

13: succ := CAS(&Reading [myproc]; rb; (rb:tag + 1; 0));

14: if :succ then

15: rb := Reading [myproc];

16: succ := CAS(&Reading [myproc]; rb; (rb:tag + 1; 0))

�;

17: if succ then

18: ` := Latest ;

19: CAS(&Reading [myproc], (rb.tag+1,0), (rb.tag+2,`))

�

procedure Write(in, myproc)

20: bf := FindNext();

21: for n := 1 to B do

22: Bu�er [bf][n] := in[n]

od;

23: Latest := bf

procedure FindNext(myproc) returns 1..P+1

24: ` := Latest ;

25: for n := 1 to P do

26: if n 6= myproc then

27: rb := Reading [n];

28: if rb.val = 0 then

29: CAS(&Reading [n], rb, (rb.tag+1,`))

�

30: else UpdateReading(myproc)

�

od;

31: for n := 1 to P+1 do

32: inuse[n] := false

od;

33: for n := 1 to P do

34: inuse[Reading [n].val] := true

od;

35: next := 1;

36: while inuse[next] ^ next < P+1 do

37: next := next + 1

od;

38: return next

W

R

R

R

R

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������

Latest
P+1

Buffer Reading
1

P

Processor

in

out

Figure 6: Algorithm 6: Single-writer bu�er for quantum-based multiprocessors.

5 Concluding Remarks

We have shown that characteristics of real-time systems can be exploited to implement highly-optimized wait-

free shared bu�ers. Moreover, we have presented the �rst pure-bu�er algorithms for the multi-writer case. When

viewing the number of processors P as a constant, our algorithms have optimal space and time complexity.

17

template tagged(T): record tag : integer; val : T

shared var

Bu�er : array [1..2][1..B] of wordtype;

Ver : tagged(1..W) initially (0,1)

initially

Bu�er [1] = initial value

procedure Read(out)

returns array [1..B] of wordtype

1: v := Ver ;

2: bf := (v.tag mod 2)+1;

3: for n := 1 to B do

4: out [n] := Bu�er [bf][n]

od;

5: if v.tag 6= Ver .tag then

6: bf := (Ver .tag mod 2)+1;

7: for n := 1 to B do

8: out [n] := Bu�er [bf][n]

od

�;

9: return out

private var

out : array [1..B] of wordtype; pm: boolean;

in: array [1..B] of wordtype; bf : 1..2;

n: 1..B; v: tagged(1..W)

procedure Write(in,wid)

10: pm := false;

11: v := Ver ;

12: if CAS(&Ver , v, (v.tag ,wid)) then

13: bf := ((v.tag+1) mod 2)+1;

14: for n := 1 to B do

15: Bu�er [bf][n] := in[n]

od;

16: pm := :CAS(&Ver , (v.tag ,wid), (v.tag+1,wid))

17: else pm := true

�;

18: if pm then

19: v := Ver ;

20: bf := ((v.tag+1) mod 2)+1;

21: for n := 1 to B do

22: Bu�er [bf][n] := in[n]

od;

23: Ver := (v.tag+1,wid)

�

R

R

W

W

��������
��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������

��������
��������
��������

��������
��������
��������

Ver
Buffer

in out

Figure 7: Algorithm 7: Multi-writer bu�er for quantum-based uniprocessors.

Our work has been driven by the observation that, in most real-time applications, a small set of shared

objects predominates. Such common objects include read/write bu�ers, queues, priority queues, and perhaps

linked lists. We believe designers of real-time applications would bene�t from having highly-optimized wait-

free implementations of objects such as these. This is particularly true for multiprocessor applications. The

alternative for such applications is to use priority-ceiling mechanisms. Unfortunately, the conservatism of such

mechanisms makes them ineÆcient. In future work, we hope to consider some of the other objects listed above.

Our goal is to produce a library of such implementations, along with formal correctness proofs. Such a library

would allow real-time system designers to more easily incorporate wait-free objects in their applications.

References

[1] J. Anderson and M. Gouda. A criterion for atomicity. Formal Aspects of Computing: The International

Journal of Formal Methods, 4(3):273{298, 1992.

[2] J. Anderson, R. Jain, and K. Je�ay. EÆcient object sharing in quantum-based real-time systems. Proceed-

18

shared var

Bu�er : array [1..2][1..B] of wordtype;

Ver : integer initially 0

initially Bu�er [1] = initial value

private var

out : array [1..B] of wordtype;

in: array [1..B] of wordtype;

v: integer; bf : 1..2; n: 1..B

procedure Read(out)

returns array [1..B] of wordtype

1: v := Ver ;

2: bf := (v mod 2) + 1;

3: for n := 1 to B do

4: out [n] := Bu�er [bf][n]

od

5: if v 6= Ver then

6: bf := (Ver mod 2) + 1;

7: for n := 1 to B do

8: out [n] := Bu�er [bf][n]

od

�;

9: return out

procedure Write(in)

10: v := Ver ;

11: bf := ((v + 1) mod 2) + 1;

12: for n := 1 to B do

13: Bu�er [bf][n] := in[n]

od;

14: Ver := v + 1

W

R

R

R

R

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

Ver Bufferin

out

Figure 8: Algorithm 8: Single-writer bu�er for quantum-based uniprocessors.

ings of the 19th IEEE Real-Time Systems Symposium, pp. 346{355. Dec. 1998.

[3] J. Anderson, R. Jain, and S. Ramamurthy. Wait-free object-sharing schemes for real-time uniprocessors

and multiprocessors. Proceedings of the 18th IEEE Real-Time Systems Symposium, pp. 111{122. Dec. 1997.

[4] J. Anderson and S. Ramamurthy. A framework for implementing objects and scheduling tasks in lock-free

real-time systems. Proceedings of the 17th IEEE Real-Time Systems Symposium, pp. 92{105. Dec. 1996.

[5] J. Anderson, S. Ramamurthy, and R. Jain. Implementing wait-free objects in priority-based systems.

Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing, pp. 229{238.

Aug. 1997.

[6] J. Anderson, S. Ramamurthy, and K. Je�ay. Real-time computing with lock-free objects. ACM Transactions

on Computer Systems, 15(6):388{395, May 1997.

[7] J. Anderson, S. Ramamurthy, M. Moir, and K. Je�ay. Lock-free transactions for real-time systems. Real-

Time Databases: Issues and Applications. Kluwer Academic Publishers, Amsterdam, 1997.

[8] T. Baker. Stack-based scheduling of real-time processes. Real-Time Systems, 3(1):67{99, Mar. 1991.

19

[9] B. Bloom. Constructing two-writer atomic registers. IEEE Transactions on Computer Systems,

37(12):1506{1514, Dec. 1988.

[10] J. Burns and G. Peterson. Constructing multi-reader atomic values from non-atomic values. Proceedings

of the Eighth Annual ACM Symposium on Principles of Distributed Computing, pp. 222{231, Aug. 1987.

[11] J. Burns and G. Peterson. Pure bu�ers for concurrent reading while writing. Technical Report GIT-ICS-

87/17, School of Information and Computer Science, Georgia Institute of Technology, 1987.

[12] J. Chen and A. Burns. A fully asynchronous reader/writer mechanism for multiprocessor real-time systems.

Technical Report YCS-288, Department of Computer Science, University of York, 1997.

[13] J. Chen and A. Burns. Asynchronous data sharing in multiprocessor real-time systems using process

consensus.hard real-time scheduling: The deadline monotonic approach. Proceedings of the 10th Euromicro

Workshop on Real-Time Systems, pp. 2{9, June 1998.

[14] M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent objects. ACM Transactions

on Programming Languages and Systems, 12(3):463{492, 1990.

[15] A. Israeli and M. Li. Bounded time-stamps. Proceedings of the 28th IEEE Symposium on Foundations of

Computer Science, pp. 371{382, 1987.

[16] L. Kirousis, E. Kranakis, and P. Vitanyi. Atomic multireader register. Proceedings of the Second Interna-

tional Workshop on Distributed Algorithms, pp. 278{296, October 1987.

[17] L. Lamport. On interprocess communication, parts 1 and 2. Distributed Computing, 1:77{101, 1986.

[18] M. Li, J. Tromp, and P. Vitanyi. How to construct wait-free variables. Proceedings of International

Colloquium on Automata, Languages, and Programming, pp. 288{505, 1989.

[19] R. Newman-Wolfe. A protocol for wait-free, atomic, multi-reader shared variables. Proceedings of the Sixth

Annual Symposium on Principles of Distributed Computing, pp. 232{248, 1987.

[20] G. Peterson. Concurrent reading while writing. ACM Transactions on Programming Languages and Sys-

tems, 5(1):46{55, 1983.

[21] G. Peterson and J. Burns. Concurrent reading while writing ii: The multi-writer case. Proceedings of the

28th Annual ACM Symposium on Foundation of Computer Science. 1987.

[22] R. Rajkumar. Real-time synchronization protocols for shared memory multiprocessors. Proceedings of the

International Conference on Distributed Computing Systems, pp. 116{123, 1990.

[23] R. Rajkumar. Synchronization In Real-Time Systems { A Priority Inheritance Approach. Kluwer Academic

Publishers, Boston, 1991.

20

[24] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization protocols for multiprocessors. Proceedings

of the Ninth IEEE Real-Time Systems Symposium, pp. 259{269. 1988.

[25] S. Ramamurthy, M. Moir, and J. Anderson. Real-time object sharing with minimal support. Proceedings

of the 15th Annual ACM Symposium on Principles of Distributed Computing, pp. 233{242. May 1996.

[26] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An approach to real-time system

synchronization. IEEE Transactions on Computers, 39(9):1175{1185, 1990.

[27] A. Singh, J. Anderson, and M. Gouda. The elusive atomic register, revisited. Proceedings of the Sixth

Annual ACM Symposium on Principles of Distributed Computing, pp. 206{221. Aug. 1987.

[28] J. Tromp. How to construct an atomic variable. Proceedings of the Third International Workshop on

Distributed Algorithms, pp. 292{302. Lecture Notes in Computer Science 392, Springer-Verlag, 1989.

[29] P. Tsigas and Y. Zhang. Non-blocking data sharing in multiprocessor real-time systems. Proceedings of the

Sixth International Conference on Real-time Computing Systems and Applications, pp. 247{254, 1999.

[30] P. Vitanyi and B. Awerbuch. Atomic shared register access by asynchronous hardware. Proceedings of the

27th IEEE Symposium on the Foundations of Computer Science, pp. 233{243, 1986.

21

