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Abstract

The earliest-pseudo-deadline-fifPDF algorithm is less expensive than other known Pfair algorithms, but is not
optimal for scheduling recurrent real-time tasks on more than two processors. Prior work established sufficient per-task
weight (.e., utilization) restrictions that ensure that tasks either do not miss their deadlines or have bounded tardiness when
scheduled under EPDF. Implicit in these restrictions is the assumption that total system utilization may equal the total
available processing capacitie(, the total number of processors). This paper considers an orthogonal issue — that of
determining a sufficient restriction on the total utilization of a task set for it to be schedulable under EPDF, assuming that
there are no per-task weight restrictions. We prove that a task set with total utilization at¥igsts correctly scheduled
under EPDF on\ processors, regardless of how large each task’s weight is. At present, we do not know whether this bound
is tight. However, we provide a conterexample that shows that it cannot be improved to 8&@eefithe total processing
capacity. Our schedulability test is expressed in terms of the maximum weight of any task, and hence, if this value is known,

may be used to schedule task sets with total utilization greater’t{g# .
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1 Introduction

We consider the scheduling of recurreing ( periodic, sporadic, or rate-based) real-time task systems on multiprocessor
platforms comprised o#/ identical, unit-capacity processors. Pfair scheduling, originally introduced by Batw@H8],
is the only known way of optimally scheduling such multiprocessor task systems. Under Pfair scheduling, each task must
execute at an approximately uniform rate, while respecting a fixed-size allocation quantum. A task’s execution rate is defined
by its weight(i.e., utilization). Uniform rates are ensured by subdividing each task into quantum-lsogthskghat are
subject to intermediate deadlines, calfsgtudo-deadlinesSubtasks are then scheduled on an earliest-pseudo-deadline-first
basis. However, to avoid deadline misses, ties among subtasks with the same deadline must be broken carefully. In fact,
tie-breaking rules are of crucial importance when devising optimal Pfair scheduling algorithms.

Srinivasan and Anderson observed that overheads associated with tie-breaking rules may be unnecessary or unacceptable
for manysoftreal-time task systems [16]. A soft real-time task differs from a hard real-time task in that its deadlines may
occasionallybe missed. If a jobife., task instance) or a subtask with a deadline at tiheempletes executing at time
then it is said to have &rdinessof max(0, ¢ — d). Overheads associated with tie-breaking rules motivated Srinivasan and
Anderson to consider the viability of scheduling soft real-time task systems using the stauplest-pseudo-deadline-first
(EPDF) Pfair algorithm, which uses no tie-breaking rules. They succeeded in showing that E®flifa on up to two
processors [2], and that if each task’s weight is at ng_éﬁt, then EPDF guarantees a tardiness of at magtanta for every
subtask [16]. In later work [10], we showed that this condition can be improvgé—ﬂ_;olf M denotes the total number of
processors, then with either condition, the total utilization of a task set may &fjual

In this paper, we address an orthogonal question: If individual tasks cannot be subject to weight restrictions, then what
would be a sufficient restriction on the total utilization of a task set for it to be correctly scheduled under EPDF? We answer
this question by providing a sufficientilization-basedchedulability test for EPDF. Such a test is specified by establishing
a schedulable utilization bound.Uf( M) is a schedulable utilization bound for scheduling algorithnthen.A can correctly
schedule any set of recurrent tasks with total utilization at m¥@3t') on M processors [12]. If it is also the case that no
schedulable utilization bound fot can exceed/ (M), thenl{ (M) is anoptimalschedulable utilization bound fot.

Schedulability tests can generally be classified as being aitiiation-basedr demand-basedThough utilization-
based tests are usually less accurate than demand-based tests, they can be evaluated in time that is polynomial in the
number of tasks. In dynamic systems in which tasks may leave or join at arbitrary times, constant time is sufficient to
determine whether a new task may be allowed to join if a utilization-based test is used. On the other hand, demand-based
tests require either exponential time, or, at best, pseudo-polynomial time, and hence, when timeliness is a concern, as in

online admission-control tests, utilization-based tests are usually preferred. Therefore, devising utilization-based tests is of



considerable value and interest.

Optimal schedulable utilization bounds are known for several scheduling algorithms. In the domain of uniprocessor
scheduling, a bound df.0 is optimal for preemptive earliest-deadline-first (EDF) scheduling, while oné(@t/~N — 1) is
optimal for preemptive rate-monotonic (RM) scheduling, wh¥rés the number of tasks [11]. The RM bound converges
toln2 ~ 0.69 asN — oo.

Multiprocessor scheduling algorithms use eithgaatitionedor global scheduling approach. Under partitioning, tasks
are assigned to processors by defining a many-to-one mapping (a surjective function) from the set of tasks to the set of
processors. Thus, each task is bound to a single processor, and every instance of that task may execute upon that processo
only. A separate instance of a uniprocessor scheduling algorithm is then used to schedule the tasks assigned to a processor

If Winax, Where0 < Wi < 1, denotes the maximum weight of any task, then a scheduleable utilization bo%@%ét

whereg = {W;EXJ is optimal for the partitioned approach, if EDF is the per-processor scheduling algorithm used [13].
This bound approache@égi1 asWpa.x — 1.0. Because EDF is an optimal uniprocessor scheduling algorithm, a higher
bound is not possible with any other per-processor scheduling algorithm.

Under global scheduling, a task may execute on any processor. This approach can be further differentiated based upon
whether a preempted instance is allowed to resume execution on a different processor. If each job is bound to a single
processor only, then migrations are said tadmricted otherwise, they aranrestricted Under global scheduling, among
job-level fixed-priority algorithms, such as EDF, a schedulable utilization bound exce&}iﬁlgs impossible, regardless
of the nature of migrations [6, 7]. Among static-priority scheduling algorithms, such as RM, a schedulable utilization bound
exceeding%f is impossible for the unrestricted-migrations case [4, 5]. Observe that each of the multiprocessor schedulable
utilization bounds considered so far convergesi# of the total processing capacity.

Pfair scheduling algorithms also fall under the global scheduling category. However, as mentioned earlier, optimal
scheduling on multiprocessors is possible with Pfair scheduling. Therefore, each of the optimal Pfair algorithms PF [8],

PD [9], and PB [15], has an optimal schedulable utilization bound\éf

Contributions. I this paper, we show tha(*=U5 I Uhes) =L wherek = {Wl, J + 1, is a schedulable

utilization bound for the simpler EPDF Pfair scheduling algorithm\én> 2 processors.For Wi, > % i.e, k=2, this

bound reduces té”ﬁ}ff‘;mw:x‘jx)_l, and asiV.x — 1.0, it approaches*1, which approacheé, i.e, 75% of the

total processing capacity, & — co. Note that this bound is greater than that of every known non-Pfair algoritrti%y
At present, we do not know if this bound is optimal. However, we provide a counterexample that shows that the bound with

Wmax = 1 cannot exceef6%. Finally, we extend this bound to allow a tardinesg ofuanta.

1EPDF is optimal on up to two processors [3]. Therefore, its optimal schedulable utilization boudd<or2 processors i3/



The rest of the paper is organized as follows. Sec. 2 provides an overview of Pfair scheduling. In Sec. 3, the schedulable

utilization bound for EPDF mentioned above is derived. Sec. 4 concludes.

2 Pfair Scheduling

In this section, we summarize relevant Pfair scheduling concepts and state the required definitions and results from [1, 2,
3, 8, 15, 16]. Initially, we limit attention to periodic tasks that begin execution at time 0. Such & teeskan integeperiod
T.p, an integerexecution cost e, and aweightwt(T) = T.e/T.p, where0 < wit(T) < 1. Atask islight if its weight is
less thanl /2, andheavy otherwise.

Pfair algorithms allocate processor time in discrete quanta; the time infer/al 1), wheret is a nonnegative integer, is
calledslott. (Hence, time refers to the beginning of slet) A task may be allocated time on different processors, but not
in the same slotie., interprocessor migration is allowed but parallelism is not). The sequence of allocation decisions over
time defines &cheduleS. Formally, S : 7 x A/ — {0, 1}, wherer is a task set and/ is the set of nonnegative integers.

S(T,t) = 1iff T is scheduled in slat On M processorsy ... S(T,t) < M holds for allz.

Lags and subtasks. The notion of a Pfair schedule is defined by comparing such a schedule to an ideal fluid schedule,

which allocatesvt(7") processor time to task in each slot. Deviation from the fluid schedule is formally captured by the

t—1
u=0

concept oflag. Formally, thelag of task T attime is ((T',¢) = wt(T) -t — >, _, S(T,u). (For conciseness, we leave the

schedule implicit and usg T, t) instead of((7, ¢, .S).) A schedule is defined to tefair iff
VTt =1 < {((T,t) < 1). 1)

Informally, the allocation error associated with each task must always be less than one quantum.
These lag bounds have the effect of breaking eachTasko an infinite sequence of quantum-lengtiibtasks We
denote the'" subtask of task” asT;, wherei > 1. As in [8], we associate pseudo-release(T;) and apseudo-deadline

d(T;) with each subtask;, as follows. (For brevity, we often drop the prefix “pseudo-.")

1—1 1
@)= am| =g @
To satisfy (1),7; must be scheduled in the intervalT;) = [r(T}), d(T;)), termed itsvindow Thelengthof T;'s window,

denotedw(T;)], is given by
lw(T3)| = d(T;) = r(T3). 3)

As an example, consider subtaBkin Fig. 1(a). Here, we have(T}) = 0, d(T1) = 2, and|w(T1)| = 2. The following

lemma relates window lengths and weights.
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Figure 1. (a) Windows of the first job of a periodic task with weight8/11. This job consists of subtasks, .. ., Tz, each of
which must be scheduled within its window, or else a lag-bound violation will result. (This pattern repeats for evelty) johg
Pfair windows of an IS task. Subtagk becomes eligible one time unit laté) The Pfair windows of a GIS task. Subtdgkis
absent and subtadk becomes eligible one time unit late.

Lemma 1 [3] The length of each window of a tagkis either [ﬁ} or [wt}TJ +1.

Note that, by (2)s(T;+1) is eitherd(T;) — 1 or d(T;). Thus, consecutive windows either overlap by one slot, or are

disjoint. The ‘b-bit,” denoted byb(T;), distinguishes between these possibilities. Formally,

@) = | iy | = [y | “

For example, in Fig. 1(@)(7;) = 1 for 1 < i < 7andb(Ts) = 0. We often overload functiof (described earlier) and use

it to denote the allocation status sdibtasksThus,S(7;, t) = 1 iff subtaskT; is scheduled in slat

Algorithm EPDF.  Most Pfair scheduling algorithms schedule tasks by choosing subtasks to schedule at the beginning
of every quantum. As its name suggests, the earliest-pseudo-deadline-first (EPDF) Pfair algorithm gives higher priority to
subtasks with earlier deadlines. A tie between subtasks with equal deadlines is broken arbitrarily. As mentioned earlier,

EPDF is optimal on at most two processors, but not on an arbitrary number of processors [3].

Task models. In this paper, we consider thietra-sporadic(lS) task model and thgeneralized-intra-sporadifG1S) task
model [2, 15], which provide a general notion of recurrent execution that subsumes that found in the well-studied periodic
and sporadic task models. Thporadicmodel generalizes the periodic model by allowing jobs to be released “late”; the IS
model generalizes the sporadic model by allowing subtasks to be released late, as illustrated in Fig. 1(b). More specifically,
the separation betweetiT;) andr(7;;1) is allowed to be more thap /wt(T)| — (¢ — 1) /wt(T) |, which would be the
separation ifl" were periodic. Thus, an IS task is obtained by allowing a task’s windows to be shifted right from where they
would appear if the task were periodic.

Let 6(T;) denote theoffsetof subtaskr;, i.e.,, the amount by whichw(T;) has been shifted right. Then, by (2), we have

the following.

r(n)za(nwut_(;)J A d(Ti)ze(TiH[wt(Tﬂ (5)



The offsets are constrained so that the separation between any pair of subtask releases is at least the separation betweel

those releases if the task were periodic. Formally,
k>i=0(Ty) > 0(T;). (6)

Each subtasl{; has an additional paramete(T;) that specifies the first time slot in which it is eligible to be scheduled.

In particular, a subtask can become eligible before its “release” time. It is required that
(Vi>1:2e(T;) <r(T;) N e(T;) <e(Tiy1)). @

Intervals[r(T;),d(T;)) and[e(T;), d(T;)) are called the®F-windowand|S-windowof T;, respectively. A schedule for an

IS system isvalid iff each subtask is scheduled in its IS-window. (Note that the notion of a job is not mentioned here. For
systems in which subtasks are grouped into jobs that are released in sequence, the definitionldfpreclude a subtask
from becoming eligible before the beginning of its job.)

b-bits for IS tasks are defined in the same way as for periodic tasks (refer te(#)).is defined as follows.

r(T3) = 8)
max(e(T;),d(Ti—1) — b(T;—1)), ifi>2
Thus, ifT; is eligibleduring T;_1's PF-window, then-(T;) = d(T;-1) — b(T;-1), and hence, the spacing betwe€ff; )
andr(T;) is exactly as in a periodic task system. On the other harifl, lifecomes eligiblafter T;_;’s PF-window, then
T;'s PF-window begins whefh; becomes eligible. Note that (8) implies that consecutive PF-windows of the same task are
either disjoint, or overlap by one slot, as in a periodic system.

T;’s deadlined(T;) is defined to be(T;) + |w(T;)|. PF-window lengths are given by (3), as in periodic systems. Thus,

by (5), we have the following.

wa- [t - L

2= i

If wt(T) < 1, thenjw(T;)| is at least two. Therefore, we have the following.

(VT :wt(T) < 1= (Vi>1::d(T;) >r(T;)+2)) (11)

Generalized intra-sporadic task systems. A generalizedntra-sporadic task system is obtained by removing subtasks
from a corresponding IS task system. Specifically, in a GIS task system, @ tadter releasing subtask, may release
subtaskr},, wherek > i + 1, instead ofl};. ;, with the following restrictions(T},) — r(T;) is at Ieast[ﬁJ - {#})J

In other wordsy(7T) is not smaller than what it would have beefTjf. 1, T; o, ... Tx—1 were present and released as early
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Figure 2. Fluid schedule for the first five subtaskg, (. . ., Ts) of a taskT" of weight5/16. The share of each subtask in each
slot of its PF-window is shown. I¢), no subtask is released late;(in), 7> and7; are released late. Note thdtare(T, 3) is
either5/16 or 1/16 depending on when subtaZk is released.

as possible. For the special case wtgrés the first subtask released By r (T} ) must be at Ieasﬁwf(T J Fig. 1(c) shows
an example. Iff; is the most recently released subtaskiptthenT may releasd}, wherek > i, as its next subtask at
timet, if »(T;) + {%J — {wt(T)J < t. If ataskT, after executing subtask, releases subtagk,, thenT}, is called the
successoof T; andT; is called thepredecessoof T.

As shown in [2], a valid schedule exists for a GIS taskrseh M processors iff

> wt(T) < M. (12)

Ter

Shares and lags in IS and GIS task systems.The lag ofT" at timet is defined in the same way as for periodic tasks [15].

Let ideal(T,t) denote the processor share thiateceives in an ideal fluid (processor-sharing) schedule, ir). Then,

((T,t) = ideal (T, t) — }:STu (13)

Before definingideal(T, t), we defineshare(T, u), which is the share assigned to taBhn slotu. share(T,u) is defined

in terms of a functiory that indicates the share assigned to each subtask in each slot.

({%J + ) xwt(T)—(—1), u=r(T;)

f(Tisu) = i~ [ty | = 1 x wi(D) u=d(T;) -1 (14)
v r(T3) <u < d(T;) — 1

0 otherwise

Fig. 2 shows the values gffor different subtasks of a task of weight 5/16. Using (14), it is not difficult to see that
(Vi > 0,u>0: f(T;,u) <wt(T)). (15)
Given f, share(T,u) can be defined in terms gfas

share(T', u) Zf T;,u) (16)



As shown in Fig. 2(b)share(T, u) usually equalsvt(T'), but in certain slots, it may be less than(7"). Also, the total
allocation that a subtask; receives in the slots that span its window is exactly one in the ideal system. These and similar

properties have been formally proved in [14]. Later in this paper, we will use (17) and (18) given below.

(Vu > 0 :: share(T,u) < wt(T)) a7)
AT -1

VT Y f(Tiu)=1) (18)
u=r(T;)

Having definedshare(T, u), ideal(T, t) can then be defined {s:tu;lo share(T,u). Hence, from (13),

(T, t+1) =
t
Z(shar@(T7 u) — S(T,u)) = ((T,t) + share(T,t) — S(T,t). (29)
u=0
The total lag for a task systemwith respect to a scheduleat timet, denotedL AG(r, t) is then given by
LAG(r,t) = ((T1). (20)

Ter

From (19) and (20)LAG(r,t + 1) can be expressed as follow&.AG (7, 0) is defined to bé.)

LAG(7,t+1) = LAG(r,t) + Y _ (share(T,t) — S(T,t)). (21)
TeT

The rest of this section presents some additional definitions and results that will be used in the rest of this paper.

Active tasks. Itis possible for a GIS (or IS) task to have no eligible subtasks and a share of zero during certain time slots,
if subtasks are absent or are released late. Tasks with and without subtaskstadrnaistinguished using the following
definition of anactivetask.

Definition 1: A GIS taskU is activeat timet if it has a subtask/; such thae(U;) < t < d(Uj;).

(A task that is active atis not necessarily scheduledtat

Holes. If fewer thanM tasks are scheduled at timé S, then one or more processors would be idle &t £ processors
are idle during, then we say that there akeholesin S att. The following lemma, proved in [15], relates an increase in the

total lag ofr, LAG, to the presence of holes.
Lemma 2 [15] If LAG(r,t+ 1) > LAG(r,t), then there are one or more holestin

Intuitively, if there are no idle processors in stothen the total allocation toin S is at least the total allocation toin the

ideal system in slot. Therefore,LAG cannot increase.



Task classificatiorj15). Tasks inr may be classified as follows with respect to a scheduad timet. 2
A(t): Set of all tasks that are scheduled at

B(t): Set of all tasks that are not scheduled,diut are active at

I(t): Set of all tasks that are neither active nor are scheduled at

A(t), B(t), andI(¢) form a partition ofr, i.e,,
(AQ)UB)UI()=7) A (A@R)NB(t)=B@)NI(t)=1I(t)NA({t) =0). (22)

This classification of tasks is illustrated in Fig. 3. Using (20) and (22) above, we have the following.

LAG(rit+1)= > ((Tt+1)+ > ((Tt+1)+ > ((T.t+1) (23)

TEA(t) TEB(t) Tel(t)

The next definition identifies the last-released subtasloftiny taskly.

X
Definition 2:  SubtaskU; is thecritical subtask ofU at ¢ iff o
T p——
e(U;) <t < d(U;) holds, and no other subtagl; of U, where . X "
k > j, satisfiese(Uy) < t < d(Uy). For example, in Fig. 3, o
X X

T;1 is the critical subtask of at botht — 1 andt, andUy Vi — v,
is that of U att + 1. L

IS-windows of two consecutive subtasks of three GIS
tained by removing subtasks. §fis a schedule for a GIS task tasksT, U, andV are depicted. The slot in which

each subtask is scheduled is indicated by an “X.” Be-
systemr, then removing a subtask fronresults in another GIS cause subtask; ; is scheduled at, T € A(t). No

subtask ofJ is scheduled at. However, because the
window of U, overlaps slott, U is active att, and
hence,U € B(t). TaskV is neither scheduled at
nor is it active at. ThereforeV € I(t).

systemr’, and may cause other subtasks to shift earli&t, ire-
sulting in a schedulé’ that is valid forr’. Such a shift is called
adisplacemenand is denoted by a 4-tup(& (), ¢, X (2 £,),
where X(M) and X (?) represent subtasks. This is equivalent to saying that subfa¥koriginally scheduled at, in S

displaces subtask (V) scheduled at; in S. A displacementX ™ ¢;, X?) ¢,) is valid iff e(X(?) < t;. Because there

can be a cascade of shifts, we may have a chain of displacements. This chain is represented by a sequence of 4-tuples. For
an example of a displacement chain, refer to Fig. 4.

The next lemma concerns displacements and is proved in [15]. It states that a subtask removal can only cause left shifts.

2For brevity, we let the task systemand schedulé be implicit in these definitions.



Lemma 3 [15) Let X() be a subtask that is removed fromand let the resulting chain of displacements in an EPDF

schedule forr beC' = Ay, Ay, ..., Ay, whereA; = (X ¢, XD ), Thent;, > t; forall i € [1, k].

3 Sufficient Schedulability Test for EPDF

N\
) . . L. . U; is removed UH,|_X|
In this section, we establish a sufficient schedulability test U X
for EPDF by deriving a schedulable utilization bound for it, ’/\x v
/\&' ki1
X
given by the following theorem. Ve P———
Vo
X
Theorem 1 (’“(k_l)lf‘z/f(ﬁ)l()((klfv)vvr‘::‘:;*k)_l , whereW,,.., is the v, —
maximum weight of any task inand k = {Wl J +1,is e s s e |

a schedulable utilization bound of EPDF for scheduling a GIS  Figure 4. lllustration of displacements. It/;
scheduled at time, is removed from the task system,
then some subtask that is eligibletabut scheduled
later, can be schedulediatln this example, it is sub-

task system on M > 2 processors.

As a shorthand, we defifé(M, Wi,..) as follows. task Vi, (scheduled at + 3). This displacement of
‘ Vi results in two more displacements, thosd/®f
Definition 3: U (M, Wiax) = (k(k'_1)]€A2)4(:i)1()((’f’111‘})vwf“8~)x+’“)_1, andU, 1, as shown. Thus, there are three displace-
. mentsin al:Ay = (Ui, t, Vi, t +3), Ao = (Vi, t +
wherek = {WiaxJ + 1. 3, Vit1,t+4),andAs = (Viy1,t+4,Uip1,t+5).
For simplicity, we prove the theorem fér= 2, i.e,, when the
following holds.
1
5 < Wiax <1 (24)

Later, we show how to extend the proof for> 2. BecauséV,,.x < 1, we havek > 2. Whenk = 2, U(M, Wax) reduces

(2M+41) (24 Winax)—1 _ (2M+1)(24+Wimax)—1 1
to W) yihe, UM, Whax) = PTG 1 yforall 5 < Wiay < 1.

We use the proof technique developed by Srinivasan and Anderson in [16] to prove the above theorem. If Theorem 1

does not hold, thety andr defined as follows exist. (In these definitions, we assumertisascheduled od/ processors.)

Definition 4: ¢4 is the earliest time that any task system (with each task weight atliigst and total utilization at most
U(M, Wax)) has a deadline miss under EPDE,, some such task system misses a subtask deadline atd no such
system misses a subtask deadline priat;to

Definition 5: 7 is a task system with the following properties.

(T1) ¢, is the earliest time that a subtaskimisses its deadline undé&r an EPDF schedule for.
(T2) The weight of every task in is at mostiV,,,.,. and the total utilization of is at most/ (M, Wiax)-

(T3) No other task system satisfying (T1) and (T2) releases fewer subtagksjinthanr.



(T4) No other task system satisfying (T1), (T2), and (T3) has a larger rankrthaty, where theank of a systemr att is
the sum of the eligibility times of all subtasks with deadlines at mase., rank(7,t) = 3 1, .7e; A acry<ey €(10)-

By (T1) and (T3), exactly one subtask inmisses its deadline: if several such subtasks exist, then all but one can be
removed and the remaining subtask will still miss its deadline, contradicting (T3). The following shorthand notation will be
used hereatfter.

Definition 6: o denotes the total utilization of, expressed as a fraction 8f, i.e., > .. wt(T) = aM.
Definition 7: § %' T,

The lemma below follows from the definitions bfand«, (T2), and Lemma 19, proved in an appendix.
Lemma4 0 < o < YMWmad) 1 forall M > 2.
The next lemma is immediate from the definitiondadind (24).

Lemma5 i <4 < 3.

We now prove some properties abauandsS. In proving some of these properties, we make use of the following three

lemmas established in prior work by Srinivasan and Anderson.
Lemma 6 [15] If LAG(r,t+ 1) > LAG(T,t), thenB(t) # 0.

The following is an intuitive explanation for why Lemma 6 holds. Recall from Sec. 2Bltatis the set of all tasks that are
active and not scheduled @tBy Def. 1 and (14), only tasks that are active atay have non-zero sharestan the ideal
system. Therefore, if every task that is active istscheduled at, then the total allocation i§ cannot be less than the total

allocation in the ideal system, and hence, by (Z1 G cannot increase across stot
Lemma 7 [14] Lett < t4 be a slot with holes and & € B(t). Then, the critical subtask atof T" is scheduled before

To see that the above lemma holds,Tetbe the critical subtask &f att. By its definition, the 1S-window of’; overlaps
slot¢, butT is not scheduled dt Also, there is at least a hole inBecause EPDF does not idle a processor while there is a

task with an outstanding execution request, it should be the cask; tissgcheduled before

Lemma 8 [15) LetU; be a subtask that is scheduled in sfotwheret’ < t < t4, in S, where there is a hole in Then,

dU;) < t+1.

This lemma is true because it can be shown thd(if;) > ¢ + 1 holds, thenU; has no impact on the deadline misg at
In other words, it can be shown that if the lemma does not hold, then the task system obtainediroemovinglU; also

has a deadline miss &t, which is a contradiction to (T3).

10



Lemma 9 The following properties hold for andS.

(a) Forall T;, d(T;) < tq.

(b) Exactly one subtask afmisses its deadline a.

(¢) LAG(7,tq) = 1.

(d) (VT = d(Ty) < tg = Gtz e(T) <t <d(T) A S(T,t) = 1).

(e) LetUy be the subtask that misses its deadling;afThen,U is not scheduled &f; — 1.
(f) There are no holes in slat; — 1.

(g) There exists atime < ¢, — 2 such that the following both hold.
(i) There are no holes ifv, t; — 2).
(i) LAG(1,v) > (tqa —v)(1 —a)M + 1.

(h) There exists atime € [0,¢4 — 3] such thatLAG(r,u) < 1 and LAG(r,u+ 1) > 1.

Parts (a), (b), and (c) are proved in [15]. Part (d) follows directly from (T1). The rest are proved in an appendix.

Overview of the rest of the proof of Theorem 1. By Lemma 9(h), ift; andr as defined by Defs. 4 and 5, respectively,
exist, then there exists a time slot< t; — 2 across whichL AG increases to at least one. To prove Theorem 1, we show
that for every suchy, either (i) there exists a time’, whereu + 1 < v’ < t4, such thatL AG(r,v’') < 1, and thereby
derive a contradiction to Lemma 9(c), or (ii) there does not exiskat, — 2 such that there are no holes[int, — 2) and
LAG(r,v) > (t4—v)(1 —a)M, deriving a contradiction to Lemma 9(g). In what follows, we state and prove several other
lemmas that are required to accomplish this.

The first lemma shows thdtA G does not increase across slot zero.

Lemma 10 LAG(7,1) < LAG(7,0) = 0.

Proof: Assume to the contrary th&td G(r, 1) > LAG(7,0). Then, by Lemma 6B(0) # () holds. LetT be a task inB(0)
and letT; be its critical subtask at time zero. Then, by Lemm&’7is scheduled before time zero, which is impossible.

Therefore, our assumption thaAG(7, 1) > 0 holds is incorrect. a

Lemma 2 showed that one or more holes in slate necessary fab AG to increase across The next lemma shows

that there are no holes in slot- 1 in this case.

Lemma 11 If LAG(r,t+ 1) > LAG(r,t), wherel <t < t4 — 2, then there are no holes in slot- 1.

11



Proof: Contrary to the statement of the lemma, assume the following.

(B) There is a hole in slat— 1.

By Lemma 8, this assumption implies that the deadline of every sulitastheduled at — 1 is at most. Because < ¢4

holds, by Lemma 9(d)I; does not miss its deadline. Therefore, we have the following.

VT} = S(Tit—1) =1 = d(T}) =t)

(25)

Becausel AG(r,t + 1) > LAG(r,t) holds (by the statement of the Lemma), by Lemma6:) is not empty. LeTU be

any task inB(t) and letU; be its critical subtask at Then, by Lemma 7/, is scheduled beforein S, say at’, i.e.,

SU;,t)y=1 At <t
Also, by Def. 2,
d(U;) > t+1.

Let 7’ be the task system obtained by removitig from
7, and letS’ be the schedule that results due to the left shifts
caused inS by U;’'s removal. We show that the left shifts do
not extend beyond slet- 1, which would imply that a deadline
is still missed att; in S’. This in turn would imply that’,
with one subtask fewer than also has a deadline missgt
contradicting (T3).

Let Ay, Ag, ..., A, be the chain of displacements &
caused by removing;, whereA; = (X@ ¢, X0+ ¢, ),
1 <i<mn,andX® = U;. By Lemma 3,t; < t;41 holds

forall1 < i < n. By (26),t; =t < t holds, as illustrated in

(26)
. . . (2 7)
4 B ——
X

subtasks
scheduled
att—1

IX‘

:

t t=1 t t+1

Figure 5. lllustration for Lemma 11. Subtadk; is

as specified in the proof. Directed arcs depict some
displacements that may be possibl&if is removed.

If there is a hole i —1, then the crossed out displace-
ments are not possible, and hence, the displacements
chain cannot extend beyond stot 1.

Fig. 5. Because EPDF schedul&d? att, in preference toX(*) in S, wherei < k < n + 1, the priority of X () is at least

as high as that ok (*). In other words, we havé(X (V) < d(X ), forall 1 <i < k < n + 1. BecauseX) = U;, by

(27), this implies the following.

(VE:1<k<n+1:dX®)>t41)

(28)

We next show that the chain of displacements does not extend beyond-slotSuppose that the displacements extend

beyond slot — 1. Let Ay, 1 < h < n be the displacement with the smallest index such#that ¢t — 1 andt,; > ¢ holds.

Because\,, is valid, e(X (**t1)) < t, holds. Now, ift;, < t — 1, then since there is a hole in slot 1, X *+1) should have

12



been scheduled at-1in S and not at;, ., > t. Thereforet;, =t —1,i.e, X" is scheduled at— 1 in S. Hence, by (25),
we haved(X (") = ¢, which contradicts (28). This is illustrated in Fig. 5. Thus, the displacements do not extend beyond

t — 1, which implies that a deadline is still missedtgt contradicting (T3). Therefore, our assumption in (B) is falsel

The next lemma bounds the lag of each task at timsel, wheret is a slot with one or more holes.

/\‘ .

Lemma 12 If t < t4 is a slot with one or more holes, then the ;blt with |

oles
following hold. L% T, G o(T) =, then j = i+1)
(@) (VT € A(t) = lag(T,t + 1) < wt(T)) T L X (T 0= WD - KT .0

<wt(T)

(b) (VT € B(t) :: lag(T,t + 1) < 0) I A

T e I(t) :: lag(T 1) = .
(©) (VT'€ I(¢) 52 lag(T;t + 1) = 0) Figure 6. Lemma 12. PF windows of a subtagk

and its successdf; are shown. Ifr(7;) = t, then
Proof: Parts (b) and (c) have been proved in [16]. We prove  ; = ; + 1 holds. 7 is scheduled in slot (indi-
cated by an “X”). There are one or more holestin
Arrows over the window end-points indicate that the
end-point could extend along the direction of the ar-
row. T; and all prior subtasks @f complete executing
scheduled if0, ¢ + 1), i.e, these subtasks receive their entire ~ at or before/ + 1. Therefore, the lag of” at ¢ is at

most the share th&t; ;1 receives in slot in the ideal
allocation of one quantum if), t + 1) in S. Because there is a system.

part (a) here. Lef" be a task inA(t) and letT; be its subtask

scheduled at. Therefore,7; and all prior subtasks df’ are

hole int, by Lemma 8, we havé(T;) < ¢ + 1. Because < t4
holds, by Lemma 9(d)T; does not miss its deadline. Hence, we hé{E) = ¢ + 1. By (18) and the final part of (14) this
implies thatT; and all prior subtasks df receive an allocation of one quantum eacHlirt + 1) in the ideal system also.
Therefore, any difference in allocation between the ideal systensaadnly due to subtasks that are released later than
T;. This is illustrated in Fig. 6.

Obviously, every subtask that is released later thareceives an allocation of zero &in [0,¢ + 1). Therefore, the lag
of T"att + 1 is equal to the shares that these later subtasks receive in the ideal system in the same interval. To determine
this value, letl’; be the successor @f;. Recall from Sec. 2 that the PF-window Bf may overlap with that of’; only if
j =i+ 1 and that the overlap may be over at most one slot. Therefore, among the later subtasks, pmgy receive
a non-zero allocation ifD, ¢). In particular, the allocation may be non-zero only in slofTherefore, if7; andT;,, are
non-overlapping (off;4 is absent), thebug(7T,¢) is equal to zero. Otherwise, it is given by the share fat receives
in slott. In that case, by (16) and (17)(7;,t) + f(Ti+1,t) = wt(T). Because, by (14)f(T;,t) is positive, we have

f(Tis1,t) < wt(T), and hencelag (T, t) < wi(T). Thisis illustrated in Fig. 6. o
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The next lemma gives an upper boundeAG att + 1 in terms of LAG att andt — 1, whenL AG increases across slot

Lemma 13 Lett, wherel <t < t4 — 2, be a slot such that there is at least a hole in glahd there is no hole in slat— 1.

ThenLAG(r,t +1) < LAG(r,t) - 6 + aM - § and LAG(r,t + 1) < LAG(r,t — 1) - 6 + (2aM — M) - 5.

Proof: By the statement of the lemma, there is at least one hole in.sldherefore, by Lemma 12, only tasks that are
scheduled in slot, i.e., tasks in setd(¢), may have a positive lag at+ 1. Letz denote the number of tasks scheduled at

i.e,z =) . S(T,t)=|A(t)]. Then, by (23), we have

LAG(t,t+1) < Y reaqlag(T,t+1)

N

>rean wtT) , by Lemma 12

> oreaqy Wmax

|A(t)| ' Wmax

IN

= 2 Wiax. (29)

Using (21),LAG(T,t + 1) can be expressed as follows.

LAG(1,t+1) = LAG(7,t) + > pc, (share(T,t) — S(T,t))
= LAG(7,t) + > pe, share(T,t) — x D orer ST t) =2
< LAG(7,t) + Yope, wi(T) — , by (17)
— LAG(rt)+aM —= by Def. 6 (30)

By (29) and (30), we have
LAG(1,t+ 1) < min(z - Wiax, LAG(7,t) + aM — z). (31)

Becauser - W,ax increases with increasing whereas. AG(t,t) + oM — x decreased, AG(7,t + 1) is maximized when

LAG(T,t) oM
14+Wmax 1+Whax

x - Whax = LAG(7,t) + aM — z,i.e, whenz = . Therefore, using either (29) or (30), we have

LAG(r,t+1)

IA

LAG(r,1) - (HWT) oM - (L)

max 1+ Wiax

LAG(T,t) -6 +aM -§ , by Def. 7. (32)

By the statement of the lemma again, there is no hole intstotl. (Also,¢ > 1, and hencet — 1 exists.) Therefore,
using (21),LAG(t,t) can be expressed as follows.

LAG(r,t) = LAG(r,t —1)+ Y pe(share(T,t — 1) — S(T,t — 1))

14



= LAG(t,t = 1)+ > pc, share(T,t —1) — M
' >rer S(T,t — 1) = M (there are no holes ih— 1)
< LAG(t,t—1)+aM - M , by (17) and Def. 6 (33)

Substituting (33) in (32), we havBAG(7,t + 1) < LAG(7,t — 1) - § + (2aM — M) - 6. ad

The next lemma shows how to bouid G at the end of an interval that does not contain two consecutive slots without

holes, aftelLAG increases to one at the beginning of the interval.
Lemma 14 Letl <t < t4y — 2 be a slot across which AG increases to one, i.e.,
1<t<ty—2 AN LAG(7,t) <1 AN LAG(r,t+1) > 1. (34)

Letu, wheret < u < tg4, be such that there is at least one hole:ir 1 and there are no two consecutive slots without holes

in the intervallt + 1,u). Then,LAG(r,u) < (2 — 2a) M + 1.

Proof: Because (34) holds, by Lemmas 2 and 11, we have (C1) and (C2), respectively.
(C1) There is at least one hole in slot
(C2) There is no hole in slat — 1.

By (C1) and the definition of;, we have the following.
(Vt':t <#¥ <u—1: thereisaholein’ or¢’ + 1) (35)

Letty,ta,..., ty, Wheret < t; <ty < ... <t, < u— 1be the slots without holes i, «). Then, by (C1) and (35),

there is at least one hole in eachtpf- 1 and¢; + 1 forall1 < < n.

We divide the intervalt — 1, u) into n + 1 non-overlapping subintervals using the slots without helesl, ¢4, ..., t,,
as shown in Fig. 7. The subintervals denofedl,, . .., I,, are defined as follows.
[ [t —1,t1), ift; exists (36)
[t —1,u), otherwise
I ¥ [t (37)
I Yty tesr), foralll<k<n (38)

Because > 1 andu < t4 hold (by the statement of the Lemmdy,exists, and hence, we have

n > 0. (39)
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Figure 7. Lemma 14.LAG(7,t) < 1andLAG(r,t + 1) > 1. No two consecutive slots ift — 1, u) are without holes. The
objective is to determine a bound @ G(7, u).

Before proceeding further, the following notation is in order. We denote the start and end tifpes/bere0 < k < n,

by t¥ andt”, respectivelyi.e., I; is denoted as follows.

L, € [hdky, forallk=0,1,...,n. (40)
LAG att* + 2is denoted.y, i.e,,
Le ¥ LAG(rt"+2), forallk=0,1,... n. (41)

Note that the end of each subinterval is defined so that the following property holds.

k

(C3)Forallk,0 < k < n,thereisnoholein s|<1§ and there is at least one hole in every é]mheretf§+1 <i< t

Our goal now is to derive bounds féd G att, for all 0 < k < n. Towards this end, we first establish the following claim.

Claim 1 (Vk,t':0 <k <n,tF +2<t' <th = LAG(7,t') < Ly).

The proof is by induction on.
Base Caset’ = t* + 2. The claim holds by (41).

Induction Step: Assuming that the claim holds at all times in the intefv&l- 2, '], wheret? +2 < ¢/ < t*,

we show that it holds at + 1. By this induction hypothesis, we have

LAG(7,t') < L. (42)

Because’ < t’} andt’ > t* + 2 hold (by the induction hypothesis), by (C3), there is at least one hole in both

t" andt’ — 1. Therefore, by the contrapositive of Lemma LUG(r,t' + 1) < LAG(r,t'), which by (42), is

at mostLy. O
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Having shown thal AG(r, t’;) is at mostL;, we now bound.,. We start by determining a bound fag. From (36) and

(40), we have? =t — 1. Thereforet? + 2 =t + 1. Because (C1) and (C2) hold, by Lemma 13,

Ly = LAG(1,t+1)
< ¢-LAG(1,t)+0-aM

< §+6-aM, , LAG(r,t) < 1 by (34). (43)

We next determine an upper bound fgy, wherel < k < n. Notice that by our definition aof;, in (38), we have® = t’}‘l.
Thus,LAG(7,t*) = LAG(r, t";’_l), and hence, by Claim 1, we have
LAG(7,t{) < Li-1. (44)

By (C3), there is a hole in slat + 1 and no hole in slot®. Therefore, by Lemma 13,AG (7, tk +2) < 6 - LAG(r,t*) +

0 - (2aM — M), which by (41) and (44) implies that

Ly = LAG(T,t* +2) <6 - Ly_y + 0 - (2aM — M). (45)
By (37) and (40), we have = ¢;. Therefore, by Claim 1 and (39), we have

LAG(t,u) = LAG(7,t}) < Ly, (46)

and hence, an upper bound 8alG(r, u) can be determined by solving the recurrence given by (43) and (45), which is

restated below for convenience.

Ly < 6+0-aM

L, < 6~Lk71+(5'(2OéM—M)

By Lemma 20 (proved in an appendix), a solution to the above recurrence is given by
Ly < 8" (1 +aM) + (1 - %) <1f5> (2aM — M). (47)

Therefore LAG(r,u) < L, < §"*1(1 4+ aM) + (1 — ") (%) (2aM — M).
If L, is at least(2 — 20)M + 1, thend™ (1 + aM) + (1 — o7 (1%6) (2aM — M) > (2 — 2a)M + 1, which on
rearranging terms implies that
M@2-§—6mTh) +ont2 -5t 1-6§
M(2 — ontl — §nt2)

- M(2-0)+1
= 2M

, by Lemma 21 (proved in an appendix), a@hek 6 < 1/2 (by Lemma 5)
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(2M + 1)(2 + Wmax) -1

Def. 7
AM (1 4 Winax) pvbe
_ % , by Def. 3 and (24) “9)

Because (48) is in contradiction to Lemma 4, we concludefthat (2 — 2a) M + 1. Hence, by (46)LAG(7,u) < L, <

(2 — 20)M + 1. O

Lemma 15 Lett < t; — 2 be a slot such thabAG(7,t) <1 A LAG(7,t+ 1) > 1 and letu be the earliest time after
such thatu = t4 — 2 or there no no holes in each efand« + 1. (Note that this implies that no two consecutive slots in

[t + 1, u) are without holes. Then, at least one of the following holds.

u < tq — 2, there are no holes in bothandu + 1, and LAG(7,u + 2) < 1. (49)
u=tq— 2, thereis atleasta hole ity — 3, and LAG(7,tq — 2) < 2(1 — a)M. (50)
u=tq — 2, thereis no hole in; — 3, atleasta hole iy — 4, LAG(1,tq — 3) < 3(1 — a) M,

andLAG(r,ty —2) < 2(1 — a)M. (51)

Proof: BecauseLAG(r,t+ 1) > LAG(r,t) holds (by the statement of the lemma), by Lemma 2, we have the following.
(D1) There is at least a hole in
We consider two cases dependingwon
Case 1:u < t; — 2 and there is no hole inu.
We first prove that there is at least one hole in slet 1. If u = ¢ + 1 holds, then by (D1), there is a holetin= v — 1; if
u # t+ 1, then the absence of holesun- 1 would contradict the fact thatis the earliest time aftersuch that either there
is no hole in bothy andu + 1 oru = t; — 2. Thus, there is at least one holeun- 1, and by the definition ofi, no two
consecutive slots in the intenfak-1, «) are without holes. Therefore, by Lemma 14, we hAvEZ (7, u) < (2—2a) M +1.
To show thatL AG (1, u + 2) < 1 holds, we next show that there are no holes i 1. If u < ¢4 — 2 holds, then there
are no holes in. + 1 by the definition ofu. On the other hand, if = t; — 2, then there are no holesin+ 1 =t; — 1 by

Lemma 9(f). By the assumption for this case, there are no hole®ither. Therefore, by (21), we have

LAG(t,u+2) = LAG(t,u)+ Zﬁiiﬂ rer(share(T,v) — S(T,v))
= LAG(m,u)+ Zﬁiiﬂ rer Share(T,v) —2M , there are no holes imandu + 1
< (2—-2a)M +1+ ZZIZH rer share(T,v) — 2M , LAG(T,u) < (2—=2a)M + 1
< @-20)M+1+ 050 Ype, wi(T) - 2M by (17)

= (2—-20)M +1+2aM —2M , by Def. 6
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Thus, condition (49) holds for this case.
Case 2:u = t; — 2 and there is a hole in slott; — 2.
Becausea: = t4 — 2 holds for this case, by the definition of the following holds.
(D2) No two consecutive slots ift + 1,t; — 2) are without holes.
Letu’ < tq — 2 denote the last slot with no hole jh+ 1, t; — 2). We consider the following two subcases.
Subcase 2at < v’ < t4 — 3 or there is at least a hole in every slotint + 1,t; — 2). If t < v’ < t4 — 3 holds, then by
the definition ofu’, there is at least a hole iy — 3. On the other hand, if there is no slot without a holétin- 1,¢; — 2),
then, because < t; — 2 holds (by the statement of the lemma), by (D1), there is a holg in3. Therefore, by (D2) and
becausd AG(r,t + 1) > LAG(r,t) holds (by the statement of the Lemma), Lemma 14 applieswitht, — 2. Hence,
by Lemma 14, we have AG(T,tqs — 2) < (2 — 2a) M + 1. Therefore, for this case, (50) is satisfied.
Subcase 2bt < v’ = t4 — 3. Because there is no hole in slgt— 3 (by the assumption of this subcase), (D2) implies that
(D3) there is at least a hole in slgt — 4.
(Because, — 3 > t holds (by the assumption of this subcase again}; 4 exists.) Therefore, becaugel G(7,t + 1) >

LAG(r,t) holds, Lemma 14 applies with = ¢, — 3. Hence,

LAG(T,t4—3) < (2—20)M+1 , by Lemma 14 (52)

< (3=-3a)M+1 , by Lemma 4 (53)

Further, by (21), we have

LAG(r,ta—2) = LAG(r,ta—3)+ Y (share(T,ta—3) — S(T,tq - 3))
TeT
< (2-2)M+ ) (share(T,ta—3) = S(T,ta—3)) by (52)
TeT
= (2—-2a)M + Z share(T,ta —3) — M
TeT

, there are no holes ity — 3 (by the assumption of this subcase)

< @2-200M+ Y wi(T)-M , by (17)
TeT
= 2-2a)M+aM-M , by Def. 6
< (2—-2a)M , by Lemma 4 (54)
By (D2), (53), and (54), condition (51) holds. m]
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By part (h) of Lemma 9, there existsiawhere0 < u < t4 — 2, such tha AG(r,u) < 1andLAG(r,u+ 1) > 1. Let

t be the largest such. Then, by Lemma 15, one of the following holds.
(a) There exists &, wheret’ < ¢4, such thaL AG(7,t') < 1.

(b) There does not exist@a< t; — 2 such that there are no holes[int; — 2) andLAG(7,v) > (tq —v)(1 —a)M + 1.

(This is implied by both (50) and (51).)

If (@) holds, andt’ < ¢4 holds, then this contradicts the maximality of On the other hand, if = t; holds, then it
contradicts part (c) of Lemma 9. If (b) holds, then part (g) of the same lemma is contradicted. Therefore, our assumption
thatT misses its deadline &} is incorrect, which in turn proves Theorem 1, foe= 2.

As a corollary to Theorem 1, we have the following utilization-based schedulability test for EPDF.

Corollary 1 A GIS task set is schedulable o/ > 2 processors under EPDF if the total utilization ofis at most

U(M, Wax), WhereW,,., is the maximum weight of any taskdrandU (M, Wi,.x) is given by Def3.

Generalizing the proof. The proof of Theorem 1 given above fér = 2 can be generalized tb > 2 as follows.

If Wiax < 1/2, then it can be shown that faEAG(r,t + 1) > LAG(r,t) to hold, there should be no holes in
slotst — 1 andt — 2, which is a generalization of Lemma 11. In generalliif,.x < k—il then it can be shown
that k¥ — 1 slots preceding are without holes. Similarly, parts (f) and (g) of Lemma 9 can be generalized as follows.

There are no holes in the last- 1 slots (slotgt; — & +1,t4)), and there Schedulable Utiization by Winax

1
exists av < tq — k such that there are no holes in every slatirt; — k)

0.8

andLAG(r,v) > (tq—v)(1 —a)M + 1. Aformal proof is omitted due
E 0.6

to space constraints. Fig. 8 shows the plot of the schedulable utilizatgn
©

of EPDF (computed using the bound in Theorem 1 with a sufficientl@
(]

Utilization

0.4 fmoeommmmndoee e e P -

02— eroF | | .
large M, and expressed as a percentage of the total processing capacity) | ~2 g’lﬁ,’f,'gf’j%%‘_’él\,%fﬁxed procy
0
0 0.2 0.4 0.6 0.8 1
Wmax

with respect toV,,... For comparison, plots of schedulable utilization

for the partitioned approach [13] and the global approach that assignsa _.
P PP [13] g bp g Figure 8. Schedulable utilization by

fixed priority to each job [6] (computed using their best known bounds ~ Wmax-

expressed in terms 8¥,,,.,), are also shown in the same figure.

Is the schedulable utilization bound given by Theorem 1 optimal? As yet, we do not know the answer to this question.

However, as the following example shows, the general bound cannot be improved to @s¢ééd

Counterexample. Consider a task set comprised 2§ + 1 tasks of weightl, n tasks of weight3, andn tasks of

Weight% scheduled oBn processors. There is an EPDF schedule for this task set in which a deadline miss occurs at time
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12. (The schedule is not shown here due to space constraints.) The total utilization of this tas%e{hi%, which
approaches6.1% of 3n, the total processing capacity, asapproaches infinity. Given that devising counterexamples for
Pfair scheduling algorithms is somewhat hard, we believe that it may not be possible to significantly improve the bound of

Theorem 1, which is asymptoticall§s% of the total processing capacity.

Utilization restriction for a tardiness of ¢ quanta. Having determined a sufficient utilization restriction for schedulabil-

ity under EPDF, we were interested in determining a sufficient utilization restriction for a tardinggsiafta. Extending

(59+6)M
5q+8

the technique used above, we found that if the total utilization & at most , then no subtask of misses its
deadline by more thap quanta. (Again, a proof is omitted due to space constraints.) For a tardiness of at most one, this
imposes a sufficient utilization restriction 84.6%. We feel that this is somewhat restrictive and that it can be improved
significantlyby identifying and exploiting the right properties of a system with a tardinegs @fe have deferred this for

future work.

4 Conclusion

We have determined a schedulable utilization bound for the earliest-pseudo-deadline-first (EPDF) Pfair scheduling al-
gorithm, and thereby, presented a sufficient schedulability test for EPDF. In general, this test allows any task set with total
utilization not exceediné% to be scheduled o/ processors. Our schedulability test is expressed in terms of the max-
imum weight of any task, and hence, may be used to schedule task sets with total utilization grea?t@j‘dthaldve have
also presented a counterexample that suggests that a significant improvement to the test may not be likely. Finally, we have

extended the test to allow a tardinesgy@fuanta.
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Appendix: Proofs Omitted in the Main Text

Lemma 16 LetT be a unit-weight task. Theti(T;) = r(T;) + 1 and|w(T;)| = 1 hold for every subtask; of T'.

Proof: Follows directly from (10) and (9). ]

In some of the proofs that follow, we identify tasks that have a share of zero at tintlee ideal system using the following
definition.
Definition 8: A GIS taskU is aZ-taskat timet iff there exists no subtagk; such that-(U;) <t < d(U;).

Note that (14) and (16) imply thdf is a Z-task att iff share(U,t) = 0.

Lemma 17 LetT; be a subtask of a unit-weight tagkscheduled at some timte< ¢4. If 7(T;) > t, then there exists at

least one slot’ in [0,¢ + 1) such thatl" is a Z-task att’.

Proof: Because this lemma is quite intuitive, we give an informal proof with the help of Fig. 9(a).

Assume to the contrary thdt is not aZ-task in any slot if0,¢ + 1). Then, by Def. 8, for every slat in [0,¢ + 1), there
exists some subtask whose PF-window overlap8y Lemma 16, the length of the PF-window of every subtasi’ a$
exactly one. Therefore, for every sloin [0,¢+ 1), there exists a subtadk, that has to be scheduledsrfor 7}, to not miss

its deadline. By (5) (and becauggr;) is non-negative) only subtagk could have a release time of zero, and inductively,
only subtasKl},; could have arelease timef, for all0 < i < t. This in turn implies that only subtagk, ., of 7" could

be scheduled af,. In particular, only subtask;,; could be scheduled at tinte which contradicits the statement of the

lemma. Therefore, our assumption tiais not aZ-task in any slotif0,¢ + 1) is false. |
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No holes

T = - ———— s B E T
. . . - . J
T, T, T, T, TH]: : | R |_| Ti—1
T is not a Z—task in any slot in [0,t+1). ‘ =X :
............. no
Hence, r(T)) = i+1, for T ... T . I i, i

0 1 2 3 t=1 t  t+] t+2 z [ t
(a) (b)

Figure 9. (a) Lemma 17. IfT is not aZ-task in[0,¢ + 1), then only subtasK};1 can be scheduled &t (b) Lemma 18.T

is not aZ-task in[z 4+ 1,¢ + 1) and no subtask df is scheduled at. T, ..., T; are the critical subtasks @f atz + 1,...,¢,
respectively. Intervals demarcated with solid lines indicate PF-windows of subtasks (as in the other figures). Intervals marked with
dotted lines indicate 1S-windows. Arrows over the left end points of the IS-windows indicate that these end points could extend
in the direction of the arrows. The slot in which a subtask is scheduled is indicated by ai;“}the critical subtask df” at¢,

which is schedued at’. By Lemma 8, there are no holes|in t).

Lemma 18 LetT be a unit-weight task and suppdgés not scheduled at some time< ¢4, where there is at least one hole
in t. Then, there exists a timé < ¢, such that there are no holes jt, ¢) and there exists at least one sfan [t',t + 1),

such thatl is a Z-task int.

Proof: Becausel is not scheduled at, by (22), eitherT’ € B(t) or T € I(t). If T € I(t), thenT is a Z-task att.
Therefore, the lemma is trivially satisfied with= ¢. So assum& € B(t) for the rest of the proof. Lef; be the critical

subtask at of 7. Then, by Def. 2, we have

d(T;) > t+1. (55)
Also, because there is a holetirby Lemma 7.T; is scheduled beforg sayt”, i.e.,

t" <t N S(T;,t") =1. (56)
Because there is a hole inby Lemma 84(7};) < t + 1 holds, which by (55) implies thai(7;) = ¢ + 1 holds. Because
wt(T) = 1, by Lemma 16, we have(T};) = t. Thus,

r(Tj) =t A d(Tj) =t +1. (57)

Let = be the latest time beforesuch thatl" is a Z-task atz. Because (56) and (57) hold, by Lemma 17, suchexists.

Therefore, we have
0<z2<t A (ATe:7r(Tk) <z ANd(Tk) >2)AN (V2’12 <2 <t 3Tk :r(T) <2 A d(Tx) > 2')). (58)
Becausevt(T') = 1 holds, by Lemma 16, (58) implies the following.

0<z<t A (Bly:r(Te)=2ANd(Tx) =2+ 1) A V2" 12 <2 <t (3T, :7(Tk) =2" A d(Tx) =2 +1)) (59)
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This is also illustrated in Fig. 9(b). We next show that the following holds.

(V2 tz<2 <tu(r(Tw) =2 ANd(Tx) =7 4+1) =

Fu' ' <t —(t—2") <2 = (S(Tk,u") =1 A there are no holes i, 2'))) (60)

The proof is by induction or’.

Base Case:z’ = t. By (57), we have-(T;) = t andd(T;) = ¢ + 1, and by (56), we hav&(T;,t"”) = 1. We also have

t" =t" — (t —t)andt” < t. Therefore, to show that (60) holds, we only have to show that there are no holes in any slot in
[t”,t). Assume to the contrary that there is a hole in sjoin [t”,¢). Then, by Lemma &(U;) < t, + 1 < t + 1, which

is in contradiction to (57). Therefore, there are no holes in any slot jn).

Induction Hypothesis: Assume that for alt’, wherez” < 2/ <tandt > 2" > 2+ 1, (r(Ty) =2 AN d(T}) =2 +1) =

(Fu' ' <t'—(t—2") <z = (S(Tk,u') =1 A there are no holes ip/, z’)) holds.

Induction Step: We now show that the following holds.

(r(Ty)=2"—1 N d(Ty) =2") =

(Fu' uw <t"—(t—2"—-1)< 2" (ST, u') =1 A there are no holes ip/, 2/ — 1)) (61)

By (59), there exists a subtagk such that(Ty) = 2” — 1 andd(Ty) = 2”. By the induction hypothesis, there exists

a subtaskl; with (7;) = 2" andd(T;) = 2"’ + 1, such thatl; is scheduled at or beford — (¢t — 2”). Now, because

r(Ty) < r(T7) holds, by (7).} is scheduled beforg,, i.e., T}, is scheduled at or befoté— (t —2")—1 = ¢/ — (t— (2" —1)).
Becauseg” — (t — (2" —1)) = 2" —1— (¢ —t"), by (56), we have” — (t — (2" — 1)) < 2z’ — 1. Thus, we have shown that

if the left-hand-side of the implication in (61) holds, then the first subexpression on the right-hand-side is satisfied. To see
that there are no holes [tI' — (t — (2 — 1)), 2" — 1), assume to the contrary that there is a hole intgjan this interval.

Then, by Lemma 8{(T}) < t, + 1 < 2” — 1, which is in contradiction tel(7}) = 2”. Therefore, there are no holes in

any slotin[t” — (t — (2” — 1)), 2" — 1). Thus, (60) holds foe” — 1.

(59) and (60) imply thafVz’' : z < 2’ <t :: there are no holes ief — 1). Therefore, it immediately follows that there

are no holes iriz, t). Also, we defined such thafl’ is aZ-task atz. Therefore, the lemma follows. O

Proof of parts (e), (f), (g), and (h) of Lemma 9.

Lemma 9 The following properties hold for andS.

(@) Forall T;, d(T;) < tq.
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(b) Exactly one subtask afmisses its deadline aj.

(c) LAG(7,tq) = 1.

(d) (VT; = d(T;) < tq = (Ft:e(T;) <t <d(T;) N S(T;,t)=1))

(e) LetUy be the subtask that misses its deadling;afThen,U is not scheduled &f; — 1.

(f) There are no holes in slag — 1.

(g) There exists atime < t; — 2 such that the following both hold.
(¢) There are no holes in every slotfin, t; — 2).
(16) LAG(7,v) > (tg —v)(1 — )M + 1.

(h) There exists atime € [0,ty — 3] such thatLAG(r,u) < land LAG(r,u+ 1) > 1.

As mentioned in the main text, parts (a), (b), and (c) are proved in [15]. Part (d) follows directly from (T1). The rest are
proved here.

Proof of (e): Let Uy, denote the subtask that misses its deadling. athen, for everyJ;, wherej < k, d(U;) < d(Uy) = tq,

and hence, by part (d)J; is scheduled beforg; — 1. Obviously, noU;, wherel > £, is scheduled befor&), is scheduled.

Therefore, no subtask &éf is scheduled at; — 1. O

Proof of (f): Let U, denote the subtask that misses its deadling.afhen, by part (e), no subtask bfis scheduled at
tq — 1. Thus, if there is a hole ity — 1, then EPDF would schedulg, there, which contradicts the fact tHaf misses its

deadline. O

Proof of (g): Definer; and N; as follows.

n = {T:Ter A wt(T)=1} (62)

Inl € N (63)

Then, we have

Nl S M7 (64)
and
> wtT)=aM —-N, ,byDef.6. (65)
Ter—7
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subtasks scheduled
atty—1

0

Do e Tpwt=1)
¢ o (atmostN ;)
SX

—

X,
LX
|_‘—'—.| T, (wt< 1)
Do (at least M=N )
LoIX ¢
A
I R

tg-1

Figure 10. lllustration for the lower bound on the number of tasks-ir 71 scheduled at; — 2. As illustrated, every subtask
of a non-unit-weight task scheduledtat— 1 is released at or befotg — 2, and there are at leadf — N; of them. The fact that
these subtasks are not schedulet;at 2 implies that there are at leadf — N; other subtasks scheduledtat— 2.

By part (f), there are no holes in slgf — 1. Therefore, by (64), at leadtl — N, tasks with weight less than onieg,
tasks inr — ;) are scheduled & — 1, i.e,,

> S(T,tg—1)> M — Ny (66)

Ter—T11

Let
T:{Ti:TET—Tl/\S(Ti,td—l):1}. (67)

Let U, denote the subtask that misses its deadlirtg.aBecausel(Uy) = t4 andU is not scheduled dt; — 1 (by part e),
the deadline of every subtask schedulet};at 1 is equal tat,. (Itis not less tham,, by part (d).) LetV; be a subtask iff".
By Lemma 1, and because (V) < 1 holds,|w(V})| > 2 holds. This implies that the release timelgf and in general, the
release time of each subtaskinis at or before;; — 2, as shown in Fig. 10.

Thus, by (66), at least/ — N; subtasks scheduledgt— 1 have their release times at or befoge— 2. By (63), at every
time slot at leasf\/ — N, processors are available for scheduling tasks, inTherefore, the fact that no subtaskZnis
scheduled at; — 2 implies that for every subtask; in 7, some other subtask of a task#in— 7, (which could beV;’s

predecessor) is scheduled at- 2, i.e., we have the following.

(P1) At leastM — Nj tasks inr — 7, are scheduled af — 2.
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Let h > 0 denote the number of holes in skgt— 2. Then, by (P1), itimplies thatat modf — (M — N;) —h=N; — h
tasks inr; are scheduled af — 2, i.e,,

3 STyt —2) € Ny < Ny — b (68)

TeT

Let 7f denote the subset of all tasks7inthat are not scheduled &t — 2.1f » > 0 holds, thenrf # () holds, and let” be a
task in7f. By Lemma 18, there exists a time< ¢, — 2 such thatl” is a Z-task atu and there are no holes in any slot in
[u,tq — 2). Definev as follows.
def ta — 2, =0
miny e,z {u < ta — 2 : there are no holes iju, t4 — 2) andY is aZ-task in at least one slot i, t4 — 1)}, 77 # 0

v satisfies the following.

Every task inr{ is aZ-task in at least one slot in the interjal t4 — 1). (69)

There are no holes i, t; — 2). (70)

To complete the proof, we are left with determining a lower bound.dr7 (7, v). By (21), we have

LAG(T,v) LAG(7,ta) ZTGT sz_vl (share(T,u) — S(T,u)) , by (21)
= 1= Ye, XUl (share(T,u) = S(T,u)) , by part (c)
= 1= ZTGT Zid:_ul share(T',u) + ZTGT Zid:_vl S(T,u)
= 1= (e, St ! share(T, u)) + (ta — v)M — h
, there areh holes inty — 2; by part (f), there are no holes ip — 1, and by (70), there are no holes[in t; — 2)
= 1= e, S share(Tou) = Y0 ST P share(T,u) = 5o share(T,ta — 1) + (ta — v)M — h
> 1= Y, ) share(Tow) = Fge, Yoyl wi(T) = Yope, wh(T) + (ta = )M — h
» by (17)
= 1= e, S 2 share(T,u) — (@M — Ni)(ta — v — 1) — aM + (tg — v)M — h , by (65) and Def. 6
= 1= Yre(m-rp) St share(T, u) ~ Yorer: S°2 share(T, w)

—(aM — Ni)(ta—v—1)—aM + (ta —v)M — h

> 1= Y re(ry ) oy WHT) = Ve, Y, share(T, u)
—(aM = N1)(ta—v—1)—aM + (ta—v)M —h , by (17)
= 1= (Ni)(ta —v—=1) = Ype, S 2 share(T,u) — (@M — Ni)(ta —v — 1) —aM + (tg —v)M — h
, by (68), and the definitions of, andr{
= 1- ZTGTf v <u<ta—2 A TisnotaZ-task at) share(T, v)
—(N{)(ta—v—1)— (aM — N1)(ta—v—1) —aM + (ta —v)M — h , by Def. 8 and (14)
>

1= rer: 2w <u < ts—2 A Tisnot aZ-task atu) WHT)
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—(N{)(ta —v —1) — (@M — N )(ta —v — 1) — aM + (ta — v)M — h by (17)

vV
—
\
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m
3
Hau
—
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9
|
<
\
™
N
g
<%
~
S
-

—(N{)(ta—v—=1)—(aM = N1)(ta—v—1) —aM + (ta —v)M — h , by (69)

, by (68), and the definitions of, andr{

= 14+ N1 — Ny —aM(tq—v)+ M(tq —v) —h , simplifying
> 14+h—aM(tq—v)+ M(tqg—v) —h , by (68)
= 14+ (M —aM)(tq —v). O

Proof of (h): Follows from the facts that AG(,0) = 0 and there existsa < t; — 2 such thatL AG (7, v) > (tq —v)(1 —

a)M + 1 (from part (g)). Note that, by Lemma &, — v)(1 — )M +1 > 1. ]
Lemma 19 W*ﬁ@ﬁgﬁ%iﬁ;fvﬁj:;)*k)*l < 1, wherek = LW;MJ +1,forall 0 < Winax <1, M > 1.

Proof: Because: = {Wl J + 1 (by the statement of the lemma), we have

ko= {Wl J+1
o1
Wmax
1
& Whax > % (71)

Further,

(k(k— DM + 1)((k — D)Wiax + k) =1 ME*(k — 1) (Winax + 1) + (k — 1) (Winax + 1 — MEWinax)
MFE2(k —1)(1 + Winax) B ME2(k —1)(Wax + 1) '

By (71), Wiax + 1 — MkWyax < Whax + 1 — M holds. BecauséV,,.. + 1 — M < 0 holds for allM > 1,

Wax + 1 — MkWhax < 0 holds. Becausé > 2 holds, we havek — 1)(Wyax + 1 — MkWhax) < 0, and hence,

ME? (k—1)(Winax+1)+(k—1) (Winax+1—MEWoax)
MEZ(k—1)(Wmax+1) < 1 holds. -

Lemma 20 A solution to the recurrence

Ly < 640-aM

Ly < ¢6-Ly_1+6-(2aM — M), (72)
where0 < ¢ < 1, is given by
Ly, < 61 (1 + aM) + (1 — 6*) (155> (2aM — M), forall k > 0. (73)
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Proof: The proof is by induction o#.
Base CaseHolds fork = 0.
Induction Hypothesis: Assume that (73) holds fdty, ..., Lg.

Induction Step: Using (72), we have

Lisi < OLg+6(2aM — M)
< M1+ aM) +6(1 — &*) (1%) (2aM — M) +6(2aM — M) , by (73) (induction hypothesis)
= (1 +aM)+52aM - M)(1-5")(25) +1)
SEF2(1 + M) + (1 — 5+ (%) (2aM — M),
which proves the lemma. ]

1 M(2—6—6"t 4o 25" T141-46
M(2—snF1_§n+2)

M(2-6)+3

Lemma 2 ST holds foralln > 0,0 < § < 1/2,andM > 1.

Y]

Proof: Because

M(2—5=6"TH)4gnT2_snt141-6 > M((2-6)+3

M(2—6nF1—§nF2) = 2M
& BET2 — 357t L M TR(1 - §) + 2 — 40 >0 » simplifying
& e+ 3gntl 4 25m2(1 — 6) + 2 — 46 >0 , becausé/ > 1and0 <4 <1/2
o _9§nt3 + 75n 2 35t 44§ +2 >0,

def

it suffices to show thab(d) = —267*3 4 7672 — 367t — 46 +2 > 0,for0 < § < 1/2 andn > 0. Because

h(8) = —(26 — 1)(6"*1(6 — 3) + 2), and—(25 — 1) > 0, it suffices to show thaj () f §"tH(§ — 3) + 2 s at least zero.

; ot e i n _ _ 3(n+l1
The first derivative of;(0) is given byg’(§) = 6™ ((n + 2)é — 3(n + 1)). The roots ofy’(§) areé = 0 andd = (n+2 ),

3(:;1) > 2 holds for alln > 0. Thereforeg(6) is either increasing or decreasingin3]. g(0) = 2 andg(3) liesin[2, 2]

forall n > 0. Thereforey(d) is positive in[0, 1], and hencel(§) > 0 in that interval. O
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