
Schedulable Utilization Bounds for EPDF Fair
Multiprocessor Scheduling?

UmaMaheswari C. Devi and James H. Anderson

Department of Computer Science,
The University of North Carolina, Chapel Hill, NC 27599, U.S.A.

Email: {uma,anderson }@cs.unc.edu

Abstract. The earliest-pseudo-deadline-first(EPDF) algorithm is less expensive
than other known Pfair algorithms, but is not optimal for scheduling recurrent
real-time tasks on more than two processors. Prior work established sufficient
per-task weight (i.e., utilization) restrictions that ensure that tasks either do not
miss their deadlines or have bounded tardiness when scheduled under EPDF. Im-
plicit in these restrictions is the assumption that total system utilization may equal
the total available processing capacity (i.e., the total number of processors). This
paper considers an orthogonal issue — that of determining a sufficient restriction
on the total utilization of a task set for it to be schedulable under EPDF, assuming
that there are no per-task weight restrictions. We prove that a task set with total
utilization at most3M+1

4
is correctly scheduled under EPDF onM processors,

regardless of how large each task’s weight is. At present, we do not know whether
this bound is tight. However, we provide a conterexample that shows that it cannot
be improved to exceed86% of the total processing capacity. Our schedulability
test is expressed in terms of the maximum weight of any task, and hence, if this
value is known, may be used to schedule task sets with total utilization greater
than 3M+1

4
.

? Work supported by NSF grants CCR 9988327, ITR 0082866, CCR 0204312, and CCR
0309825.

1 Introduction

We consider the scheduling of recurrent (i.e., periodic, sporadic, or rate-based) real-time
task systems on multiprocessor platforms comprised ofM identical, unit-capacity pro-
cessors. Pfair scheduling, originally introduced by Baruahet al. [8], is the only known
way of optimally scheduling such multiprocessor task systems. Under Pfair scheduling,
each task must execute at an approximately uniform rate, while respecting a fixed-size
allocation quantum. A task’s execution rate is defined by itsweight (i.e., utilization).
Uniform rates are ensured by subdividing each task into quantum-lengthsubtasksthat
are subject to intermediate deadlines, calledpseudo-deadlines. Subtasks are then sched-
uled on an earliest-pseudo-deadline-first basis. However, to avoid deadline misses, ties
among subtasks with the same deadline must be broken carefully. In fact, tie-breaking
rules are of crucial importance when devising optimal Pfair scheduling algorithms.

Srinivasan and Anderson observed that overheads associated with tie-breaking rules
may be unnecessary or unacceptable for manysoft real-time task systems [17]. A soft
real-time task differs from a hard real-time task in that its deadlines mayoccasionallybe
missed. If a job (i.e., task instance) or a subtask with a deadline at timed completes exe-
cuting at timet, then it is said to have atardinessof max(0, t−d). Overheads associated
with tie-breaking rules motivated Srinivasan and Anderson to consider the viability of
scheduling soft real-time task systems using the simplerearliest-pseudo-deadline-first
(EPDF) Pfair algorithm, which uses no tie-breaking rules. They succeeded in showing
that EPDF isoptimal on up to two processors [2], and that if each task’s weight is at
most q

q+1 , then EPDF guarantees a tardiness of at mostq quanta for every subtask [17].

In later work [10], we showed that this condition can be improved toq+1
q+2 . If M denotes

the total number of processors, then with either condition, the total utilization of a task
set may equalM .

In this paper, we address an orthogonal question: If individual tasks cannot be sub-
ject to weight restrictions, then what would be a sufficient restriction on the total utiliza-
tion of a task set for it to be correctly scheduled under EPDF? We answer this question
by providing a sufficientutilization-basedschedulability test for EPDF. Such a test is
specified by establishing a schedulable utilization bound. IfU(M) is a schedulable uti-
lization bound for scheduling algorithmA, thenA can correctly schedule any set of
recurrent tasks with total utilization at mostU(M) on M processors [13]. If it is also
the case that no schedulable utilization bound forA can exceedU(M), thenU(M) is
anoptimalschedulable utilization bound forA.

Schedulability tests can generally be classified as being eitherutilization-basedor
demand-based. Though utilization-based tests are usually less accurate than demand-
based tests, they can be evaluated in time that is polynomial in the number of tasks. In
dynamic systems in which tasks may leave or join at arbitrary times, constant time is
sufficient to determine whether a new task may be allowed to join if a utilization-based
test is used. On the other hand, demand-based tests require either exponential time,
or, at best, pseudo-polynomial time, and hence, when timeliness is a concern, as in
online admission-control tests, utilization-based tests are usually preferred. Therefore,
devising utilization-based tests is of considerable value and interest.

Optimal schedulable utilization bounds are known for several scheduling algorithms.
In the domain of uniprocessor scheduling, a bound of1.0 is optimal for preemptive

earliest-deadline-first (EDF) scheduling, while one ofN(21/N − 1) is optimal for pre-
emptive rate-monotonic (RM) scheduling, whereN is the number of tasks [12]. The
RM bound converges toln 2 ≈ 0.69 asN →∞.

Multiprocessor scheduling algorithms use either apartitionedor global scheduling
approach. Under partitioning, tasks are assigned to processors by defining a many-to-
one mapping (a surjective function) from the set of tasks to the set of processors. Thus,
each task is bound to a single processor, and every instance of that task may execute
upon that processor only. A separate instance of a uniprocessor scheduling algorithm is
then used to schedule the tasks assigned to a processor. IfWmax, where0 < Wmax ≤
1, denotes the maximum weight of any task, then a scheduleable utilization bound of
βM+1
β+1 , whereβ =

⌊
1

Wmax

⌋
is optimal for the partitioned approach, if EDF is the per-

processor scheduling algorithm used [14]. This bound approachesM+1
2 asWmax →

1.0. Because EDF is an optimal uniprocessor scheduling algorithm, a higher bound is
not possible with any other per-processor scheduling algorithm.

Under global scheduling, a task may execute on any processor. This approach can
be further differentiated based upon whether a preempted instance is allowed to re-
sume execution on a different processor. If each job is bound to a single processor only,
then migrations are said to berestricted; otherwise, they areunrestricted. Under global
scheduling, among job-level fixed-priority algorithms, such as EDF, a schedulable uti-
lization bound exceedingM+1

2 is impossible, regardless of the nature of migrations [6,
7]. Among static-priority scheduling algorithms, such as RM, a schedulable utilization
bound exceedingM2 is impossible for the unrestricted-migrations case [4, 5]. Observe
that each of the multiprocessor schedulable utilization bounds considered so far con-
verges to50% of the total processing capacity.

Pfair scheduling algorithms also fall under the global scheduling category. How-
ever, as mentioned earlier, optimal scheduling on multiprocessors is possible with Pfair
scheduling. Therefore, each of the optimal Pfair algorithms PF [8], PD [9], and PD2 [16],
has an optimal schedulable utilization bound ofM .

Contributions. In this paper, we show that(k(k−1)M+1)(k+(k−1)Wmax)−1
k2(k−1)(1+Wmax) , wherek =⌊

1
Wmax

⌋
+ 1, is a schedulable utilization bound for the simpler EPDF Pfair scheduling

algorithm onM > 2 processors.1 For Wmax > 1
2 , i.e., k = 2, this bound reduces to

(2M+1)(2+Wmax)−1
4(1+Wmax) , and asWmax → 1.0, it approaches3M+1

4 , which approaches3M
4 ,

i.e., 75% of the total processing capacity, asM → ∞. Note that this bound is greater
than that of every known non-Pfair algorithm by25%. At present, we do not know if
this bound is optimal. However, we provide a counterexample that shows that the bound
with Wmax = 1 cannot exceed86%. Finally, we extend this bound to allow a tardiness
of q quanta.

The rest of the paper is organized as follows. Sec. 2 provides an overview of Pfair
scheduling. In Sec. 3, the schedulable utilization bound for EPDF mentioned above is
derived. Sec. 4 concludes.

1 EPDF is optimal on up to two processors [3]. Therefore, its optimal schedulable utilization
bound onM ≤ 2 processors isM .

2 Pfair Scheduling
In this section, we summarize relevant Pfair scheduling concepts and state the required
definitions and results from [1–3, 8, 16, 17]. Initially, we limit attention to periodic tasks
that begin execution at time 0. Such a taskT has an integerperiod T.p, an integer
execution costT.e, and aweightwt(T) = T.e/T.p, where0 < wt(T) ≤ 1. A task is
light if its weight is less than12 , andheavy, otherwise.

Pfair algorithms allocate processor time in discrete quanta; the time interval[t, t +
1), wheret is a nonnegative integer, is calledslot t. (Hence, timet refers to the begin-
ning of slott.) A task may be allocated time on different processors, but not in the same
slot (i.e., interprocessor migration is allowed but parallelism is not). The sequence of
allocation decisions over time defines ascheduleS. Formally,S : τ × N 7→ {0, 1},
whereτ is a task set andN is the set of nonnegative integers.S(T, t) = 1 iff T is
scheduled in slott. OnM processors,

∑
T∈τ S(T, t) ≤ M holds for allt.

Lags and subtasks. The notion of a Pfair schedule is defined by comparing such a
schedule to an ideal fluid schedule, which allocateswt(T) processor time to taskT in
each slot. Deviation from the fluid schedule is formally captured by the concept oflag.
Formally, thelag of task T at time tis lag(T, t) = wt(T) · t −

∑t−1
u=0 S(T, u). (For

conciseness, we leave the schedule implicit and uselag(T, t) instead oflag(T, t, S).)
A schedule is defined to bePfair iff

(∀T, t :: −1 < lag(T, t) < 1). (1)

Informally, the allocation error associated with each task must always be less than one
quantum.

These lag bounds have the effect of breaking each taskT into an infinite sequence
of quantum-lengthsubtasks. We denote theith subtask of taskT asTi, wherei ≥ 1.
As in [8], we associate apseudo-releaser(Ti) and apseudo-deadlined(Ti) with each
subtaskTi, as follows. (For brevity, we often drop the prefix “pseudo-.”)

r(Ti) =
⌊

i− 1
wt(T)

⌋
∧ d(Ti) =

⌈
i

wt(T)

⌉
(2)

To satisfy (1),Ti must be scheduled in the intervalw(Ti) = [r(Ti), d(Ti)), termed its
window. Thelengthof Ti’s window, denoted|w(Ti)|, is given by

|w(Ti)| = d(Ti)− r(Ti). (3)

As an example, consider subtaskT1 in Fig. 1(a). Here, we haver(T1) = 0, d(T1) = 2,
and|w(T1)| = 2.

Note that, by (2),r(Ti+1) is eitherd(Ti) − 1 or d(Ti). Thus, consecutive windows
either overlap by one slot, or are disjoint. The “b-bit,” denoted byb(Ti), distinguishes
between these possibilities. Formally,

b(Ti) =
⌈

i

wt(T)

⌉
−

⌊
i

wt(T)

⌋
. (4)

For example, in Fig. 1(a),b(Ti) = 1 for 1 ≤ i ≤ 7 andb(T8) = 0. We often overload
function S (described earlier) and use it to denote the allocation status ofsubtasks.
Thus,S(Ti, t) = 1 iff subtaskTi is scheduled in slott.

0 1 2 3 4 5 6 7 8 9 10 11 120 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

T4

T5

T6

T7

T8

T1

T2

T3

T4

T5

T6

T7

T8

T1

T2

T3

T5

T6

T7

T8

(b)(a) (c)

Fig. 1. (a) Windows of the first job of a periodic taskT with weight8/11. This job consists of
subtasksT1, . . . , T8, each of which must be scheduled within its window, or else a lag-bound
violation will result. (This pattern repeats for every job.)(b) The Pfair windows of an IS task.
SubtaskT5 becomes eligible one time unit late.(c) The Pfair windows of a GIS task. SubtaskT4

is absent and subtaskT6 becomes eligible one time unit late.

Algorithm EPDF. Most Pfair scheduling algorithms schedule tasks by choosing sub-
tasks to schedule at the beginning of every quantum. As its name suggests, the earliest-
pseudo-deadline-first (EPDF) Pfair algorithm gives higher priority to subtasks with ear-
lier deadlines. A tie between subtasks with equal deadlines is broken arbitrarily. As
mentioned earlier, EPDF is optimal on at most two processors, but not on an arbitrary
number of processors [3].

Task models. In this paper, we consider theintra-sporadic(IS) task model and the
generalized-intra-sporadic(GIS) task model [2, 16], which provide a general notion of
recurrent execution that subsumes that found in the well-studied periodic and sporadic
task models. Thesporadicmodel generalizes the periodic model by allowing jobs to be
released “late”; the IS model generalizes the sporadic model by allowing subtasks to be
released late, as illustrated in Fig. 1(b). More specifically, the separation betweenr(Ti)
andr(Ti+1) is allowed to be more thanbi/wt(T)c − b(i − 1)/wt(T)c, which would
be the separation ifT were periodic. Thus, an IS task is obtained by allowing a task’s
windows to be shifted right from where they would appear if the task were periodic.

Let θ(Ti) denote theoffsetof subtaskTi, i.e., the amount by whichw(Ti) has been
shifted right. Then, by (2), we have the following.

r(Ti) = θ(Ti) +
⌊

i− 1
wt(T)

⌋
∧ d(Ti) = θ(Ti) +

⌈
i

wt(T)

⌉
(5)

The offsets are constrained so that the separation between any pair of subtask releases
is at least the separation between those releases if the task were periodic. Formally,

k > i ⇒ θ(Tk) ≥ θ(Ti). (6)

Each subtaskTi has an additional parametere(Ti) that specifies the first time slot in
which it is eligible to be scheduled. In particular, a subtask can become eligible before
its “release” time. It is required that

(∀i ≥ 1 :: e(Ti) ≤ r(Ti) ∧ e(Ti) ≤ e(Ti+1)). (7)

Intervals[r(Ti), d(Ti)) and[e(Ti), d(Ti)) are called thePF-windowandIS-windowof
Ti, respectively. A schedule for an IS system isvalid iff each subtask is scheduled in its
IS-window. (Note that the notion of a job is not mentioned here. For systems in which

subtasks are grouped into jobs that are released in sequence, the definition ofe would
preclude a subtask from becoming eligible before the beginning of its job.)

b-bits for IS tasks are defined in the same way as for periodic tasks (refer to (4)).
r(Ti) is defined as follows.

r(Ti) =
{

e(Ti), if i = 1
max(e(Ti), d(Ti−1)− b(Ti−1)), if i ≥ 2 (8)

Thus, ifTi is eligibleduringTi−1’s PF-window, thenr(Ti) = d(Ti−1)− b(Ti−1), and
hence, the spacing betweenr(Ti−1) andr(Ti) is exactly as in a periodic task system.
On the other hand, ifTi becomes eligibleafterTi−1’s PF-window, thenTi’s PF-window
begins whenTi becomes eligible. Note that (8) implies that consecutive PF-windows of
the same task are either disjoint, or overlap by one slot, as in a periodic system.

Ti’s deadlined(Ti) is defined to ber(Ti) + |w(Ti)|. PF-window lengths are given

by (3), as in periodic systems. Thus, by (5), we have|w(Ti)| =
⌈

i
wt(T)

⌉
−

⌊
i−1

wt(T)

⌋
and

d(Ti) = r(Ti) +
⌈

i
wt(T)

⌉
−

⌊
i−1

wt(T)

⌋
.

Generalized intra-sporadic task systems.A generalizedintra-sporadic task system
is obtained by removing subtasks from a corresponding IS task system. Specifically, in
a GIS task system, a taskT , after releasing subtaskTi, may release subtaskTk, where
k > i + 1, instead ofTi+1, with the following restriction:r(Tk) − r(Ti) is at least⌊

k−1
wt(T)

⌋
−

⌊
i−1

wt(T)

⌋
. In other words,r(Tk) is not smaller than what it would have been if

Ti+1, Ti+2, . . . ,Tk−1 were present and released as early as possible. For the special case

whereTk is the first subtask released byT , r(Tk) must be at least
⌊

k−1
wt(T)

⌋
. Fig. 1(c)

shows an example. IfTi is the most recently released subtask ofT , thenT may release

Tk, wherek > i, as its next subtask at timet, if r(Ti) +
⌊

k−1
wt(T)

⌋
−

⌊
i−1

wt(T)

⌋
≤ t. If a

taskT , after executing subtaskTi, releases subtaskTk, thenTk is called thesuccessor
of Ti andTi is called thepredecessorof Tk.

As shown in [2], a valid schedule exists for a GIS task setτ on M processors iff∑
T∈τ wt(T) ≤ M .

Shares and lags in IS and GIS task systems.The lag ofT at timet is defined in the
same way as for periodic tasks [16]. Letideal(T, t) denote the processor share thatT
receives in an ideal fluid (processor-sharing) schedule in[0, t). Then,

lag(T, t) = ideal(T, t)−
t−1∑
u=0

S(T, u). (9)

Before definingideal(T, t), we defineshare(T, u), which is the share assigned to task
T in slot u. share(T, u) is defined in terms of a functionf that indicates the share
assigned to each subtask in each slot.

f(Ti, u) =


(
⌊

i−1
wt(T)

⌋
+ 1)× wt(T)− (i− 1), u = r(Ti)

i− (
⌈

i
wt(T)

⌉
− 1)× wt(T), u = d(Ti)− 1

wt(T), r(Ti) < u < d(Ti)− 1
0, otherwise

(10)

Using (10), it is not difficult to see that

(∀i > 0, u ≥ 0 :: f(Ti, u) ≤ wt(T)). (11)

Givenf , share(T, u) can be defined in terms off as

share(T, u) =
∑

i

f(Ti, u). (12)

share(T, u) usually equalswt(T), but in certain slots, it may be less thanwt(T), so
that the total allocation that a subtaskTi receives in the slots that span its window is
exactly one in the ideal system. These and similar properties have been formally proved
in [15]. Later in this paper, we will use (13) and (14) given below.

(∀u ≥ 0 :: share(T, u) ≤ wt(T)) (13)

(∀Ti ::
d(Ti)−1∑
u=r(Ti)

f(Ti, u) = 1) (14)

Having definedshare(T, u), ideal(T, t) can then be defined as
∑t−1

u=0 share(T, u).
Hence, from (9),

lag(T, t + 1) =

t∑
u=0

(share(T, u)− S(T, u))

= lag(T, t) + share(T, t)− S(T, t). (15)

The total lag for a task systemτ with respect to a scheduleS at time t, denoted
LAG(τ, t) is then given by

LAG(τ, t) =
∑
T∈τ

lag(T, t). (16)

From (15) and (16),LAG(τ, t + 1) can be expressed as follows. (LAG(τ, 0) is defined
to be0.)

LAG(τ, t + 1) = LAG(τ, t) +
∑
T∈τ

(share(T, t)− S(T, t)). (17)

The rest of this section presents some additional definitions and results that will be
used in the rest of this paper.

Active tasks. It is possible for a GIS (or IS) task to have no eligible subtasks and a
share of zero during certain time slots, if subtasks are absent or are released late. Tasks
with and without subtasks at timet are distinguished using the following definition of
anactivetask. (A task that is active att is not necessarily scheduled att.)

Definition 1: A GIS taskU is activeat timet if it has a subtaskUj such thate(Uj) ≤
t < d(Uj).

Task classification[16]. Tasks inτ may be classified as follows with respect to a sched-
uleS and timet. 2

A(t): Set of all tasks that are scheduled att.
B(t): Set of all tasks that are not scheduled att, but are active att.
I(t): Set of all tasks that are neither active nor are scheduled att.

A(t), B(t), andI(t) form a partition ofτ , i.e.,

A(t) ∪B(t) ∪ I(t) = τ,

A(t) ∩B(t) = B(t) ∩ I(t) = I(t) ∩A(t) = ∅. (18)

Using (16) and (18) above, we have the following.

LAG(τ, t+1) =
∑

T∈A(t)

lag(T, t+1)+
∑

T∈B(t)

lag(T, t+1)+
∑

T∈I(t)

lag(T, t+1)(19)

The next definition identifies the last-released subtask att of any taskU .

Definition 2: SubtaskUj is thecritical subtask ofU at t iff e(Uj) ≤ t < d(Uj) holds,
and no other subtaskUk of U , wherek > j, satisfiese(Uk) ≤ t < d(Uk).

Holes. If fewer thanM tasks are scheduled at timet in S, then one or more processors
would be idle att. If k processors are idle duringt, then we say that there arek holes
in S at t. The following lemma, proved in [16], relates an increase in the total lag ofτ ,
LAG , to the presence of holes.

Lemma 1. [16] If LAG(τ, t + 1) > LAG(τ, t), then there are one or more holes int.

Intuitively, if there are no idle processors in slott, then the total allocation toτ in S
is at least the total allocation toτ in the ideal system in slott. Therefore,LAG cannot
increase.

Displacements.In our proof, we consider task systems obtained by removing subtasks.
If S is a schedule for a GIS task systemτ , then removing a subtask fromτ results in
another GIS systemτ ′, and may cause other subtasks to shift earlier inS, resulting in a
scheduleS ′ that is valid forτ ′. Such a shift is called adisplacementand is denoted by
a 4-tuple〈X(1), t1, X

(2), t2〉, whereX(1) andX(2) represent subtasks. This is equiva-
lent to saying that subtaskX(2) originally scheduled att2 in S displaces subtaskX(1)

scheduled att1 in S. A displacement〈X(1), t1, X
(2), t2〉 is valid iff e(X(2)) ≤ t1.

Because there can be a cascade of shifts, we may have a chain of displacements. This
chain is represented by a sequence of 4-tuples.

The next lemma concerns displacements and is proved in [16]. It states that a subtask
removal can only cause left shifts.

Lemma 2. [16] Let X(1) be a subtask that is removed fromτ , and let the resulting
chain of displacements in an EPDF schedule forτ be C = ∆1,∆2, . . . ,∆k, where
∆i = 〈X(i), ti, X

(i+1), ti+1〉. Thenti+1 > ti for all i ∈ [1, k].

2 For brevity, we let the task systemτ and scheduleS be implicit in these definitions.

3 Sufficient Schedulability Test for EPDF

In this section, we establish a sufficient schedulability test for EPDF by deriving a
schedulable utilization bound for it, given by the following theorem.

Theorem 1. (k(k−1)M+1)((k−1)Wmax+k)−1
k2(k−1)(1+Wmax) , whereWmax is the maximum weight of

any task inτ and k =
⌊

1
Wmax

⌋
+ 1, is a schedulable utilization bound of EPDF for

scheduling a GIS task systemτ onM > 2 processors.

As a shorthand, we defineU(M,Wmax) as follows.

Definition 3: U(M,Wmax)
def= (k(k−1)M+1)((k−1)Wmax+k)−1

k2(k−1)(1+Wmax) , wherek =
⌊

1
Wmax

⌋
+1.

For simplicity, we prove the theorem fork = 2, i.e., when the following holds.

1
2

< Wmax ≤ 1 (20)

Later, we show how to extend the proof fork > 2. Whenk = 2, U(M,Wmax) reduces
to (2M+1)(2+Wmax)−1

4(1+Wmax) .
We use the proof technique developed by Srinivasan and Anderson in [17] to prove

the above theorem. If Theorem 1 does not hold, thentd andτ defined as follows exist.
(In these definitions, we assume thatτ is scheduled onM processors.)

Definition 4: td is the earliest time that any task system (with each task weight at most
Wmax and total utilization at mostU(M,Wmax)) has a deadline miss under EPDF,i.e.,
some such task system misses a subtask deadline attd, and no such system misses a
subtask deadline prior totd.
Definition 5: τ is a task system with the following properties.

(T1) td is the earliest time that a subtask inτ misses its deadline underS, an EPDF
schedule forτ .
(T2) The weight of every task inτ is at mostWmax and the total utilization ofτ is at
mostU(M,Wmax).
(T3) No other task system satisfying (T1) and (T2) releases fewer subtasks in[0, td)
thanτ .
(T4) No other task system satisfying (T1), (T2), and (T3) has a larger rank thanτ at td,
where therank of a systemτ at t is the sum of the eligibility times of all subtasks with
deadlines at mostt, i.e., rank(τ, t) =

∑
{Ti:T∈τ ∧ d(Ti)≤t} e(Ti).

By (T1) and (T3), exactly one subtask inτ misses its deadline: if several such sub-
tasks exist, then all but one can be removed and the remaining subtask will still miss its
deadline, contradicting (T3).

In what follows, we use the shorthand notation given by Defs. 6 and 7 below.

Definition 6: α denotes the total utilization ofτ , expressed as a fraction ofM , i.e.,∑
T∈τ wt(T) = αM .

Definition 7: δ
def= Wmax

1+Wmax
.

The lemma below follows from the definitions ofU andα, (T2), and Lemma 12.

Lemma 3. 0 ≤ α ≤ U(M,Wmax)
M < 1.

The next lemma is immediate from the definition ofδ and (20).

Lemma 4. 1
3 < δ ≤ 1

2 .

We now prove some properties aboutτ andS. In proving some of these properties,
we make use of the following three lemmas established in prior work by Srinivasan and
Anderson.

Lemma 5. [16] If LAG(τ, t + 1) > LAG(τ, t), thenB(t) 6= ∅.
The following is an intuitive explanation for why Lemma 5 holds. Recall from Sec. 2
thatB(t) is the set of all tasks that are active and not scheduled att. By Def. 1, (10),
and (7), only tasks that are active att may have non-zero shares att in the ideal fluid
schedule. Therefore, if every task that is active att is scheduled att, then the total
allocation inS cannot be less than the total allocation in the ideal schedule, and hence,
by (17),LAG cannot increase across slott.

Lemma 6. [15] Let t < td be a slot with holes and letT ∈ B(t). Then, the critical
subtask att of T is scheduled beforet.

To see that the above lemma holds, letTi be the critical subtask ofT at t. By its defi-
nition, the IS-window ofTi overlaps slott, butT is not scheduled att. Also, there is at
least a hole int. Because EPDF does not idle a processor while there is a task with an
outstanding execution request, it should be the case thatTi is scheduled beforet.

Lemma 7. [16] Let Uj be a subtask that is scheduled in slott′, wheret′ ≤ t < td, in
S, where there is a hole int. Then,d(Uj) ≤ t + 1.

This lemma is true because it can be shown that ifd(Uj) > t + 1 holds, thenUj has
no impact on the deadline miss attd. In other words, it can be shown that if the lemma
does not hold, then the task system obtained fromτ by removingUj also has a deadline
miss attd, which contradicts (T3).

Lemma 8. The following properties hold forτ andS.

(a) For all Ti, d(Ti) ≤ td.
(b) Exactly one subtask ofτ misses its deadline attd.
(c) LAG(τ, td) = 1.
(d) (∀Ti :: d(Ti) < td ⇒ (∃t :: e(Ti) ≤ t < d(Ti) ∧ S(Ti, t) = 1)).
(e) Let Uk be the subtask that misses its deadline attd. Then,U is not scheduled at

td − 1.
(f) There are no holes in slottd − 1.
(g) There exists a timev ≤ td − 2 such that the following both hold.

(i) There are no holes in[v, td − 2).
(ii) LAG(τ, v) ≥ (td − v)(1− α)M + 1.

(h) There exists a timeu ∈ [0, td−3] such thatLAG(τ, u) < 1 andLAG(τ, u+1) ≥ 1.

Parts (a), (b), and (c) are proved in [16]. Part (d) follows directly from (T1). The re-
maining are proved in [11].

Overview of the rest of the proof of Theorem 1. By Lemma 8(h), iftd andτ as de-
fined by Defs. 4 and 5, respectively, exist, then there exists a time slotu < td−2 across

subtasks
scheduled
at t−1 . .

 .

t−1 t t+1

X

X

X

X

X

X

X

t ’

Uj

Fig. 2. Illustration for Lemma 10. Sub-
taskUj is as specified in the proof. Di-
rected arcs depict some displacements
that may be possible ifUj is removed. If
there is a hole int − 1, then the crossed
out displacements are not possible, and
hence, the displacements chain cannot
extend beyond slott − 1.

which LAG increases to at least one. To prove
Theorem 1, we show that for every suchu, either
(i) there exists a timeu′, whereu+1 < u′ ≤ td,
such thatLAG(τ, u′) < 1, and thereby derive
a contradiction to Lemma 8(c), or(ii) there does
not exist av ≤ td−2 such that there are no holes
in [v, td−2) andLAG(τ, v) > (td−v)(1−α)M ,
deriving a contradiction to Lemma 8(g). In what
follows, we state and prove several other lemmas
that are required to accomplish this.

The first lemma shows thatLAG does not
increase across slot zero.

Lemma 9. LAG(τ, 1) ≤ LAG(τ, 0) = 0.

Proof. Assume to the contrary thatLAG(τ, 1) >
LAG(τ, 0). Then, by Lemma 5,B(0) 6= ∅
holds. Let T be a task inB(0) and let Ti

be its critical subtask at time zero. Then, by
Lemma 6,Ti is scheduled before time zero,
which is impossible. Therefore, our assumption
thatLAG(τ, 1) > LAG(τ, 0) holds is incorrect.

2

By Lemma 1, one or more holes in slott are
necessary forLAG to increase acrosst. The next
lemma shows that there are no holes in slott−1
in this case.

Lemma 10. If LAG(τ, t + 1) > LAG(τ, t), where1 ≤ t < td − 2, then there are no
holes in slott− 1.

Proof. Contrary to the statement of the lemma, assume the following.

(B) There is a hole in slott− 1.

By Lemma 7, this assumption implies that the deadline of every subtaskTi scheduled at
t− 1 is at mostt. Becauset < td holds, by Lemma 8(d),Ti does not miss its deadline.
Therefore, we have the following.

(∀Ti :: S(Ti, t− 1) = 1 ⇒ d(Ti) = t) (21)

Refer to Fig. 2 for an illustration.
BecauseLAG(τ, t + 1) > LAG(τ, t) holds (by the statement of the Lemma), by

Lemma 5,B(t) is not empty. LetU be any task inB(t) and letUj be its critical subtask
at t. Then, by Lemma 6,Uj is scheduled beforet in S, say att′, i.e.,

S(Uj , t
′) = 1 ∧ t′ < t. (22)

Also, by Def. 2,

d(Uj) ≥ t + 1. (23)

Let τ ′ be the task system obtained by removingUj from τ , and letS ′ be the schedule
that results due to the left shifts caused inS byUj ’s removal. We show that the left shifts
do not extend beyond slott − 1, which would imply that a deadline is still missed at
td in S ′. This in turn would imply thatτ ′, with one subtask fewer thanτ , also has a
deadline miss attd, contradicting (T3).

Let ∆1,∆2, . . . ,∆n be the chain of displacements inS caused by removingUj ,
where∆i = 〈X(i), ti, X

(i+1), ti+1〉, 1 ≤ i ≤ n, andX(1) = Uj . By Lemma 2,ti <
ti+1 holds for all1 ≤ i ≤ n. By (22),t1 = t′ < t holds, as illustrated in Fig. 2. Because
EPDF scheduledX(i) atti in preference toX(k) in S, wherei < k ≤ n+1, the priority
of X(i) is at least as high as that ofX(k). In other words, we haved(X(i)) ≤ d(X(k)),
for all 1 ≤ i < k ≤ n + 1. BecauseX(1) = Uj , by (23), this implies the following.

(∀k : 1 ≤ k ≤ n + 1 :: d(X(k)) ≥ t + 1) (24)

We next show that the chain of displacements does not extend beyond slott − 1.
Suppose that the displacements extend beyond slott − 1. Let ∆h, 1 ≤ h ≤ n be the
displacement with the smallest index such thatth ≤ t− 1 andth+1 ≥ t holds. Because
∆h is valid,e(X(h+1)) ≤ th holds. Now, ifth < t− 1, then since there is a hole in slot
t− 1, X(h+1) should have been scheduled att− 1 in S and not atth+1 ≥ t. Therefore,
th = t− 1, i.e., X(h) is scheduled att− 1 in S. Hence, by (21), we haved(X(h)) = t,
which contradicts (24). This is illustrated in Fig. 2. Thus, the displacements do not
extend beyondt − 1, which implies that a deadline is still missed attd, contradicting
(T3). Therefore, our assumption in (B) is false. 2

The next lemma, proved in [11], bounds the lag of each task at timet + 1, wheret
is a slot with one or more holes.

Lemma 11. [11] If t < td is a slot with one or more holes, then the following hold.

(a) (∀T ∈ A(t) :: lag(T, t + 1) < wt(T))
(b) (∀T ∈ B(t) :: lag(T, t + 1) ≤ 0)
(c) (∀T ∈ I(t) :: lag(T, t + 1) = 0)

In proving the remaining lemmas, we make use of the following three lemmas. Their
proofs are omitted here due to space constraints, and can be found in the full version of
this paper [11].

Lemma 12. [11] (k(k−1)M+1)((k−1)Wmax+k)−1
Mk2(k−1)(1+Wmax) < 1, wherek =

⌊
1

Wmax

⌋
+ 1, for all

0 < Wmax ≤ 1 andM > 1.

Lemma 13. [11] A solution to the recurrence

L0 < δ + δ · αM

Lk ≤ δ · Lk−1 + δ · (2αM −M),

where0 ≤ δ < 1, is given by

Lk < δk+1(1 + αM) + (1− δk)
(

δ

1− δ

)
(2αM −M), for all k ≥ 0.

Lemma 14. [11] M(2−δ−δn+1)+δn+2−δn+1+1−δ
M(2−δn+1−δn+2) ≥ M(2−δ)+ 1

2
2M holds for alln ≥ 0, 0 ≤

δ ≤ 1/2, andM ≥ 1.

Having shown that a hole in slott − 1 is necessary forLAG to increase acrosst
(Lemma 10), we next show how to derive an upper bound onLAG at t + 1 in terms of
LAG at t andt− 1.

Lemma 15. Let t, where1 ≤ t < td − 2, be a slot such that there is at least a hole in
slot t and there is no hole in slott− 1. ThenLAG(τ, t + 1) ≤ LAG(τ, t) · δ + αM · δ
andLAG(τ, t + 1) ≤ LAG(τ, t− 1) · δ + (2αM −M) · δ.

Proof. By the statement of the lemma, there is at least one hole in slott. Therefore,
by Lemma 11, only tasks that are scheduled in slott, i.e., tasks in setA(t), may have
a positive lag att + 1. Let x denote the number of tasks scheduled att, i.e., x =∑

T∈τ S(T, t) = |A(t)|. Then, by (19), we have

LAG(τ, t + 1) ≤
∑

T∈A(t)

lag(T, t + 1)

<
∑

T∈A(t)

wt(T) , by Lemma 11

≤
∑

T∈A(t)

Wmax

= x · Wmax. , |A(t)| = x (25)

Using (17),LAG(τ, t + 1) can be expressed as follows.

LAG(τ, t + 1) = LAG(τ, t) +
∑
T∈τ

(share(T, t)− S(T, t))

= LAG(τ, t) +
∑
T∈τ

share(T, t)− x ,
∑

T∈τ
S(T, t) = x

≤ LAG(τ, t) +
∑
T∈τ

wt(T)− x , by (13)

= LAG(τ, t) + αM − x , by Def. 6 (26)

By (25) and (26), we have

LAG(τ, t + 1) ≤ min(x ·Wmax,LAG(τ, t) + αM − x). (27)

Becausex·Wmax increases with increasingx, whereasLAG(τ, t)+αM−x decreases,
LAG(τ, t + 1) is maximized whenx · Wmax = LAG(τ, t) + αM − x, i.e., when
x = LAG(τ,t)

1+Wmax
+ αM

1+Wmax
. Therefore, using either (25) or (26), we have

LAG(τ, t + 1) ≤ LAG(τ, t) ·
(

Wmax
1+Wmax

)
+ αM ·

(
Wmax

1+Wmax

)
= LAG(τ, t) · δ + αM · δ , by Def. 7. (28)

By the statement of the lemma again, there is no hole in slott−1. (Also, t ≥ 1, and
hence,t− 1 exists.) Therefore, using (17),LAG(τ, t) can be expressed as follows.

LAG(τ, t) = LAG(τ, t − 1) +
∑
T∈τ

(share(T, t − 1)− S(T, t − 1))

N
o

h
o
l
e
s

N
o

h
o
l
e
s

N
o

h
o
l
e
s

N
o

h
o
l
e
s

slots with
holesh

o
l
e
s

slots with
holes

slots with
holes

1I

2I .. In −1

...

0

t−1 t t+1 t1 t2 tn u u+1

I In

holes or
no holes

...

...

Fig. 3.Lemma 16.LAG(τ, t) < 1 andLAG(τ, t+1) ≥ 1. No two consecutive slots in[t−1, u)

are without holes. The objective is to determine a bound onLAG(τ, u).

= LAG(τ, t − 1) +
∑
T∈τ

share(T, t − 1)− M

,
∑

T∈τ
S(T, t − 1) = M (there are no holes int − 1)

≤ LAG(τ, t − 1) + αM − M , by (13) and Def. 6 (29)

Substituting (29) in (28), we haveLAG(τ, t + 1) ≤ LAG(τ, t− 1) · δ + (2αM −
M) · δ. 2

The next lemma shows how to boundLAG at the end of an interval that does not
contain two consecutive slots without holes.

Lemma 16. Let1 ≤ t < td − 2 be a slot across whichLAG increases to one, i.e.,

1 ≤ t < td − 2 ∧ LAG(τ, t) < 1 ∧ LAG(τ, t + 1) ≥ 1. (30)

Let u, wheret < u < td, be such that there is at least one hole inu − 1 and there are
no two consecutive slots without holes in the interval[t + 1, u). Then,LAG(τ, u) <
(2− 2α)M + 1.

Proof. Because (30) holds, by Lemmas 1 and 10, we have (C1) and (C2), respectively.

(C1) There is at least one hole in slott.
(C2) There is no hole in slott− 1.

By (C1) and the definition ofu, we have the following.

(∀t′ : t ≤ t′ ≤ u− 1 :: there is a hole int′ or t′ + 1) (31)

Let t1, t2, . . . , tn, wheret < t1 < t2 < . . . < tn < u−1 be the slots without holes
in [t, u). Then, by (C1) and (31), there is at least one hole in each ofti − 1 andti + 1
for all 1 ≤ i ≤ n.

We divide the interval[t − 1, u) into n + 1 non-overlapping subintervals using
the slots without holest − 1, t1, . . . , tn, as shown in Fig. 3. The subintervals denoted
I0, I1, . . . , In are defined as follows.

I0
def
=

{
[t − 1, t1), if t1 exists
[t − 1, u), otherwise

(32)

In
def
= [tn, u) (33)

Ik
def
= [tk, tk+1), for all 1 ≤ k < n (34)

Becauset > 1 andu < td hold (by the statement of the Lemma),I0 exists, and hence,

n ≥ 0. (35)

Before proceeding further, the following notation is in order. We denote the start
and end times ofIk, where0 ≤ k ≤ n, by tks andtkf , respectively,i.e., Ik is denoted as
follows.

Ik
def
= [tk

s , tk
f), for all k = 0, 1, . . . , n. (36)

LAG at tks + 2 is denotedLk, i.e.,

Lk
def
= LAG(τ, tk

s + 2), for all k = 0, 1, . . . , n. (37)

Note that the end of each subinterval is defined so that the following property holds.

(C3) For all k, 0 ≤ k ≤ n, there is no hole in slottks and there is at least one
hole in every slot̂t, wheretks + 1 ≤ t̂ < tkf .

Our goal now is to derive bounds forLAG at tkf , for all 0 ≤ k ≤ n. Towards this end,
we first establish the following claim.

Claim 1. (∀k, t′ : 0 ≤ k ≤ n, tks + 2 ≤ t′ ≤ tkf :: LAG(τ, t′) ≤ Lk).
The proof is by induction ont′.
Base Case:t′ = tks + 2. The claim holds by (37).
Induction Step: Assuming that the claim holds at all times in the interval[tks +
2, t′], wheretks +2 ≤ t′ < tkf , we show that it holds att′ +1. By this induction
hypothesis, we have

LAG(τ, t′) ≤ Lk. (38)

Becauset′ < tkf andt′ ≥ tks + 2 hold (by the induction hypothesis), by (C3),
there is at least one hole in botht′ andt′ − 1. Therefore, by the contrapositive
of Lemma 10,LAG(τ, t′ + 1) ≤ LAG(τ, t′), which by (38), is at mostLk. 2

Having shown thatLAG(τ, tkf) is at mostLk, we now boundLk. We start by determin-
ing a bound forL0. From (32) and (36), we havet0s = t− 1. Therefore,t0s + 2 = t + 1.
Because (C1) and (C2) hold, by Lemma 15,

L0 = LAG(τ, t + 1)
≤ δ · LAG(τ, t) + δ · αM

< δ + δ · αM, , LAG(τ, t) < 1 by (30). (39)

We next determine an upper bound forLk, where1 ≤ k ≤ n. Notice that by our
definition ofIk in (34), we havetks = tk−1

f . Thus,LAG(τ, tks) = LAG(τ, tk−1
f), and

hence, by Claim 1, we have

LAG(τ, tks) ≤ Lk−1. (40)

By (C3), there is a hole in slottks + 1 and no hole in slottks . Therefore, by Lemma 15,
LAG(τ, tks + 2) ≤ δ · LAG(τ, tks) + δ · (2αM −M), which by (37) and (40) implies

Lk = LAG(τ, tks + 2) ≤ δ · Lk−1 + δ · (2αM −M). (41)

By (33) and (36), we haveu = tnf . Therefore, by Claim 1 and (35), we have

LAG(τ, u) = LAG(τ, tnf) ≤ Ln, (42)

and hence, an upper bound onLAG(τ, u) can be determined by solving the recurrence
given by (39) and (41), which is restated below for convenience.

L0 < δ + δ · αM

Lk ≤ δ · Lk−1 + δ · (2αM − M)

By Lemma 13, a solution to the above recurrence is given by

Lk < δk+1(1 + αM) + (1− δk)
(

δ

1− δ

)
(2αM − M). (43)

Therefore,LAG(τ, u) ≤ Ln < δn+1(1 + αM) + (1− δn)
(

δ
1−δ

)
(2αM −M).

If Ln is at least(2−2α)M+1, thenδn+1(1+αM)+(1−δn)
(

δ
1−δ

)
(2αM−M) >

(2− 2α)M + 1, which on rearranging terms implies that

α >
M(2− δ − δn+1) + δn+2 − δn+1 + 1− δ

M(2− δn+1 − δn+2)

≥
M(2− δ) + 1

2

2M
, by Lemma 14, and0 ≤ δ ≤ 1/2 (by Lemma 4)

=
(2M + 1)(2 + Wmax)− 1

4M(1 + Wmax)
, by Def. 7

=
U(M, Wmax)

M
, by Def. 3 and (20). (44)

Because (44) is in contradiction to Lemma 3, we conclude thatLn < (2− 2α)M + 1.
Hence, by (42),LAG(τ, u) ≤ Ln < (2− 2α)M + 1. 2

Lemma 17. Let t < td − 2 be a slot such thatLAG(τ, t) < 1 ∧ LAG(τ, t + 1) ≥ 1
and letu be the earliest time aftert such thatu = td − 2 or there no no holes in each
of u andu + 1. (Note that this implies that no two consecutive slots in[t + 1, u) are
without holes.) Then, at least one of the following holds.

u ≤ td − 2, there are no holes in bothu andu + 1, andLAG(τ, u + 2) < 1. (45)

u = td − 2, there is at least a hole intd − 3, andLAG(τ, td − 2) < 2(1− α)M . (46)

u = td − 2, there is no hole intd − 3, at least a hole intd − 4,

LAG(τ, td − 3) < 3(1− α)M , andLAG(τ, td − 2) < 2(1− α)M. (47)

Proof. BecauseLAG(τ, t+1) > LAG(τ, t) holds (by the statement of the lemma), by
Lemma 1, we have the following.

(D1) There is at least a hole int.

We consider two cases depending onu.
Case 1:u ≤ td − 2 and there is no hole inu.
We first prove that there is at least one hole in slotu − 1. If u = t + 1 holds, then by
(D1), there is a hole int = u − 1; if u 6= t + 1, then the absence of holes inu − 1
would contradict the fact thatu is the earliest time aftert such that either there is no
hole in bothu andu + 1 or u = td − 2. Thus, there is at least one hole inu− 1, and by
the definition ofu, no two consecutive slots in the interval[t + 1, u) are without holes.
Therefore, by Lemma 16, we haveLAG(τ, u) < (2− 2α)M + 1.

To show thatLAG(τ, u + 2) < 1 holds, we next show that there are no holes in
u+1. If u < td−2 holds, then there are no holes inu+1 by the definition ofu. On the
other hand, ifu = td − 2, then there are no holes inu + 1 = td − 1 by Lemma 8(f). By
the assumption for this case, there are no holes inu either. Therefore, by (17), we have

LAG(τ, u + 2) = LAG(τ, u) +

u+2∑
v=u+1

∑
T∈τ

(share(T, v)− S(T, v))

= LAG(τ, u) +

u+2∑
v=u+1

∑
T∈τ

share(T, v)− 2M

, there are no holes inu andu + 1

< (2− 2α)M + 1 +

u+2∑
v=u+1

∑
T∈τ

share(T, v)− 2M

, LAG(τ, u) < (2− 2α)M + 1

≤ (2− 2α)M + 1 +

u+2∑
v=u+1

∑
T∈τ

wt(T)− 2M , by (13)

= (2− 2α)M + 1 + 2αM − 2M , by Def. 6

= 1.

Thus, condition (45) holds for this case.
Case 2:u = td − 2 and there is a hole in slottd − 2.
Becauseu = td − 2 holds for this case, by the definition ofu, the following holds.

(D2) No two consecutive slots in[t + 1, td − 2) are without holes.

Let u′ < td − 2 denote the last slot with no hole in[t + 1, td − 2). We consider the
following two subcases.
Subcase 2a:t < u′ < td − 3 or there is at least a hole in every slot in[t + 1, td − 2).
If t < u′ < td − 3 holds, then by the definition ofu′, there is at least a hole intd − 3.
On the other hand, if there is no slot without a hole in[t + 1, td − 2), then, because
t < td − 2 holds (by the statement of the lemma), by (D1), there is a hole intd − 3.
Therefore, by (D2) and becauseLAG(τ, t + 1) > LAG(τ, t) holds (by the statement
of the lemma), Lemma 16 applies withu = td − 2. Hence, by Lemma 16, we have
LAG(τ, td − 2) < (2− 2α)M + 1. Therefore, for this case, (46) is satisfied.
Subcase 2b:t < u′ = td−3. Because there is no hole in slottd−3 (by the assumption
of this subcase), (D2) implies that there is at least a hole in slottd−4. (Becausetd−3 >
t holds (by the assumption of this subcase again),td − 4 exists.) Therefore, because

LAG(τ, t + 1) > LAG(τ, t) holds, Lemma 16 applies withu = td − 3. Hence,

LAG(τ, td − 3) < (2− 2α)M + 1 , by Lemma 16 (48)

< (3− 3α)M + 1 , by Lemma 3. (49)

Further, by (17), we have

LAG(τ, td − 2) = LAG(τ, td − 3) +
∑
T∈τ

(share(T, td − 3)− S(T, td − 3))

< (2− 2α)M +
∑
T∈τ

(share(T, td − 3)− S(T, td − 3)) , by (48)

= (2− 2α)M +
∑
T∈τ

share(T, td − 3)− M

, there are no holes intd − 3 (by the assumption of this subcase)

≤ (2− 2α)M +
∑
T∈τ

wt(T)− M , by (13)

= (2− 2α)M + αM − M , by Def. 6

< (2− 2α)M. , by Lemma 3 (50)

By (D2), (49), and (50), condition (47) holds. 2

By part (h) of Lemma 8, there exists au, where0 ≤ u < td − 2, such that
LAG(τ, u) < 1 and LAG(τ, u + 1) ≥ 1. Let t be the largest suchu. Then, by
Lemma 17, one of the following holds.

(a) There exists at′, wheret′ ≤ td, such thatLAG(τ, t′) < 1.
(b) There does not exist av ≤ td − 2 such that there are no holes in[v, td − 2) and

LAG(τ, v) ≥ (td − v)(1− α)M + 1. (This is implied by both (46) and (47).)

If (a) holds, andt′ < td holds, then this contradicts the maximality oft. On the other
hand, ift′ = td, then it contradicts part (c) of Lemma 8. If (b) holds, then part (g) of the
same lemma is contradicted. Therefore, our assumption thatτ misses its deadline attd
is incorrect, which in turn proves Theorem 1, fork = 2.

As a corollary to Theorem 1, we have the following utilization-based schedulability
test for EPDF.

Corollary 1. A GIS task setτ is schedulable onM > 2 processors under EPDF if the
total utilization ofτ is at mostU(M,Wmax), whereWmax is the maximum weight of
any task inτ andU(M,Wmax) is given by Def.3.

Generalizing the proof. The proof of Theorem 1 given above fork = 2 can be
generalized tok > 2 as follows. If Wmax ≤ 1/2, then it can be shown that for
LAG(τ, t + 1) > LAG(τ, t) to hold, there should be no holes in slotst− 1 andt− 2,
which is a generalization of Lemma 10. In general, ifWmax ≤ 1

k−1 , then it can be
shown that at leastk− 1 slots precedingt are without holes. Similarly, parts (f) and (g)
of Lemma 8 can be generalized as follows. There are no holes in the lastk − 1 slots
(slots[td−k+1, td)), and there exists av ≤ td−k such that there are no holes in every
slot in [v, td − k) andLAG(τ, v) ≥ (td − v)(1− α)M + 1. A formal proof is omitted

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
ch

ed
ul

ab
le

 U
til

iz
at

io
n

Wmax

Schedulable Utilization by Wmax

EPDF
partitioned EDF
global job-level fixed priority

Fig. 4. Schedulable utilization byWmax.

due to space constraints. Fig. 4 shows the plot of the schedulable utilizaton of EPDF
(computed using the bound in Theorem 1 with a sufficiently largeM , and expressed as
a percentage of the total processing capacity) with respect toWmax. For comparison,
plots of optimal schedulable utilization for the partitioned approach with EDF [14] and
the global approach that assigns a fixed priority to each job [6] (computed using their
best known bounds expressed in terms ofWmax), are also shown in the same figure.

Is the schedulable utilization bound given by Theorem 1 optimal? As yet, we do
not know the answer to this question. However, as the following example shows, the
general bound cannot be improved to exceed0.86M .

Counterexample. Consider a task set comprised of2n + 1 tasks of weight12 , n tasks
of weight 3

4 , andn tasks of weight56 scheduled on3n processors. There is an EPDF
schedule for this task set in which a deadline miss occurs at time12. (The schedule is
not shown here due to space constraints.) The total utilization of this task set is31n

12 + 1
2 ,

which approaches86.1% of 3n, the total processing capacity, asn → ∞. Given that
devising counterexamples for Pfair scheduling algorithms is somewhat hard, we believe
that it may not be possible to significantly improve the bound of Theorem 1, which is
asymptotically75% of the total processing capacity.

Utilization restriction for a tardiness of q quanta. Having determined a sufficient
utilization restriction for schedulability under EPDF, we were interested in determining
a sufficient utilization restriction for a tardiness ofq quanta. Extending the technique
used above, we found that if the total utilization ofτ is at most(5q+6)M

5q+8 , then no sub-
task ofτ misses its deadline by more thanq quanta. For a tardiness of at most one, this
imposes a sufficient utilization restriction of84.6%. We feel that this is somewhat re-
strictive and that it can be improvedsignificantlyby identifying and exploiting the right
properties of a system with a tardiness ofq. We have deferred this for future work.

4 Conclusion

We have determined a schedulable utilization bound for the earliest-pseudo-deadline-
first (EPDF) Pfair scheduling algorithm, and thereby, presented a sufficient schedula-
bility test for EPDF. In general, this test allows any task set with total utilization not

exceeding3M+1
4 to be scheduled onM processors. Our schedulability test is expressed

in terms of the maximum weight of any task, and hence, may be used to schedule task
sets with total utilization greater than3M+1

4 . We have also presented a counterexample
that suggests that a significant improvement to the test may not be likely. Finally, we
have extended the test to allow a tardiness ofq quanta.

References

1. J. Anderson and A. Srinivasan. Early-release fair scheduling. InProc. of the 12th Euromicro
Conference on Real-time Systems, pages 35–43, June 2000.

2. J. Anderson and A. Srinivasan. Pfair scheduling: Beyond periodic task systems. InProc. of
the 7th International Conference on Real-time Computing Systems and Applications, pages
297–306, Dec. 2000.

3. J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous periodic
tasks.Journal of Computer and System Sciences, 68(1):157–204, 2004.

4. B. Andersson, S. Baruah, and J. Jonsson. Static priority scheduling on multiprocessors. In
Proc. of the 22nd Real-time Systems Symposium, pages 193–202, December 2001.

5. B. Andersson and J. Jonsson. The utilization bounds of partitioned and pfair static-priority
scheduling on multiprocessors are 50%. InProc. of the 15th Euromicro Conference on Real-
time Systems, pages 33–40, July 2003.

6. S. Baruah. Optimal utilization bounds for the fixed-priority scheduling of periodic task
systems on identical multiprocessors.IEEE Transactions on Computers. To appear.

7. S. Baruah. Multiprocessor fixed-priority scheduling with restricted inter-processor migra-
tions. InProc. of the 15th Euromicro Conference on Real-time Systems, pages 195–202, July
2003.

8. S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate progress: A notion of
fairness in resource allocation.Algorithmica, 15:600–625, 1996.

9. S. Baruah, J. Gehrke, and C. G. Plaxton. Fast scheduling of periodic tasks on multiple
resources. InProc. of the 9th International Parallel Processing Symposium, pages 280–288,
Apr. 1995.

10. U. Devi and J. Anderson. Improved conditions for bounded tardiness under EPDF fair mul-
tiprocessor scheduling. InProc. of the 12th International Workshop on Parallel and Dis-
tributed Real-time Systems, April 2004. To Appear.

11. U. Devi and J. Anderson. Schedulable utilization bounds for EPDF fair multiprocessor
scheduling (full paper). Available at http://www.cs.unc.edu/˜ anderson/papers.html, April
2004.

12. C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment.Journal of the Association for Computing Machinery, 20(1):46–61, 1973.

13. J.W.S. Liu.Real-time Systems. Prentice Hall, 2000.
14. J.M. Lopez, M. Garcia, J.L. Diaz, and D.F. Garcia. Worst-case utilization bound for EDF

scheduling on real-time multiprocessor systems. InProc. of the 12th Euromicro Conference
on Real-time Systems, pages 25–34, June 2000.

15. A. Srinivasan.Efficient and Flexible Fair Scheduling of Real-time Tasks on Multiprocessors.
PhD thesis, University of North Carolina at Chapel Hill, Dec. 2003.

16. A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multiprocessors. InProc.
of the 34th ACM Symposium on Theory of Computing, pages 189–198, May 2002.

17. A. Srinivasan and J. Anderson. Efficient scheduling of soft real-time applications on multi-
processors. InProc. of the 15th Euromicro Conference on Real-time Systems, pages 51–59,
July 2003.

