Schedulable Utilization Bounds for EPDF Fair
Multiprocessor Scheduling*

UmaMaheswari C. Devi and James H. Anderson

Department of Computer Science,
The University of North Carolina, Chapel Hill, NC 27599, U.S.A.
Email: {uma,anderson }@cs.unc.edu

Abstract. The earliest-pseudo-deadline-fi(&PDF) algorithm is less expensive
than other known Pfair algorithms, but is not optimal for scheduling recurrent
real-time tasks on more than two processors. Prior work established sufficient
per-task weighti(e., utilization) restrictions that ensure that tasks either do not
miss their deadlines or have bounded tardiness when scheduled under EPDF. Im-
plicitin these restrictions is the assumption that total system utilization may equal
the total available processing capacitg (the total number of processors). This
paper considers an orthogonal issue — that of determining a sufficient restriction
on the total utilization of a task set for it to be schedulable under EPDF, assuming
that there are no per-task weight restrictions. We prove that a task set with total
utilization at most2*2+L is correctly scheduled under EPDF i processors,
regardless of how large each task’s weight is. At present, we do not know whether
this bound is tight. However, we provide a conterexample that shows that it cannot
be improved to excee®6% of the total processing capacity. Our schedulability
test is expressed in terms of the maximum weight of any task, and hence, if this
value is known, may be used to schedule task sets with total utilization greater

3M+1
than ===

* Work supported by NSF grants CCR 9988327, ITR 0082866, CCR 0204312, and CCR
0309825.

1 Introduction

We consider the scheduling of recurreirg (periodic, sporadic, or rate-based) real-time

task systems on multiprocessor platforms comprisetf/aflentical, unit-capacity pro-

cessors. Pfair scheduling, originally introduced by Baremal. [8], is the only known

way of optimally scheduling such multiprocessor task systems. Under Pfair scheduling,

each task must execute at an approximately uniform rate, while respecting a fixed-size

allocation quantum. A task’s execution rate is defined byviggght(i.e., utilization).

Uniform rates are ensured by subdividing each task into quantum-lsngtaskghat

are subject to intermediate deadlines, cafisdudo-deadlineSubtasks are then sched-

uled on an earliest-pseudo-deadline-first basis. However, to avoid deadline misses, ties

among subtasks with the same deadline must be broken carefully. In fact, tie-breaking

rules are of crucial importance when devising optimal Pfair scheduling algorithms.
Srinivasan and Anderson observed that overheads associated with tie-breaking rules

may be unnecessary or unacceptable for maoftreal-time task systems [17]. A soft

real-time task differs from a hard real-time task in that its deadlinesaoegsionallybe

missed. If a jobi(e., task instance) or a subtask with a deadline at imempletes exe-

cuting attimer, then it is said to havetardinesof max(0, t —d). Overheads associated

with tie-breaking rules motivated Srinivasan and Anderson to consider the viability of

scheduling soft real-time task systems using the simgaeliest-pseudo-deadline-first

(EPDF) Pfair algorithm, which uses no tie-breaking rules. They succeeded in showing

that EPDF isoptimalon up to two processors [2], and that if each task’s weight is at

mosthql, then EPDF guarantees a tardiness of at magianta for every subtask [17].

In later work [10], we showed that this condition can be improveg}_t%). If M denotes
the total number of processors, then with either condition, the total utilization of a task
set may equaM.

In this paper, we address an orthogonal question: If individual tasks cannot be sub-
ject to weight restrictions, then what would be a sufficient restriction on the total utiliza-
tion of a task set for it to be correctly scheduled under EPDF? We answer this question
by providing a sufficienttilization-basedschedulability test for EPDF. Such a test is
specified by establishing a schedulable utilization bourdd(I¥/) is a schedulable uti-
lization bound for scheduling algorithd, then. A can correctly schedule any set of
recurrent tasks with total utilization at mdgtA/) on M processors [13]. If it is also
the case that no schedulable utilization boundAocan exceed/(M), thenl/ (M) is
anoptimalschedulable utilization bound fof.

Schedulability tests can generally be classified as being aithization-basecdbr
demand-basedrhough utilization-based tests are usually less accurate than demand-
based tests, they can be evaluated in time that is polynomial in the number of tasks. In
dynamic systems in which tasks may leave or join at arbitrary times, constant time is
sufficient to determine whether a new task may be allowed to join if a utilization-based
test is used. On the other hand, demand-based tests require either exponential time,
or, at best, pseudo-polynomial time, and hence, when timeliness is a concern, as in
online admission-control tests, utilization-based tests are usually preferred. Therefore,
devising utilization-based tests is of considerable value and interest.

Optimal schedulable utilization bounds are known for several scheduling algorithms.
In the domain of uniprocessor scheduling, a bound.6fis optimal for preemptive

earliest-deadline-first (EDF) scheduling, while oneMaf2'/Y — 1) is optimal for pre-
emptive rate-monotonic (RM) scheduling, whéYeis the number of tasks [12]. The
RM bound converges tm 2 =~ 0.69 asN — oc.

Multiprocessor scheduling algorithms use eith@agtitionedor global scheduling
approach. Under partitioning, tasks are assigned to processors by defining a many-to-
one mapping (a surjective function) from the set of tasks to the set of processors. Thus,
each task is bound to a single processor, and every instance of that task may execute
upon that processor only. A separate instance of a uniprocessor scheduling algorithm is
then used to schedule the tasks assigned to a procesHay,.lf, where0 < Wi, <
1, denotes the maximum weight of any task, then a scheduleable utilization bound of

BMAL \yheref = { 1 J is optimal for the partitioned approach, if EDF is the per-

B+1 Winax
processor scheduling algorithm used [14]. This bound approafgkgﬁ:}sasmeLX —
1.0. Because EDF is an optimal uniprocessor scheduling algorithm, a higher bound is
not possible with any other per-processor scheduling algorithm.

Under global scheduling, a task may execute on any processor. This approach can
be further differentiated based upon whether a preempted instance is allowed to re-
sume execution on a different processor. If each job is bound to a single processor only,
then migrations are said to loestricted otherwise, they aranrestricted Under global
scheduling, among job-level fixed-priority algorithms, such as EDF, a schedulable uti-
lization bound exceedinég¢1 is impossible, regardless of the nature of migrations [6,

7]. Among static-priority scheduling algorithms, such as RM, a schedulable utilization
bound exceedin% is impossible for the unrestricted-migrations case [4, 5]. Observe
that each of the multiprocessor schedulable utilization bounds considered so far con-
verges td50% of the total processing capacity.

Pfair scheduling algorithms also fall under the global scheduling category. How-
ever, as mentioned earlier, optimal scheduling on multiprocessors is possible with Pfair
scheduling. Therefore, each of the optimal Pfair algorithms PF [8], PD [9], aRd#D
has an optimal schedulable utilization bound\éf

A=) MA1) (bt (k1) Winax) — 1

=1 (1 Wore) , wherek =

Contributions. In this paper, we show th

LW:Ia J + 1, is a schedulable utilization bound for the simpler EPDF Pfair scheduling

algorithm on)M > 2 processors.For Wy, > 3, i.e, k = 2, this bound reduces to

(zwfz(lffvtﬁjx)‘l, and asWymax — 1.0, it approaches+L, which approaches!’,
i.e., 75% of the total processing capacity, & — oco. Note that this bound is greater
than that of every known non-Pfair algorithm B§%. At present, we do not know if
this bound is optimal. However, we provide a counterexample that shows that the bound
with W, = 1 cannot exceed6%. Finally, we extend this bound to allow a tardiness
of ¢ quanta.

The rest of the paper is organized as follows. Sec. 2 provides an overview of Pfair
scheduling. In Sec. 3, the schedulable utilization bound for EPDF mentioned above is

derived. Sec. 4 concludes.

L EPDF is optimal on up to two processors [3]. Therefore, its optimal schedulable utilization
bound onM < 2 processors i4/.

2 Pfair Scheduling

In this section, we summarize relevant Pfair scheduling concepts and state the required
definitions and results from [1-3, 8, 16, 17]. Initially, we limit attention to periodic tasks
that begin execution at time 0. Such a taSkas an integeperiod T'.p, an integer
execution cost.e, and aweightwt(T) = T.e/T.p, where0 < wt(T) < 1. Atask is
light if its weight is less thar}, andheavy otherwise.

Pfair algorithms allocate processor time in discrete quanta; the time inferval
1), wheret is a nonnegative integer, is callstbt¢. (Hence, time refers to the begin-
ning of slott.) A task may be allocated time on different processors, but not in the same
slot (.e., interprocessor migration is allowed but parallelism is not). The sequence of
allocation decisions over time defineseheduleS. Formally, S : 7 x N' — {0,1},
wherer is a task set andV is the set of nonnegative intege®(7,t) = 1 iff T is
scheduled in slat. On M processorsy ... S(T,t) < M holds for allz.

Lags and subtasks. The notion of a Pfair schedule is defined by comparing such a
schedule to an ideal fluid schedule, which allocategI") processor time to task in
each slot. Deviation from the fluid schedule is formally captured by the concégay.of
Formally, thelag of task T at time ts lag(T,t) = wt(T) - ¢t — Zf:o S(T,u). (For
conciseness, we leave the schedule implicit andlug@", ¢) instead oflag (T, ¢, S).)

A schedule is defined to defair iff

VTt =1 < lag(T,t) < 1). (1)

Informally, the allocation error associated with each task must always be less than one
quantum.

These lag bounds have the effect of breaking each’faisito an infinite sequence
of quantum-lengtisubtasksWe denote thé'" subtask of task” asT;, wherei > 1.
As in [8], we associate pseudo-release(7;) and apseudo-deadling(T;) with each
subtaskKr;, as follows. (For brevity, we often drop the prefix “pseudo-.”)

1—1 1
ORI e e @
To satisfy (1),7; must be scheduled in the intervalT;) = [r(T}),d(T;)), termed its
window Thelengthof 7;'s window, denotedw(T;)|, is given by

lw(T)| = d(T3) — r(T3). 3)
As an example, consider subtdBkin Fig. 1(a). Here, we have(Ty) = 0, d(T1) = 2,
and|w(Ty)| = 2.

Note that, by (2)y(7;+1) is eitherd(T;) — 1 or d(T;). Thus, consecutive windows
either overlap by one slot, or are disjoint. Thebit,” denoted byb(T;), distinguishes
between these possibilities. Formally,

)= | iy |~ iy | @

For example, in Fig. 1(aj(7;) = 1 for 1 < i < 7 andb(Tg) = 0. We often overload
function S (described earlier) and use it to denote the allocation statssilthsks
Thus,S(T;,t) = 1iff subtaskT; is scheduled in slat

Fig. 1. (a) Windows of the first job of a periodic task with weight8/11. This job consists of
subtasksT, . .., Ts, each of which must be scheduled within its window, or else a lag-bound
violation will result. (This pattern repeats for every joth) The Pfair windows of an IS task.
Subtaskls becomes eligible one time unit laig) The Pfair windows of a GIS task. Subt&fk

is absent and subtagk becomes eligible one time unit late.

Algorithm EPDF. Most Pfair scheduling algorithms schedule tasks by choosing sub-
tasks to schedule at the beginning of every quantum. As its name suggests, the earliest-
pseudo-deadline-first (EPDF) Pfair algorithm gives higher priority to subtasks with ear-
lier deadlines. A tie between subtasks with equal deadlines is broken arbitrarily. As
mentioned earlier, EPDF is optimal on at most two processors, but not on an arbitrary
number of processors [3].

Task models. In this paper, we consider thetra-sporadic(IS) task model and the
generalized-intra-sporadi@GIS) task model [2, 16], which provide a general notion of
recurrent execution that subsumes that found in the well-studied periodic and sporadic
task models. Theporadicmodel generalizes the periodic model by allowing jobs to be
released “late”; the IS model generalizes the sporadic model by allowing subtasks to be
released late, as illustrated in Fig. 1(b). More specifically, the separation bet({@en
andr(T;41) is allowed to be more thapi/wt(T)| — | (¢ — 1)/wt(T)], which would
be the separation if’ were periodic. Thus, an IS task is obtained by allowing a task’s
windows to be shifted right from where they would appear if the task were periodic.

Let §(T;) denote theffsetof subtaskr;, i.e., the amount by whichu(T;) has been
shifted right. Then, by (2), we have the following.

raw—ea»+[;gjﬂ A daw—ean+[w;ﬂ])

‘The offsets are constrained so that the sei)aratior) between any pair of subtask releases
is at least the separation between those releases if the task were periodic. Formally,

k>i=0(Ty) > 0(T)). (6)

Each subtasK; has an additional parametg(T;) that specifies the first time slot in
which it is eligible to be scheduled. In particular, a subtask can become eligible before
its “release” time. It is required that

(Vi > 1 e(T) < v(T3) A e(T}) < e(Tin): @)

Intervals[r(T;),d(T;)) andle(T;), d(T;)) are called thé®F-windowand|S-windowof
T;, respectively. A schedule for an IS systermvadid iff each subtask is scheduled in its
IS-window. (Note that the notion of a job is not mentioned here. For systems in which

subtasks are grouped into jobs that are released in sequence, the definitiwowdtl
preclude a subtask from becoming eligible before the beginning of its job.)

b-bits for IS tasks are defined in the same way as for periodic tasks (refer to (4)).
r(T;) is defined as follows.

r(T:) = {ngaxiem, d(Ti—1) = b(Tiv)), ifi>2 ®)
Thus, if T; is eligibleduring T;_'s PF-window, then(T;) = d(T;_1) — b(T;—1), and
hence, the spacing betwee(¥;_;) andr(T;) is exactly as in a periodic task system.
On the other hand, if; becomes eligiblafter T; _;'s PF-window, ther¥;’s PF-window
begins wherT; becomes eligible. Note that (8) implies that consecutive PF-windows of
the same task are either disjoint, or overlap by one slot, as in a periodic system.

T;’s deadlined(T;) is defined to be:(T;) + |w(T;)|. PF-window lengths are given

by (3), as in periodic systems. Thus, by (5), we haweT;)| = [WW — {#})J and

dT) = r(T) + | gy | - |2k |-
Generalized intra-sporadic task systems.A generalizedntra-sporadic task system
is obtained by removing subtasks from a corresponding IS task system. Specifically, in

a GIS task system, a tagk after releasing subtask, may release subtagk;, where
k > i+ 1, instead ofT;, with the following restriction:(Ty) — r(T;) is at least

{%J — {#})J . In other wordsy (7}, is not smaller than what it would have been if

Tiv1, Titva, ... Tx—1 were present and released as early as possible. For the special case

whereT}, is the first subtask released @Y (7)) must be at Ieaskﬂ(Tl)J. Fig. 1(c)

shows an example. ff; is the most recently released subtask othenT may release

Ty, wherek > i, as its next subtask at tintgif r(7;) + {%J - {%J <tlfa
taskT', after executing subtask;, releases subtask,, thenTy, is called thesuccessor
of T; andT; is called thepredecessoof T.

As shown in [2], a valid schedule exists for a GIS tasksen M processors iff

e, wt(T) < M

Shares and lags in IS and GIS task systemsThe lag ofT" at timet is defined in the
same way as for periodic tasks [16]. Lidkal(T, t) denote the processor share tiiat
receives in an ideal fluid (processor-sharing) schedule, if). Then,

t—1
lag(T,t) = ideal(T,t) — Z S(T, u). 9)
u=0

Before definingideal(T, t), we defineshare(T, u), which is the share assigned to task
T in slot u. share(T,u) is defined in terms of a functiofi that indicates the share
assigned to each subtask in each slot.

({#})J + 1) xwt(T)—(i—1), uw=r(T})

f(Tlvu) == ([m—‘ - 1) x wt(T)v U= d(Ti) -1 (10)
wi(T), r(Ty) < u< d(Ty) — 1
0, otherwise

Using (10), it is not difficult to see that
(Vi>0,u>0: f(T;,u) <wt(T)). (11)
Given f, share(T, u) can be defined in terms ¢gfas

share(T, u) Zf T u). (12)

share(T, w) usually equalsvt(T), but in certain slots, it may be less thamn(T"), so

that the total allocation that a subtakreceives in the slots that span its window is
exactly one in the ideal system. These and similar properties have been formally proved
in [15]. Later in this paper, we will use (13) and (14) given below.

(Vu > 0 :: share(T,u) < wt(T)) (13)
A(Ty)—
Z f(Ti,u) =1) (14)
u=r(T;)

Having definedshare(T, u), ideal(T,t) can then be defined 5", ! share(T, u).
Hence, from (9),

lag(T,t+1) = Y (share(T,u) — S(T,u))

= lag(T,t) + share(T,t) — S(T,t). (15)

The total lag for a task system with respect to a schedul§ at time ¢, denoted
LAG(r,t) is then given by

LAG(r,t) = lag(T,t). (16)

TeT

From (15) and (16)LAG(7,t + 1) can be expressed as follow&.A G (r,0) is defined
to be0.)

LAG(7,t+1) = LAG(r,t) + »_(share(T,t) — S(T,t)). (17)

TeT

The rest of this section presents some additional definitions and results that will be
used in the rest of this paper.

Active tasks. It is possible for a GIS (or IS) task to have no eligible subtasks and a
share of zero during certain time slots, if subtasks are absent or are released late. Tasks
with and without subtasks at tinteare distinguished using the following definition of
anactivetask. (A task that is active atis not necessarily scheduledtat

Definition 1: A GIS taskU is activeat timet if it has a subtask/; such thae(U;) <
t< d(U])

Task classificatiorj16]. Tasks inr may be classified as follows with respect to a sched-
ule S and timet. 2

A(t): Set of all tasks that are scheduled at
B(t): Set of all tasks that are not scheduled,diut are active at.
1(t): Set of all tasks that are neither active nor are scheduled at

A(t), B(t), andI(t) form a partition ofr, i.e,,

A)UB(t)UI(t) =T,
A()NB(t) =Bt)NI(t)=1(t)NAt) =0. (18)

Using (16) and (18) above, we have the following.

LAG(r,t+1) = > lag(T,t+1)+ Y lag(T,t+1)+ Y lag(T,t+1)(19)

TeA(t) TeB(t) Tel(t)
The next definition identifies the last-released subtasloftiny taskl.

Definition 2: SubtaskU; is thecritical subtask ot/ at ¢ iff e(U;) <t < d(U;) holds,
and no other subtadk; of U, wherek > j, satisfiex(Uy) < t < d(Uy).

Holes. If fewer than)M tasks are scheduled at timen S, then one or more processors
would be idle at. If k£ processors are idle duringthen we say that there akeholes

in S att. The following lemma, proved in [16], relates an increase in the total lag of
LAG, to the presence of holes.

Lemma 1. [16] If LAG(7,t+ 1) > LAG(7,t), then there are one or more holestin

Intuitively, if there are no idle processors in slkotthen the total allocation te in S
is at least the total allocation toin the ideal system in slat Therefore,LAG cannot
increase.

Displacements.In our proof, we consider task systems obtained by removing subtasks.
If Sis a schedule for a GIS task systemthen removing a subtask fromresults in
another GIS systen, and may cause other subtasks to shift earlief,iresulting in a
scheduleS’ that is valid forr’. Such a shift is called displacemenand is denoted by
a 4-tuple(XM t;, X@ 1), whereX) and X (®) represent subtasks. This is equiva-
lent to saying that subtask (®) originally scheduled at; in S displaces subtask (1)
scheduled at; in S. A displacement X ™) ¢, X®) ¢,) is valid iff e(X?) < ;.
Because there can be a cascade of shifts, we may have a chain of displacements. This
chain is represented by a sequence of 4-tuples.

The next lemma concerns displacements and is proved in [16]. It states that a subtask
removal can only cause left shifts.

Lemma 2. [16] Let X" be a subtask that is removed from and let the resulting
chain of displacements in an EPDF schedule fobe C = Aj, Ay, ..., Ag, where
A = <X(i),ti,X(i+1),ti+1>. Thentﬂ_l > t; forall i € [1, k}

2 For brevity, we let the task systemand schedulé be implicit in these definitions.

3 Sufficient Schedulability Test for EPDF

In this section, we establish a sufficient schedulability test for EPDF by deriving a
schedulable utilization bound for it, given by the following theorem.

Theorem 1. (k(k’1LI§I(ZP1()((]“1;1‘2VW"“‘)"+’“)’1, where Wy,.x is the maximum weight of

any task inr andk = {ﬁJ + 1, is a schedulable utilization bound of EPDF for
scheduling a GIS task systenon M > 2 processors.

As a shorthand, we defif@é(M, Wy,.x) as follows.

Definition 3: U (M, Wiga) < (LG s 1, wherel = | g +1.

For simplicity, we prove the theorem fér= 2, i.e., when the following holds.

5 < W < 1 (20

Later, we show how to extend the proof for> 2. Whenk = 2, U(M, Wy,ax) reduces
to (MAD) (24 Winax) 1
4(1+Wax))
We use the proof technique developed by Srinivasan and Anderson in [17] to prove
the above theorem. If Theorem 1 does not hold, thesnd defined as follows exist.

(In these definitions, we assume thas scheduled o/ processors.)

Definition 4: ¢, is the earliest time that any task system (with each task weight at most
Winax @nd total utilization at mod¥ (M, Wi,.x)) has a deadline miss under EPDE,
some such task system misses a subtask deadlitye @bd no such system misses a
subtask deadline prior tg.

Definition 5: 7 is a task system with the following properties.

(T1) t4 is the earliest time that a subtask#rmisses its deadline unde}, an EPDF
schedule forr.

(T2) The weight of every task im is at mostiV,,,, and the total utilization of is at
mostU (M, Wiax)-

(T3) No other task system satisfying (T1) and (T2) releases fewer subtagiks: in
thanrt.

(T4) No other task system satisfying (T1), (T2), and (T3) has a larger rankrthty,
where therank of a systenr att¢ is the sum of the eligibility times of all subtasks with
deadlines at mosti.e., rank(7,t) = > 7.rer p acry)<sy €(13)-

By (T1) and (T3), exactly one subtask#misses its deadline: if several such sub-
tasks exist, then all but one can be removed and the remaining subtask will still miss its
deadline, contradicting (T3).

In what follows, we use the shorthand notation given by Defs. 6 and 7 below.

Definition 6: « denotes the total utilization af, expressed as a fraction éf, i.e,,
Yorer wt(T) = aM.

. Lodef W
Definition 7: § = T+ Wy "

The lemma below follows from the definitions &fanda, (T2), and Lemma 12.

Lemma3.0<a< U(MTWMX)

The next lemma is immediate from the definitiondadind (20).

<1

Lemmad4. 1 <6< 3.

We now prove some properties abeuandsS. In proving some of these properties,
we make use of the following three lemmas established in prior work by Srinivasan and
Anderson.

Lemma5. [16] If LAG(7,t+ 1) > LAG(r,t), thenB(t) # 0.

The following is an intuitive explanation for why Lemma 5 holds. Recall from Sec. 2
that B(t) is the set of all tasks that are active and not scheduledBy Def. 1, (10),

and (7), only tasks that are activetanay have non-zero sharestan the ideal fluid
schedule. Therefore, if every task that is active & scheduled at, then the total
allocation inS cannot be less than the total allocation in the ideal schedule, and hence,
by (17), LAG cannot increase across stot

Lemma 6. [15] Lett < t4 be a slot with holes and I&f € B(t). Then, the critical
subtask at of T" is scheduled before

To see that the above lemma holds,1ete the critical subtask of at¢. By its defi-
nition, the IS-window off; overlaps slot, but7" is not scheduled dt Also, there is at
least a hole int. Because EPDF does not idle a processor while there is a task with an
outstanding execution request, it should be the caséthatscheduled before

Lemma 7. [16] Let U, be a subtask that is scheduled in sfotwheret’ < t < t4, in
S, where there is a hole i Thend(U;) < t+ 1.

This lemma is true because it can be shown thdtif;) > ¢t + 1 holds, thenU; has
no impact on the deadline misstat In other words, it can be shown that if the lemma
does not hold, then the task system obtained frdsg removingU; also has a deadline
miss att,, which contradicts (T3).

Lemma 8. The following properties hold for andS.
a) Forall T;, d(T;) < t4.

b) Exactly one subtask afmisses its deadline a&j.
C) LAG T td) =1.
d) (VT;: d(D) <tqg = (Ftue(l;) <t<dT,)/\S(Tl,t)fl))

(
(
(
(e) Let Uy be the subtask that misses its deadling atThen,U is not scheduled at
tg — 1.

(f) There are no holes in sl — 1.
(g) There exists atime < ¢, — 2 such that the following both hold.

(i) There are no holes ifv, t; — 2).

(i) LAG(1,v) > (tg — v)(1 — a) M + 1.
(h) There exists atime < [0,t4—3] suchthatLAG(7,u) < landLAG(r,u+1) > 1.

Parts (a), (b), and (c) are proved in [16]. Part (d) follows directly from (T1). The re-
maining are proved in [11].

Overview of the rest of the proof of Theorem 1. By Lemma 8(h), ift; andr as de-
fined by Defs. 4 and 5, respectively, exist, then there exists a time stat; — 2 across

which LAG increases to at least one. To prove
Theorem 1, we show that for every sugcteither

(i) there exists atime’, whereu+1 < v’ < tg,
such thatLAG(r,u’) < 1, and thereby derive
a contradiction to Lemma 8(c), ¢ir) there does
not existav < t4—2 such that there are no holes
in[v,tq—2)andLAG(1,v) > (t4—v)(1—a)M,
deriving a contradiction to Lemma 8(g). In what Py
follows, we state and prove several other lemmas ¢ P

that are required to accomplish this. subtasks |—X|
The first lemma shows thatAG does not scheduled o :
increase across slot zero. att-1 X
V —
Lemma9. LAG(r,1) < LAG(t,0) = 0. T T 1]

!
t t-1 t t+l
Proof. Assume to the contrary thatAG(r,1) >

)

LAG(7,0). Then, by Lemma 5B(0) # 0 Fig.2. lllustration for Lemma 10. Sub-

holds. LetT be a task inB(0) and letT; taskU; is as specified in the proof. Di-

be its critical subtask at time zero. Then, byected arcs depict some displacements

Lemma 6,7; is scheduled before time zerothat may be possible i, is removed. If

which is impossible. Therefore, our assumptiofere is a hole it — 1, then the crossed

that LAG(7,1) > LAG(7,0) holds is incorrect. out displacements are not possible, and
U hence, the displacements chain cannot

By Lemma 1, one or more holes in sloire extend beyond slat— 1.

necessary fof, AG to increase acrogsThe next

lemma shows that there are no holes in sletl

in this case.

Lemma 10. If LAG(r,t + 1) > LAG(t,t), wherel < ¢ < t4 — 2, then there are no
holes in slott — 1.

Proof. Contrary to the statement of the lemma, assume the following.
(B) There is a hole in slat — 1.

By Lemma 7, this assumption implies that the deadline of every suli{astheduled at
t — 1is at mostt. Because < ty holds, by Lemma 8(d)I; does not miss its deadline.
Therefore, we have the following.

VT, = S(Ty,t —1) =1 = d(T}) = t) (1)

Refer to Fig. 2 for an illustration.

Becausel AG(7,t + 1) > LAG(r,t) holds (by the statement of the Lemma), by
Lemma 5,B(t) is not empty. LeU be any task irB(t) and letU; be its critical subtask
att. Then, by Lemma &/; is scheduled beforein S, say att’, i.e.,

SWU;,t'")y=1 ANt <t (22)
Also, by Def. 2,
d(U;) > t+ 1. (23)

Let 7’ be the task system obtained by removingrom r, and letS’ be the schedule
that results due to the left shifts causediby U;’s removal. We show that the left shifts
do not extend beyond slet— 1, which would imply that a deadline is still missed at
tq in S’. This in turn would imply that’, with one subtask fewer than also has a
deadline miss aty, contradicting (T3).

Let Ay, Ay, ..., A, be the chain of displacements dhcaused by removing/;,
whereA; = (X ¢, X0+ ;10,1 < i < n,andXM) = U;. By Lemma 2¢; <
t;+1 holds for alll < < n.By (22),t; =t' < t holds, as illustrated in Fig. 2. Because
EPDF scheduled () att; in preference to{(*) in S, wherei < k < n+1, the priority
of X is at least as high as that &F*). In other words, we havé(X) < d(X %)),
forall1 <i <k <n+ 1. BecauseX) = U;, by (23), this implies the following.

(VE:1<k<n+1:dX®)>t4+1) (24)

We next show that the chain of displacements does not extend beyond-siht
Suppose that the displacements extend beyond slot. Let Ay, 1 < h < n be the
displacement with the smallest index such that ¢ — 1 andt,,1 > ¢ holds. Because
Ay, is valid,e(X (1) < t;, holds. Now, ift;, < t — 1, then since there is a hole in slot
t — 1, X(»*+1) should have been scheduled at 1 in S and not aty,.1 > t. Therefore,
th =t—1,i.e, X" is scheduled at— 1 in S. Hence, by (21), we hawg(X ")) = ¢,
which contradicts (24). This is illustrated in Fig. 2. Thus, the displacements do not
extend beyond — 1, which implies that a deadline is still missedtat contradicting
(T3). Therefore, our assumption in (B) is false. |

The next lemma, proved in [11], bounds the lag of each task atitimé, wheret
is a slot with one or more holes.

Lemma 11. [11] If ¢ < ¢4 is a slot with one or more holes, then the following hold.
(@) (VT € A(t) :: lag(T,t+ 1) < wt(T))

(b) (VT € B(t) :: lag(T,t + 1) < 0)
(©) (VT € I(¢) :: lag(T,t + 1) = 0)

In proving the remaining lemmas, we make use of the following three lemmas. Their
proofs are omitted here due to space constraints, and can be found in the full version of
this paper [11].

1
MEZ(E—1)(1+Waax) Winax

0< Whax <landM > 1.

Lemma 12, [11] GE=DMED(E-DWuax th)=1 1 \wherek = { J + 1, for all

Lemma 13. [11] A solution to the recurrence

Lo<dé+6-aM
Ly <6 -Lpq1+06-(2aM— M),

where0 < ¢ < 1, is given by

Ly < 8* 11 4+ aM) + (1 - %) (1§6> (2aM — M), forall k> 0.

s sn+l n+2_ sn+l _ _ 1
Lemma 14. [11] 2 5Aj(2,§fffl,gnfz) 120 > M(QM(;)” holds for alln. > 0,0 <

0<1/2,andM > 1.

Having shown that a hole in slgt— 1 is necessary fol.AG to increase across
(Lemma 10), we next show how to derive an upper bound 46: at¢ + 1 in terms of
LAG att andt — 1.

Lemma 15. Lett, wherel < t < t; — 2, be a slot such that there is at least a hole in
slott and there is no hole in slat— 1. ThenLAG(7,t + 1) < LAG(7,t) -6 + M - §
andLAG(r,t+ 1) < LAG(r,t — 1) - § + (2aM — M) - 4.

Proof. By the statement of the lemma, there is at least one hole irt sidterefore,
by Lemma 11, only tasks that are scheduled in slak., tasks in setd(t), may have

a positive lag at + 1. Let x denote the number of tasks scheduled,dte., z =
> re, S(T,t) = |A(t)|. Then, by (19), we have

LAG(r,t+1) < Y lag(T,t+1)
TeA(t)

< Z wt(T) , by Lemma 11

TeA(t)

< Z Winax

TeA(t)

= - Wmax~ ’ ‘A(t)l =T (25)
Using (17),LAG(T,t + 1) can be expressed as follows.

LAG(7,t+1) = LAG(r,t) + Y _(share(T,t) — S(T, 1))

TeT
= LAG(r,t) + Z share(T,t) — x Y ore, S(T,t) =
TeT
< LAG(r,t) + Y _wi(T) — = , by (13)
Ter
= LAG(1,t) + aM — , by Def. 6 (26)

By (25) and (26), we have
LAG(7,t + 1) < min(z - Wiax, LAG(7,t) + oM —). (27)
Because: - Wi,,.x increases with increasing wheread. AG(t,t) + M —x decreases,
LAG(t,t + 1) is maximized whenx - W = LAG(7,t) + oM — z, i.e, when

T = Llfcvf,(”x) + 55— Therefore, using either (25) or (26), we have

LAG(r,t+1) < LAG(r 1) - (e) + ab - ()
= LAG(r,t) -6+ aM - byDef.7. (28)

By the statement of the lemma again, there is no hole intslat. (Also,¢ > 1, and
hencef — 1 exists.) Therefore, using (17),AG(7,t) can be expressed as follows.

LAG(7,t) = LAG(r,t = 1) + Y _(share(T,t — 1) = S(T,t - 1))

Tet

I,
f 0 | | coe S ——
N N N N
o slots with | © | slots with |© 0 | slots with
h holes holes L.l holes
h (1) h h n-l h
o e LN] o LN] o o LN] ho}es or
1 s 1 1 1 no Holes
e e e e
)
S S S S
[[[T T [\
=1t t+l t t, t, uu+l

Fig.3.Lemma 16 LAG(r,t) < 1andLAG(r,t+1) > 1. No two consecutive slots ii—1, u)
are without holes. The objective is to determine a bound 417 (7, w).

= LAG(r,t —1)+ Z share(T,t —1) — M

Ter
» Y e, S(T,t — 1) = M (there are no holes ih— 1)
< LAG(r,t—1)4+aM — M , by (13) and Def. 6 (29)

Substituting (29) in (28), we havBAG(7,t + 1) < LAG(7,t = 1) - 6 + (2aM —
M) 4. m|

The next lemma shows how to bouddi G at the end of an interval that does not
contain two consecutive slots without holes.

Lemma 16. Letl <t < t4 — 2 be a slot across which AG increases to one, i.e.,
1<t<tqs—2 AN LAG(1,t) <1 N LAG(1,t +1) > 1. (30)

Letu, wheret < u < tg4, be such that there is at least one holeuin- 1 and there are
no two consecutive slots without holes in the inteffvat 1,u). Then,LAG(7,u) <
(2—2a)M + 1.

Proof. Because (30) holds, by Lemmas 1 and 10, we have (C1) and (C2), respectively.

(C1) There is at least one hole in slot
(C2) There is no hole in slat — 1.

By (C1) and the definition of,, we have the following.
(V' :t <t <wu—1: thereisaholei’ or¢' + 1) (31)
Letty,ta,...,th, Wheret < t; <ty <... <t, < u—1Dbe the slots without holes

n [t,u). Then, by (C1) and (31), there is at least one hole in ea¢h-efl andt; + 1

forall1 <i<n.
We divide the intervalt — 1,u) into n + 1 non-overlapping subintervals using
the slots without holes — 1,¢4,...,t,, as shown in Fig. 3. The subintervals denoted

Iy, I, ..., I, are defined as follows.

def | [t —1,¢1), Iif t1 exists
To = { [t —1,u), otherwise (32)

In < [tn,w) (33)

Iy déf [tk7tk+1)7 foralll <k <n (34)
Because > 1 andu < t4 hold (by the statement of the Lemma),exists, and hence,
n > 0. (35)

Before proceeding further, the following notation is in order. We denote the start
and end times of,, where0 < k < n, by t* andt’;, respectivelyj.e., I is denoted as
follows.

Iy [k ek, forallk=0,1,...,n. (36)

LAG att* 4 2 is denotedy, i.e,,

L & LAG(r,t" +2), forallk=0,1,...,n. (37)

Note that the end of each subinterval is defined so that the following property holds.

(C3) For allk, 0 < k < n, there is no hole in slat® and there is at least one
hole in every slof, wheret? +1 < < tk.

Our goal now is to derive bounds farA G att’;:, forall 0 < k < n. Towards this end,
we first establish the following claim.

Claim 1. (Vk,t':0 <k <mn,t§ +2 <t' <th = LAG(1,t') < Ly).

The proof is by induction o#.

Base Caset’ = t* + 2. The claim holds by (37).

Induction Step: Assuming that the claim holds at all times in the intef¢gah-
2,t'], wheret® +2 < ¢ < t*, we show that it holds at + 1. By this induction
hypothesis, we have

LAG(r,t') < Ly, (38)

Because’ < ¢} andt’ > ¥ + 2 hold (by the induction hypothesis), by (C3),
there is at least one hole in bathand¢’ — 1. Therefore, by the contrapositive
of Lemma 10,LAG(r,t' + 1) < LAG(r,t'), which by (38), is at mosk. O

Having shown thaL AG(r, t’;) is at mostLy,, we now bound_;,. We start by determin-
ing a bound forLy. From (32) and (36), we hav8 = ¢ — 1. Thereforet? +2 =t + 1.
Because (C1) and (C2) hold, by Lemma 15,
Lo = LAG(7,t + 1)

< -LAG(T,t)+6-aM

<d+4d-aM, , LAG(1,t) < 1by(30). (39)
We next determine an upper bound fbg, wherel < k£ < n. Notice that by our
definition of 7, in (34), we have’® = ¢~'. Thus, LAG(7, t¥) = LAG(r,t}"), and
hence, by Claim 1, we have

LAG(r,t5) < Li1. (40)

By (C3), there is a hole in slat + 1 and no hole in slot®. Therefore, by Lemma 15,

LAG(7,tF +2) < §- LAG(7,t*) +6 - (2aM — M), which by (37) and (40) implies
Ly =LAG(T,t* +2) <8 Ly_1+6 - (2aM — M). (41)

By (33) and (36), we have = t;. Therefore, by Claim 1 and (35), we have
LAG(t,u) = LAG(1,t}) < Ly, (42)

and hence, an upper bound bA G (T,) can be determined by solving the recurrence
given by (39) and (41), which is restated below for convenience.

L() <d+0-aM

Ly §5~Lk,1+§-(2aM—M)

By Lemma 13, a solution to the above recurrence is given by

]

) (2aM — M). 43)

Therefore LAG(r,u) < Ly, < 6"+(1 + aM) + (1 — 67) (%) (2aM — M).

If L, is atleas(2—2a) M +1, thens" ! (1+aM)+(1—6") (ﬁié) (2aM—M) >
(2 — 2a) M + 1, which on rearranging terms implies that
M2—6—6") 4+ 6"t2 —gntl 416
M(2 — onF1 — §n+2)
L Me-0+ 1
- 2M
(M 4 1)(2+ Winax) — 1

o >

, by Lemma 14, and < § < 1/2 (by Lemma 4)

AM (1 + Wonar) by Det. 7
= % , by Def. 3 and (2Q) (44)
Because (44) is in contradiction to Lemma 3, we concludelhat (2 — 2a)M + 1.
Hence, by (42)LAG(T,u) < L,, < (2 — 2a)M + 1. O

Lemma 17. Lett < t4 — 2 be a slot such thabAG(7,t) <1 A LAG(r,t+1) > 1
and letu be the earliest time aftersuch thatu = ¢t; — 2 or there no no holes in each
of w andu + 1. (Note that this implies that no two consecutive slot§ i+ 1, u) are
without holes) Then, at least one of the following holds.

u < tq — 2, there are no holes in bothandwu + 1, and LAG(7,u + 2) < 1. (45)

u=tq— 2,thereisatleastaholeity — 3, andLAG(7,ta —2) < 2(1 —a)M. (46)

u = tq — 2, there is no hole iy — 3, at least a hole ity — 4,

LAG(1,ta —3) < 3(1 —a)M,andLAG(1,tq —2) < 2(1 — a)M. 47)

Proof. BecausdLAG(7,t+1) > LAG(7,t) holds (by the statement of the lemma), by
Lemma 1, we have the following.

(D1) There is at least a hole in

We consider two cases dependingwon

Case 1:u < ty — 2 and there is no hole inu.

We first prove that there is at least one hole in slet 1. If w = ¢ + 1 holds, then by
(D1), there is a hole in = u — 1; if u # t + 1, then the absence of holesqin— 1
would contradict the fact that is the earliest time after such that either there is no
hole in bothu andu + 1 oru = t; — 2. Thus, there is at least one holeun- 1, and by
the definition ofu, no two consecutive slots in the intenjah- 1, «) are without holes.
Therefore, by Lemma 16, we ha¥edG(7,u) < (2 — 2a)M + 1.

To show thatL AG(r,u + 2) < 1 holds, we next show that there are no holes in
u+ 1. If u <ty — 2 holds, then there are no holesin- 1 by the definition ofs. On the
other hand, ifu = t; — 2, then there are no holesin+- 1 = ¢4, — 1 by Lemma 8(f). By
the assumption for this case, there are no holeséither. Therefore, by (17), we have

ut2
LAG(t,u+2) = LAG(7,u) + Z Z(share(T, v) — S(T,v))
v=u+1TET
ut2
= LAG(7,u) + Z Z share(T,v) —2M
v=ut1Ter
, there are no holes imandwu + 1
ut2
<(2-2a)M+1+ Z Zshare(T, v) —2M
v=u+1Ter
, LAG(7T,u) < (2 —2a)M + 1

u+2

<@-20)M+1+ > Y wi(T)-2M , by (13)
v=u+1TET

=(2—-2a)M +1+2aM —2M , by Def. 6

=1.

Thus, condition (45) holds for this case.
Case 2:u = t4 — 2 and there is a hole in slott; — 2.
Because, = t4; — 2 holds for this case, by the definition of the following holds.

(D2) No two consecutive slots ifa + 1,t, — 2) are without holes.

Letu' < tg — 2 denote the last slot with no hole [h+ 1,t4 — 2). We consider the
following two subcases.

Subcase 2at < v’ < tq — 3 or there is at least a hole in every slotirt + 1,¢4 — 2).

If t < < tq— 3 holds, then by the definition af, there is at least a hole iy — 3.
On the other hand, if there is no slot without a holdtin- 1,t4 — 2), then, because
t < tg — 2 holds (by the statement of the lemma), by (D1), there is a hotg in 3.
Therefore, by (D2) and becaugel G(r,t + 1) > LAG(r,t) holds (by the statement
of the lemma), Lemma 16 applies with= t; — 2. Hence, by Lemma 16, we have
LAG(T,tq — 2) < (2 —2a)M + 1. Therefore, for this case, (46) is satisfied.
Subcase 2bt < v’ = t4 — 3. Because there is no hole in slgt— 3 (by the assumption
of this subcase), (D2) implies that there is at least a hole irt glot.. (Becausé,;—3 >

t holds (by the assumption of this subcase agdin); 4 exists.) Therefore, because

LAG(7,t+1) > LAG(7,t) holds, Lemma 16 applies with = ¢; — 3. Hence,

LAG(7,ta —3) < (2—20)M +1 , by Lemma 16 (48)
<(B3-3a)M+1 , by Lemma 3 (49)

Further, by (17), we have

LAG(r,ta = 2) = LAG(r,ta — 3) + Y _(share(T,ta — 3) — S(T,ta — 3))

Ter
< (2-20)M +) (share(T,ta —3) — S(T,ta—3)) by (48)
Ter
=(2-2a)M + Z share(T,tqg —3) — M
TeT
, there are no holes ity — 3 (by the assumption of this subcase)
< (2-20)M + Y wi(T) - M , by (13)
Tet
=(2-20)M+aM - M , by Def. 6
< (2—-2a)M. , by Lemma 3 (50)
By (D2), (49), and (50), condition (47) holds. |

By part (h) of Lemma 8, there existsa where0 < u < t; — 2, such that
LAG(T,u) < 1 and LAG(t,u + 1) > 1. Lett be the largest such. Then, by
Lemma 17, one of the following holds.

(a) There exists &, wheret’ < ¢4, such thaL AG(r,¢') < 1.
(b) There does not exista < ¢; — 2 such that there are no holes[int; — 2) and
LAG(7,v) > (tq —v)(1 — a)M + 1. (This is implied by both (46) and (47).)

If (@) holds, and’ < ¢4 holds, then this contradicts the maximalityzofOn the other
hand, ift’ = t4, then it contradicts part (c) of Lemma 8. If (b) holds, then part (g) of the
same lemma is contradicted. Therefore, our assumption-thasses its deadline &t
is incorrect, which in turn proves Theorem 1, fore= 2.

As a corollary to Theorem 1, we have the following utilization-based schedulability
test for EPDF.

Corollary 1. A GIS task set is schedulable o/ > 2 processors under EPDF if the
total utilization of 7 is at mostU (M, Wiyax), WhereW,,.. is the maximum weight of
any task inr andU (M, Whax) IS given by Def3.

Generalizing the proof. The proof of Theorem 1 given above fér = 2 can be
generalized tok > 2 as follows. If Wy,.x < 1/2, then it can be shown that for
LAG(7r,t+1) > LAG(7,t) to hold, there should be no holes in sléts 1 andt — 2,
which is a generalization of Lemma 10. In generalfiif,., < ﬁ then it can be
shown that at leagt — 1 slots preceding are without holes. Similarly, parts (f) and (g)
of Lemma 8 can be generalized as follows. There are no holes in the ladt slots
(slots[tq —k+1,t4)), and there exists@a < t, — k such that there are no holes in every

slotin{v,ty — k) andLAG(7,v) > (tq — v)(1 —)M + 1. A formal proof is omitted

Schedulable Utilization by Wmax

0.6

0.4

Schedulable Utilization

02 | —— EPDF : : : -
----- partitioned EDF
—— gllobal job-lelvel fixed prilority

0

0 0.2 0.4 0.6 0.8 1
Wmax

Fig. 4. Schedulable utilization b} ax.

due to space constraints. Fig. 4 shows the plot of the schedulable utilizaton of EPDF
(computed using the bound in Theorem 1 with a sufficiently ldrfeand expressed as
a percentage of the total processing capacity) with respddf{q.. For comparison,
plots of optimal schedulable utilization for the partitioned approach with EDF [14] and
the global approach that assigns a fixed priority to each job [6] (computed using their
best known bounds expressed in term$1gf.), are also shown in the same figure.

Is the schedulable utilization bound given by Theorem 1 optimal? As yet, we do
not know the answer to this question. However, as the following example shows, the
general bound cannot be improved to excesg M .

Counterexample. Consider a task set comprised®f + 1 tasks of weigh%, n tasks

of Weightg, andn tasks of weightg scheduled or3n processors. There is an EPDF
schedule for this task set in which a deadline miss occurs attimérhe schedule is

not shown here due to space constraints.) The total utilization of this task®&ptist,

which approache86.1% of 3n, the total processing capacity, as— oo. Given that
devising counterexamples for Pfair scheduling algorithms is somewhat hard, we believe
that it may not be possible to significantly improve the bound of Theorem 1, which is
asymptotically75% of the total processing capacity.

Utilization restriction for a tardiness of ¢ quanta. Having determined a sufficient
utilization restriction for schedulability under EPDF, we were interested in determining
a sufficient utilization restriction for a tardiness @fjuanta. Extending the technique
used above, we found that if the total utilizationsofs at most(sgjféM, then no sub-
task ofr misses its deadline by more thamguanta. For a tardiness of at most one, this
imposes a sufficient utilization restriction 84.6%. We feel that this is somewhat re-
strictive and that it can be improvedignificantlyby identifying and exploiting the right

properties of a system with a tardinessyofVe have deferred this for future work.

4 Conclusion

We have determined a schedulable utilization bound for the earliest-pseudo-deadline-
first (EPDF) Pfair scheduling algorithm, and thereby, presented a sufficient schedula-
bility test for EPDF. In general, this test allows any task set with total utilization not

exceeding’% to be scheduled o processors. Our schedulability test is expressed

in terms of the maximum weight of any task, and hence, may be used to schedule task
sets with total utilization greater tha?ﬁ{lil. We have also presented a counterexample
that suggests that a significant improvement to the test may not be likely. Finally, we
have extended the test to allow a tardinesg gfianta.

References

1. J. Anderson and A. Srinivasan. Early-release fair schedulingrde. of the 12th Euromicro
Conference on Real-time Systemages 35-43, June 2000.

2. J. Anderson and A. Srinivasan. Pfair scheduling: Beyond periodic task systeRm®clrof
the 7th International Conference on Real-time Computing Systems and Applicatges
297-306, Dec. 2000.

3. J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous periodic
tasks.Journal of Computer and System Sciené&&1):157-204, 2004.

4. B. Andersson, S. Baruah, and J. Jonsson. Static priority scheduling on multiprocessors. In
Proc. of the 22nd Real-time Systems Sympagiages 193-202, December 2001.

5. B. Andersson and J. Jonsson. The utilization bounds of partitioned and pfair static-priority
scheduling on multiprocessors are 50%Phoc. of the 15th Euromicro Conference on Real-
time Systemgpages 33—40, July 2003.

6. S. Baruah. Optimal utilization bounds for the fixed-priority scheduling of periodic task
systems on identical multiprocessolBEE Transactions on Computer$o appear.

7. S. Baruah. Multiprocessor fixed-priority scheduling with restricted inter-processor migra-
tions. InProc. of the 15th Euromicro Conference on Real-time Systeages 195-202, July
2003.

8. S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate progress: A notion of
fairness in resource allocatioAlgorithmica 15:600-625, 1996.

9. S. Baruah, J. Gehrke, and C. G. Plaxton. Fast scheduling of periodic tasks on multiple
resources. IProc. of the 9th International Parallel Processing Symposipages 280-288,

Apr. 1995.

10. U. Devi and J. Anderson. Improved conditions for bounded tardiness under EPDF fair mul-
tiprocessor scheduling. IRroc. of the 12th International Workshop on Parallel and Dis-
tributed Real-time System&pril 2004. To Appear.

11. U. Devi and J. Anderson. Schedulable utilization bounds for EPDF fair multiprocessor
scheduling (full paper). Available at http://www.cs.unc.€aduiderson/papers.html, April
2004.

12. C.L.Liuand J.W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environmentJournal of the Association for Computing Maching2(1):46—61, 1973.

13. J.W.S. Liu.Real-time System®rentice Hall, 2000.

14. J.M. Lopez, M. Garcia, J.L. Diaz, and D.F. Garcia. Worst-case utilization bound for EDF
scheduling on real-time multiprocessor systemsProc. of the 12th Euromicro Conference
on Real-time Systemgages 25-34, June 2000.

15. A. SrinivasanEfficient and Flexible Fair Scheduling of Real-time Tasks on Multiprocessors
PhD thesis, University of North Carolina at Chapel Hill, Dec. 2003.

16. A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multiprocesd$nsc. In
of the 34th ACM Symposium on Theory of Compyiiages 189-198, May 2002.

17. A. Srinivasan and J. Anderson. Efficient scheduling of soft real-time applications on multi-
processors. IfProc. of the 15th Euromicro Conference on Real-time Systpayes 51-59,

July 2003.

